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Abstract

We aim to automate decades of research and experience in
register allocation, leveraging machine learning. We tackle
this problem by embedding a multi-agent reinforcement
learning algorithm within LLVM, training it with the state
of the art techniques. We formalize the constraints that pre-
cisely define the problem for a given instruction-set archi-
tecture, while ensuring that the generated code preserves
semantic correctness. We also develop a gRPC based frame-
work providing a modular and efficient compiler interface
for training and inference. Our approach is architecture in-
dependent: we show experimental results targeting Intel x86
and ARM AArch64. Our results match or out-perform the
heavily tuned, production-grade register allocators of LLVM.
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inforcement learning; Multi-agent systems; « Mathe-
matics of computing — Graph coloring.
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1 Introduction

Register allocation is one of the well-studied and important
compiler optimization problems. It involves assigning a finite
set of registers to an unbounded set of variables. Its decision
problem is reducible to graph coloring, which is one of the
classical NP-Complete problems [8, 22]. Register allocation
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as an optimization involves additional sub-tasks, more than
graph coloring itself [8]. Several formulations have been
proposed that return exact, or heuristic-based solutions.

Broadly, solutions are often formulated as constraint-based
optimizations [34, 38], ILP [3, 5, 12, 42], PBQP [31], game-
theoretic approaches [45], and are fed to a variety of solvers.
In general, these approaches are known to have scalability
issues. On the other hand, heuristic-based approaches have
been widely used owing to their scalability: reasonable solu-
tions for practical benchmarks in near linear time. However,
developing good heuristics is highly non-trivial and requires
specialized domain expertise, on compiler construction as
well as on hardware architecture. Various heuristics have
been proposed over the past 40 years [9, 11, 15], extending to
recent times [13]. They are often fine-tuned for a particular
architecture and yield non-optimal performance.

Recently, with the wide range of successes of Machine
Learning (ML), ML-based approaches are being proposed to
solve compiler optimization problems that have been known
to be computationally expensive. These include classical op-
timizations like phase ordering [4, 21, 28], vectorization [25],
function inlining [49], throughput prediction [40, 51]. How-
ever, the applicability and effectiveness of ML methods to
compiler optimizations under hard semantic constraints re-
mains poorly understood. Focusing on register allocation
(regalloc), we identified some of the main reasons.

e Regalloc is a complex problem, composed of multi-

ple sub-tasks, including splitting, coalescing, spilling.
These sub-tasks have to be considered in addition to
modeling hardware complexities.
ML-based allocation schemes should ensure correct-
ness: no two variables in the same live range be as-
signed to the same register, and the register types
should be respected. Such semantic constraints should
not suffer any approximation, unlike forgetful opti-
mizations like function inlining,.

e On a practical note, it is hard to integrate ML models
and Reinforcement Learning (RL) algorithms in Python
with compiler frameworks in C++ that are among the
most complex pieces of software engineering.

Some initial attempts at addressing these challenges in-
clude Das et al. [20] proposing a partially ML based solution,
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Kim et al. [32] leveraging RL to reduce the search space of
PBQP, and the infrastructural Compiler-Gym [18] approach
to ease the RL-training process.

We propose a retargetable Reinforcement Learning (RL)
approach to the REgister ALlocation (REAL) problem. We
formulate a multi-agent hierarchical reinforcement learning
optimization considering program-specific information: (1)
to model the sub-tasks of register allocation like coloring,
live range splitting and spilling, and (2) to encode the correct-
ness constraints for preserving the semantics and hardware-
compatible register assignments. The legality of the register
allocations and assignments is preserved by imposing con-
straints on the action space, or outcome of each agent. As
register allocation is a combinatorial problem, establishing
the ground truth is hard, making RL a natural choice. It also
facilitates the imposition of correctness constraints.

We leverage the LLVM infrastructure [35] to build the first
end-to-end RL framework addressing the above-mentioned
challenges. The interference graph of a function is extracted
from the Machine Intermediate Representation (MIR) of
LLVM. Instructions within each node are represented as
vectors using representation learning methods. For this pur-
pose, we propose MIR2Vec embeddings to represent MIR
entities. These embeddings represent vertices of the inter-
ference graph that is traversed by RL agents. MIR2VEC em-
beddings are application-independent and may be used for
other backend applications in the future. Finally, we propose
LLVM-gRPC, a generic framework to facilitate communica-
tion between the RL model and the compiler during training
and deployment. Our approach is portable: we show results
on both Intel x86 and ARM AArch64.

Contributions. The following are our contributions:

e The first end-to-end application of RL for solving the
register allocation problem.

e Formalizing the constraints to restrict the action space
and preserve semantic correctness.

o Proposal of MIR2VEC to encode ML representations at
Machine IR (MIR) level.

e Design and implementation of LLVM-gRPC for com-
piler integration with ML models.

e Experimental evaluation targeting x86-64 and AArch64
on SPEC CPU 06 and 17 benchmark suites.

2 Background and Mathematical Model

We formulate the register allocation problem by defining
different constraints. We also give an overview of LLVM
register allocators and multi-agent RL.

2.1 Register constraints

Optimizing compilers convert the source code into an Inter-
mediate Representation (IR) where most target-independent
optimizations take place. In the backend compiler, this IR
is incrementally lowered to a machine-specific form. This
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representation in LLVM is called as Machine IR (MIR). MIR
at the stage of register allocation is very close to machine
instructions, as instruction selection and other low-level op-
timizations have already been performed. After instruction
selection, certain physical registers that are mandated by
the architecture are immediately assigned. For instance, x86
processors mandate the output of 32-bit division to be stored
only in $eax and $edx registers.

As shown by the example in Fig. 1(a), IDIV32 instruction
divides the contents of $eax and $edx by %x and stores the
result in $eax. Such mandatory assignments including call-
ing conventions are made. Regalloc can now be reduced
to assigning physical registers to the other lefi-out virtual
registers (V) while respecting the following constraints.

Type constraint. The register file (R) of a machine con-
sists of a collection of registers R* belonging to different types
(t): R = U, R". Assigning a physical register r to a virtual
register v of type t, o' » r, should satisfy the register type
constraint y” (v!) = {0’ » r : r € R'}. In Fig. 1(b), each
virtual register is associated with a particular register type.
For instance, %x is of gr32 type, which means that it belongs
to a 32-bit wide general-purpose register type. Meaning, only
registers belonging to that type (like $eax) can be assigned.

Congruence constraint. Real-world instruction set ar-
chitectures like x86 and AArch64 have a hierarchy of register
classes. For instance, 32 bit type of registers (like $eax, $ebx)
are physically part of the 64 bit ones (like $rax, $rbx). We
consider the registers that adhere to this part of relation as
a congruence class C(r). For example, registers $al, $ah,
$ax, $eax, $rax of x86, which are “chunks” of the same
physical register belong to the same congruence class, sat-
isfying $al, $ah C $ax C $eax C $rax. So, the assignments
for virtual register v should be among the set of registers
that satisfy the following congruence constraint Vr’ € C(r):

26 @) = {oiwr: Yoi,0; € V,v; # v;, Boj » 1’ € L(v;)}

Here L(v) corresponds to the live range of variable v, and
is computed as L(v) = [Pgef, P the definition of v occurs
at program point P%f, and its last use is in P"?. Fig. 1(a) gives
an example. The live ranges of the corresponding variables

are shown in Fig. 2(a).

Interference constraint. Register allocation has been mod-
eled as a graph coloring problem [11]. For each function
in the program, it involves creating an Interference graph
G(V,E) defined as follows: the vertices of the graph are
mapped to virtual registers (v) or physical registers (R,),
meaning V € (VUR,); the edges E are computed as {(v;,v;) :
v;,0; € VA L(v;) N L(vj)}. The interference graph corre-
sponding to the example in Fig. 1 is shown in Fig. 2(b). The
interference constraint says that no two adjacent nodes in
G should be allocated the same color. The set of registers
satisfying this constraint is given by:
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1 // Source MOV32ri @, %i:gr32

2 i=o0 MOV32ri 10, %x:gr32

3 x = 10 MOV32ri 20, %y:gr32

4 y = 20 <call print on %x>

5 print x $eax = COPY %y:gr32

6 z =y / x <clear $edx>

7 i++ IDIV32r %x:gr32, implicit-def $eax, <=
8 z =2z + 10 implicit-def $edx

9 i++ %z:gr32 = COPY $eax

10 print y %i:gr32 = ADD32ri %i:gr32, 1

<call print on %y, %z, %i>

Figure 1. (a) Example source code and (b) its Machine IR

¥ @) =R\ {r:Vu((wo) €EA (uwr)}

In summary, for a given virtual register v of type t, the set
of available registers for allocation y(v*) is defined as the
set of registers that satisfy the (i) type, (ii) congruence, and
(iii) interference constraints:

x(@") = xT (") N x¢ @) Nyt (")

2.2 Live range splitting and spilling

The above formulation of register allocation in terms of
graph coloring is well known and natural, as a decision prob-
lem. Yet register allocation as an optimization problem is
actually much more than graph coloring. For instance, when
there are not enough physical registers available, deciding
which variable (virtual register) has to be spilled to mem-
ory is important, as memory accesses take far more time
than register accesses. Spilling a variable, y(v) involves writ-
ing/reading it to/from a memory location on access. A trivial
example is the loop induction variable: it would incur high
cost to read/write from/to memory, if a decision is made to
spill it. Hence, register allocators try to reduce the spill cost
M(v), in addition to minimizing the number of spills. For a
machine with 3 registers, the example code shown in Fig. 1
is not 3-colorable, and results in spilling a variable.

A live range of a virtual register can be split. Let k € K de-
note a program point among the uses of v. Splitting live range
ofvat kis defined as ¢ (v, k) : L(v) ~ (L(v"),L(v")); L(v") =
[P Pk, L(v"") = [PK*1, Pend]. In Fig. 2(b), splitting i at 5
into (i’, i’") makes the graph 3-colorable. Determining which
variable to split, and at which point is non-trivial.

2.3 Register allocators in LLVM

The LLVM compiler currently has four register allocators:
FasT, Basic, GREEDY, and PBQP, ranked according to imple-
mentation complexity. They are implemented as passes and
operate on one function at a time.

FasT is an improved version of the linear scan algorithm
[43] and operates at the basic block level. Basic is an im-
proved variation of FAsT, and operates at the function level
[54]. GREEDY was developed [29] to address the shortcom-
ings of Basic; it iteratively combines four strategies: split-
ting, spilling, coalescing (merging of live ranges), eviction
(de-allocating the already-allocated physical register). Each
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Figure 2. Register allocation with and without splitting

of these strategies is driven by greedy heuristics. GREEDY is
a complex, highly tuned, default regalloc at -03 optimiza-
tion level. It iterates over the virtual registers in multiple
rounds and obtains a legal physical allocation if possible.
It includes highly tuned heuristics (i) for placing of proper
spill code, (ii) to minimize the load-store instructions while
favoring register moves by applying strategies like node-
splitting/eviction/last-chance-recoloring, etc. PBQP is the
only solver based mechanism in LLVM, and models it as
a Partitioned Boolean Quadratic Problem to obtain alloca-
tions [26]. These allocators are a result of significant (man-
decades) amount of engineering by expert compiler writers;
and are continually improved to address the regressions on
a case-by-case basis. Not all allocators implement all strate-
gies; live range splitting only takes place in GREEDY, whereas
coalescing is present in GREEDY and PBQP, and eviction is
in iterative allocators like GREEDY and not PBQP.

2.4 Multi-Agent Hierarchical RL

Reinforcement learning (RL) is a branch of machine learn-
ing that often tries to solve the problems where enumerat-
ing ground truth is either hard or infeasible. The learning
happens with experience where the agent learns a policy to
determine the best possible action based on its observation
from the environment. Depending on the goodness of action,
the environment gives positive or negative rewards so as
to course-correct the learning. With the evolution of DL,
methods like PPO [46] that use gradient based approaches
to learn better policy have become prevalent.

Depending on the problem formulation, there can be single
or multiple agents to solve the problem. When the problem
is modeled with multiple agents, it is called Multi-Agent Re-
inforcement Learning (MARL). If all the agents work together
towards a common goal, learning is said to be cooperative. If
they compete against each other to achieve a goal, the learn-
ing is said to be competitive. In certain cases, there can be a
mix of both of these. MARL is an active field of research that
has accomplished huge success in gaming [48], robotics [30],
navigation [1], and autonomous driving problems [33].

We formulate regalloc as a number of smaller subprob-
lems using multiple agents to model node selection, task
selection (among splitting, spilling, or coloring), splitting,
and coloring. These agents work cooperatively to achieve
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a beneficial register allocation. Another categorization in
the case of MARL problems is based on the schedule of the
agents. If the agents act on the environment sequentially,
it is the sequential variant of MARL. If the agents form a
hierarchy, where the top-level agent determines how the
agents at the lower level should act, the learning is said to
be hierarchical. In RL4REAL, task selection, splitting, and
coloring are modeled in a hierarchical fashion.

3 Modeling RL4REAL

We formulate register allocation as a Markov Decision Pro-
cess (MDP) using hierarchical Reinforcement Learning (RL),
modeling the sub-tasks of register allocation as lower level
tasks controlled by multiple agents. Fig. 3 sketches the over-
all approach. It involves interactions between the LLVM
compiler and the RL model for both training and inference.

3.1 Environment

We implemented a new MLRegAlloc pass in LLVM, to gener-
ate an interference graph (G), allocate, split and spill registers
as predicted by the agents. This pass also generates a repre-
sentation of G using MIR2VEc.

3.2 Agents

The task of allocating registers is split into multiple sub-tasks.
Each of these tasks are modeled as agents {w,, w7, W, a)g} €
Q, that learn their respective policies 7, to optimally solve
the low level tasks. We formulate hierarchical agents for four
sub-tasks as shown in Fig. 3:
e Node selector (w,): Top level agent that learns to pick
anodev € G.
e Task selector (w;): Mid level agent that learns to select
a task among {y, ¢} on v picked by w,.
e Splitter (w,): Low level agent that learns to identify a
split point k for v.
e Coloring Agent (w¢): Low level agent that learns to
pick a valid color Xi € yor spill p.

As it can be seen, each high level agent invokes a low level
agent while following the timeline: v, < w; < {wy, w¢}.
Each agent w has its own state space S, action space A,
and reward R, to learn a policy x,,.

Coloring Agent (w¢). In case of regular architectures like
x86 and AArché64, all the registers of the same type/class
have equal effect on the performance. However, the standard
register allocators prefer some registers over others within
the same class while considering several heuristics. One of
the predominantly used heuristic is to give preference to
the physical registers that are not (aliases of) callee saved
registers. This is achieved by deriving an ordering of physical
registers that can be allocated to a virtual register while
satisfying the constraints described in Sec. 2.1. The goal
of this ordering is to reduce the number of register moves.
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Hence, we design a simple model that can act as a coloring
agent to learn the beneficial color assignments.

For a graph of V nodes and a set of registers y(v) avail-
able at the instant, the state space of wy is given as a tuple
([0]. [x @), |Vacie|), where Vyerr = V' \ Vg are the nodes to
be colored, v is the node that is picked by w,, and [.] denotes
its embedding. Meaning, the coloring agent uses the follow-
ing information to decide the register to be assigned: the
embedding of the vertex v, the number of registers satisfying
the constraints (see Sec. 2.1), and the number of uncolored
nodes in G. If no registers are available, the coloring agent
marks o for spilling. Hence the legal action space of wy is:

Alog) = {X(v), X(@)] >0

u(v), otherwise

x(v) gives the set of legal registers for v (Sec. 2.1). To improve
performance, the agent should maximize the use of regis-
ters for vertices with higher spill weight. And, spill weight
roughly corresponds to the importance of the node v. Hence
the reward for the coloring agent is given as:

R(ws) = +M(v), if y(v)
O M(o), i plo)

In our experiments, spill weight M is estimated using the
spill costs computed by LLVM.

Splitter (w,). Live range splitting ¢ (v, k) corresponding
to a variable v involves inserting a move instruction at the
split point k and creating two new live ranges L(v”) and
L(v”) in place of a single original live range L(v) as ex-
plained in Sec. 2.2. Selecting an appropriate split point plays
an important role in making effective spilling and coloring
decisions. For instance, the GREEDY in LLVM greedily selects
the split points so as to carve out a region that can be al-
located a register, while the other parts are spilled. In our
model, the splitting agent predicts the split point in the live
range among all the points of use.

Inserting the move instructions can be seen as a dataflow
problem, that is analogous to the phi (copy) placement while
creating (going out-of-) SSA form. We use dominance fron-
tiers to place the move instructions appropriately to preserve
the correctness. In Algorithm 1, we show how the move in-
structions are inserted. This algorithm directly builds from
earlier works [8, 10, 24] and dominance property [19], so its
soundness can easily be proved.

For predicting where to split the live range of a variable
v, the node splitter considers the spill weights at each use
of the variable M(v) = {M(vx) : Yk € K}, the distances
between each successive use D, = {D(v;,v;41), Vi, i+1 € K},
and the embedding [o] of v. The use distance is the number
of program points between two uses of v. Hence, the state
space is given as a tuple ([o], M(v), D). For a given state,
the agent learns an optimal program point p € K where v
can be split. Hence the action space A(w,) = K.



RL4REAL: Reinforcement Learning for Register Allocation

CC ’23, February 25-26, 2023, Montréal, QC, Canada

N Embeddings

Representation Learning
1
TransE

_ _Triplets _ —_
- -THRlets- - ¢ W+ r =4l
MOV NEXT MOV
MOV ARG1 CONST!

|
MOV ARG2 VAR |

\
i
!
" I
|
| i ‘ ,
‘ S ‘ f
| - ! ! MIR2Vec | 1 0
I COPY NEXT IDIV : Seed Embedding | : q>‘*o
| COPY ARGI REG | Vocabulan : / ‘
4 1
. 1
i I
i
i
|
!
|
|

COPY ARG2 VAR

1 D .

! \ MOV32ri 0 , i : gr32 —> Color

\ .
i 1 or Spill

R $eax = COPY %y : gra2 MIR Function ' |yterference

S \ Graph O
S <O
S e e e e e e ST T oo - Lowering & L \ . N -
opumizauonsEE Mo \Reglster Assignment and spllllng, .

LLVM Environment Node

) Node \
. N Selector % \
- - O : 1 Agent \
S 7o \
N C 5 ,’ l Selected \
\ >
\ O\~ ) Node \

Split Node
Uply ‘\%plit

gRPC
Stub

Code Generation

RL Framework

__________

Embeddings

o\~ ! )
\\Q , Task Pigk
GGNN B Selector Next node
1 Agent \
1 : \
Graphinfo SPLV OR \{Tor \\
1

gRPC Split Inf6

\
Splitting Coloring 7@\
Stub 1 Agent Agent '
, g

Color Map for all nodes

7
’

Source Bi
code inary|

Figure 3. Overview of RL4REAL: The interference graph (G) generated from MIR is represented as MIR2VEc vectors and is passed as input
to the RL Framework via LLVM-gRPC The agents in the RL framework perform splitting/coloring on G, and the register assignments (colors)
are communicated back to LLVM via LLVM-gRPC. In case of splitting a vertex in G, the split points predicted by the agent are passed to the
LLVM environment to perform splitting, and the updated graph is sent back to the model as response.

Algorithm 1: move-placement in live range splitting

Parameter: Virtual register v, Split point k
Rename v — o’
At use point k do: 0" « move(v”)
Basic block B « block(vy)
for i € DominanceFrontier(B) do
v’ « move(v”), after last use(v’) in i
Rename v’ — 0"/, Yuse(v’) between B and i

The reward for the agent on splitting v into (v’,0”) is
based on the difference in spill weights of the variable before
and after splitting. The agent gets a positive reward on reduc-
ing the sum of the spill weights, which indicate a reduction
in complexity of coloring.

R(wy) = M(v) - M(i)

ie{v, 0"}

Task Selector (w.). For selecting a task (r) among col-
oring and splitting, the agent w, considers the parameters
specific to each of the tasks: the representation of v, the num-
ber of available registers, the number of interferences, its
life-time, spill weight. Hence the state space is formulated as
the tuple: ([o], | x(v)], §(v), |K(v)], M(v)). The action space
of w; is defined as:

Alwy) = {{4), xh o 1K) >k

X otherwise

Here |K(v)| > k indicates that v should have at least k uses to
be considered for splitting. We define k as a hyper-parameter.
We set k = 2 (1 definition and 1 use) in our experiments. We
model the reward for this agent based on the outcome of the
low level tasks.

0, T=¢
On choosing to color, the agent gets a reward based on color-
ing decision of ws. However, if the agent chooses to split, we
defer from giving a reward as the goodness of the outcome
is not known till a coloring decision is made.

Node Selector (w,). It is well known that the order of
picking a variable for allocation would highly affect the final
outcome of register allocation. Usually, the iterative alloca-
tors use a priority queue to determine the order of allocation.
The priority is derived from different heuristics including the
spill cost of the variables, size of the live ranges, among oth-
ers. We use a model (w,) to figure out this order of allocation
by predicting the variable/vertex to process (split/color) at
every step of allocation after processing the previous vertex.

The state space of w, comprises the embedding of each
vertex in G obtained from a Gated Graph Neural Network
(GGNN) as explained in Sec. 4. Along with these embed-
dings, the agent uses the spill weights of the nodes M to
characterize the state. Hence, the state space is given as a
tuple ([G], M(V)) Its legal action space is A(wy) = Vyerr- The
learned policy is deemed good based on the final coloring
decision of the node. Hence, the reward for this agent is also
modeled based on the rewards of the coloring agent (w¢):

R(w,) = {ﬁ(wg)’ : ;

Global rewards. In addition to providing rewards to the
agents at each step, we derive a global reward based on the
throughput of the generated function estimated by LLVM-
MCA [37]. The global reward is computed based on the dif-
ference between the throughputs of the code generated by
RL4REAL (Thprarear) and GREEDY (Thgreedy) as:
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Rg = +10, ThRIAReAl 2 ThGreedy
—10, Otherwise

This way of using throughput helps capturing the overall
impact of the allocation scheme in comparison with GREEDY.

4 Representing Interference Graphs

We represent nodes of the interference graph as embeddings
obtained from LLVM’s MIR instructions. Such embeddings
form the input to a Gated Graph Neural Network (GGNN)
that learns to generate the representation of the state space.

Any deep learning model can accept only a numerical
representation as input. When it comes to applying ML tech-
niques on programs, there are two possible ways: (i) feature
based representations [21], or (ii) distributed representation-
s/embeddings [6, 50, 53].

It is widely understood that program embedding tech-
niques at IR-level automatically capture the semantic infor-
mation that may be difficult to recover with only syntactic
embeddings [53]. Further, the IR-based program embeddings
generalize better across applications, while effectively re-
quiring much less data to train.

We propose MIR2VEc, a learned embedding model for
representing the MIR form of the program. The learned
MIR2VEC representations are in the form of n-dimensional
real-valued vectors, which can be passed to the model for
learning a downstream optimization task like register allo-
cation. The embeddings can be seen as the key means for
facilitating the current optimization problem (viz. regalloc),
but, also a necessary means in which other backend problems
(viz. instruction scheduling) can be easily modeled to obtain
a (representation) learning based infrastructure for backend
optimizations. We generate MIR2VEc representations by: cre-
ating triplets by forming relations between entities, training
TransE [7] to obtain the seed embedding vocabulary, and
using it to create instruction-level representations as shown
in Fig. 3. As MIR is target-specific, the embeddings are also
specific to the architecture.

MIR Entities. Opcodes and MIR instruction arguments
form the entities. Arguments primarily include physical and
virtual registers, and immediate values. We abstract these
arguments with generic identifiers as a preprocessing step.

We create two different relations. (i) NextInst: Captures
the relation between the current opcode and the next in-
struction opcode, (ii) Arg;: Captures the relation between
the opcode and the arguments of the instruction. Once the
triplets are generated, we train the TransE model to obtain
the embeddings for each of the entities.

Grouping of opcodes. MIR contains specialized opcodes,
in terms of the operating width among other factors. MIR
contains about 15.3K different possible opcodes in x86 and
about 5.4K in AArché64. Obtaining a dataset to cover all such
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specialized operands would be highly infeasible, and in turn,
would not generate good representations. Hence we mask
out the opcodes based on their operating width, the source
and destination locations (immediate, register, and memory)
and group them together.

For example in x86, there are about 200 different MOV in-
structions operating on different bit width, sources, and desti-
nations, like MOV32r@, MOVZX64rr16, MOVAPDrr, etc. All such
opcodes are grouped together as a generic MOV token while
forming the triplets. The obtained triplets are fed to the
TransE model to generate the embeddings for each entity-
resulting in seed embedding vocabulary.

Representing instructions. For a given MIR instruction
with opcode O and n arguments Ay, Ay, . .., Ay, its represen-
tation is computed as

Wo - [O] + Wa - ([Aa] + [Az] +- - + [An]) . Wo > W,

where W,, W, € (0, 1] correspond to the weights of opcodes
and arguments, [-] denotes the embedding of the entity from
seed-embedding vocabulary, and operators - and + denote
multiplication and vector addition respectively.

Interference Graphs. As mentioned earlier, the MIR at
the stage of register allocation contains partial physical regis-
ter assignments and virtual registers. The physical registers
are assigned for the instruction operands that have restric-
tions on the particular register to be used. Virtual registers
are used in all other places. Consequently, we need to take
into account the edges corresponding to both virtual and
physical registers. Virtual registers are marked with the reg-
ister class so that assignments can only be one among the
physical registers in that class.

For computing G, considering the interferences between
the (physical «— virtual) and (virtual «— virtual) registers
is sufficient as G is bidirectional and we do not need to worry
about the physical registers that are already assigned.

We use a collection of instructions in the live-range of
a variable to represent a vertex of the interference graph.
Each instruction is represented in R™ using MIR2VEC embed-
dings. Consequently, a vertex v is represented as a matrix
of embeddings [o] in R™", where m denotes the number of
instructions in its live range.

Gated Graph Neural Networks (GGNN5s) are widely used
in programming language modeling [17, 41] especially when
the inputs are modelled as graphs. GGNNs involve message
passing between the nodes of the graph. Information propa-
gates across multiple nodes to arrive at the representation
for a given node. Also, they allow annotating the nodes and
edges based on their types and properties, and consider these
while learning a representation. We use GGNNs to process
the embedded interference graph to get the final representa-
tion. This network transforms R™" — R¢. We set d = n in
our experiments and annotate the graph with the following
node types, along with spill weights.
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o Not visited — nodes that are not visited yet.
o Spill — nodes that are marked as spill.
e Colored — nodes that are assigned a register.

Such node representations are propagated through a GGNN
by means of message passing. Messages received from ad-
jacent nodes are aggregated and passed through a Gated
Recurrent Unit [14] to yield a final representation.

5 Compiler Integration

The integration of DL/RL models into optimizing compilers
can be a hurdle, for both research and practical deployment.
Problems like vectorization [25] or phase ordering [28] are
adeptly controlled through optimization flags, carrying in-
formation from the predictions of the model to the compiler.
Register allocation however poses an inherent difficulty as
the ML-decisions and the optimization algorithm are deeply
intertwined; the model predicts the final allocation based on
the compiler generated code from its splitting decisions. One
naive approach is to rely on Python bindings for integration;
however, this involves large overhead.

We propose LLVM-gRPC, a novel infrastructure for effi-
cient communication between the Python model and C++
compiler to support both training and inference. LLVM-gRPC
involves gRPC calls [23] with the LLVM toolchain, leverag-
ing its modular structure as an LLVM library. This gives the
end-user the option of designing custom RPC calls that can
operate on any of the module, basic-block, loop or function
of the input program. LLVM-gRPC allows bi-directional com-
munication between ML models and the compiler, during
both training and inference. To our knowledge, this facility
is not available in other frameworks.

The splitting decision by the model is communicated to the
compiler via LLVM-gRPC, which then applies it and responds
back with the update containing new interferences and live
ranges. The model then updates the interference graph using
the received information and continues the traversal. After
processing all vertices of G, all the coloring decisions are
communicated to the compiler as a color map.

Table 1. Allocatable Registers in x86 and AArch64
Arch. Registers

x86 [A-D]L, [A-D]X, [E.R][A-D]X, [SLDI]L, [E,R][SLDI],
SI, DI, R[8-15][BW,D], FP[0-7], [X,Y,Z]MM[0-15]
AArch64 [X;W][0-30], [B,H,S,D,Q][0-31]

6 Experimental Evaluation

We first discuss the experimental setup, followed by a char-
acterization of the benchmarks. Then, we report the results
on x86, followed by the results on AArché64 and an explana-
tion of the results. Finally, we report improvements on the
regression cases using policy improvements.
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6.1 Setup

For training MIR2VEC representations, we randomly select
2K source files from SPEC CPU 2017 benchmarks and C++
Boost library. MIR triplets are generated by applying -03 op-
timization flag. The seed embedding vocabulary is obtained
by training a TransE model [7] on generated triplets, by
running an SGD optimizer over 1000 epochs to obtain an em-
bedding vector of 100 dimensions. We obtain 1 Billion MIR
triplets from which {675,315} entities and {25, 17} relations
are generated for {x86, AArch64} respectively.

We target a complex x86 (Intel Xeon SkyLake W2133, 6
cores, 32GB RAM), and a simpler mobile AArch64 (ARM
Cortex A72, 2 cores, 8GB RAM) processors. We consider
allocations of general purpose, vector, floating point registers
for both x86 and AArché4 (listed in Tab. 1); other registers
like eflags are pre-assigned before any regalloc.

Our framework is implemented as a pass MLRegAlloc in
LLVM 10.0.1, using gRPC v1.34. We train the RL models using
the PPO policy with the standard set of hyperparameters on
the training set of functions selected from SPEC CPU 2017,
until convergence of reward graph. There were about 11K
and 30K functions (with 120-500 vertices) in SPEC CPU 2017
benchmark suite in x86 and AArch64 respectively, out of
which we choose 5K functions at random (from SPEC 2017)
for training. Training was done on a 32GB Tesla V100 GPU
and sampling was done using 12 threads of a server with
Intel Xeon Platinum 8168 processors.

Model Architecture. Each agent learns a policy depend-
ing on its model architecture. For GGNN, we use two fully
connected (FC) layers to normalize the input, followed by a
RNN layer for message passing. For the agents, we use simple
neural networks with FC layers: node selector and splitter
use four FC layers each, while task selector and coloring
agents use three FC layers each with batch normalization.
Everywhere, ReLU is used as the activation function.

Benchmarks. In our experiments on x86, we consider
C/C++ benchmarks with less than 1 MLOC (1 Million Lines
of Code) from SPEC CPU 2006 and 2017. This constitutes (8
Int + 5 FP) 13 benchmarks in SPEC CPU 2006, and (8 Int +
5 FP) 13 benchmarks in SPEC CPU 2017 benchmark suites.
We were able to successfully compile the benchmarks listed
in Tab. 3. We observed 4 compilation errors, and 4 runtime
errors due to the engineering and integration issues.

6.2 Characterization of Benchmarks

Let us now characterize the SPEC CPU 2017 benchmarks
for choosing the graphs for experimentation. We study the
45 hot functions (profiled with the perf tool [36]) that take
at least 5% of the total execution time of a benchmark. The
number of vertices in the interference graphs of these hot
functions along with the number of interferences and register
pressure is shown in Fig. 4. We compute register pressure as
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#Vertices
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Table 2. % runtime diff. over Basic on hot functions
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Figure 4. Correlation between #Vertices, #Interferences and Register Pressure

the maximum number of overlapping live ranges across all
program points of a function.

It can be observed that out of 45 hot functions, 44 have
more than 120 vertices in their interference graphs, while 31
(the majority) of them have between 120 and 500 vertices.
It can be also be seen that the graph size has a strong cor-
relation with the number of interferences and the register
pressure. Meaning, the vertices and edges show linear corre-
lation (not quadratic), and the vertices and register-pressure
also show near linear correlation (not quadratic) [8].

As the number of vertices and the register-pressure are
positively correlated with each other, in general the graphs
with higher number of vertices are harder to allocate. Hence,
we consider the functions that have at least 120 vertices for
allocation through RL4REAL. We limit the maximum number
of vertices to be 500, as most of the hot functions are in this
range (120-500), and also for ease of training. Functions that
are not in this range are processed using GREEDY.

6.3 Runtimes on x86

We study the SPEC CPU 2017&2006 benchnmarks and com-
pare the results with LLVM’s allocators. Basic, GREEDY and
PBQP generally outperform the Fast allocator. However,
there is no single allocator among these three that perform
the best for all programs. Hence, we compare our results
with these three allocators.

In Tab. 3, we show the runtimes obtained by Basic and
the improvements obtained over it by other allocators for
each benchmark. These are obtained by taking the median
of three executions. Positive (negative) numbers indicate
speedups (slow-downs) over Basic. For RL4REAL, we train
two models: one trained only using local rewards (L) and
another with local along with the global reward (G).

On average, RLAREAL-L (RL4REAL-G) yields about 19s
(17s) improvement over BAsic; GREEDY results in an improve-
ment of about 22s. RL4AREAL-L (RL4REAL-G) shows speedup
over Basic in 14 (11) out of 18 benchmarks. The highest and
second highest improvements in runtimes over Basic are
highlighted in Tab. 3. In particular, RL4REAL (L or G) results
in highest or second highest improvements over Basic in
17 out of 18 benchmarks. As it can be seen, the runtimes
obtained by our framework are very close to GREEDY. In

V538 L. #(val>0) 23 23 17 16 17 13
\ #(val<0)) 8 8 14 19 18 22

Max 440 444 413| 127 104 62

Min 77 -44 -108| -51.4 -52.5 -13.1

Table 3. Runtime improvement (s) on x86 over Basic, highlighting
the Highest and Second highest improvements.

Diff. from Basic (Basic- x)

Runtime
Benchmarls Baste PBQP  GREEDY w
L G

401.bzip2 360.6 -7.3 75 -1.1 108
429.mcf 233.8 1.4 -2.9 27 36
445.gobmk 322.3 -3.3 6.4 24 1.7
456.hmmer 284.3 1.8 6.1 5.0 -37.6
462.]ibquantum 2564  -10.1 -1 22 -67
471.omnetpp 305.7 0.7 0.4 1.2 1.2
433.milc 349.1 -16.6 0.1 -13.8 -7.0
470.1bm 184.0 -7.9 3.0 2.3 1.4
482.sphinx3 366.0  -37.5 16 -31  -27
505.mcf r 344.9 4.5 -1.6 8.6 -4.7
520.omnetpp_r 475.7 6.4 6.4 2.4 2.8
531.deepsjeng_r 299.9 4.6 16.0 9.9 128
541]eela_r 439.5 1.6 7.1 0.4 1.9
557xz_r 3715 -0.6 119 121 -85
508.namd_r 236.5 2.5 23.5 9.1 238
519.]Jbm_r 261.8 1.4 57.7 50.9 58.1
538.imagick_r 479.3 -16.9 1155 118.8 1184
544.nab_r 417.5 5.8 132.1 1313 1344
Average -3.9 21.7 187 165

comparison, RL4REAL-L (RL4REAL-G) results in an improve-
ment on 5 (6) benchmarks over GREEDY. And those with
slow-downs, runtimes of 12 (11) benchmarks are within 1%
of GREEDY, and only 1 show more than 4% slow-down.

To obtain confidence intervals, we ran benchmarks 8 times
and observed that the noise was under 1% consistently across
all benchmarks for a 95% confidence interval, except for
libquantum, where the noise was 1.8% (1.2%) in RLAREAL-L
(RL4REAL-G). We also have empirical results on numerical
kernels. On PolyBench [44] benchmark, our results show
similar performance: RL4REAL obtains an average runtime
of 43.5s (3.6s) in comparison 43.6s (3.6s) obtained by GREEDY
on Extra-Large (Large) input size.

Analysis of Hot functions. We did a study at function
level, focusing on the hot functions. There were 35 and 31
allocated hot functions in SPEC 2006 and 2017. In Tab. 2, we



RL4REAL: Reinforcement Learning for Register Allocation

Table 4. % speedup of GREEDY and RL4REAL over Basic on SPEC
2006 and 2017 (x86)

B/M Functions GreepY RL4REAL Diff.
Top 5 functions with highest % speedup (over GREEDY)
401 BZ2_compressBlock -51.3 -5.2  46.1
445 do_get_read_result -12.0 -0.5 115
482 mgau_eval -6.0 03 63
429 price_out_impl -0.8 23 32
445 subvq_mgau_shortlist -9.8 -69 29
538 GetVirtualPixelsFromNexus 8.3 28.8 204
538 SetPixelCacheNexusPixels 4.7 219 17.2
505 cost_compare -7.7 81 1538
557 lzma_mf bt4_skip -1.8 363 55
525  Dbiari_decode_symbol -2.7 27 54
Top 5 functions with highest % slow-down (over GREEDY)
456 P7Viterbi 2.2 -13.1 -15.3
482  vector_gautbl_eval_logs3 11.9 -2.5 -14.4
401 mainGtU 0.3 -9.6 -10.0
401 fallbackSort 12.6 6.2 -6.4
445  fastlib 4.8 -1.1 -5.9
557 lzma_mf bt4 find 1.5 -10.7 -12.3
531 feval 26.4 17.7 -8.6
505 primal bea_mpp 0.9 -7.6  -8.5
541 FastBoard:self atari 3.7 -0.1  -5.8
541 gsearch 6.6 1.5 -5.0

show the percentage difference in runtime improvements ob-
tained by GREEDY and RL4REAL allocators in comparison to
Basic. It can be seen that RL4REAL results in improvements
on largest number of functions, and minimum number of
slow-downs over Basic.

On average, in SPEC 2017 RL4REAL-L improves over Ba-
sic by 7%, while GREEDY results in a similar improvement of
about 6%. When it comes to SPEC 2006, to our surprise,
GREEDY did not show improvement on average runtime
among the hot functions. It is mainly due to a 51.3% slow-
down observed on BZ2_compressBlock from Bzip2 bench-
mark. In comparison, RL4REAL-G results in a lesser slow-
down of about 5% on this function.

In imagick benchmark, RLAREAL (both L and G) obtains
improvements over GREEDY, on all the three allocated hot
functions: On GetVirtualPixelsFromNexus and SetPixel-
CacheNexusPixels functions, RL4AREAL improves by over
29% and 22%, where GREEDY results in an improvement of
about 8% and 5%; on MeanShiftImage function, GREEDY and
RL4REAL show a similar improvement of about 44%. We list
the top 5 hot functions that show highest % speedup and
% slow-down in comparison to GREEDY from both SPEC 2006
and 2017 in Tab. 4.

6.4 Runtimes on AArch64

In this section, we study the performance of SPEC CPU
2017&2006 benchmarks on AArch64. As mentioned earlier,

CC ’23, February 25-26, 2023, Montréal, QC, Canada

Table 5. Improvement in runtimes (s) on AArch64 over Basic alloca-
tor. Highest and Second highest improvements are highlighted.

Runtime Diff. from Basic (Basic- x)

Benchmarks Basic

PBQP Greepy RL4REAL

401.bzip2 1366.9 -41.1 15.6 12.8
429.mcf 1320.5 -12.7 -7.5 1.6
445.gobmk 992.8 15.6 26.1 14.5
462.libquantum 1627.6 -8.7 4.5 9.6
433 milc 1251.1 59.2 70.9 45.4
444 namd 855.3 2.7 21.8 18.8
470.Ibm 1604.3 -6.4 -16.6 16
505.mcf _r 1535.1 259 1.9 -12.8
508.namd_r 845 0.4 34.5 40.1
523.xalancbmk_r 979.1 8.1 -3.4 4.4
531.deepsjeng_r 777.2 10.0 30.5 4.5
541.]eela_r 1067.9  -11.3 -0.1 -19.5
557.xz_r 1163.2 3.7 22.2 21.3
519.lbm_r 1657 50.9 -1.6 39.8
538.imagick_r 1244.5 -3.9 75.8 65.6
544.nab_r 1170.7 -7.7 31.5 32.4
Average 5.3 19.1 18.4

the runtimes shown correspond to the median of three runs.
For the cases where there were significant differences in run-
times (about 20s) across different runs, we take a median of
five runs. We cross-compile the binaries from x86 targetting
the AArch64 board by running the inference. We skipped
the benchmarks like perlbench, h264ref, xalancbmk and
sphinx3, as they are known to have cross-compilation is-
sues, or they fail on compilation/execution with the standard
register allocators of LLVM. The runtimes obtained by Ba-
sic, the improvements obtained over it by other allocators
and RL4REAL-G are listed in Tab. 5. On average, RLAREAL
achieves an improvement of 18s, whereas GREEDY achieves
an improvement of about 19s. Also, RL4REAL achieves high-
est or second highest improvements in all the benchmarks ex-
cept four. These results demonstrate that the learned heuris-
tics from our model work well on different architectures.

6.5 Policy Improvement on Regression Cases

In traditional compilers, heuristic tuning for optimization
is an iterative process: human experts identify regression
cases, and heuristics are tuned to identify cases of regression.
Similar to this spirit, Trofin et al. [52] (MLGO), propose a
policy improvement cycle, where the learned RL policy is
fine-tuned to check if it fares well on the regression cases.
In this section, we attempt to tune the learned policy to
evaluate if the regression cases can be improved. For this
purpose, we identified poorly performing benchmarks from
each configuration: milc on RL4REAL-L, hmmer and xz on
RL4REAL-G. The learned model is then retrained (fine-tuned)
on the hot functions of these benchmarks. Upon training, we
observe a positive improvement on all three regression cases:
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12s onmilc, 10s and 6s on hmmer and xz benchmarks. This
experiment makes a strong case for online or continuous
learning [2], where the learning continues during deploy-
ment for betterment of policy.

6.6 Discussion

We demonstrate performance results on par with the best
allocators currently available in LLVM: RL4ReAl is most fre-
quently the best or second best allocator, and there is no single
allocator that performs best across all benchmarks (see Ta-
bles 3 and 5). It is well known that register allocation is one
of the hard compiler optimization problems, and the base-
line heuristics achieve excellent results that cannot be easily
improved upon in terms of wall-clock time. For example, the
studies of Pereira et al. [45], Shin et al. [47], Kim et al. [32],
and the report on the PBQP solver [16] were not able to sig-
nificantly outperform baseline heuristics across benchmarks,
and they report performance numbers in the same ballpark
as the ones that we obtain.

In this work, we consider the major sub-tasks/strategies
of register allocation: coloring, splitting and spilling, with a
focus on building the first end-to-end RL model integrated
with LLVM. As mentioned earlier, GREEDY also admits regis-
ter coalescing as one of its strategies. We consider coalescing
along with other possible strategies like multi-allocation,
register packing, spilling to vector registers, as possible in-
cremental extensions for a future work. These additional
strategies could result in further runtime improvements. It
could however be noted that even without admitting these
additional strategies—and just relying on the ones that are
available in LLVM—RL4REAL gives competitive numbers vs.
the state-of-the-art regallocs in LLVM.

It can be noted that these results have been obtained fully
automatically, against production-grade allocators tuned
over many man-decades of experience and effort.

7 Related Work

Recently, several ML-supported compilers were proposed,
leveraging representation learning techniques for compiler
optimizations [25, 28, 39, 40]. These works use learned em-
beddings like inst2vec [6], IR2Vec [53], Flow2Vec [50] for
representing the input programs to the ML model. We model
a complex register allocation problem using RL and propose
MIR2Vec to represent programs in MIR form.

An initial attempt to solve regalloc using ML models by
Das et al. [20] uses an LSTM to come up with an initial col-
oring scheme; it undergoes a correction phase to rectify the
inconsistency in coloring interferences. Their work focuses
on the graph coloring problem, and to our understanding,
the solution was not integrated to obtain the final register as-
signments. Another recent work by Kim et al. [32] proposes
an RL-based solution inspired from AlphaZero [27] for solv-
ing PBQP constraints by reducing the search space; they use
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Monte Carlo Decision Trees to simulate solving the PBQP
graphs. Their model focuses on an irregular and custom ar-
chitecture for Automated Test Equipments. RL4REAL is the
first end-to-end application of RL for solving the generic
regalloc problem; does not need a separate correction phase,
and is integrated as a MLRegAlloc pass in LLVM, and reports
results that are comparable to the regallocs in LLVM.
Compiler-Gym [18] is a recent approach designed to lever-
age Python libraries for solving compiler optimization prob-
lems; it exposes RL environments and datasets for training.
However it currently does not support integrating these
trained models in the compiler pipeline for both training
or deployment. Another framework, MLGO [52] integrates
trained ML/RL models within the LLVM compiler. For this
purpose, the compiler loads a trained model and accesses it
via C++ APIs of Tensorflow or ahead-of-time generated code
(release mode). The framework is used in production, with
improved decisions for inlining for size, and live-range evic-
tion (in regalloc) when compared to the compiler’s default
heuristics. MLGO addresses a narrower space of the register
allocation problem, but its deep integration of a precompiled
ML model into LLVM hints at a path for further integration
of deployment of our approach in a production compiler.

8 Conclusion

We propose a target-independent Reinforcement Learning
approach to the Register Allocation problem. We use a multi-
agent hierarchical algorithm to learn a policy for three of
the main sub-tasks of register allocation, including color-
ing, live range splitting, and spilling. Semantic correctness
is ensured by the constraints encoded as the action masks
for the agents. Our method often exhibits better allocations
and generally perform on-par with the standard register al-
locators of LLVM. RL4REAL opens up new opportunities
for research on regalloc and on other backend compilation
problems. Source code and the related artifacts are available
in https://compilers.cse.iith.ac.in/research/rl4real.
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