
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Family-based model checking of fMultiLTL properties

Anonymous Author(s)
Submission Id: splc23

ABSTRACT

We introduce a new logic for expressing multi-properties of sys-
tem families (Software Product Lines - SPLs). While the standard
LTL logic refers only to a single trace at a time, fMultiLTL logic
proposed here refers to multiple traces originating from different
sets of variants of the SPL. This is achieved by allowing so-called
featured quantification over traces, ∀𝜓 and ∃𝜓 , where the feature
expression𝜓 describes a set of variants (sub-family) the quantified
trace comes from. A specialized family-based model checking al-
gorithm for verifying some fragments of fMultiLTL is given. A
prototype family-based model checker has been implemented. We
illustrate the practicality of this approach on several SPL models.

CCS CONCEPTS

• Software and its engineering → Software notations and

tools; Software creation and management; • Theory of computa-

tion → Semantics and reasoning.

KEYWORDS

Software Product Lines, Model Checking, LTL, Temporal Multi-
Properties,
ACM Reference Format:

Anonymous Author(s). 2023. Family-based model checking of fMultiLTL
properties. In Proceedings of the 27th ACM International Systems and Software
Product Lines Conference (SPLC ’23), August 28 – September 1, 2023, Tokyo,
Japan. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3486609.
3487202

1 INTRODUCTION

Software Product Line Engineering (SPLE) [13, 34] represents an
efficient method for building families of similar systems. Implemen-
tations of such system families use features (statically configured
options) to organize the variable functionality. Family members,
called variants, are specified in terms of features selected for that
particular variant. The reuse of code common to multiple variants
is thus maximized. Recently, the SPL method has grown in popular-
ity, especially in the domains of embedded systems, system-level
software, communication protocols, etc [13].

In many application domains, such as automotive and avion-
ics, quality assurance is of predominant importance. This requires
a solid evidence that system families indeed satisfy their speci-
fications. Researchers have addressed this problem by designing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC’23, August 28 – September 1, 2023, Tokyo, Japan
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9112-2/21/10. . . $15.00
https://doi.org/10.1145/3486609.3487202

compact representations for modelling the behaviour of all variants
of a system family in a single compact structure, and by designing
aggregate family-based model checking algorithms to efficiently
verify such compact representations. In particular, the family-based
model checking algorithms allow simultaneous verification of all
variants of a system family in a single run by exploiting the com-
monalities between the variants. Those algorithms are capable of
identifying all variants that satisfy a property, as well as all vari-
ants that do not satisfy the property together with the correspond-
ing counter-examples. Specialized family-based model checking
algorithms have been developed for various modelling formalisms:
reactive [9, 10, 16], real-time [14, 23], probabilistic [5] systems, as
well as for verification of properties in various temporal logics: LTL
[9, 10], CTL∗ [16], `-calculus [37], etc.

The linear-time temporal logic (LTL) is a logic for expressing
trace properties. However, some behaviors cannot be expressed by
referring to each trace individually. For example, secure information
flow and non-interference [2, 38] are maintained in a system if for
every two traces, if their low-security inputs are identical then so
are their low security outputs, regardless of their high-security vari-
ables. They cannot be characterized via single traces. In fact, they
cannot be expressed neither in CTL∗ nor in `-calculus. In [6, 25, 27],
properties describing the behaviour of a combination of traces are
introduced. They are known as hyper-properties (HyperLTL) [6, 25]
when different traces refer to the same system, and multi-properties
(MultiLTL) [27] when different traces refer to different compo-
nents of a system. That is,MultiLTL enable us to relate traces from
one component (sub-system) to traces of another component of a
compound system. We now extend the notion of MultiLTL in the
context of system families and SPLs, thus obtaining the so-called
featured MultiLTL, denoted by fMultiLTL.

In this paper, we introduce a new logic fMultiLTL for specify-
ing multi-properties of system families and we study algorithms
for their automatic verification. fMultiLTL generalizes LTL by
explicitly relating traces from different variants of a system family.
While LTL implicitly quantifies over only a single execution trace
of a system, fMultiLTL allows explicit quantification over mul-
tiple execution traces of a system family simultaneously, as well
as propositions that specify relationships among those traces. In
particular, fMultiLTL allows featured quantification, ∀𝜓 and ∃𝜓 ,
referring to the sub-family (a set of variants) described by the fea-
ture expression𝜓 . This way, traces from the sub-family described
by𝜓 can be referred to in the atomic propositions. Since a system
family consists of a set of similar systems, fMultiLTL properties
will enable us to relate traces from one subset of systems to another
subset. For example, the diversity property [35] asks all systems
from a family to represent a different implementation of the same
high-level system. That is, all systems implement the same function-
ality but differ in their implementation details. Diversity has been
used as a security property to resist attacks that exploit memory
layout or instruction sequence specifics. Given a high-level system

1

https://doi.org/10.1145/3486609.3487202
https://doi.org/10.1145/3486609.3487202
https://doi.org/10.1145/3486609.3487202

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan Anon. Submission Id: splc23

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

1

start

2 3

4 5

6

7 8 9
pay/𝑣∧¬𝑓 change/𝑣 open/𝑣∧¬𝑓 take/𝑣

close/𝑣∨base

select/base
serve/base

sod
a/𝑠

serveSoda/𝑠

tea/𝑡

ser
veT

ea/𝑡

free/𝑓

take/𝑓

cancel/𝑐

ret
ur
n/𝑐

Figure 1: The FTS VendMachine.

described with the base feature, and two low-level implementa-
tions described with features f1 and f2 respectively, the diversity
property can be expressed as:

𝜑1 = ∀base𝜋0 ∃f1𝜋1 ∃
f2
𝜋2 .□

(
in𝜋0 =in𝜋1 =in𝜋2 =⇒ out𝜋0 =out𝜋1 =out𝜋2

)
𝜑2 = ∀f1𝜋1 ∃

base
𝜋0 .□

(
in𝜋1 =in𝜋0 =⇒ out𝜋1 =out𝜋0

)
𝜑3 = ∀f2𝜋2 ∃

base
𝜋0 .□

(
in𝜋2 =in𝜋0 =⇒ out𝜋2 =out𝜋0

)
where in𝜋0 = in𝜋1 = in𝜋2 and out𝜋0 = out𝜋1 = out𝜋2 express that
the three traces 𝜋0, 𝜋1, 𝜋2 agree on the input and output variables in
and out, respectively. Note that the traces 𝜋0, 𝜋1, and 𝜋2 come from
the systems that contain features base, f1 and f2, respectively.
Our fMultiLTL logic enables to directly and naturally express
properties like the one above.

We present family-based model checking algorithms applicable
to restricted type of fMultiLTL properties, called alternation-free
fMultiLTL, in which the series of quantifiers at the beginning of
a formula involve zero alternation. Finally, we have implemented
within the ProVeLines tool [14] and practically evaluated the al-
gorithms for verifying the alternation-free fragment of fMultiLTL.
This is a useful fragment which allows specifying many interesting
properties of system families.

To summarize, our contributions are as follows:
(1) We define a new logic fMultiLTL for expressing proper-

ties that specify relations over multiple traces from various
sets of variants of a system family;

(2) We propose a specialized family-based model checking al-
gorithm for automatic verification of alternation-free frag-
ment of fMultiLTL;

(3) We describe a prototype implementation of our family-
based model checking algorithm and use it to verify some
interesting alternation-free fMultiLTLproperties of system
families.

2 BACKGROUND: SYSTEM FAMILIES

In this section, we summarize the existing background for our work.
We present modelling formalisms used to compactly represent sys-
tem families, and define their semantics.

Let F = {𝐴1, . . . , 𝐴𝑛} be a finite set of Boolean variables repre-
senting the features available in a system family. A specific subset
of features, 𝑘 ⊆ F , known as configuration, specifies a variant of a
system family. We assume that only a subset K ⊆ 2F of configura-
tions are valid. An alternative representation of configurations is
based upon propositional formulae. Each configuration 𝑘 ∈ K can

be represented by a formula: a (𝐴1) ∧ . . .∧a (𝐴𝑛), where a (𝐴𝑖) = 𝐴𝑖

if 𝐴𝑖 ∈ 𝑘 , and a (𝐴𝑖) = ¬𝐴𝑖 if 𝐴𝑖 ∉ 𝑘 for 1 ≤ 𝑖 ≤ 𝑛. We will use both
representations interchangeably.

We use transition systems (TS) to describe behaviors of single
systems. A transition system is a tuple T = (𝑆,Act, 𝐼 , trans,AP, 𝐿),
where 𝑆 is a set of states; 𝐼 ⊆ 𝑆 is a set of initial states; trans ⊆
𝑆×Act×𝑆 is a transition relation which is total, so that for each state
there is an outgoing transition; AP is a set of atomic propositions;
and 𝐿 : 𝑆 → 2AP is a labelling function specifying which atomic

propositions hold in a state. We write 𝑠1
_−→ 𝑠2 when (𝑠1, _, 𝑠2) ∈

trans. A path of a TS T is an infinite sequence 𝜌 = 𝑠0𝑠1𝑠2 . . . with

𝑠0 ∈ 𝐼 such that 𝑠𝑖
_𝑖+1−→ 𝑠𝑖+1 for all 𝑖 ≥ 0 (_𝑖+1 ∈ Act). A trace

corresponding to the path 𝜌 = 𝑠0𝑠1𝑠2 . . . is the sequence of sets of
propositions trace(𝜌) = 𝐿(𝑠0)𝐿(𝑠1)𝐿(𝑠2) The semantics of the
TS T , denoted as [[T]]𝑇𝑆 , is the set of its traces.

A featured transition system (FTS) represents a compact model,
which describes the behavior of a whole family of systems in a
single monolithic description. Their transitions are guarded by a
presence condition that identifies the variants they belong to. The
presence conditions𝜓 are drawn from the set of feature expressions,
FeatExp(F), which are propositional logic formulae over F :

𝜓 ::= true | 𝐴 ∈ F | ¬𝜓 | 𝜓1 ∧𝜓2

We write [[𝜓]] for the set of configurations that satisfy𝜓 , i.e. 𝑘 ∈
[[𝜓]] iff 𝑘 |= 𝜓 .

A featured transition system (FTS) is defined to be a tuple F=
(𝑆,Act,𝐼 ,trans,AP, 𝐿, F ,K, 𝛾), where (𝑆,Act, 𝐼 , trans,AP, 𝐿) form a
TS; F is a set of available features; K is a set of valid configura-
tions; and 𝛾 : trans→ FeatExp(F) is a total function decorating
transitions with presence conditions (feature expressions). The pro-
jection of an FTS F to a configuration 𝑘 ∈ K , denoted as 𝑃𝑟𝑘 (F),
is the TS (𝑆,Act, 𝐼 , trans′,AP, 𝐿), where trans′ = {𝑡 ∈ trans | 𝑘 |=
𝛾 (𝑡)}. We lift the definition of projection to sets of configurations
K′ ⊆ K , denoted as 𝑃𝑟K′ (F), by keeping the transitions admit-
ted by at least one of the configurations in K′. That is, 𝑃𝑟K′ (F),
is the FTS (𝑆,Act, 𝐼 , trans′, 𝐴𝑃, 𝐿, F ,K′, 𝛾 ′), where trans′ = {𝑡 ∈
trans | ∃𝑘 ∈ K′ .𝑘 |= 𝛾 (𝑡)} and 𝛾 ′ = 𝛾 |trans′ is the restriction
of 𝛾 to trans′. The semantics of an FTS F, denoted as [[F]]𝐹𝑇𝑆 , is
the union of traces of the projections on all valid variants 𝑘 ∈ K ,
i.e. [[F]]𝐹𝑇𝑆 = ∪𝑘∈K [[𝑃𝑟𝑘 (F)]]𝑇𝑆 . Moreover, the semantics of the
projection FTS 𝑃𝑟K′ (F) is [[𝑃𝑟K′ (F)]]𝐹𝑇𝑆 = ∪𝑘∈K′ [[𝜋𝑘 (F)]]𝑇𝑆 .

Example 2.1. The FTS VendMachine in Fig. 1 has features F =

{base, 𝑣, 𝑡, 𝑠, 𝑐, 𝑓 }. The feature base is used only for implementing
the high-level system and is not present in other configurations.
The set of all other valid configurations is obtained by combining
the above features (except base). The feature 𝑣 is for purchasing
a drink from the Vending machine; 𝑠 is for serving Soda; 𝑡 is for
serving Tea; 𝑐 is for Canceling a purchase after a coin is entered;
and 𝑓 is for offering Free drinks. Each transition is labeled by a
feature expression specifying in which variants the transition is

included. For instance, the transition 3○ 𝑠𝑜𝑑𝑎/𝑠
−→ 5○ is included in

variants where feature 𝑠 is enabled. The feature 𝑣 is mandatory, and
at least one of 𝑠 or 𝑡 is enabled in any valid configuration. The set
of valid configurations is thus:

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Family-based model checking of fMultiLTL properties SPLC’23, August 28 – September 1, 2023, Tokyo, Japan

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1

start

2 3

5

7 8 9
pay change open take

close

sod
a

serveSoda
1

start

3 9

select serve

close

Figure 2: TSs 𝑃𝑟 {𝑣,𝑠 } (VendMachine) (left) and 𝑃𝑟 {base} (VendMachine) (right).

1

start

2 3

4 5

6

7 8 9
pay/¬𝑓 change/true open/¬𝑓 take/true

close/true

sod
a/t
ru
e

serveSoda/true

tea/𝑡

ser
veT

ea/𝑡

free/𝑓

take/𝑓

cancel/𝑐

ret
ur
n/𝑐

Figure 3: The FTS 𝑃𝑟 [[𝑣∧𝑠]] (VendMachine).

KVM = {{base}, {𝑣, 𝑠}, {𝑣, 𝑡}, {𝑣, 𝑠, 𝑡}, {𝑣, 𝑠, 𝑐}, {𝑣, 𝑡, 𝑐}, {𝑣, 𝑠, 𝑡, 𝑐}, {𝑣,
𝑠, 𝑓 }, {𝑣, 𝑡, 𝑓 }, {𝑣, 𝑠, 𝑡, 𝑓 }, {𝑣, 𝑠, 𝑐, 𝑓 }, {𝑣, 𝑡, 𝑐, 𝑓 }, {𝑣, 𝑠, 𝑡, 𝑐, 𝑓 }}.

Figure 2 shows two variants of VendMachine: a version that only
serves soda, and a high-level implementation. The former variant
is described by the configuration: {𝑣, 𝑠}, equivalently as a formula:
¬base∧ 𝑣 ∧ 𝑠 ∧¬𝑡 ∧¬𝑐 ∧¬𝑓 . The model presented in the figure is
obtained by the projection 𝑃𝑟 {𝑣,𝑠 } (VendMachine). It accepts pay-
ment, returns change, serves a soda, opens the access compartment,
so that the user can take the soda, and close it again so that a next
user can be served. The latter variant is described by the configura-
tion: {base}, equivalently as a formula: base∧¬𝑣∧¬𝑠∧¬𝑡∧¬𝑐∧¬𝑓 .
Its model is obtained by 𝑃𝑟 {base} (VendMachine).

On the other hand, note that [[𝑣 ∧ 𝑠]] = {𝑘 ∈ KVM | 𝑘 |=
𝑣∧𝑠} = {{𝑣, 𝑠}, {𝑣, 𝑠, 𝑡}, {𝑣, 𝑠, 𝑐}, {𝑣, 𝑠, 𝑡, 𝑐}, {𝑣, 𝑠, 𝑓 }, {𝑣, 𝑠, 𝑡, 𝑓 }, {𝑣, 𝑠, 𝑐,
𝑓 }, {𝑣, 𝑠, 𝑡, 𝑐, 𝑓 }} represents a sub-family of VendMachine. The FTS
𝑃𝑟 [[𝑣∧𝑠]] (VendMachine) is shown in Fig. 3. Note that transition

1○ 𝑠𝑒𝑙𝑒𝑐𝑡/base
−→ 3○ is not present in this FTS, since it is not present

in any variant from [[𝑣 ∧ 𝑠]]. Also, all literals corresponding to 𝑣

and 𝑠 in feature expression are replaced with true (see Fig. 3). □

3 FMULTILTL PROPERTIES

We now present featured MultiLTL, denoted fMultiLTL, a logic
for describingmulti-properties of system families described by FTSs.
fMultiLTL extends LTL with explicit quantification over traces. It
is defined inductively as follows:

𝜑 ::= ∃𝜓𝜋.𝜑 | ∀𝜓𝜋.𝜑 | 𝜙
𝜙 ::= 𝑎𝜋 | ¬𝜙 | 𝜙1 ∧ 𝜙2 | ⃝𝜙 | 𝜙1U𝜙2

where 𝜋 is a trace variable,𝜓 ∈ FeatExp(F), and 𝑎 ∈ AP. Intuitively,
∃𝜓𝜋.𝜑 means that there exists a trace in the sub-family 𝑃𝑟 [[𝜓]] (F)
that satisfies 𝜑 , and ∀𝜓𝜋.𝜑 means that 𝜑 holds for every trace in
𝑃𝑟 [[𝜓]] (F). Atomic propositions 𝑎 ∈ AP are annotated with trace

variables 𝜋 , denoted 𝑎𝜋 , to disambiguate to which trace the propo-
sition refers to. A formula 𝜑 is closed if all trace variables 𝜋 are
in the scope of a quantifier. Boolean connectives disjunction (∨),
implication (=⇒), and equivalence (≡) are defined as syntactic
sugar. The other temporal operators are also defined by means of
syntactic sugar, for instance: ^𝜙 = trueU𝜙 (𝜙 holds eventually)
and □𝜙 = ¬^¬𝜙 (𝜙 always holds).

Formally, the semantics of fMultiLTL is defined as follows. Let
𝑇𝑟 ⊆ (2AP)𝜔 be a set of all traces and let 𝑡 ∈ 𝑇𝑟 be a trace. We use
𝑡 [𝑖] to denote the 𝑖-th element of 𝑡 . We write 𝑡 [0, 𝑖] to denote the
prefix of 𝑡 up to and including 𝑖-th element, and 𝑡 [𝑖,∞] to denote
the infinite suffix of 𝑡 beginning with 𝑖-th element. Let 𝑉 be a set
of trace variables, and Π : 𝑉 → 𝑇𝑟 be a trace assignment. Let
Π[𝜋 ↦→ 𝑡] be the function obtained from Π, by mapping 𝜋 to 𝑡 . Let
Π𝑖 be the function defined by Π𝑖 (𝜋) = (Π(𝜋)) [𝑖,∞]. Satisfaction
of a formula 𝜑 for an FTS F and a trace assignment Π is defined as:

Π |=F ∃𝜓𝜋.𝜑 iff ∃𝑡 ∈ [[𝑃𝑟 [[𝜓]] (F)]]FTS .Π[𝜋 ↦→ 𝑡] |=F 𝜑
Π |=F ∀𝜓𝜋.𝜑 iff ∀𝑡 ∈ [[𝑃𝑟 [[𝜓]] (F)]]FTS .Π[𝜋 ↦→ 𝑡] |=F 𝜑
Π |=F 𝑎𝜋 iff 𝑎 ∈ Π(𝜋) [0]
Π |=F ¬𝜙 iff Π ̸ |=F 𝜙
Π |=F 𝜙1 ∧ 𝜙2 iff Π |=F 𝜙1 and Π |=F 𝜙2
Π |=F ⃝𝜙 iff Π1 |=F 𝜙
Π |=F (𝜙1U𝜙2) iff ∃𝑖 ≥ 0.

(
Π𝑖 |=F 𝜙2 ∧ ∀𝑗 .0≤ 𝑗 < 𝑖 .Π 𝑗 |=F 𝜙1

)
A FTS F satisfies a closed formula 𝜑 , written F |= 𝜑 , if Π∅ |=F 𝜑

where Π∅ is the trace assignment with empty domain.

Example 3.1. Let us consider the VendMachine of Fig. 1. As-
sume that the atomic proposition start holds in state 1○, whereas
served holds in state 9○. Consider the following properties:

𝜑1 = ∀base𝜋0 ∃𝑣∧𝑠𝜋1 ∃𝑣∧𝑡𝜋2 .□
(
start𝜋0 ∧ start𝜋1 ∧ start𝜋2 =⇒
^served𝜋0 ∧ ^served𝜋1 ∧ ^served𝜋2

)
𝜑2 = ∀base𝜋0 ∀𝑣∧𝑠𝜋1 ∀𝑣∧𝑡𝜋2 .□

(
start𝜋0 ∧ start𝜋1 ∧ start𝜋2 =⇒
^served𝜋0 ∧ ^served𝜋1 ∧ ^served𝜋2

)
The formula 𝜑1 states that for every trace 𝜋0 form the base variant,
there are traces 𝜋1 and 𝜋2 from [[𝑣 ∧ 𝑠]] and [[𝑣 ∧ 𝑡]] sub-families,
such that after the corresponding machines have been started, they
will eventually serve the drink to the customer in all three traces.
The formula 𝜑2 requires the above property to hold for all triples
of traces from base, [[𝑣 ∧ 𝑠]] and [[𝑣 ∧ 𝑡]] sub-families.

The formula 𝜑1 holds in the VendMachine, but the formula
𝜑2 is violated. This is due to the fact that there are traces 𝑡1 =

1○ → 2○ → 3○ → 1○ and 𝑡2 = 1○ → 3○ → 5○ → 7○ → 1○,
which belong to both [[𝑃𝑟 [[𝑣∧𝑠]] (VendMachine)]]𝐹𝑇𝑆 as well as
[[𝑃𝑟 [[𝑣∧𝑡]] (VendMachine)]]𝐹𝑇𝑆 , such that they do not visit the
state 9○ where served holds. In particular, we have that 𝑡1 ∈
[[𝑃𝑟 {𝑣,𝑠,𝑐 } (VendMachine)]]𝑇𝑆 , 𝑡2 ∈ [[𝑃𝑟 {𝑣,𝑡,𝑓 } (VendMachine)]]𝑇𝑆 .

□

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan Anon. Submission Id: splc23

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

4 FAMILY-BASED MODEL CHECKING

ALGORITHM

Wepresent a family-basedmodel checking algorithm for the alternation-
free fragment of fMultiLTL, called fMultiLTL1, in which the
series of quantifiers at the beginning of a formula involve zero
alternation. We assume the fMultiLTL1 formula to be of the form
∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛 .𝜙 . Formulas of the form ∃𝜓1𝜋1 . . . ∃𝜓𝑛𝜋𝑛 .𝜙 can be
rewritten as ∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛 .¬𝜙 . Our algorithm extends the stan-
dard automata-theoretic approach to model checking [1, 39]. Hence,
it uses various automata constructions [39], language non-emptiness,
self-composition [2, 38], and a projection operator.

Büchi automata. Büchi automata (BA) [1, 39] are finite-state
automata that accept words of infinite length. A BA is a tuple
𝐴 = (𝑄, Σ, 𝛿,𝑄0, 𝐹) where 𝑄 is a set of states, Σ is an alphabet,
𝛿 ⊆ 𝑄×Σ×𝑄 is a transition relation,𝑄0 ⊆ 𝑄 is a set of initial states,
and 𝐹 ⊆ 𝑄 is a set of accepting states. A path 𝑞0𝑞1 . . . ∈ 𝑄𝜔 of a BA
is over a word𝑤 = 𝛼1𝛼2 . . . ∈ Σ𝜔 , if for all 𝑖 ≥ 0, (𝑞𝑖 , 𝛼𝑖+1, 𝑞𝑖+1) ∈ 𝛿 .
A word 𝑤 is recognized by a BA 𝐴 if there exists a path over the
word 𝑤 with some accepting states from 𝐹 occurring infinitely
often. The language L(𝐴) of a BA 𝐴 is the set of words that the
automaton 𝐴 recognizes.

Composition. The 𝑛-fold composition of FTSs F1, . . . , F𝑛 is the
synchronous product F1 ⊗ . . . ⊗ F𝑛 . Given 𝑛 FTSs defined as F𝑖 =
(𝑆𝑖 ,Act𝑖 ,𝐼𝑖 ,trans𝑖 ,AP, 𝐿𝑖 , F ,K𝑖 , 𝛾𝑖) for 1 ≤ 𝑖 ≤ 𝑛, we define the com-
position F1 ⊗ . . .⊗F𝑛 as the FTS (𝑆1× . . .×𝑆𝑛,Act1× . . .×Act𝑛,𝐼1×
. . . × 𝐼𝑛,trans,AP𝑛, 𝐿, F ,K1 × . . . × K𝑛, 𝛾1 × . . . × 𝛾𝑛) such that for
all states (𝑠1, . . . , 𝑠𝑛), (𝑡1, . . . , 𝑡𝑛) and actions (_1, . . . , _𝑛), we have
(𝑠1, . . . , 𝑠𝑛)

(_1,...,_𝑛)−→ (𝑡1, . . . , 𝑡𝑛) ∈ trans iff 𝑠𝑖
_𝑖−→ 𝑡𝑖 ∈ trans𝑖 for

all 1 ≤ 𝑖 ≤ 𝑛. Moreover, 𝐿 : 𝑆1 × . . . × 𝑆𝑛 → 2AP
𝑛
such that

𝑃𝑟𝑜 𝑗𝑖 (𝐿(𝑠1, . . . , 𝑠𝑛)) ⊆ 𝐿𝑖 (𝑠𝑖) for all 1 ≤ 𝑖 ≤ 𝑛, where 𝑃𝑟𝑜 𝑗𝑖 is the
set obtained by projecting a set of 𝑛-tuples to their 𝑖-th compo-

nents. Finally, 𝛾1 × . . . × 𝛾𝑛
(
(𝑠1, . . . , 𝑠𝑛)

(_1,...,_𝑛)−→ (𝑡1, . . . , 𝑡𝑛)
)
=

(𝜓1, . . . ,𝜓𝑛) if 𝛾𝑖 (𝑠𝑖
_𝑖−→ 𝑡𝑖) = 𝜓𝑖 for 1 ≤ 𝑖 ≤ 𝑛. The projection of

F1⊗ . . .⊗F𝑛 to a configuration (𝑘1, . . . , 𝑘𝑛) ∈ K1× . . .×K𝑛 , denoted
as 𝑃𝑟 (𝑘1,...,𝑘𝑛) (F1 ⊗ . . . ⊗ F𝑛) is the TS obtained by restricting the
transitions of F1 ⊗ . . . ⊗ F𝑛 to only those whose feature expressions
(𝜓1, . . . ,𝜓𝑛) are satisfied by (𝑘1, . . . , 𝑘𝑛). The semantics [[F1 ⊗ . . .⊗
F𝑛]]𝐹𝑇𝑆 is∪(𝑘1,...,𝑘𝑛) ∈K1×...×K𝑛

[[𝑃𝑟 (𝑘1,...,𝑘𝑛) (F1⊗ . . .⊗F𝑛)]]𝑇𝑆 . Let
zip denote the function that maps an 𝑛-tuple of sequences to a sin-
gle sequence of𝑛-tuples. For example, zip([1, 3, 5, . . .], [2, 4, 6, . . .]) =
[(1, 2), (3, 4), (5, 6), . . .]. Let unzip denote its inverse function. Hence,
F1 ⊗ . . . ⊗ F𝑛 contains a trace zip(𝑡1, . . . , 𝑡𝑛) if F1, . . . , F𝑛 contain
traces 𝑡1, . . . , 𝑡𝑛 , respectively. That is,

[[F1⊗. . .⊗F𝑛]]𝐹𝑇𝑆 = {zip(𝑡1, . . . , 𝑡𝑛) | 𝑡𝑖 ∈ [[F𝑖]]𝐹𝑇𝑆 for 1 ≤ 𝑖 ≤ 𝑛}

Given an FTSF, wewriteF𝜓1⊗...⊗𝜓𝑛 for the composition 𝑃𝑟 [[𝜓1]] (F)⊗
. . . ⊗ 𝑃𝑟 [[𝜓𝑛]] (F).

Formula-to-automaton construction. Suppose a fMultiLTL1 for-
mula ∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛 .𝜙 is given. We construct a generalized BA
𝐴𝜙 = (𝑄𝜙 , Σ𝜙 , 𝛿𝜙 , 𝑄

0
𝜙
, 𝐹𝜙) for 𝜙 . A generalized BA is the same as

a BA except that it has a multiple of accepting states [1]. First,
we preprocess 𝜙 to put it in a negation normal form (NNF) [1].
To construct the states of 𝐴𝜙 , we define closure(𝜙) to be the

set of all sub-formulae of 𝜙 and their negations. Then we define
elementary sets of formulae 𝐵 ⊆ closure(𝜙) that are maximal
consistent sets with respect to 𝜙 [1]. When we construct elemen-
tary sets of formulae of closure(𝜙), we generate 𝑛-tuples of all
atomic propositions that are in that elementary set corresponding
to traces 𝜋1, . . . , 𝜋𝑛 . The set of states 𝑄𝜙 is the set of elementary
sets of formulae of closure(𝜙) [1]. Intuitively, a state describes
a set of trace tuples where each tuple satisfies all formulae in the
elementary set representing that state. The initial set of states is
𝑄0
𝜙
= {𝐵 ∈ 𝑄𝜙 | 𝜙 ∈ 𝐵}. The alphabet is Σ𝜙 = (2AP)𝑛 , so each letter

of the alphabet is an 𝑛-tuple of sets of atomic propositions. The tran-
sition relation 𝛿𝜙 : 𝑄𝜙 ×Σ𝜙 ×𝑄𝜙 is given by: if𝐴 = 𝐵∩ (AP∪{∅})𝑛 ,
then 𝛿𝜙 (𝐵,𝐴) is a straightforward extension to 𝑛-tuples of the
standard definition of 𝛿𝜙 for LTL [1]. If 𝐴 ≠ 𝐵 ∩ (AP ∪ {∅})𝑛 ,
then 𝛿𝜙 (𝐵,𝐴) = ∅. The set of accepting states 𝐹𝜙 contains one
set {𝐵 ∈ 𝑄𝜙 | ¬(𝜙1U𝜙2) ∈ 𝐵 or 𝜙2 ∈ 𝐵} for each until formula
(𝜙1U𝜙2) in closure(𝜙).

The BA 𝐴𝜙 accepts exactly the words 𝑤 ∈ L(𝐴𝜙), which are
sequences of 𝑛-tuples, for which Π |=∅ 𝜙 , where Π = [𝜋1 ↦→
𝑝𝑟𝑜 𝑗1 (unzip(𝑤))] . . . [𝜋𝑛 ↦→ 𝑝𝑟𝑜 𝑗𝑛 (unzip(𝑤))] (where 𝑝𝑟𝑜 𝑗𝑖 de-
notes the projection of an 𝑛-tuple to its 𝑖-th component) and ∅ is
the empty FTS. The construction closely follows the standard LTL
automata construction [39], with addition that now we work with
𝑛-tuple words. In particular, Σ𝜙 is (2AP)𝑛 , so each letter is a 𝑛-tuple
of sets of atomic propositions.

Example 4.1. Consider the formula ∀𝑓1𝜋1∀𝑓2𝜋2 . ⃝ (𝑎𝜋1 ∧ 𝑎𝜋2),
where 𝜙 = ⃝(𝑎𝜋1 ∧ 𝑎𝜋2). We have

closure(𝜙) = {𝑎𝜋1 , 𝑎𝜋2 ,¬𝑎𝜋1 ,¬𝑎𝜋2 , 𝑎𝜋1 ∧𝑎𝜋2 ,¬(𝑎𝜋1 ∧𝑎𝜋2), 𝜙,¬𝜙}

The state space 𝑄𝜙 consists of the following elementary sets:

𝐵1 = {(𝑎𝜋1 , 𝑎𝜋2), 𝑎𝜋1 ∧ 𝑎𝜋2 , 𝜙} 𝐵2 = {(𝑎𝜋1 , 𝑎𝜋2), 𝑎𝜋1 ∧ 𝑎𝜋2 ,¬𝜙}
𝐵3 = {(𝑎𝜋1 , ∅),¬(𝑎𝜋1 ∧ 𝑎𝜋2), 𝜙} 𝐵4 = {(𝑎𝜋1 , ∅),¬(𝑎𝜋1 ∧ 𝑎𝜋2),¬𝜙}
𝐵5 = {(∅, 𝑎𝜋2),¬(𝑎𝜋1 ∧ 𝑎𝜋2), 𝜙} 𝐵6 = {(∅, 𝑎𝜋1),¬(𝑎𝜋1 ∧ 𝑎𝜋2),¬𝜙}
𝐵7 = {(∅, ∅),¬(𝑎𝜋1 ∧ 𝑎𝜋2), 𝜙} 𝐵8 = {(∅, ∅),¬(𝑎𝜋1 ∧ 𝑎𝜋2),¬𝜙}

The initial states are the states that contain 𝜙 ,𝑄0
𝜙
= {𝐵1, 𝐵3, 𝐵5, 𝐵7}.

𝛿𝜙 (𝐵1, {(𝑎𝜋1 , 𝑎𝜋2)}) = 𝛿𝜙 (𝐵3, {(𝑎𝜋1 , ∅)}) = 𝛿𝜙 (𝐵5, {(∅, 𝑎𝜋2)}) =

𝛿𝜙 (𝐵7, {(∅, ∅)}) = {𝐵1, 𝐵2}, and we have 𝛿𝜙 (𝐵2, {(𝑎𝜋1 , 𝑎𝜋2)}) =

𝛿𝜙 (𝐵4, {(𝑎𝜋1 , ∅)}) = 𝛿𝜙 (𝐵6, {(∅, 𝑎𝜋2)}) = 𝛿𝜙 (𝐵8, {(∅, ∅)}) =
{𝐵3, 𝐵4, 𝐵5, 𝐵6, 𝐵7, 𝐵8}. Note that 𝜙 = ⃝(𝑎𝜋1 ∧𝑎𝜋2) ∈ 𝐵1, 𝐵3, 𝐵5, 𝐵7,
so in their next states (𝑎𝜋1 ∧ 𝑎𝜋2) should hold, and 𝐵1 and 𝐵2 are
the only states that contain (𝑎𝜋1 ∧𝑎𝜋2). Similarly, ¬𝜙 = ¬⃝ (𝑎𝜋1 ∧
𝑎𝜋2) ∈ 𝐵2, 𝐵4, 𝐵6, 𝐵8, so in their next states¬(𝑎𝜋1∧𝑎𝜋2) should hold,
and 𝐵3, 𝐵4, 𝐵5, 𝐵6, 𝐵7 and 𝐵8 are the states that contain ¬(𝑎𝜋1 ∧𝑎𝜋2).
There are no outgoing transitions on other letters. The set 𝐹𝜙 is
empty as 𝜙 does not contain an until operator, so every infinite run
is accepting. □

Synchronous product. For an FTSF= (𝑆,Act,𝐼 ,trans,AP, 𝐿, F ,K, 𝛾)
and a BA 𝐴 = (𝑄, 2AP, 𝛿,𝑄0, 𝐹), the synchronous product is an FTS
F⊗𝐴 = (𝑆 ×𝑄,Act, trans′, 𝐼 ′,AP′, 𝐿′, F ,K, 𝛾 ′), where AP′ = 𝑄 and

𝐿′ (𝑠, 𝑞) = 𝑞, (𝑠, 𝑞)
𝛼

−→′ (𝑡, 𝑝) iff 𝑠
𝛼−→ 𝑡 and 𝑞

𝐿 (𝑡)
−→ 𝑝 , 𝛾 ′ ((𝑠, 𝑞)

𝛼

−→′

(𝑡, 𝑝)) = 𝛾 (𝑠 𝛼−→ 𝑡), 𝐼 ′ = {(𝑠0, 𝑞) | 𝑠0 ∈ 𝐼 , ∃𝑞0 ∈ 𝑄0 .(𝑞0, 𝐿(𝑠0), 𝑞) ∈
𝛿}.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Family-based model checking of fMultiLTL properties SPLC’23, August 28 – September 1, 2023, Tokyo, Japan

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

The algorithm checks F |= ∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛 .𝜙 .
1 We construct the FTS F𝜓1⊗...⊗𝜓𝑛 .
2 We construct the Büchi automata 𝐴𝜙 and 𝐴¬𝜙 .
3 We construct the FTS F𝜓1⊗...⊗𝜓𝑛 ⊗𝐴¬𝜙 and a featured

Büchi automata 𝐵𝐴(F𝜓1⊗...⊗𝜓𝑛) ∩𝐴𝜙 .
4 We check the persistence property F𝜓1⊗...⊗𝜓𝑛 ⊗𝐴¬𝜙 |=
^□¬𝐹 , where 𝐹 is the set of accepting states of 𝐴¬𝜙 .
If the persistence property does not hold, then it cor-
responds to a counterexample showing that the given
fMultiLTL formula is violated by F. Otherwise, if the
persistence property holds, we conclude that the given
fMultiLTL formula holds.

Figure 4: The family-based model checking algorithm.

Model checking results. Our results for family-based model check-
ing of fMultiLTL1 adapt the corresponding results for verification
of HyperLTL1 given in [6].

Theorem 4.2 (fMultiLTL1). F |=∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛.𝜙 iff [[F𝜓1⊗...⊗𝜓𝑛⊗
𝐴¬𝜙]]𝐹𝑇𝑆 =∅

Proof.

∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛 .𝜙 does not hold on F
iff
there exists a 𝑛-tuple Π𝑛 ∈ [[F𝜓1⊗...⊗𝜓𝑛]]𝐹𝑇𝑆 s.t. Π𝑛 |=∅ ¬𝜙
iff
[[F𝜓1⊗...⊗𝜓𝑛 ⊗ 𝐴¬𝜙]]𝐹𝑇𝑆 is not empty.

□

Algorithm. Our algorithm for verifying fMultiLTL1 adapts the
classical automata-theoretic LTL model checking algorithm [1, 39].
To determinewhether an FTSF satisfies a formula∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛 .𝜙 ,
we call the family-based model checking algorithm illustrated in
Fig. 4.

The algorithm in Fig. 4 uses the result from Theorems 4.2 to
check fMultiLTL1 formulae. It checks the persistence property
F⊗𝐵𝐴 |= ^□¬𝐹 , where 𝐹 is the set of final (accepting) states in the
Büchi automaton𝐵𝐴. This reduces to checking if there is a reachable
accepting state on a cycle in the FTS F ⊗ 𝐵𝐴. This is implemented
with a double DFS (depth-first search): the outer DFS finds a reach-
able accepting state, the inner DFS checks whether it is reachable
from itself. Both DFS compute the reachability relation of an FTS,
and their detailed implementation, denoted CheckPersistence,
is given in [11, 12]. The procedure CheckPersistence is based
on computing the reachability relation of an FTS F, denoted by
𝑅 : 𝑆 → P(K), such that for all states 𝑠 ∈ 𝑆 , 𝑘 ∈ 𝑅(𝑠) iff state 𝑠 is
reachable in the variant 𝑃𝑟𝑘 (F) for configuration 𝑘 . This procedure
generalises the standard DFS algorithm for transition systems, by
marking states with sets of configurations, rather than Boolean
visited flags. In contrast to the standard DFS for transition systems,
where no state is visited twice, this feature-aware DFS can visit
states multiple times. When 𝑅(𝑠) = K′ and the DFS arrives at state
𝑠 for the second time with a set of configurations K′′, such that
K′′ ⊈ K′, then 𝑠 although already visited, has to be re-explored.

This is because some transitions that were disallowed for K′ in 𝑠

might be allowed for K′′. See [11, 12] for more details.

5 IMPLEMENTATION

We have implemented a prototype tool for verifying fMultiLTL1
formulae as an extension of the ProVeLines tool [14]. ProVe-
Lines is the SPL model checking toolset based on FTSs, which
integrates various formalisms for verifying family systems (e.g.,
reactive and real-time systems; boolean and numerical features;
CNF and BDD representation of feature expressions; etc). It uses
two modelling languages for SPL specification: 𝑓 Promela [9] is a
high-level modelling language for describing system families, and
TVL [8] is a textual language for describing sets of features F and
valid configurations K .

𝑓 Promela is obtained from Promela [28] by adding feature
variables F and guarded-by-features statements “gd”. Promela is a
non-deterministic modelling language of the SPIN model checker
[28] designed for describing systems composed of concurrent pro-
cesses that communicate asynchronously. The feature variables, F ,
used in an 𝑓 Promela model are declared as fields of the special
type features. The new guarded-by-features statement introduced
in 𝑓 Promela is of the form:

gd :: 𝜓1 ⇒ 𝑠𝑡𝑚1 . . . :: 𝜓𝑛 ⇒ 𝑠𝑡𝑚𝑛 :: else ⇒ 𝑠𝑡𝑚 dg

where𝜓1, . . . ,𝜓𝑛 are feature expressions defined over F . The “gd”
is a non-deterministic statement similar to “if”, except that only
feature variables can be used in conditions (guards). It nondeter-
ministically executes the statement 𝑠𝑡𝑚𝑖 for which the guard 𝜓𝑖
evaluate to true for the current evaluation of feature variables. If
none of guards 𝜓1, . . . ,𝜓𝑛 is true, then the else statement 𝑠𝑡𝑚 is
chosen. Hence, “gd” in 𝑓 Promela plays the same role as “#ifdef”
in C/CPP SPLs [31].

Fig. 5 shows simple 𝑓 Promela and TVL models. After declaring
feature variables B1 and B2 as well as the global variables n and i in
the 𝑓 Promela model in Fig. 5 (left), the process foo is defined. The
statement ‘do :: break :: n++ od’ is used to non-deterministically ini-
tialize variables n and i of type byte to any integer value from their
domain [0, 255] at label Start. The first gd statement specifies that
i=i+2 is available for variants that contain the feature B1, and skip
for variants with ¬B1. The second gd statement is similar, except
that the guard is the feature B2. It states that i=i+1 is available for
variants containing B1 and skip for variants with ¬B1. Finally, we
print out the current value of i at label Final. The TVL model in
Fig. 5 (right) specifies four valid configurations: {Main}, {Main, B1},
{Main, B2}, {Main, B1, B2} for this system family. Finally, we specify
fMultiLTL properties:

𝜑1 = ∀B1𝜋1∀
B2
𝜋2 .

(
Start ∧ n𝜋1 =n𝜋2

)
=⇒ ^

(
Final ∧ i𝜋1 ≥ i𝜋2

)
𝜑2 = ∃B1𝜋1∃

B2
𝜋2 .

(
Start ∧ n𝜋1 =n𝜋2

)
=⇒ ^

(
Final ∧ i𝜋1 ≥ i𝜋2

)
The property 𝜑1 states that for all traces 𝜋1 from the sub-family

[[B1]] and 𝜋2 from [[B2]], if the value of n in the label Start is the
same in traces 𝜋1 and 𝜋2, then eventually i𝜋1 ≥ i𝜋2 will hold in
label Final. The property 𝜑1 does not hold. The counter-example
for 𝜑1 contains a trace 𝜋1 ∈ 𝑃𝑟B1∧¬B2 (F) ⊆ 𝑃𝑟 [[B1]] (F) (where
F is the FTS for 𝑓 Promela model in Fig. 5), in which i=𝑛+2 in
label Final (where n is the initial value of variable n), and a trace
𝜋2 ∈ 𝑃𝑟B1∧B2 (F) ⊆ 𝑃𝑟 [[B2]] (F), in which i=𝑛+3 in label Final.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan Anon. Submission Id: splc23

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

0 typedef features {
1 bool B1; bool B2; }
2 features 𝑓 ;
3 byte n, i;
4 active proctype foo() {
5 do :: break :: n++ od;
6 Start: i := n;
7 gd :: 𝑓 .B1 ⇒ i=i+2 :: else ⇒ skip dg;
8 gd :: 𝑓 .B2 ⇒ i=i+1 :: else ⇒ skip dg;
9 Final: printf(”𝑖 : %𝑑”, i);
10 }

11 𝐴{𝑝1}[B1]𝐴{𝑝2}[B2]
(
(foo@Start && n{𝑝1}==n{𝑝2}) →

11 ^(foo@Final && i{𝑝1} ≥i{𝑝2})
)

0 root Main {
1 group allOf {
2 opt B1,
3 opt B2
4 } }

Figure 5: Simple 𝑓 Promela (left) and TVL (right) models

𝑙5

init={n=i=0}

𝑙7 𝑙8 𝑙9 𝑙10

𝑡𝑡/n++/𝑡𝑡
𝑡𝑡/break; i=n/𝑡𝑡 𝑡𝑡/i=i+2/B1

𝑡𝑡/skip/¬B1

𝑡𝑡/i=i+1/B2

𝑡𝑡/skip/¬B2

𝑡𝑡/printf/𝑡𝑡

Figure 6: An FPG. The state “𝑙𝑥” refers to the line number 𝑥

in the model 𝑓 𝑜𝑜 in Fig. 5, and 𝑡𝑡 is short for true.

The property 𝜑2 states that there exist traces 𝜋1 from [[B1]] and
𝜋2 from [[B2]], if the value of n in Start is the same in 𝜋1 and 𝜋2,
then eventually i𝜋1 ≥ i𝜋2 in Final. The property 𝜑2 holds, and the
witness is a trace 𝜋1 ∈ 𝑃𝑟B1∧B2 (F) ⊆ 𝑃𝑟 [[B1]] (F) in which i=𝑛+3 in
Final and a trace 𝜋2 ∈ 𝑃𝑟¬B1∧B2 (F) ⊆ 𝑃𝑟 [[B2]] (F) in which i=𝑛+1

in Final. We verify 𝜙2 by encoding it as 𝜙 ′2 = ∀B1𝜋1∀
B2
𝜋2 .¬

(
(Start ∧

n𝜋1 = n𝜋2) =⇒ ^(Final ∧ i𝜋1 ≥ i𝜋2)
)
, which is equivalent to

∀B1𝜋1∀
B2
𝜋2 .

(
Start ∧ n𝜋1 =n𝜋2

)
∧ □

(
¬Final ∨ i𝜋1 < i𝜋2

)
. A negative

answer to𝜙 ′2 represents a positive answer to𝜙2, and vice versa. That
is, the counter-example violating 𝜙 ′2 represents a witness showing
that 𝜙2 is correct.

We now give a brief overview of the 𝑓 Promela semantics [9].
Similarly as a Promela model defines a program graph (PG) [1],
an 𝑓 Promela model defines a so-called featured program graph
(FPG) [9] that formalizes the control flow of the model. The vertices
of the graph are control locations and transitions are annotated
with condition/effect/feature expression triples. The “gd” statement
specifies the feature expression part of transitions. The semantics
of an FPG is an FTS obtained from “unfolding” the graph (see [1,
Sect. 2] for details). The FPG of our 𝑓 Promela model in Fig. 5 is
shown in Fig. 6. The unfolded FTS can be easily constructed, such
that each state in it contains the information about the control
location (line number) and the current value of variables n and i.

The family-based model checking algorithm is executed on-the-
fly, by constructing the product FTS F ⊗ 𝐵𝐴 “on-demand”, where
F is the FTS of the system family and 𝐵𝐴 is the Büchi automaton
of the negated formula we consider. The generation of reachable
states of F proceeds in parallel with the construction of the relevant
fragment of 𝐵𝐴. When generating the successors of a state in 𝐵𝐴,

we only need to consider the successors matching the current state
of F. Hence, we can find an accepting state of 𝐵𝐴 on a cycle, without
the need to generate the entire 𝐵𝐴.

6 EVALUATION

We now evaluate our approach for family-based model checking of
fMultiLTL1 properties using the ProVeLines tool [14]. The eval-
uation aims to show that we can verify some interesting properties
over model families that are not expressible in the existing logics.
Moreover, we want to test and determine the performance limits of
the current implementation, and so set the scene for improvements
and extensions of our approach in future.

6.1 Experimental setup

Experiments are executed on a 64-bit Intel®Core𝑇𝑀 i7-1165G7
CPU@2.80GHz, VM LUbuntu 20.10, with 8 GB memory, and we
use a timeout value of 300 seconds. All times are reported as aver-
age over five independent executions. The implementation, bench-
marks, and all obtained results is available from: link-to-repository-
removed-for-double-blind-review. For each experiment, we report:
Time which is the time to model check in seconds (this includes
the times to parse the 𝑓 Promela model, to build the initial FTS,
and to run the model checking algorithm); and Space which is the
memory occupied in MB to perform the given model checking task.
The evaluation is performed on two benchmarks: WarmingUp and
MinePump family-models [9, 10].

6.2 Warming-up example

Combinatorically, the number of variants inK grows exponentially
with the number of features |F |, which means that there is an
exponential blow-up in the model checking strategy for LTL that
verifies all variants one by one. Although, ProVeLines implements
specialized family-based model checking algorithms of LTL that
check all variants simultaneously in a single run, its performance
still depends on the size and complexity of the configuration space
K . Unfortunately, model checking of fMultiLTL is even harder
than LTL because, another source of complexity is stemming from
the 𝑛-fold composition operator and the need to work with 𝑛-sized
tuples. The size of the synchronous product (𝑛-fold composition)

6

link-to-repository-removed-for-double-blind-review
link-to-repository-removed-for-double-blind-review

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Family-based model checking of fMultiLTL properties SPLC’23, August 28 – September 1, 2023, Tokyo, Japan

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

|𝑄 | = 2 |𝑄 | = 4 |𝑄 | = 6 |𝑄 | = |F |
|F | Time Space Time Space Time Space Time Space

6 0.097 15.0 0.112 17.7 0.163 28.9 0.163 28.9
7 0.098 15.1 0.114 18.5 0.188 33.2 0.435 69.6
8 0.097 15.2 0.127 19.6 0.219 37.9 0.869 139.8
9 0.100 15.3 0.125 20.2 0.250 42.8 1.708 308.6
10 0.103 15.5 0.129 21.2 0.261 48.2 3.637 716.4
11 0.104 15.7 0.142 21.5 0.292 53.8 8.755 1699.2

Figure 7: Verification of the property 𝜑1 of the WarmingUp example. Time in sec and Space in MB.

increases exponentially with the number of copies. Thus, reasoning
on the product model becomes computationally very prohibitive.

As an experiment, we have tested the limits of our family-based
model checking algorithm for fMultiLTL1. We have gradually
added variability to the model family in Fig. 5, and we have also
generated bigger fMultiLTL1 formulae with bigger number of
quantifiers. We write |𝑄 | to denote the number of quantifiers in
a fMultiLTL1 formula. This was done by adding unconstrained
optional features and by sequentially composing gd statements
guarded by all existing features. Note that we have K = 2 | F | , since
all features are optional. For example, the 𝑓 Promela process 𝑓 𝑜𝑜
with three features B1, B2, and B3 is:

do :: break :: n++ od;
Start: i := n;
gd :: 𝑓 .B1 ⇒ i=i+3 :: else ⇒ skip dg;
gd :: 𝑓 .B2 ⇒ i=i+2 :: else ⇒ skip dg;
gd :: 𝑓 .B3 ⇒ i=i+1 :: else ⇒ skip dg;
Final: printf(”𝑖 : %𝑑”, i);

and the corresponding properties with three quantifiers are:

𝜑1 = ∀B1𝜋1∀
B2
𝜋2∀

B3
𝜋3 .

(
Start ∧ n𝜋1 =n𝜋2 =n𝜋3

)
=⇒

^
(
Final ∧ i𝜋1 ≥ i𝜋2 ∧ i𝜋2 ≥ i𝜋3

)
𝜑2 = ∃B1𝜋1∃

B2
𝜋2∃

B3
𝜋3 .

(
Start ∧ n𝜋1 =n𝜋2 =n𝜋3

)
=⇒

^
(
Final ∧ i𝜋1 ≥ i𝜋2 ∧ i𝜋2 ≥ i𝜋3

)
Table 7 compares the effect in terms of both Time and Space of

analyzing the warming-up example for different sizes of |F | and |𝑄 |.
We report only the performance results for the property𝜑1, since we
obtain similar results for 𝜑2. We observe that the occupied memory
Space grows exponentially with the number of features |F | and
quantifiers |𝑄 | (when |𝑄 | = |F |), thus representing the bottleneck
of the verification task. In fact, the size of the explored model
spaces increases very rapidly with the size of the tuples, making
the reasoning on the models very prohibitive. Note that the size of
tuples is identical to the number of quantifiers in the given property.
Figure 8 (left) depicts this phenomenon. It shows the occupied
memory (in MB) of using ProVeLines to verify property 𝜑1 for
increasing number of features and quantifiers, when |𝑄 | = |F |.
Figure 8 (right) shows the accumulated time (in sec) for increasing
number of features and quantifiers, when |𝑄 | = |F |. We can see
that the time also grows exponentially with |F | and |𝑄 |. On the
other hand, if the number of quantifiers |𝑄 | is fixed (|𝑄 | = 2, 4, or
6), we observe only linear growth of Time and Space for increasing
number of features |F |. This is due to the fact that we work with

the same sized tuples in those cases and the ProVeLines tool can
efficiently handle the variability in this simple example.

6.3 MinePump example

The MinePump system was introduced in the CONIC project [32].
Based on the original system, an 𝑓 Promela model was created in
[10] as part of the textscSNIP project. The 𝑓 Promela MinePump
family contains about 200 LOC and 7 (non-mandatory) independent
optional features: Start, Stop, MethaneAlarm, MethaneQuery, Low,
Normal, and High, thus yielding 27 = 128 variants. Its FTS has 21,177
states and all variants combined have 889,252 states. It consists of 5
communicating processes: a controller, a pump, a watersensor, a
methanesensor, and a user. When activated, the controller should
switch on the pump when the water level is high, but only if there
is no methane in the mine.

6.4 Discussion

Our proof-of-concept model checker for the alternation-free frag-
ment of fMultiLTL is limited to smaller system families as evi-
denced by experiments. It represents a demonstration that model
checking of fMultiLTL properties is possible. In the future work,
we aim to propose some optimization heuristics that will reduce the
computational complexity of model checking both fMultiLTL1 in
practice, and thus enable us to handle bigger real-world case stud-
ies. We also envision to leverage modern verification techniques
like IC3 [36], interpolation [33], SMT [17] to improve the current
algorithms on model checking of fMultiLTL.

7 RELATEDWORK

In the last two decades, researchers have introduced various family-
based (lifted) analysis and verification techniques for SPLs. Some
successful examples range from family-based syntax and type check-
ing [26, 30, 31], to family-based static analysis [3, 19–21, 40] and
family-based verification by simulation [29, 41]. Family-basedmodel
checking has also been an active research field, where different ap-
proaches have been developed for verifying system families. Among
various modelling formalisms for representing SPLs, we focus here
on FTSs. We divide our discussion of related work into two cate-
gories: family-based model checking on FTSs and temporal logics
for hyper- and multi-properties.

Family-based model checking on FTSs. Featured transition sys-
tems (FTSs) are today widely accepted formalism for representing
system families (SPLs). Specialized family-based model checking

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan Anon. Submission Id: splc23

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 8: The performance of family-based model checking with ProVeLines as a function of the number of features |F | and
quantifiers |𝑄 | (when |𝑄 | = |F |). The x-axis represents the number of features and quantifiers, and the y-axis represents the

occupied memory in MB (left) and verification time in seconds (right).

algorithms have been designed for verifying FTSs against LTL prop-
erties [10]. They have been implemented in the SNIP family-based
model checker [9] and its successor ProVeLines [14]. Cordy et. al
[16] have also introduced symbolic family-based model checking
algorithms for verifying FTSs against CTL properties, which has
been implemented as an extension of the NuSMV model checker.
Family-based model checking has been also defined for verify-
ing `-calculus properties using the general-purpose mCRL2 model
checker [37], whereas family-based model checking for verifying
probabilistic system families has been defined in [5] and imple-
mented in the ProFeat tool. To make all these algorithms based
on FTSs more scalable, various abstractions have been applied. The
so-called variability abstractions and the automatic abstraction-
refinement procedures for efficient family-based model checking of
LTL are proposed in [18, 24]. Subsequently, the above procedures
have been extended for verifying CTL and `-calculus properties
[22]. Abstraction-refinement procedures for family-based model
checking have also been proposed for LTL properties of reactive sys-
tem families [15] and reachability properties of probabilistic system
families [4]. In this paper, we pursue this line of work by proposing
specifically designed family-based model checking algorithms for
verifying fMultiLTL properties of FTSs.

Temporal logics for hyper- and multi-properties. Hyper-properties
[7] represent a formalism for specifying properties of sets of traces,
by quantification over traces in the system. They are especially suit-
able for specifying security properties, such as secure information
flow and non-interference. The logic HyperLTL and HyperCTL*
have been introduced in [6]. This work also proposes one of the
first algorithms for model checking hyper-properties by combin-
ing self-composition and the classical LTL model checking. Self-
composition combines several disjoint copies of the same system,
allowing to express relationships among multiple traces. Subse-
quently, more scalable approach has been defined using alternating
Büchi automaton [25]. The notion of hyper-properties is gener-
alized to multi-properties in [27], which describes the behaviour
of not just a single system, but of a set of systems called multi-
model. While hyper-properties relate traces from the same system,
multi-properties relate traces from the different components in
the multi-model. Goudsmid et. al [27] introduce direct algorithms
for model checking multi-properties from theMultiLTL logic. In
this work, we further generalize the notion of multi-properties to

fMultiLTL logic, which explicitly relates traces from the various
sub-families of a system family (SPL).

8 CONCLUSION

In this work, we proposed a new fMultiLTL logic for specify-
ing multi-properties of system families. We have described two
algorithms for model checking of fMultiLTL1 and fMultiLTL2
fragments of the new logic. An implementation in ProVeLines
is suggested applicable to quantifier-free fMultiLTL properties.
The evaluation confirms that some interesting properties can be
efficiently verified in this way. However, it also establishes that
reasoning on the self-composed products is computationally very
demanding.

As a future work, we plan to employ abstraction-based tech-
niques [18, 24] to avoid the construction of the full product. We
can use abstractions to compute approximations of all sub-families
represented in the full product, such that if model checking the
abstract full product is successful, we conclude that model check-
ing the original full product holds. Since the abstract sub-families
are much smaller models than the original ones, we can use this
technique for accelerating model checking of multi-properties.

REFERENCES

[1] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT
Press.

[2] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. 2004. Secure Information
Flow by Self-Composition. In 17th IEEE Computer Security Foundations Workshop,
(CSFW-17 2004). IEEE Computer Society, 100–114. https://doi.org/10.1109/CSFW.
2004.17

[3] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and
Mira Mezini. 2013. SPLLIFT: statically analyzing software product lines in
minutes instead of years. In ACM SIGPLAN Conference on PLDI ’13. 355–364.

[4] Milan Ceska, Christian Dehnert, Nils Jansen, Sebastian Junges, and Joost-Pieter
Katoen. 2019. Model Repair Revamped: On the Automated Synthesis of Markov
Chains. In Essays Dedicated to Scott A. Smolka on the Occasion of His 65th Birthday
(LNCS, Vol. 11500). Springer, 107–125. https://doi.org/10.1007/978-3-030-31514-
6_7

[5] Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz, and Christel Baier.
2018. ProFeat: feature-oriented engineering for family-based probabilistic model
checking. Formal Aspects Comput. 30, 1 (2018), 45–75. https://doi.org/10.1007/
s00165-017-0432-4

[6] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,
Markus N. Rabe, and César Sánchez. 2014. Temporal Logics for Hyperproperties.
In Principles of Security and Trust - Third International Conference, POST 2014,
Proceedings (LNCS, Vol. 8414). Springer, 265–284. https://doi.org/10.1007/978-3-
642-54792-8_15

[7] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput.
Secur. 18, 6 (2010), 1157–1210. https://doi.org/10.3233/JCS-2009-0393

8

https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1007/978-3-030-31514-6_7
https://doi.org/10.1007/978-3-030-31514-6_7
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Family-based model checking of fMultiLTL properties SPLC’23, August 28 – September 1, 2023, Tokyo, Japan

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[8] Andreas Classen, Quentin Boucher, and Patrick Heymans. 2011. A text-based
approach to feature modelling: Syntax and semantics of TVL. Sci. Comput.
Program. 76, 12 (2011), 1130–1143. https://doi.org/10.1016/j.scico.2010.10.005

[9] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-Yves
Schobbens. 2012. Model checking software product lines with SNIP. STTT 14, 5
(2012), 589–612. https://doi.org/10.1007/s10009-012-0234-1

[10] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel
Legay, and Jean-François Raskin. 2013. Featured Transition Systems: Foundations
for Verifying Variability-Intensive Systems and Their Application to LTL Model
Checking. IEEE Trans. Software Eng. 39, 8 (2013), 1069–1089. https://doi.org/10.
1109/TSE.2012.86

[11] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel
Legay, and Jean-François Raskin. 2013. Featured Transition Systems: Foundations
for Verifying Variability-Intensive Systems and Their Application to LTL Model
Checking. IEEE Trans. Software Eng. 39, 8 (2013), 1069–1089. https://doi.org/10.
1109/TSE.2012.86

[12] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and
Jean-François Raskin. 2010. Model checking lots of systems: efficient verification
of temporal properties in software product lines. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE 2010.
ACM, 335–344. https://doi.org/10.1145/1806799.1806850

[13] Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns. Addison-Wesley.

[14] Maxime Cordy, Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and
Axel Legay. 2013. ProVeLines: a product line of verifiers for software product
lines. In 17th International Software Product Line Conference co-located workshops,
SPLC 2013 workshops. ACM, 141–146. https://doi.org/10.1145/2499777.2499781

[15] Maxime Cordy, Patrick Heymans, Axel Legay, Pierre-Yves Schobbens, Bruno
Dawagne, and Martin Leucker. 2014. Counterexample guided abstraction re-
finement of product-line behavioural models. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-
22). 190–201. https://doi.org/10.1145/2635868.2635919

[16] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. 2013.
Beyond boolean product-line model checking: dealing with feature attributes
and multi-features. In 35th International Conference on Software Engineering, ICSE
’13. IEEE Computer Society, 472–481. https://doi.org/10.1109/ICSE.2013.6606593

[17] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008. Proceedings (LNCS, Vol. 4963), C. R.
Ramakrishnan and Jakob Rehof (Eds.). Springer, 337–340. https://doi.org/10.
1007/978-3-540-78800-3_24

[18] Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, Claus Brabrand, and Andrzej
Wasowski. 2016. Efficient family-based model checking via variability abstrac-
tions. STTT (2016). https://doi.org/10.1007/s10009-016-0425-2

[19] Aleksandar S. Dimovski and Sven Apel. 2021. Lifted Static Analysis of Dynamic
Program Families by Abstract Interpretation. In 35th European Conference on
Object-Oriented Programming, ECOOP 2021 (LIPIcs, Vol. 194). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 14:1–14:28. https://doi.org/10.4230/LIPIcs.
ECOOP.2021.14

[20] Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. 2015. Vari-
ability Abstractions: Trading Precision for Speed in Family-Based Analyses.
In 29th European Conference on Object-Oriented Programming, ECOOP 2015
(LIPIcs, Vol. 37). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 247–270.
https://doi.org/10.4230/LIPIcs.ECOOP.2015.247

[21] Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. 2019. Finding
suitable variability abstractions for lifted analysis. Formal Aspects Comput. 31, 2
(2019), 231–259. https://doi.org/10.1007/s00165-019-00479-y

[22] Aleksandar S. Dimovski, Axel Legay, and Andrzej Wasowski. 2020. General-
ized abstraction-refinement for game-based CTL lifted model checking. Theor.
Comput. Sci. 837 (2020), 181–206. https://doi.org/10.1016/j.tcs.2020.06.011

[23] Aleksandar S. Dimovski and Andrzej Wasowski. 2017. From Transition Systems
to Variability Models and from Lifted Model Checking Back to UPPAAL. In
Models, Algorithms, Logics and Tools - Essays Dedicated to Kim Guldstrand Larsen
on the Occasion of His 60th Birthday (LNCS, Vol. 10460). Springer, 249–268. https:
//doi.org/10.1007/978-3-319-63121-9_13

[24] Aleksandar S. Dimovski and Andrzej Wasowski. 2017. Variability-specific Ab-
straction Refinement for Family-Based Model Checking. In Fundamental Ap-
proaches to Software Engineering - 20th International Conference, FASE 2017, Pro-
ceedings (LNCS, Vol. 10202). 406–423. https://doi.org/10.1007/978-3-662-54494-
5_24

[25] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. 2015. Algorithms for
Model Checking HyperLTL and HyperCTL ˆ*. In Computer Aided Verification
- 27th International Conference, CAV 2015, Proceedings, Part I (LNCS, Vol. 9206).
Springer, 30–48. https://doi.org/10.1007/978-3-319-21690-4_3

[26] Paul Gazzillo and Robert Grimm. 2012. SuperC: parsing all of C by taming the
preprocessor. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, Jan Vitek, Haibo Lin,
and Frank Tip (Eds.). ACM, 323–334. https://doi.org/10.1145/2254064.2254103

[27] Ohad Goudsmid, Orna Grumberg, and Sarai Sheinvald. 2021. Compositional
Model Checking for Multi-properties. In Verification, Model Checking, and Ab-
stract Interpretation - 22nd International Conference, VMCAI 2021, Proceedings
(LNCS, Vol. 12597). Springer, 55–80. https://doi.org/10.1007/978-3-030-67067-2_4

[28] Gerard J. Holzmann. 2004. The SPIN Model Checker - primer and reference manual.
Addison-Wesley.

[29] Alexandru F. Iosif-Lazar, JeanMelo, Aleksandar S. Dimovski, Claus Brabrand, and
Andrzej Wasowski. 2017. Effective Analysis of C Programs by Rewriting Variabil-
ity. Programming Journal 1, 1 (2017), 1. https://doi.org/10.22152/programming-
journal.org/2017/1/1

[30] Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. 2012. Type
checking annotation-based product lines. ACM Trans. Softw. Eng. Methodol. 21, 3
(2012), 14.

[31] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. 2011. Variability-aware parsing in the presence
of lexical macros and conditional compilation. In Proceedings of the 26th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2011, part of SPLASH 2011. 805–824. https://doi.org/
10.1145/2048066.2048128

[32] Jeff Kramer, JeffMagee, Morris Sloman, and A. Lister. 1983. CONIC: An Integrated
Approach to Distributed Computer Control Systems. IEE Proc. 130, 1 (1983),
1–10.

[33] Kenneth L. McMillan. 2003. Craig Interpolation and Reachability Analysis. In
Static Analysis, 10th International Symposium, SAS 2003, Proceedings (Lecture
Notes in Computer Science, Vol. 2694). Springer, 336. https://doi.org/10.1007/3-
540-44898-5_18

[34] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[35] Riccardo Pucella and Fred B. Schneider. 2006. Independence From Obfuscation:
A Semantic Framework for Dive. In 19th IEEE Computer Security Foundations
Workshop, (CSFW-19 2006). IEEE Computer Society, 230–241. https://doi.org/10.
1109/CSFW.2006.15

[36] Fabio Somenzi and Aaron R. Bradley. 2011. IC3: where monolithic and incre-
mental meet. In International Conference on Formal Methods in Computer-Aided
Design, FMCAD ’11. FMCAD Inc., 3–8. http://dl.acm.org/citation.cfm?id=2157657

[37] Maurice H. ter Beek, Erik P. de Vink, and Tim A. C. Willemse. 2017. Family-Based
Model CheckingwithmCRL2. In Fundamental Approaches to Software Engineering
- 20th International Conference, FASE 2017, Proceedings (LNCS, Vol. 10202). 387–405.
https://doi.org/10.1007/978-3-662-54494-5_23

[38] Tachio Terauchi and Alexander Aiken. 2005. Secure Information Flow as a Safety
Problem. In Static Analysis, 12th International Symposium, SAS 2005, Proceedings
(LNCS, Vol. 3672), Chris Hankin and Igor Siveroni (Eds.). Springer, 352–367.
https://doi.org/10.1007/11547662_24

[39] Moshe Y. Vardi and Pierre Wolper. 1986. An Automata-Theoretic Approach to
Automatic Program Verification. In Proceedings of the Symposium on Logic in
Computer Science (LICS ’86). IEEE Computer Society, 332–344.

[40] Alexander von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven
Apel. 2018. Variability-Aware Static Analysis at Scale: An Empirical Study. ACM
Trans. Softw. Eng. Methodol. 27, 4 (2018), 18:1–18:33. https://doi.org/10.1145/
3280986

[41] Alexander von Rhein, Thomas Thüm, Ina Schaefer, Jörg Liebig, and Sven Apel.
2016. Variability encoding: From compile-time to load-time variability. J. Log.
Algebr. Meth. Program. 85, 1 (2016), 125–145. https://doi.org/10.1016/j.jlamp.
2015.06.007

9

https://doi.org/10.1016/j.scico.2010.10.005
https://doi.org/10.1007/s10009-012-0234-1
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1145/2499777.2499781
https://doi.org/10.1145/2635868.2635919
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.4230/LIPIcs.ECOOP.2015.247
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1016/j.tcs.2020.06.011
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-662-54494-5_24
https://doi.org/10.1007/978-3-662-54494-5_24
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1145/2254064.2254103
https://doi.org/10.1007/978-3-030-67067-2_4
https://doi.org/10.22152/programming-journal.org/2017/1/1
https://doi.org/10.22152/programming-journal.org/2017/1/1
https://doi.org/10.1145/2048066.2048128
https://doi.org/10.1145/2048066.2048128
https://doi.org/10.1007/3-540-44898-5_18
https://doi.org/10.1007/3-540-44898-5_18
https://doi.org/10.1109/CSFW.2006.15
https://doi.org/10.1109/CSFW.2006.15
http://dl.acm.org/citation.cfm?id=2157657
https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.1007/11547662_24
https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
https://doi.org/10.1016/j.jlamp.2015.06.007
https://doi.org/10.1016/j.jlamp.2015.06.007

	Abstract
	1 Introduction
	2 Background: System families
	3 fMultiLTL properties
	4 Family-based model checking algorithm
	5 Implementation
	6 Evaluation
	6.1 Experimental setup
	6.2 Warming-up example
	6.3 MinePump example
	6.4 Discussion

	7 Related Work
	8 Conclusion
	References

