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Learning and Understanding User Interface Semantics 

from Heterogeneous Networks with Multimodal and 

Positional Attributes 

GARY ANG and EE-PENG LIM , Singapore Management University 

User interfaces (UI) of desktop, web, and mobile applications involve a hierarchy of objects (e.g., applications, 

screens, view class, and other types of design objects) with multimodal (e.g., textual and visual) and positional 

(e.g., spatial location, sequence order, and hierarchy level) attributes. We can therefore represent a set of 

application UIs as a heterogeneous network with multimodal and positional attributes. Such a network not 

only represents how users understand the visual layout of UIs but also influences how users would interact 

with applications through these UIs. To model the UI semantics well for different UI annotation, search, 

and evaluation tasks, this article proposes the novel Heterogeneous Attention-based Multimodal Positional 

(HAMP) graph neural network model. HAMP combines graph neural networks with the scaled dot-product 

attention used in transformers to learn the embeddings of heterogeneous nodes and associated multimodal 

and positional attributes in a unified manner. HAMP is evaluated with classification and regression tasks 

conducted on three distinct real-world datasets. Our experiments demonstrate that HAMP significantly out- 

performs other state-of-the-art models on such tasks. To further provide interpretations of the contribution 

of heterogeneous network information for understanding the relationships between the UI structure and 

prediction tasks, we propose Adaptive HAMP (AHAMP), which adaptively learns the importance of different 

edges linking different UI objects. Our experiments demonstrate AHAMP’s superior performance over HAMP 

on a number of tasks, and its ability to provide interpretations of the contribution of multimodal and positional 

attributes, as well as heterogeneous network information to different tasks. 
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User interface management systems • Computing methodologies → Artificial intelligence • Infor- 
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 INTRODUCTION 

he pervasiveness of mobile applications and availability of mobile application user interface

 UI ) repositories containing rich multimodal information have made the mining of mobile appli-

ation design knowledge [ 34 ] an important research topic which benefits retrieval and annotation

f UI objects, design of user interactions/experiences ( UI/UX ), and evaluation of UI designs.

obile application UI data can be viewed as a hierarchy of design objects—mobile applications

ssociated with multiple UI screens, code classes (e.g., Java code classes from the Android API),

nd elements. As these different types of design objects are linked with one another, they form

 heterogeneous network . Moreover, they are often associated with multimodal and positional at-

ributes. Examples of multimodal attributes include visual information (e.g., UI screen and element

mages) and textual information (e.g., code and description of design objects). The positional at-

ributes include spatial locations of design objects (e.g., locations of UI elements in UI screens),

equential positions (e.g., order of UI screens during user interactions), and hierarchical positions

e.g., hierarchical levels of design objects). Heterogeneous networks formed from a hierarchy of de-

ign objects with multimodal and positional attributes are also common in many other UI-related

pplications—web, print, tangible. 

Psychological evidence shows that humans parse images into part-whole hierarchies and model

he viewpoint-invariant spatial relationships between a part and a whole as they process a piece

f visual information [ 21 ]. Intuitively, such hierarchical representations are even more important

or UIs since the part-whole hierarchies not only allow a user to understand the visual layout of

Is but also influence user interactions and experiences. For example, the number of levels in a

I design hierarchy could influence the navigation experience of the user; the spatial, sequential,

nd hierarchical positions of a UI object could affect the way the user perceives its functional role

nd importance. The above intuition thus motivates our research objective to design a model for

eterogeneous networks with multimodal and positional attributes to capture the semantics of

I objects. Such a model would enable a semantic representation vector to be learned for every

I object which can be used in downstream tasks such as UI search, evaluation, annotation, and

rganization. 

In addition to the above modeling requirement, it is also important to be able to interpret the

ontribution of modeled information to the different downstream tasks. This allows end-users to

nderstand the underlying relationships between the design of the UI structure and model predic-

ions. With this understanding, end users of downstream tasks can gain greater confidence and

rust in the model. UI designers and developers can also understand which parts of the UI network

tructure to focus on to improve the overall UI design. 

In this article, we use the RICO repository [ 9 , 34 ] and an enhanced version of RICO, EN-

ICO [ 29 ], as exemplar datasets. RICO is a real-world mobile UI dataset that covers more than

,000 Android applications and their rich design information. RICO can be used to support novel

I/UX applications, such as automatic categorization and annotation of UIs for designers to learn

esign patterns and trends; and prediction of user ratings of design objects to help designers evalu-

te new designs. ENRICO is an enhanced subset of the RICO dataset that includes 1,460 UI screens

anually annotated with design topics, e.g., a UI screen with a dialer , tutorial , or news topic. The
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 3, Article 12. Publication date: September 2023. 
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Fig. 1. We show how a hierarchy of UI objects and their multimodal and positional attributes can be captured 

in an attributed heterogeneous network. The heterogeneous network comprises four types of nodes—mobile 

application nodes, UI screen nodes, UI view class nodes, and UI view element nodes, with attributes from 

different modalities, as well as different positional attributes. On the left side, we show application and UI 

view class nodes associated with textual application description and UI view class name attributes; and UI 

screen and UI view element nodes associated with visual screen image and element image attributes. On the 

right side, we show the different types of positional attributes. Each node-type may be associated with one 

or more of these positional attributes. 

E  

t

 

w  

n  

a  

b  

n  

s  

i  

t

 

d  

n  

c  

e  

r  

a  

f

 

w  

s  

m  

m  

n

 

e  

c  

A  
NRICO dataset is intended to be utilized for a range of UI design applications: semantic UI cap-

ioning, automatic UI tagging and annotation, explainable UI designs, and search and retrieval. 

Figure 1 depicts mobile application UIs in RICO and ENRICO as a heterogeneous network

ith multimodal and positional attributes. There are four types of nodes in this heterogeneous

etwork—mobile applications, UI screens, UI view classes, and UI elements. Multimodal attributes

re associated with these four types of nodes—mobile application node has a description attribute,

oth UI screen node and UI element node have image attributes, and UI view class object has class

ame attribute. The positional attributes include spatial locations of UI elements on the screen,

equential positions of UI screens in user interaction traces, and the hierarchical level of the nodes

n the original design hierarchy. The hierarchy of nodes in this network structure is captured by

he hierarchical level attribute. 

Figure 2 provides an overview of the proposed framework in this article, and examples of pre-

ictive application tasks that may be performed using a heterogeneous attributed network model,

amely to (i) predict element annotation : automatic annotation of elements’ component type, which

ould be used as an accessibility metadata attribute in mobile applications; (ii) predict genre cat-

gory : automatic classification of UIs’ genres, which could be used for organization, search and

etrieval of a UI repository; (iii) predict UI rating : which could be used by UI designers to perform

n initial evaluation of their designs; and (iv) predict UI topic : automatic tagging of UIs with topics

or semantic UI captioning, UI tagging, and annotation [ 29 ]. 

Despite the large volume of multimedia research, there is very little work on heterogeneous net-

orks with multimodal and positional attributes, particularly the non-Euclidean nature of network

tructures associated with multimodal attributes. In recent years, graph neural network ( GNN )

odels have been developed to capture both network structures and node attributes. However,

ost GNN works do not attempt to capture multiple modalities of node attributes in heteroge-

eous networks. They also do not cover spatial and sequential node positional information. 

In previous works that capture UI multimodal information [ 16 , 30 ], item embeddings are gen-

rated for recommendation tasks from user interaction information and metadata text without

apturing multimodal and positional attributes of a heterogeneous network of UI design objects.

ng and Lim [ 2 ] propose multimodal GNN to model mobile UI-related tasks but the model does
ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 3, Article 12. Publication date: September 2023. 
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Fig. 2. Overview of framework in this article. A heterogeneous attributed network model captures different 

UI object node-types with different inter-UI object relationships and multimodal and positional attributes 

for four different predictive tasks. The heterogeneous attributed network model also allows interpretability 

of the contributions of multimodal and positional node attributes, as well as network structural information 

to these predictive tasks, enabling users to better understand model predictions. 
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ot incorporate spatial, sequential, and hierarchical information, and is limited to bipartite net-

orks, a special type of heterogeneous network. Screen2Vec [ 30 ] is another model that captures

ultimodal and sequential UI information, but not the structural network and positional informa-

ion. The above works also do not interpret the contributions of network structural information

o the different tasks. 

Hence, in this article, we propose two models that address the limitations of existing models:

he Heterogeneous Attention-based Multimodal Positional ( HAMP ) model and Adaptive

AMP ( AHAMP ) model. Specifically, HAMP aims at: (1) capturing information from different

odalities for different types of nodes at different levels of a design hierarchy, along with other po-

itional information such as spatial location and sequence order; (2) ensuring that low dimensional

ositional attributes are captured effectively alongside high dimensional multimodal attributes;

nd (3) self-discovering the relative importance of multimodal attributes and positional attributes.

n the AHAMP model, inspired by GNNExplainer [ 55 ], we propose a novel UI graph discovery

nd interpretability method to interpret the contribution of the network structural information

o different prediction tasks. GNNExplainer [ 55 ] introduces a post-hoc method designed for ho-

ogeneous networks that provide explanations for selected nodes (i.e., a local explanation). The

ork, however, is unable to directly provide an explanation for a set of selected task instances, e.g.,

ultiple instances for a UI genre classification task. It instead proposes a graph prototype-based

pproach to aggregate local explanations across selected task instances. 

Our proposed approach in AHAMP differs from GNNExplainer [ 55 ] as it: (i) addresses hetero-

eneous networks; (ii) is integrated within the model; and (iii) directly provides an explanation

cross multiple instances for a task. AHAMP is able to discover important heterogeneous network
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 3, Article 12. Publication date: September 2023. 
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dges between UI objects and interpret the contribution of such heterogeneous network structural

nformation to different prediction tasks across multiple instances. 

Both HAMP and AHAMP are based on a novel attention-based GNN inspired by transformers. 1

ur key contributions are as follows: 

—To our knowledge, this is the first work to propose an interpretable approach that captures

heterogeneous networks and their associated multimodal and positional attributes in a

unified manner for UI-related tasks; 

—HAMP is also the first work that incorporates a positional vectorizer (PosVect) with dif-

ferent functional forms to extract important information from different positional (spatial,

sequential and hierarchical level) attributes within a GNN framework. The module also

ensures proper capture of lower dimensional spatial, sequential, and hierarchical level at-

tributes by expanding their dimensions to match higher dimensional multimodal attributes;

—We propose the use of attention fusion in HAMP to self-discover the relative importance of

multimodal and spatial, sequential, and hierarchical level attributes for different nodes, and

enable the relative importance of the different attributes to be extracted for interpretability;

—We combine the proposed positional vectorizer and attention fusion modules with a scaled

dot-product attention-based GNN message propagation method that is designed for het-

erogeneous networks with different node and edge-types; 

—We further propose AHAMP, an extension of HAMP, which includes a novel adaptive graph

discovery and interpretability method for heterogeneous network settings to discover im-

portant network edges between UI objects for different prediction tasks. AHAMP also sup-

ports interpretation of the contribution of heterogeneous network structural information

to different tasks. 

—We show that HAMP and AHAMP consistently out-perform several state-of-the-art models

on UI screen genre classification, UI element component type classification, mobile appli-

cation ratings prediction, and UI screen topic classification tasks which are highly relevant

to real-world applications. 

 RELATED WORK 

ey related works in the areas of UI representational learning and network embeddings are out-

ined in this section. 

.1 UI Representation Learning 

 4 , 7 , 23 , 41 , 52 ] are examples of recent representation learning work that also capture UI semantics

or a range of tasks, but they use information from just one or two modalities, and do not utilize

he structural network information present in the linkages between different UI objects. Huang

t al., [ 23 ] retrieve UI screen images based on UI sketch images by using image embeddings for

isual similarity comparisons but do not capture the structural network information present in the

inkages between UI objects. Xie et al., [ 52 ] capture structural network information of UI objects to

upport retrieval applications but do not capture multimodal attributes. Ang and Lim [ 2 ] capture

tructural network and multimodal information but do not incorporate spatial, sequential, and

ierarchical information, and is designed for a bipartite network, a special kind of heterogeneous

etwork. Screen2Vec [ 30 ], a recent work, generates representations of UI screens and components

hat capture the multimodal information of UIs, UI layouts, and sequential information of UIs in

ser interactions. However, it does not capture the structural network information present in a

eterogeneous network of UI objects. 
 Source code available at: https://github.com/playgrdstar/AHAMP . 
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.2 Network Embeddings 

here are several related works on network embedding approaches which could be applied to a

etwork of UI design objects. The Graph Variational Autoencoder ( GVAE ) [ 26 ] approach ap-

lies a variational autoencoder [ 25 ] framework to learn the node embeddings of homogeneous net-

orks. The Co-Embedding Attributed Network ( CAN ) [ 36 ] uses two VAE channels to jointly

ncode and decode the node adjacency matrix and another node feature matrix. Semi-supervised

o-embedding Attributed Network [ 37 ] extends CAN to co-embed both attributes and nodes of

artially labeled networks. Multinomial VAE [ 32 ] is a VAE-based approach that generates em-

eddings of heterogeneous networks by using a multinomial distribution instead of the Bernoulli

istribution used in GVAE. 

GNN is another approach which composes messages based on network features and propagates

hem to update the representation vectors of nodes and/or edges over multiple neural network

ayers [ 3 , 13 ]. Several GNN-based models have been developed. In particular, Graph Convolu-

ional Network ( GCN ) [ 27 ] aggregates features of neighboring nodes and normalizes the aggre-

ated representations by the node degrees. GraphSAGE [ 18 ] further considers mean, LSTM, or

ooling aggregation methods. Unlike GCN, GraphSAGE samples only a fixed number of neigh-

ors for representation aggregation. Graph Attention Network ( GAT ) [ 46 ] assigns neighboring

odes with different importance weights during aggregation using additive attention. Messages

assed between each layer in most GNNs go through non-linear layers such as rectified linear

ctivation units. Simplifying Graph Convolutional ( SGC ) Network [ 51 ] adopts linear layers

o process messages as they are passed to neighboring nodes. Hard Graph Attention Operator

 hGAO ) [ 12 ] applies hard attention, requiring each node to only attend to a subset of neighboring

odes to improve performance and reduce computational costs. 

GNNs have also been applied to heterogeneous networks. Relational Graph Convolutional Net-

orks [ 42 ] and Graph Convolutional Matrix Completion [ 44 ] use multiple GCNs to encode em-

eddings of multiple adjacency matrices, one for each edge type, before aggregating them. Neural

raph Collaborative Filtering [ 48 ] and LightGCN [ 19 ] encode embeddings for different numbers

f hops before aggregating them. BiANE [ 24 ] captures indirect proximity between the same node

ypes in bipartite networks. Heterogeneous Graph Attention Network ( HAN ) [ 49 ] and Gen-

ral Attributed Multiplex Heterogeneous Network [ 5 ] use multiple GNN-based layers to encode

etworks formed from different metapaths [ 10 ] before using an attention mechanism to aggregate

he embeddings. 

Other than VAE and GNN-based approaches, transformers [ 45 ], initially designed for modeling

equential information, have also been generalized for networks/graphs [ 11 ]. While these graph

ransformers are not designed to capture multimodal, spatial, sequential, and hierarchical informa-

ion, we are inspired by the scaled dot-product attention mechanisms in such graph transformer

orks [ 22 , 54 ]. 

There are very few works on modeling networks with multiple modalities as well as spatial,

equential, or hierarchical information. With regards to sequential information, there are GNN-

elated works [ 15 , 17 , 33 , 40 ] designed for sequences of network snapshots with their associated

imestamps. However, such works are designed for snapshots of simple networks with overlap-

ing sets of nodes and edges, and are not suitable for the hierarchical network described in this

rticle. This article thus proposes the use of a module to accommodate different functional forms

the positional vectorizer) when extracting important lower dimensional spatial, sequential and hi-

rarchical features (representing linear and non-linear patterns) and expanding their dimensions

o match higher dimensional textual and visual information. This modeling approach has thus
ar not featured in GNN-related works. We also use an attention mechanism to self-discover the 

CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 3, Article 12. Publication date: September 2023. 
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Table 1. Summary of Key Notations 

Symbol Description 

V Nodes in graph G comprising Q disjoint sets of nodes of different node-types 

E Edges in graph G formed based on R relationship-types 

X m 

; m ∈ { f t , pos} Node features, comprising multimodal features f t ; as well as positional 

features pos . Positional features may include spatial locations sp; sequential 

positions sq; and hierarchical levels hi
N (v ) Neighboring nodes of node v ∈ V 

X 

′ Hidden representations after fusion of multimodal, spatial, sequential, 

hierarchical level information 

e = 〈 v s , r , v t 〉 Canonical triplet formed based on edge e consisting of relationship r
between a source node v s of one node-type and a target node v t of the same 

or different node-type 

H Node embeddings/representations 
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elative importance of multimodal and spatial, sequence and hierarchical level information for dif-

erent nodes. Finally, instead of the usual message passing methods employed in most GNNs, we

dapt the scaled dot-product attention mechanism inspired by graph transformers to undertake

he composition, aggregation and update steps in a GNN message passing framework. 

Recently, new approaches to explain and interpret the predictions of GNNs have also been pro-

osed and they include GNNExplainer [ 55 ], PGExplainer [ 35 ], and PGMExplainer [ 47 ], which focus

n providing single instance or multi-instance explanations for homogeneous networks. A detailed

eview of such works can be found in Hao et al., [ 57 ] and Li et al., [ 31 ]. Such works are however

either designed for global explanations across multiple instances for heterogeneous networks nor

or the interpretation of GNN predictions for UI-related tasks. 

 HETEROGENEOUS ATTENTION-BASED MULTIMODAL POSITIONAL GRAPH 

NEURAL NETWORK 

n this section, we give a detailed description of our two proposed models, the HAMP model and

HAMP model. We will first cover HAMP as it forms the base model for AHAMP. A summary of

he key notations is provided in Table 1 . 

In both models, we represent different types of objects (e.g., mobile application, UI screen, UI

iew class, and UI view element nodes in the case of the RICO dataset) as nodes at different levels

n a heterogeneous network. We denote the network as 

G = (V , E, X ), (1)

here V includes Q disjoint sets of nodes of different types V = V 1 ∪ . . . ∪ V Q 

. Similarly, E con-

ists of edges of R types, i.e., E = E 1 ∪ . . . ∪ E R 

. In the case of the RICO dataset, each edge type

epresents a specific part-whole relationship as shown in Figure 1 , specifically, UI view element

odes instantiated by UI view class nodes, UI view class nodes that are part of UI screen nodes,

nd UI screen nodes that are part of application nodes. Every edge connecting two nodes is then

epresented as a canonical triplet 〈 v s , r , v t 〉 ∈ E, where v s , v t ∈ V and r ∈ { 1 , . . . , R} . 
HAMP is designed to model multimodal attributes which can be textual, visual, categorical or

umerical, and positional attributes which can be spatial locations, sequential positions, and hier-

rchical level numbers. For each node-type q, we define a matrix to represent the values of each

ttribute associated with nodes of the type q. For each textual, visual, categorical, or numerical

ttribute, we use a X 

q 

f t 
matrix to represent the node to attribute value mapping, where f t refers to
ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 3, Article 12. Publication date: September 2023. 
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Fig. 3. Architecture of HAMP model, which comprises three main components: positional vectorizer 

( PosVect ) that captures linear, non-linear and periodic relationships between positional attributes and dif- 

ferent tasks; multimodal positional fusion module that projects multimodal and positional features to a 

common latent representational space and fuses them with attention mechanisms; and network-encoding 

layers that capture structural heterogeneous network information. A different module, say a dense neural 

network layer, is added to HAMP at the end for different tasks, e.g., classification. 
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he non-positional attributes. X 

q 

f t 
is of |V q | × N 

q 

f t 
dimension where N 

q 

f t 
is the dimension size of the

ultimodal attribute. For each positional attribute, we also use a X 

q 
pos matrix to represent the node

o position mapping. The dimension size of X 

q 
pos is |V q | × N 

q 
pos where N 

q 
pos is the dimension of the

ositional attribute. In the case of specific nodes that are missing multimodal attribute values (e.g.,

issing textual descriptions), we set the missing multimodal attribute values to random values.

e set missing attribute values to random values that are different across such nodes instead of

nes or zeros so as to prevent the model from considering nodes with missing attribute values to

e similar. 

As shown in Figure 3 , HAMP comprises three key components. First, the positional vectorizer

 PosVect ) captures linear, non-linear, and periodic relationships between positional attributes and

ifferent tasks. Second, the multimodal positional fusion module projects different multimodal and

ositional features to a common latent representational space and fuses them with attention mech-

nisms. Finally, the attention-based network-encoding layers comprising scaled dot-product attention

essage-passing and representation aggregation steps are used to capture structural heterogeneous

etwork information. 

To learn the representation of each target node v t , HAMP first extracts edges linking other

eighboring source nodes to v t as canonical triplets 〈 v s , r , v t 〉 ’s from the heterogeneous network.
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 3, Article 12. Publication date: September 2023. 
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s  
uppose the multimodal and positional node attribute values are represented in the X 

q 

f t 
and X 

q 
pos 

atrices, respectively. For both simplicity and without loss of generality, we shall drop node type

from the following description. The multimodal positional fusion module first expands the posi-

ional attribute vectors with the PosVect to match the dimensions of other multimodal information

efore the positional and multimodal attribute vectors are fused together with an attention mech-

nism. For each triplet (or edge) e i = 〈 v q , r , v t 〉 ’s and target node v t pair, a scaled dot-product atten-

ion message-passing mechanism is then used to learn the triplet-specific embedding of v t , denoted

y H e i ,t . Once we obtain all the triplet embeddings for the target node v t , for {〈 v s , r , v t 〉 ∈ E}, the

epresentation aggregation step averages across all these embeddings and passes the resultant em-

edding through a dense layer to obtain v t ’s final representation denoted by H t . We shall elaborate

n these steps, as shown in Figure 3 , in the subsequent sections. 

.1 Multimodal Positional Fusion 

e first project each multimodal attribute vector (with different dimensions) to a common di-

ension with a dense layer - X 

′ 
f t 
= Proj (X f t ). We use a positional vectorizer, PosVect , to expand

ositional attribute vectors, where present, to match the dimensions of the projected multimodal

ttribute vector, i.e., X 

′ 
pos = PosVect (X pos ). That is, X 

′ 
f t 

and X 

′ 
pos share the same dimension size.

he positional vectorizer, inspired by [ 14 , 39 ], generates higher dimensional representations from

he low dimensional positional attributes and extracts important longitudinal information (i.e.,

elationships between the task and the positional attributes) via different pre-defined functional

orms (that can be linear, non-linear or periodic). The set of functional forms chosen should al-

ow for different types of patterns, e.g., linear, non-linear, and/or periodic, representing different

elationships between the task and the positional attributes to be captured. Unlike the sinusoidal

ositional encodings used in transformers that only deal with the sequential positions of word

okens [ 45 ], the positional vectorizer is of a more general form to enable it to be applied to dif-

erent types of positional attributes. For our experiments with HAMP and AHAMP on the RICO

nd ENRICO dataset, we empirically chose Linear, Sinusoidal, Sigmoid, and Softplus functions

o capture linear, non-linear, and periodic patterns for the positional vectorizer for all positional

ttributes. 

Next, we use an attention mechanism to fuse these intermediate representations X 

′ 
f t 

and X 

′ 
pos 

nto X 

′ . The use of an attention mechanism for multimodal positional fusion allows the model to

elf-discover the relative importance of each information type, and weight contributions accord-

ngly for the task at hand. It also allows us to interpret the relative importance of the different

nputs. We now explain the key steps involved in the attention mechanism for multimodal posi-

ional fusion in detail. We first apply a non-linear transformation to each of these intermediate

epresentations to obtain the scalars K m 

for attribute m where m ∈ { f t , p os} . 

K m 

= W 

(1 ) tanh 

(
W 

(0 ) X 

′ 
m 

+ b 
)
, (2)

here W 

(0 ) and W 

(1 ) are learnable weight matrices and b is the bias vector. These three parameters

re shared across multimodal and positional attributes. We then normalize K m 

with a softmax

unction to obtain the attention weights for the respective multimodal and positional attributes: 

βm 

= 
exp (K m 

) ∑ 

m 

exp (K m 

) 
. (3)

inally, we use these weights to fuse the multimodal and relevant positional representations (i.e.,

patial, sequential, and/or hierarchical level representations depending on the node-type) of each
ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 3, Article 12. Publication date: September 2023. 
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f the node-types and apply a dense layer to obtain the fused representation X 

′′ : 

X 

′′ = Dense �
�

∑ 

m 

βm 

X 

′ 
m 

�
�
, (4)

here the Dense function is a simple fully-connected linear layer. A bias vector and a non-linear

ctivation layer could also be added where necessary. 

The steps outlined above, i.e., the attention fusion of the multimodal and positional attributes,

nd application of the dense layer to the fused representations, are repeated to generate the query,

ey and value representations, resulting in X 

′′ 
Q 

, X 

′′ 
K 

, X 

′′ 
V for each node. Hence, along with the query,

ey and value representations, we also introduce the corresponding W 

(0 ) 
K 

, W 

(0 ) 
Q 

, W 

(0 ) 
V 

, W 

(1 ) 
K 

, W 

(1 ) 
Q 

,

 

(1 ) 
V 

, b K 

, b Q 

, and b V . Parameters for the dense layer used for projection of the multimodal attribute

ectors ( Proj ), the positional vectorizer ( PosVect ), attention mechanism and the final dense layer

 Dense ) as described above are shared between nodes of each node-type. 

.2 Scaled Dot-product Attention Message Passing 

n this step, inspired by Hu et al., [ 22 ] and Yao et al., [ 54 ], we adapt the scaled dot-product attention

odule commonly used in transformers [ 45 ] for the GNN message-passing framework. The scaled

ot-product attention mechanism used in transformers for natural language processing usually

omputes an attention score between every pair of word tokens in a sentence, whereas the scaled

ot-product attention mechanism applied to networks is more efficient as it utilizes network infor-

ation to only compute attention scores between nodes that are neighbors. These attention scores

re used to weight the messages propagated from the source to target nodes for aggregation. Us-

ng scaled dot-product attention is also more effective than the usual message-passing framework

mployed in most GNNs as it allows the model to perform the message composition, propagation,

nd update steps in the GNN message-passing framework based on the self-discovered relative

mportance of each neighboring source node. 

For each canonical triplet, we obtain the node embedding by first computing the attention score

ttScore between a target node v t and each neighboring source node v s ∈ N (v t ) as 

AttScore 〈 v s , r, v t 〉 = softmax v s ∈N (v t ) scale 
(
X 

′′ 
K,v s 

W att X 

′′ 
Q,v t 

)
, (5)

here N (v t ) denotes the neighboring nodes of v t . W att is a learnable weight matrix, and the

cale operation divides the resultant values by the square root of the dimension of the hidden

epresentation per [ 45 ]. 

Next, we use the attention score AttScore to compute the weighted average of features from all

ource nodes and use it to update the triplet-specific representation of the target node v t . 

H 〈 v s , r, v t 〉 , t = 
∑ 

v s ∈N (v t ) 

AttScore 〈 v s , r, v t 〉 · X 

′′ 
V ,v s 

W V , (6)

here W V is a learnable weight matrix. Multiple heads can also be incorporated within each scaled

ot-product attention module per [ 45 ]. 

.3 Representation Aggregation 

t this point, we have the embeddings of the target node v t for each of the canonical triplets or

dges connected to neighboring nodes N (v t ). We assume each of these canonical triplet-specific

mbeddings is equally important, and hence perform the final aggregation step by averaging these
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 3, Article 12. Publication date: September 2023. 
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mbeddings to obtain a single representation H 

′(0 ) 
t . That is, 

H 

′(0 ) 
t = 

1 

|N (v t ) | 
∑ 

v s ∈N (v t ) 

H 〈 v s , r, v t 〉 , t . (7)

Besides the above approach, we can consider other aggregation approaches (e.g., using an at-

ention mechanism to weight the different canonical triplet-specific embeddings) but we would

nclude this as part of future work. Finally, a dense layer and a residual connection are applied

o obtain the representation of the node H 

(0 ) 
t = Dense (H 

′(0 ) 
t ) + X 

′ 
t , which can then serve as input

o another layer comprising the dense layers, scaled dot-product attention message-passing and

epresentation aggregation modules. 

.4 Multiple Message Passing and Aggregation Layers 

s shown in Figure 3 , the node representations from a prior layer (i.e., k-1 layer) are passed

nto dense layers to generate query, key, and value representations as inputs to the scaled dot-

roduct attention messaging passing module. The scaled dot-product attention messaging pass-

ng module then generates a representation for each target node for each canonical triplet, i.e.,

 

(k ) 
〈 v s , r, v t 〉 , t . We then aggregate these target node representations across the canonical triplets

 v s , r , v t 〉 ∈ E (as described earlier) to obtain H 

′(k ) 
t . A residual connection is then applied to ob-

ain H 

(k ) 
t = Dense (H 

′(k ) 
t ) + H 

(k−1 ) 
t . 

H 

(k ) 
t can then be passed to a task-specific module. If K layers are used, then every node em-

edding contains information about its K -hop neighborhood. The use of residual connections

erves to address potential over-smoothing, which can arise when we have multiple rounds of

NN message-passing over multiple layers [ 53 ]. Over-smoothing causes representations for all

odes in a network to become very similar to one another and can lead to poorer performance.

he use of residual connections allows information from earlier GNN message-passing layers to

ow to the final layer, helping to alleviate the over-smoothing issue. 

The HAMP model is optimized with gradient descent with an appropriate loss function L (y, ˆ y )
or different tasks, say cross-entropy for classification task or mean square error loss for regression

ask, where y is the ground-truth label, and ˆ y = f θ (G ), where θ are the parameters of HAMP model.

.5 AHAMP: Extension for Graph Discovery and Interpretability 

n this section, we extend HAMP for adaptive graph discovery and interpretability. Unlike GN-

Explainer [ 55 ] which proposes the post-hoc interpretability method for homogeneous graphs,

e propose a graph discovery and interpretability method for the heterogeneous network, and in-

egrate it within HAMP. We name this model AHAMP as it adaptively discovers important edges

or different tasks. The adaptive discovery of important edges has two advantages: (i) it can po-

entially improve model performance in a prediction task by down-weighting the less important

dges for the task; and (ii) it enables interpretation of the contributions of network structural in-

ormation to the prediction task. 

We first introduce a learnable mask E L (that is shared across all K layers) for edges E, and

enote the masking element corresponding to each canonical triplet 〈 v s , r , v t 〉 ∈ E as e l, 〈 v s , r, v t 〉 ∈
 L . We apply a sigmoid σ function to map each of the masking elements to [0 , 1] : ˜ e l, 〈 v s , r, v t 〉 =

(e l, 〈 v s , r, v t 〉 ) ∈ ˜ E L . Next, we extend Equation ( 6 ) as 

H 

(k ) 
〈 v s , r, v t 〉 , t = 

∑ 

v s ∈N (v t ) 

˜ e l, 〈 v s , r, v t 〉 �
(
AttScore 

(k ) 
〈 v s , r, v t 〉 · X 

′′(k ) 
V ,v s 

W 

(k ) 
V 

)
, (8)
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here � denotes element-wise multiplication. Following GNNExplainer [ 55 ], we introduce the

ollowing objective function: 

L 

′ = L ( y, ˆ y = f θ,E L ( G L )) 

− α
∑ 

〈 v s , r, v t 〉∈E 

˜ e l, 〈 v s , r, v t 〉 log ( ̃  e l, 〈 v s , r, v t 〉 ) + (1 − ˜ e l, 〈 v s , r, v t 〉 ) log (1 − ˜ e l, 〈 v s , r, v t 〉 ) 

+ β
∑ 

〈 v s , r, v t 〉∈E 

˜ e l, 〈 v s , r, v t 〉 

, (9)

here the first term is the same loss function used in HAMP for the respective tasks, except that the

rediction ˆ y is based on the masked graph G L instead of G; the second term is the element-wise bi-

ary entropy regularization term [ 43 ]; and the third term is the sparsity regularization term [ 56 ]. α

nd β are hyper-parameters. ˜ e l, 〈 v s , r, v t 〉 is distinct from AttScore 
(k ) 
〈 v s , r, v t 〉 as : (i) ˜ e l, 〈 v s , r, v t 〉 is a learn-

ble parameter shared across all K layers and applies to the whole model regardless of the number

f layers in AHAMP, whereas AttScore 
(k ) 
〈 v s , r, v t 〉 is a layer-specific score; and (ii) the element-wise

inary entropy and sparsity regularization terms applied to ˜ e l, 〈 v s , r, v t 〉 help AHAMP discover the

ost important edges that are relevant to the task. Our experiment results in Section 4.3 also

how that the introduction of this graph discovery and interpretability method in AHAMP further

mproves model performance. 

 EXPERIMENTS 

e now conduct several experiments to evaluate the network embeddings learned by HAMP and

HAMP against state-of-the-art baselines. In the following, we describe the experimental datasets

nd the predictive tasks for comparing the models. 

.1 Datasets 

he data used in these experiments are extracted from RICO and ENRICO as mentioned in

ection 1 . Among the 9,384 Android applications in the RICO repository, we were able to scrape

rom the Google Play Store the metadata of 6,583 of these applications and their UI screens in Feb.

020. These applications were released between Jan. 2010 and Apr. 2017. The repository includes

mages of UI screens and their associated UI view classes, as well as the interaction traces of the UI

creens. To validate the result findings against UI datasets with different characteristics, we extract

wo datasets from the RICO repository, namely: RICO-N , comprising the most recently released

,000 applications (Oct. 2015 to Apr. 2017); and RICO-O , comprising the earliest released 1,000

pplications (Jan. 2010 to Aug. 2011). To assess HAMP’s performance on predicting UI topics, we

lso utilize the list of UI screens and topic annotations provided in ENRICO , and extract other

nformation corresponding to these UI screens (i.e., their mobile applications, UI classes and ele-

ents, multimodal, and positional attributes) from the RICO repository. The differences between

hese datasets are significant as shown in Table 2 . RICO-O has around twice the number of nodes

nd edges as RICO-N, while ENRICO is the smallest dataset. The length of the longest UI screen

equence and the maximum depth of node hierarchy across the three datasets also differ. 

For each mobile application, we parse the UI screens and UI view class hierarchies to extract the

patial, sequential, hierarchical, and network information—UI elements linked to their parent UI

lements, each in turn linked to parent UI view classes, that are then linked to a series of UI screens,

hich constitute mobile applications. The result of this step is a heterogeneous network with the

ssociated multimodal, spatial, sequential, and hierarchical level information shown in Figure 1 . 

Table 3 shows the multimodal and positional attributes of different node types in our datasets.

he multimodal attributes X f t for each node-type are derived by encoding the descriptions of
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 3, Article 12. Publication date: September 2023. 
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Table 2. Dataset Overview 

Datasets RICO-N RICO-O ENRICO 

Num. of Application Nodes 1,000 1,000 869 

Num. of UI Screen Nodes 5,879 9,108 1,460 

Num. of UI View Class Nodes 1,563 2,920 1,506 

Num. of UI Element Nodes 109,387 203,522 28,821 

Num. of App - UI Screens Edges 5,879 9,108 1,460 

Num. of UI Screens - UI View Classes Edges 38,961 68,305 10,113 

Num. of UI View Classes - UI Elements Edges 109,387 203,522 28,821 

Length of longest sequence 36 46 38 

Max. depth of hierarchy 9 10 9 

Num. of UI element component-types 26 26 –

Num. of UI screen genres 36 33 –

Num. of UI screen topics – – 20 

Range of mobile app. ratings 1.15 to 4.92 1.72 to 4.91 –

RICO-N and RICO-O datasets are directly extracted from RICO [ 9 ] dataset. We utilize the RICO-N and 

RICO-O datasets for the UI screen genre and UI element component-type classification tasks as well as 

the application rating regression task. ENRICO [ 29 ] is a smaller dataset randomly sampled from across the 

RICO dataset (and hence overlaps with RICO-N and RICO-O datasets), with UI screen topics that had been 

manually annotated (that are not available in the original RICO dataset). We utilize the ENRICO dataset for 

the UI screen topic classification task. 

Table 3. Multimodal Feature Dimensions and Availability of Spatial, Sequential, and Hierarchical Level 

Information for Different Node-types 

Feature Dim. Spatial Sequential Hierarchical 

Mobile Application Nodes - Textual - Glove 
vectors of app. descriptions 

50 No No Yes 

UI Screen Nodes - Visual - Latent vectors of UI 
screen images extracted with auto-encoder 

64 No Yes Yes 

UI View Class Nodes - Textual - CharNGram 

vectors of the names of UI view classes 
100 No No Yes 

UI Element Nodes - Visual - Latent vectors of UI 
element images extracted with pre-trained ResNet18 

512 Yes No Yes 
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o  

a  

b

he mobile application nodes, images of the UI screen nodes, class names of the UI view class

odes, and images of the UI element nodes. Textual information of the mobile application de-

criptions is encoded with pre-trained Glove embeddings. Visual information of the UI screens

s encoded by training an autoencoder. Textual information of the names of the UI view classes

s first pre-processed by breaking them up by their periods, special characters, and camel casing.

or example, com.android. internal.policy.PhoneWindow$DecorView is tokenized as android, inter-

al, policy, phone, window, decor, view . Thereafter, we generate the features by using a pre-trained

har-NGram embedding. Images of the individual UI elements are first extracted using the bounds

rovided in the extracted UI code. Each image is then passed through a pre-trained ResNet18 model

o generate its representations. Other methods can also be used to encode the attributes. 

To represent the spatial position X sp of UI element nodes in UI screens, we use the coordinates

f the UI elements on the screen (x0,y0,x1,y1). The sequential positions X sq of the UI screens

re extracted from the user screen interaction sequences. The hierarchical levels X hi are assigned

ased on the depth of the node in the hierarchical network. 
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.2 Experiment Setup 

e compare the performance of HAMP and AHAMP with state-of-the-art baselines on four pre-

ictive tasks: (a) classification of UI screen genres; (b) classification of UI element component types;

c) prediction of mobile application ratings; and (d) classification of UI screen topic. 

—Classification of UI screen genre —For this task, we predict the genre labels of UI screens

for the RICO-N and RICO-O datasets. We extract genre labels from the data scraped from

the Google Play Store. To predict the UI screen genre, we pass the aggregated represen-

tation of a UI screen node generated by HAMP and AHAMP to a dense neural network

layer with output dimensions equal to the number of genre classes, and train HAMP and

AHAMP with cross-entropy loss. We use macro and micro F1 as the evaluation metrics as

they combine both precision and recall which are important for this task. F1 is defined by

the harmonic mean of precision and recall scores. For macro F1, we compute the F1 score

for each class and average them. Macro F1 thus treats all classes equally in the averaging

operation. Micro F1 score on the other hand is defined based on the precision and recall

computed from the predicted genre class labels of all UI screens. As the distribution of

genre classes is unequal, macro F1 and micro F1 scores can be quite different. 

—Classification of UI element component-types —For this task, we predict the

component-type of UI elements for the RICO-N and RICO-O datasets. Similar to UI

screen genre classification, we create another dense neural network layer to predict the

component-type of UI element nodes, and train HAMP and AHAMP with cross-entropy

loss. We also use macro and micro F1 scores to evaluate the results of this task. To evaluate

performance on this task in a manner that is not dependent on the Android nature of the

UI view classes, a limitation pointed out in [ 34 ], we randomly initialize the attributes of the

UI view class nodes instead of using the textual features of the UI view classes for this task.

The other features used - application descriptions, UI screen, and element images—are not

Android-specific. 

—Prediction of mobile application ratings —For this task, we predict mobile application

ratings for the RICO-N and RICO-O datasets. The rating of a mobile application is computed

based on the average of all its user ratings from the Google Play Store. A dense neural

network layer with an output dimension of one is added, and HAMP and AHAMP are

trained with the mean square error loss for this task. This task is useful for predicting the

success of new applications. We use root mean square error ( RMSE ) as the evaluation

metric. 

—Classification of UI screen topic —For this task, we predict the topic labels of UI screens

for the ENRICO dataset. Similar to UI screen genre classification, we create another dense

neural network layer to predict the topic of UI screen nodes, and train HAMP and AHAMP

with cross-entropy loss. We also use macro and micro F1 scores to evaluate the results of

this task. 

For all four tasks, a different HAMP and AHAMP model are trained separately in a supervised

anner, and the dataset is split for training/validation/testing in the ratio 60%/20%/20%, e.g., for UI

creen genre classification, it means that the model is trained on a subset of 60% of UI screens with

heir genre labels, validated on 20% of UI screens with their genre labels, and testing results shown

n the article based on the final 20% of UI screens with their genre labels. Labels are not utilized as

nput features, and UI objects that are not in the training, validation, or testing sets would not be

sed during training; or for validation or testing evaluations, respectively. 

Baselines and Settings. We use multi-class logistic regression and linear regression as base-

ines for the classification task (for UI screen genre, UI element component type, and UI screen
CM Transactions on Interactive Intelligent Systems, Vol. 13, No. 3, Article 12. Publication date: September 2023. 
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opic classification) and regression task (for mobile application ratings) respectively. For these

aselines, the visual features of the UI screen images and UI element images are used as inputs

or the classification tasks, while the textual features of the mobile applications’ descriptions are

sed as inputs for the regression task. We also choose an extensive set of state-of-the-art models

s strong baselines: 

—GCN [ 27 ], which normalizes the aggregated representations by the node degrees; 

—SGC [ 51 ], which has been shown to achieve improved performance with simpler GCN

layers; 

—GraphSAGE [ 18 ] which allows us to adopt a different aggregation method—pooling; 

—GAT [ 46 ], where different nodes in the neighborhood are assigned different importances

during aggregation based on additive attention; 

—hGAO [ 12 ], which applies hard attention to improve performance and reduce computa-

tional cost; 

—HAN [ 49 ], which is also based on the additive attention mechanism but can deal with

heterogeneous networks; and 

—Screen2Vec [ 30 ], a recently proposed model that can capture both multimodal and sequen-

tial information within mobile UIs. 

For each of these baselines (other than Screen2Vec), we similarly add a dense neural network

ayer with output dimensions equal to the number of classes for classification tasks (or a dimension

qual to one in the case of the rating prediction task) and train these models with cross-entropy loss

or mean square error loss for the rating prediction task). For Screen2Vec, we utilize the pre-trained

odels provided by the authors of the work to generate the embeddings for the corresponding UI

creens, and then use the embeddings as features to train a Support Vector Machine ( SVM ) for

he UI screen genre and topic classification tasks. For the mobile application rating task, we obtain

he mobile application embeddings by adding the embeddings of all its UI screens and then use the

obile application embeddings as features to train an SVM for the mobile application rating task.

e do not compare against Screen2Vec on the UI element component-type classification task as

he UI components in the Screen2Vec article differs from the UI elements in our article. 

For HAMP, AHAMP, and all network-embedding baselines with attention modules, two layers

 K = 2 ) and two heads (where applicable) are used. Two layers were chosen based on empirical

xperiments, indicating that two hop-away neighbors are useful for the selected predictive tasks.

wo layer GNNs have also been found to achieve good results compared to deeper GNNs [ 1 ]. Based

n our experiments with the validation dataset, we use 64 dimensions for the hidden representa-

ions generated by all models. α and β are set to 1.0 and 0.005, respectively, based on empirical

xperiments. A separate model is trained for each task in a supervised manner. For all models, an

dam optimizer with a maximum learning rate of 0.001 with a cosine annealing scheduler is used.

ll models are implemented in Pytorch and trained for 3,000 epochs on a 3.60 GHz AMD Ryzen 7

indows desktop with NVIDIA RTX 3090 GPU and 64 GB RAM. 

.3 Results 

4.3.1 UI Screen Genre Classification Results. Table 4 sets out the results relating to UI screen

enre classification. HAMP and AHAMP clearly outperform all baselines by a significant mar-

in. Among the baseline models, HAN, which also models heterogeneous network information,

omes closest to HAMP and AHAMP, but the gap between the two is still significant. HAMP

nd AHAMP in particular perform much better than HAN on the RICO-O dataset. Screen2Vec

lso performs better than most of the other models, demonstrating the value of capturing mul-

imodal and sequential information. However, there is a significant gap between Screen2Vec and
ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 3, Article 12. Publication date: September 2023. 
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Table 4. UI Screen Genre Classification Results 

RICO-N RICO-O 

Micro F1 Macro F1 Micro F1 Macro F1 

Log. Regression 0.127 0.059 0.153 0.043 

GCN 0.087 0.048 0.137 0.042 

SGC 0.046 0.011 0.113 0.012 

GraphSAGE 0.079 0.035 0.136 0.038 

GAT 0.079 0.058 0.159 0.063 

hGAO 0.087 0.067 0.168 0.060 

HAN 0.698 0.648 0.517 0.298 

Screen2Vec 0.392 0.311 0.466 0.407 

HAMP 0.970 0.877 0.921 0.759 

AHAMP 0.993 0.966 0.997 0.962

Higher is better for micro F1 and macro F1. Best model(s) in bold; second-best model(s) un- 

derlined for this and subsequent tables. For the RICO-N dataset, we predict the genres of 5,879 

UI screens. For the RICO-O dataset, we predict the genres of 9,108 UI screens. Our proposed 

models, HAMP and AHAMP outperform all baselines by a significant margin across both 

datasets. 

Table 5. UI Element Component-type Classification Results 

RICO-N RICO-O 

Micro F1 Macro F1 Micro F1 Macro F1 

Logistic Regression 0.587 0.166 0.616 0.185 

GCN 0.587 0.220 0.627 0.236 

SGC 0.519 0.215 0.549 0.248 

GraphSAGE 0.649 0.279 0.694 0.274 

GAT 0.638 0.331 0.693 0.398 

hGAO 0.626 0.249 0.683 0.321 

HAN 0.470 0.220 0.511 0.219 

HAMP 0.906 0.891 0.899 0.801 

AHAMP 0.906 0.894 0.920 0.890 

Higher is better for micro F1 and macro F1. For the RICO-N dataset, we predict the component- 

types of 109,387 UI elements, while for the RICO-O dataset, we predict the component-types of 

203,522 UI elements. While baselines perform relatively better on this task than on the UI screen 

genre classification task, HAMP and AHAMP still outperform all baselines by a significant margin 

across both datasets. 
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AMP/AHAMP, demonstrating the importance of capturing structural network information. We

lso observe AHAMP consistently performing better than HAMP across datasets and metrics for

his task, demonstrating the importance of discovering the more important edges that are relevant

o the UI screen genre classification task. As we observe higher micro F1 than macro F1, the genre

lass distribution in this task is imbalanced. 

4.3.2 UI Element Component-type Classification Results. Table 5 sets out the results of the ex-

eriments relating to UI element component-type classification. The baseline models perform

etter on this task compared with UI screen genre classification, though HAMP and AHAMP

till outperform all baselines by a significant margin. For this task, HAN does not perform as

ell as the previous task. GraphSAGE and GAT’s performance is closest to HAMP and AHAMP.

he differences between performance on the UI element component-type and UI screen genre
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Table 6. Application Rating Regression Results (RMSE) 

RICO-N RICO-O 

Linear Regression 0.540 0.669 

GCN 0.761 4.131 

SGC 1.969 1.900 

GraphSAGE 0.500 0.595 

GAT 1.354 1.011 

hGAO 1.209 1.237 

HAN 0.538 0.613 

Screen2Vec 0.752 0.657

HAMP 0.468 0.577 

AHAMP 0.469 0.547 

RICO application rating ranges from 1 to 5. Lower is better for 

RMSE. For both the RICO-N and RICO-O datasets, we are pre- 

dicting the ratings of 1,000 applications. While performance of 

baselines on this task is varied, HAMP and AHAMP similarly 

outperform all baselines across both datasets. 
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lassification tasks could be due to differences in the density of different parts of the network,

.e., the ratio of the number of actual edges between nodes over all possible edges between nodes.

AMP and AHAMP are however able to cope with such differences, possibly due to their abilities

o capture structural network, multimodal, spatial, sequential, and hierarchical information in a

nified manner. We also observe AHAMP performing better than HAMP on this task for the RICO-

 dataset, demonstrating the usefulness of discovering the important edges that are relevant to a

ask. 

4.3.3 Application Rating Regression Results. Table 6 shows the results of the experiments relat-

ng to prediction of user ratings of mobile applications. HAMP and AHAMP similarly out-perform

ll baseline models. The performance of baselines is more varied for this task. As application nodes

re at the highest level of the network, we could also view this as a sub-graph regression task.

his could explain the better performance of GraphSAGE (which pools node representations in

he aggregation step) and HAN (due to its ability to deal with heterogeneous networks) relative

o other baselines. GCN’s performance on the RICO-O dataset is surprisingly poor (with RMSE

 4.131). One possible explanation for its poorer performance could be due to over-smoothing, a

ell-known issue that GNNs often face [ 53 ]. Over-smoothing means that after several iterations

f GNN message-passing, the representations for all nodes in a network become very similar, af-

ecting model performance. To check if this is the cause, we ran this experiment with just one

CN layer (as opposed to two), and the performance improved (with RMSE = 2.641). HAMP and

HAMP are less likely to be affected by this issue due to the intrinsic regularization arising from

heir capturing of structural network, multimodal, spatial, sequential, and hierarchical informa-

ion, and also due to the residual connections that were introduced in the model. The difference

n performance between AHAMP and HAMP on this task is relatively small. Nonetheless, the in-

roduction of the adaptive graph discovery and interpretability method in AHAMP did not lead to

ny decline in performance. 

4.3.4 UI Screen Topic Classification Results. Table 7 sets out the results relating to UI screen

opic classification on the ENRICO dataset. The results are consistent with the UI screen genre

lassification task. HAMP and AHAMP clearly outperform all baselines by a significant margin.

mong the baseline models, HAN, which also models heterogeneous network information, comes
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Table 7. UI Screen Topic Classification Results 

ENRICO 

Micro F1 Macro F1 

Log. Regression 0.264 0.118 

GCN 0.290 0.110 

SGC 0.179 0.016 

GraphSAGE 0.335 0.231 

GAT 0.305 0.196 

hGAO 0.390 0.278 

HAN 0.452 0.436 

Screen2Vec 0.336 0.206 

HAMP 0.996 0.996 

AHAMP 0.996 0.997

Higher is better for micro F1 and macro F1. For the ENRICO 

dataset, we are predicting the topics of 1,460 UI screens. The 

results are consistent with the UI screen genre classification 

task and we see that HAMP and AHAMP outperform all 

baselines by a significant margin. 
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losest to HAMP and AHAMP, but the gap is still significant. Screen2Vec is the next best perform-

ng model for this task but its F1 results are substantially lower than HAMP and AHAMP, which

gain demonstrates the importance of capturing structural network information. As the topic class

istribution in this task is also imbalanced, we similarly observe higher micro F1 than macro F1.

or this task, the difference in performance between AHAMP and HAMP is small. AHAMP only

utperforms HAMP on the macro F1 metric for the RICO-O dataset marginally. In other words,

he introduction of the adaptive graph discovery and interpretability method in AHAMP did not

ead to any decline in performance. 

.4 Ablation Studies 

able 8 sets out the results of the ablation studies for HAMP and AHAMP. From the results of the

xperiments in Section 4.3 , the differences in performance between HAMP and AHAMP and the

aseline models already illustrate the benefits of capturing hierarchical networks with different

ode and edge-types, and the effects of using the scaled dot-product attention message-passing

echanism for heterogeneous networks (which is not present in the baseline models). We further

xamine the importance of this feature of the HAMP/AHAMP model by using the same weights for

ll relationship-types, i.e., utilizing the same W att and W V across all relationship-types (denoted

s No heterogeneous weights ). We see that not capturing the heterogeneity of relationships

etween UI objects leads to a significant drop in performance. Performance similarly deteriorates

ignificantly when the attention fusion module is not used (denoted as No attention-fusion ) and

e concatenate the multimodal attributes and spatial, sequential and hierarchical level information

nstead. Removing the PosVect module (denoted as No PosVect ) also leads to a material drop

n the performance of HAMP/AHAMP, albeit to a smaller degree. From the sensitivities of the

AMP/AHAMP model to No heterogeneous weights , No attention-fusion and No PosVect ,

e can surmise that the combination of these three proposed model features (i.e., heterogeneous

eights, attention-fusion, and PosVect), together with the proposed scaled dot-product attention

essage-passing mechanism for heterogeneous networks (which is not present in the baseline

odels), account for most of the differences in performance between HAMP/AHAMP and the

aseline models. 
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Table 8. Ablation Study (RICO-N and ENRICO)—For Component(Comp.)-type Classification, UI View 

Class Features had Already been Randomized in the Main Experiments 

Genre Comp.-Type App. Topic 

Micro 

F1 
Macro 

F1 
Micro 

F1 
Macro 

F1 
RMSE Micro 

F1 
Macro 

F1 

No attention-fusion 0.860 0.697 0.884 0.763 0.480 0.840 0.834 

No PosVect 0.916 0.746 0.898 0.840 0.488 0.921 0.874 

No heterogeneous weights 0.901 0.717 0.888 0.783 0.481 0.849 0.795 

Omit spatial location 0.969 0.871 0.899 0.861 0.468 0.965 0.961 

Omit sequential position 0.967 0.864 0.905 0.888 0.473 0.976 0.966 

Omit hierarchical levels 0.960 0.855 0.901 0.885 0.469 0.962 0.951 

Random UI element features 0.930 0.796 0.846 0.676 0.469 0.927 0.919 

Random UI view class features 0.948 0.881 – – 0.468 0.947 0.917 

Random UI screen features 0.965 0.888 0.901 0.870 0.468 0.954 0.945 

Random app. features 0.886 0.812 0.896 0.838 0.468 0.957 0.957 

Proposed HAMP 0.970 0.877 0.906 0.891 0.468 0.996 0.996 

Proposed AHAMP 0.993 0.966 0.906 0.894 0.469 0.996 0.997 

Higher is better for micro F1 (Micro) and macro F1 (Macro). Lower is better for RMSE. 
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The impact of varying the input information, by either omitting the positional information (de-

oted as Omit spatial location , Omit sequential position , and Omit hierarchical levels ),

r replacing each of the attribute feature matrices with a randomized matrix (denoted as Ran-

om UI element features , Random UI view class features , Random UI screen features,

nd Random app. features ) have a less significant effect on HAMP/AHAMP’s performance, but

ome of these effects are still material. Application textual and UI element visual features appear

o contribute the most to HAMP/AHAMP’s performance. For the application rating regression

ask, varying input information has a relatively small impact on HAMP/AHAMP’s performance.

inally, we see that the introduction of the adaptive graph discovery and interpretability method

n AHAMP leads to a material improvement in performance across a number of tasks and metrics.

 INTERPRETABILITY 

n this section, we interpret the contribution of different input information for the different tasks

or the AHAMP model by examining the learnt attention weights and the contribution of het-

rogeneous network structural information for the different datasets and tasks. We analyze the

HAMP model as it is able to provide interpretations of the contribution of the multimodal and

ositional attributes, as well as the contribution of heterogeneous network structural information.

.1 Interpreting Multimodal and Positional Attributes 

e first interpret the contribution of the multimodal and positional attributes for the AHAMP

odel. To do so, we visualize the attention weights, βm 

as described in Section 3 , to interpret what

HAMP has learnt for each of the tasks. The attention weights, βm 

, are learnt and used to weight

ifferent multimodal and positional attribute information during the attention-based fusion step,

nd provide an indication of the relative importance of the different input information for each

ask. The visualizations are shown in Figures 4 –10 . A darker shade of blue indicates higher atten-

ion weights, and hence a greater contribution to the model predictions for the respective tasks.

patial bounds refer to the coordinates of UI element nodes, as explained in Section 4.1 . Across

ll four tasks and the three datasets, multimodal features play an important role. For all tasks and
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Fig. 4. Learnt Attention Weights for UI Screen Genre Classification (RICO-N). Darker shade of blue indicates 

higher attention weight βm 

for the node. We see that multimodal feature, sequential position, and spatial 

bounds 3 and 4 are higher. 

Fig. 5. Learnt Attention Weights for UI Screen Genre Classification (RICO-O). Darker shade of blue indicates 

higher attention weight βm 

for the node. We see that multimodal feature, and spatial bounds 1 and 2 are 

higher. 

Fig. 6. Learnt Attention Weights for UI Element Component-Type Classification (RICO-N). Darker shade of 

blue indicates higher attention weight βm 

for the node. We see that multimodal feature, sequential position, 

and hierarchy level are higher. 
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atasets, we also see different positional information playing important roles. For UI screen genre

lassification, the attention weights for spatial information, as shown in Figures 4 and 5 appears

o be important, which could indicate the importance of element spatial positions in a UI layout

or this task. An explanation for this could be that the patterns of spatial positions of different
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Fig. 7. Learnt Attention Weights for UI Element Component-Type Classification (RICO-O). Darker shade of 

blue indicates higher attention weight βm 

for the node. We see that multimodal feature, sequential position 

and hierarchy level are higher. 

Fig. 8. Learnt Attention Weights for App. Rating Regression (RICO-N). Darker shade of blue indicates higher 

attention weight βm 

for the node. We see that multimodal feature, sequential position and spatial bounds 2 

and 3 are higher. 

Fig. 9. Learnt Attention Weights for App. Rating Regression (RICO-O). Darker shade of blue indicates higher 

attention weight βm 

for the node. We see that multimodal feature, sequential position and spatial bounds 2 

and 3 are higher. 
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(  
I elements in a UI screen are indicative of the genre of the UI screen, e.g., the spatial positions of

I elements in UI screens that belong to the shopping genre (organized as repeated UI elements in

ists or galleries) could be relatively more regular than UI screens that belong to the game genre

where the UI elements could be located in a variety of locations on the screen). For UI element
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Fig. 10. Learnt Attention Weights for UI Screen Topic Classification (ENRICO). Darker shade of blue indicates 

higher attention weight βm 

for the node. We see that multimodal feature is higher. 

Fig. 11. Important Edges for UI Screen Genre Classification (RICO-N). We observe that the most important 

relationship edges for this task are between UI screen nodes (in purple) and application nodes (in green). 

Edges between UI screen nodes and application nodes account for 97.6% (488) of the important relationship 

edges; edges between UI screen nodes and UI class nodes account for 2.4% (12) of remaining important 

relationship edges. 

c  

i  

o  

a  

A

omponent-type classification, the attention weights for hierarchy level information, as shown

n Figures 6 and 7 are relatively higher, which makes intuitive sense, since the hierarchical level

f elements are likely to be correlated with the role of UI elements in a UI layout. For example,

 UI element that is of a drawer component-type (e.g., commonly used for menus that slide out
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Fig. 12. Important Edges for UI Screen Genre Classification (RICO-O). We observe that the most important 

relationship edges for this task are between UI screen nodes (in purple) and application nodes (in green). 

Edges between UI screen nodes and application nodes account for 98.2% (491) of the important relationship 

edges; edges between UI element nodes and UI class nodes account for 1.8% (9) of remaining important 

relationship edges. 
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rom the left of the UI screen) would be at a higher level in the hierarchy than UI elements of

ext component-type inside it. For application rating regression, other than spatial positional in-

ormation, the attention weights for the sequential position, as shown in Figures 8 and 9 also

lay an important role. One explanation for this is that the sequential position and length of the

I user interaction traces has an important influence on user experience and hence affects av-

rage user ratings for the application, which makes intuitive sense. For example, a user utilizing

n application with long sequences of UI screens in its user interaction traces is more likely to

e frustrated at the time taken to navigate to a desired UI screen, and give a lower rating to the

pplication. 

.2 Interpreting Heterogeneous Network Structural Information 

ext we interpret the contribution of heterogeneous network structural information for the differ-

nt datasets and tasks for the AHAMP model. Following GNNExplainer [ 55 ], we use a threshold to

elect the top 500 edges with the highest weights in 

˜ E L and visualize the resultant set of edges with

 spring layout to facilitate analysis, with node positions computed based on the Fruchterman-

eingold force-directed algorithm using a scale factor of 0.075, 50 iterations and a threshold of

.0001. 
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Fig. 13. Important Edges for UI Element Component-Type Classification (RICO-N). We observe a number 

of important two-hop relationship edges for this task—between UI element nodes (in blue) and UI screen 

nodes (in purple) via UI class nodes (in magenta). Edges between UI element and UI element nodes, between 

UI element nodes and UI class nodes, between UI class nodes and UI screen nodes, and between UI screen 

nodes and application nodes account for 51.8% (259), 25.6% (128), 17.8% (89), and 4.8% (24) of the important 

relationship edges, respectively. 
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5.2.1 Network Interpretation for UI Screen Genre Classification. The edge visualizations for the

I screen genre classification task on the RICO-N and RICO-O datasets are shown in Figures 11

nd 12 , respectively. We observe that the most important relationship edges for this task are be-

ween UI screen nodes (in purple) and application nodes (in green) for both datasets. This makes

ntuitive sense, since the propagation of the textual description attributes of the application nodes

cross the application node to UI screen node edges are likely to play a key role in helping classify

he UI genre. 

5.2.2 Network Interpretation for UI Element Component-type Classification. The visualizations

or the UI element component-type classification task on the RICO-N and RICO-O datasets are

hown in Figures 13 and 14 , respectively. We observe a number of important two-hop relationship

dges for this task—between UI element nodes (in blue) and UI screen nodes (in purple) via UI

lass nodes (in magenta) for both datasets. Intuitively, this could be because the role of an element

i.e., the component-type of the element) is dependent on both the UI class used to instantiate the

I element, and the UI screen that the UI element is a part of. 

5.2.3 Network Interpretation for Application Rating Regression. The visualizations for the appli-

ation rating regression task on the RICO-N and RICO-O datasets are shown in Figures 15 and 16 ,
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Fig. 14. Important Edges for UI Element Component-Type Classification (RICO-O). We observe a number 

of important two-hop relationship edges for this task—between UI element nodes (in blue) and UI screen 

nodes (in purple) via UI class nodes (in magenta). Edges between UI element and UI element nodes, between 

UI element nodes and UI class nodes, between UI class nodes and UI screen nodes, and between UI screen 

nodes and application nodes account for 58.8% (294), 27.2% (136), 8.8% (44), and 5.2% (26) of the important 

relationship edges, respectively. 
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espectively. We also observe some important two-hop relationship edges for this task—between

pplication nodes (in green) and UI class nodes (in magenta) via UI screen nodes (in purple), par-

icularly for the RICO-N dataset. Intuitively, this could be because the rating of an application may

ot only depend on the UI screen nodes, but also the choice of UI classes used to instantiate the

lements that are used to construct the UI. 

5.2.4 Network Interpretation for UI Screen Topic Classification. The visualization for the UI

creen topic classification task on the ENRICO dataset is shown in Figure 17 . We observe impor-

ant three-hop relationship edges for this task in a large cluster. Intuitively, this could be because

lassifying the topic of a UI screen depends on the propagation of multimodal and positional in-

ormation across multiple node-types. 

.3 Discussion 

ased on the results of our experiments, we see that HAMP/AHAMP’s ability to capture het-

rogeneous network structural information, along with the associated multimodal and positional

ttributes in a unified manner enables it to perform better on a number of tasks relating to the

earning of UI semantics and metadata compared with an extensive set of state-of-the-art baselines.
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Fig. 15. Important Edges for App. Rating Regression (RICO-N). We observe a few important two-hop rela- 

tionship edges for this task—between application nodes (in green) and UI class nodes (in magenta) via UI 

screen nodes (in purple). Edges between application and UI screen nodes account for 69.8% (349) of the impor- 

tant relationship edges, while edges between UI screen nodes and UI class nodes account for the remaining 

30.2% (151) of the important relationship edges. 
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he distribution of genre, topic and component-type classes are imbalanced, and HAMP/AHAMP’s

elatively good performance on the macro F1 metric on the classification tasks (especially when

ompared with the baselines) demonstrate their abilities to perform well across different classes

espite the imbalanced dataset. The experimental results provide evidence to support our intu-

tion that capturing hierarchical relationships is important for UI-related tasks since part-whole

ierarchies not only inform how a user understands the visual layout of UIs but also influence

ser interactions and experiences. Framing the UI dataset as a heterogeneous network enables

imilarities between nodes based on structural and regular equivalence to be captured, leading

o better performance on tasks. The experiments also show that the key methods proposed in

he HAMP/AHAMP’s model—adapting the scaled dot-product attention mechanism for a network

ith different node and edge-types, and combining the proposed positional vectorizer with the

ttention fusion module to effectively capture both multimodal and positional node attributes -

re effective in enabling it to perform better on a range of tasks. The introduction of the adap-

ive graph discovery and interpretability method in AHAMP further improves performance on a

umber of tasks and metrics, demonstrating the usefulness of discovering important edges that

re relevant to the task. HAMP allows users to interpret the contribution of multimodal and posi-

ional information, while AHAMP further allows users to interpret the contribution of heteroge-

eous network structural information to the different mobile UI-related tasks. This enables users
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Fig. 16. Important Edges for App. Rating Regression (RICO-O). We observe a few important two-hop rela- 

tionship edges for this task—between application nodes (in green) and UI class nodes (in magenta) via UI 

screen nodes (in purple). Edges between application and UI screen nodes account for 97.4% (487) of the impor- 

tant relationship edges, while edges between UI screen nodes and UI class nodes account for the remaining 

2.6% (13) of the important relationship edges. 
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f model predictions to have greater confidence and trust in the predictions, and allows users to

nderstand which UI attributes and parts of the UI network structure to focus on. From the visu-

lization of the learnt attention weights shown in Figures 4 –10 , we see that positional attributes,

.e., spatial, sequential and hierarchical level information, play a key role in the tasks, highlighting

he importance of capturing such information. Such attention weights also enable better inter-

retability of the predictions. From the visualization of the important discovered edges shown in

igures 11 –17 , we are able to better understand which parts of the UI network structure to fo-

us on for the different tasks. The model is designed to be generalizable to other UI and design

etworks with such heterogeneous and hierarchical relationships, and multimodal and positional

nformation. The model can accommodate different types of UI objects and relationships, informa-

ion from different modalities, as well as different types of positional information. The choice of

ttention mechanisms that can weight more relevant information based on the domain and task,

s well as the adaptive graph discovery mechanism enables the model to be adaptable to different

I applications. For example, a homogeneous network of UI objects with unimodal features would

e a special case of the network proposed in our article, and such networks and their features

ould be captured by the HAMP and AHAMP models. The proposed model and framework is not

omain specific and could be extended to other types of UIs, e.g., web, print, tangible, and other

redictive tasks associated with such UIs. 
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Fig. 17. Important Edges for UI Screen Topic Classification (ENRICO). We observe important three-hop rela- 

tionship edges for this task in a large cluster. Edges between UI screen nodes and application nodes, between 

UI screen nodes and UI class nodes, and between UI class nodes and UI element nodes account for 83.2% 

(416), 16.4% (82), and 0.4% (2) of the important relationship edges, respectively. 
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 CONCLUSION AND FU T URE WORK 

n this article, we propose HAMP and AHAMP, novel scaled dot-product attention-based GNN

essage passing models designed for heterogeneous networks with multimodal and positional at-

ributes, that allow users to interpret the contribution of multimodal and positional information,

s well as heterogeneous network structural information to the different mobile UI-related tasks.

hrough experiments involving an extensive set of state-of-the-art baseline models, we demon-

trate that HAMP and AHAMP outperform state-of-the-art models on a wide range of tasks for

obile application UIs that have real-world applications. Given HAMP/AHAMP’s performance on

he three distinct real world datasets, the model is likely to be equally applicable to other UIs even

f the characteristics of the information differ. In addition to the tasks shown in Figure 2 , future

ork could explore how HAMP and AHAMP could be used to complement or augment a range

f other UI-related systems. HAMP and AHAMP could be incorporated within UI object detection

nd annotation systems in works such as [ 8 , 20 , 50 , 58 ] to capture additional multimodal and struc-

ural network information. HAMP and AHAMP could also be used to complement systems that

ssist UI designers [ 6 , 7 , 28 , 38 ]. Data relating to other types of UIs—web, print, tangible—could be

ollected and similar experiments conducted with such data for tasks in other domains involving

esign artifacts. 

To promote social inclusion, HAMP and AHAMP can be used in real-world applications due to

heir ability to capture semantics from a wide range of information sources, for example, improving
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utomatic annotation of UIs for greater accessibility by disabled persons; or assisting designers in

ssessing their designs to improve the usability of UIs. We should however recognize that a greater

ependence on models for such tasks could inadvertently lead to decisions that might disadvantage

ertain groups of users. For example, automatic annotations for accessibility might benefit certain

roups of disabled users to the detriment of others if the data collection process is not carefully

esigned or is biased; designers might lean towards designs with higher ratings from broad user

roups but which could be less accessible to specific groups of users (e.g., color-blind users). While

e have designed HAMP and AHAMP with interpretability in mind to help address this, further

ork could be undertaken to explore how such negative effects could be further managed via

etter design of data collection processes, and/or greater model interpretability/explainability. 
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