
Continuous T-Wise Coverage
Tobias Pett

tobias.pett@kit.edu
Karlsruhe Institute for Technology

(KIT)
Germany

Tobias Heß
tobias.hess@uni-ulm.de

University of Ulm
Germany

Sebastian Krieter
sebastian.krieter@uni-ulm.de

University of Ulm
Germany

Thomas Thüm
thomas.thuem@uni-ulm.de

University of Ulm
Germany

Ina Schaefer
ina.schaefer@kit.edu

Karlsruhe Institute for Technology
(KIT); KASTEL

Germany

ABSTRACT
Quality assurance for highly configurable systems uses t-wise fea-
ture interaction coverage as a metric to measure the quality of
selected samples for testing. Achieving t-wise feature interaction
coverage requires testing many configurations, often exceeding the
available testing time for frequently evolving systems. As testing
time is a limiting factor, current testing procedures face the chal-
lenge of finding a reasonable trade-off between achieving t-wise
feature interaction coverage and reducing the time required for
testing. To address this challenge, we can consider t-wise feature in-
teractions covered in previous test executions when calculating the
achieved t-wise feature interaction coverage. However, the current
definition of t-wise feature interaction coverage does not consider
previously tested configurations. Therefore, we propose continuous
t-wise coverage as a new customizable metric for tracking the ratio
of achieved t-wise feature interaction coverage over time. Our met-
ric allows customizing the tradeoff between test effort per system
version and the time to achieve t-wise coverage. We evaluate vari-
ous parameterizations for our metric on four real-world evolution
histories and investigate how they impact the calculated t-wise
feature interaction coverage. Our results show that a high t-wise
feature interaction coverage can be achieved by testing significant
(up to 50%) smaller samples per commit, when the evolution of the
system is considered.

CCS CONCEPTS
• Software and its engineering → Software product lines.

KEYWORDS
t-wise coverage, software-product lines, spl testing, spl evolution,
sampling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’23, August 28-September 1, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0091-0/23/08. . . $15.00
https://doi.org/10.1145/3579027.3608980

ACM Reference Format:
Tobias Pett, Tobias Heß, Sebastian Krieter, Thomas Thüm, and Ina Schaefer.
2023. Continuous T-Wise Coverage. In 27th ACM International Systems
and Software Product Line Conference - Volume A (SPLC ’23), August 28-
September 1, 2023, Tokyo, Japan. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3579027.3608980

1 INTRODUCTION
Safety-critical software systems are highly configurable as well
as frequently evolving. Many leading OEMs use the open-source
platform Automotive Grade Linux (AGL), which is based on the
Linux kernel, to develop in-vehicle software.1 The Linux foundation
measured more than 75,000 commits to the kernel repository in
2019, giving rise to about 250 commits per day on average.

Typically, the evolution of a large system, such as the Linux
kernel, includes four phases (development, commit, integration,
and testing) [29, 35]. The process of evolving a system starts with a
developer changing the problem- or the solution space of the system
(i.e., development) and committing the changes to a repository (i.e.,
commit). Integrating the developer’s commit into the system creates
a new system version (i.e., integration).

Testing is an important method to assure functional safety and
is commonly executed after each commit [2, 27]. However, time
and resources for testing are limited in practice, especially for
rapidly evolving systems. For instance, with 250 daily commits,
the test execution per commit may only take less than 6 minutes
(i.e., 24·60250 = 5.7). This often mandates a trade-off between fast and
resource-efficient test cycles (i.e., low testing time and testing costs)
and sufficient system coverage [8, 9, 29, 35]. Configurable systems
compound this conflict of interest, as the tests need to be executed
on multiple configurations. As even tiny systems possess too many
configurations to feasibly execute the tests on all configurations of
even a single commit (e.g., JHipster with 48 features and 15 cross-
tree constraints required 182 days of computing time to test all
26,256 valid configurations [10]), the aforementioned trade-off also
needs to take the number of tested configurations into account.

Sample-based testing [18, 28, 36] mitigates the challenge posed
by the combinatorial explosion by selecting a small and represen-
tative subset of product configurations (i.e., a sample) for testing.
A product configuration consists of selected configuration options
1https://linuxfoundation.org/wp-content/uploads/2021_LF_Annual_Report_010222.
pdf

https://doi.org/10.1145/3579027.3608980
https://doi.org/10.1145/3579027.3608980
https://doi.org/10.1145/3579027.3608980
https://linuxfoundation.org/wp-content/uploads/2021_LF_Annual_Report_010222.pdf
https://linuxfoundation.org/wp-content/uploads/2021_LF_Annual_Report_010222.pdf
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579027.3608980&domain=pdf&date_stamp=2023-08-28

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Tobias Pett, Tobias Heß, Sebastian Krieter, Thomas Thüm, and Ina Schaefer

(i.e., features) [3]. Covering all possible feature tuples of strength 𝑡
(i.e., t-wise feature interaction coverage) is one prominent criterion
to determine that a sample is representative [7, 26]. A sample must
contain all possible combinations of t-tuples of features to achieve
t-wise feature interaction coverage. For instance, to achieve pair-
wise feature interaction coverage (i.e., 𝑡 = 2), all valid combinations
of two features must be present in at least one configuration in
the sample. A number of t-wise sampling algorithms exist to calcu-
late samples that achieve t-wise feature interaction coverage in a
short amount of time [36]. However, for most real-world systems,
state-of-the-art samplers only scale to 𝑡 ≤ 3 [15].

However, samples that achieve 100% t-wise feature interaction
coverage for large configurable systems often contain hundreds
of configurations, rendering sample-based testing of each com-
mit infeasible [33]. One recently introduced sampling algorithm,
YASA [15], calculates a pair-wise coverage sample consisting of
545 configurations for Linux version 2.6.28, which contains 6,889 fea-
tures, in about 30 minutes. Still, spending half an hour calculating
the sample and executing test cases on hundreds of configurations
for each commit is not feasible for a system such as the Linux
kernel. Thus, practitioners do not use the potential of systematic
sample-based testing. Instead, they often choose a small number of
configurations based on expert knowledge, random selection, or a
naive heuristic as a test sample (𝑆). In the case of the Linux Kernel,
a set of predefined and a set random configurations are tested per
commit. 2 This unsystematic sample-based testing process leads to
an inefficient and unevenly distributed coverage of t-wise feature
tuples, while they should be tested equally to reduce the risk of
faulty and unforeseen feature interactions.

Tested configurations of previous commits contain knowledge
about covered t-wise feature tuples. We can use this knowledge
to incrementally guide configuration selection in highly time and
resource-constrained test settings. Uncovering the number of al-
ready covered feature tuples is a prerequisite to using this knowl-
edge for efficient configuration selection and prioritization. The cur-
rently established metric for calculating t-wise feature interaction
coverage considers only the most recent commit when calculating
the achieved coverage. In the remainder, we will therefore refer to
the established metric as one-shot coverage.

The goal of this paper is to introduce the concept of accumulating
covered t-wise feature tuples over time to increase the achieved
t-wise feature interaction coverage throughout the evolution of
a system. To quantify our approach, we define continuous t-wise
coverage as a newmetric to compute coverage over time. Our metric
is not an approach used to compute samples, instead its purpose is to
measure the achieved coverage of samples computed for successive
system versions. We introduce the commit window size (𝑛) as a
parameter to adapt howmany commits from the system’s evolution
are considered when calculating the achieved continuous t-wise
feature interaction coverage. For instance, by setting the window
size to five commits (𝑛 = 5), the tested configurations of the most
recent five commits are considered when calculating t-wise feature
interaction coverage. By setting𝑛 = 1, our metric emulates one-shot

2https://www.linuxjournal.com/article/7445; https://people.netfilter.org/hawk/
presentations/ifdef2016/ifdef_FOSD2016.pdf

coverage. We evaluate our metric on four Kconfig-based systems3,
such as BusyBox, Fiasco, Soletta, and Uclibc, for which an extensive
history is known. Our evaluation aims to show the benefits of
considering previously tested configurations, under consideration
of problem-space changes (i.e., feature model changes), to guide test
strategies for a new system version. We also discuss the trade-off
between the number of tested configurations and the size of the
commit window (𝐶𝑊) to reach the required coverage, as this is
of great relevance for the approach to be feasible in practice. In
summary, we make the following contributions:
• We propose the metric continuous t-wise coverage to measure
t-wise feature interaction coverage over time.

• We provide an implementation of our metric as open-source
command-line tool.4

• We evaluate continuous t-wise coverage on evolution histories
of real-world configurable systems5

2 BACKGROUND
This section provides background information about the sample-
testing process of configurable systems. First, we elaborate on man-
aging variability of configurable systems in Section 2.1. In Sec-
tion 2.2, we provide essential information on how configurations
for sample-based testing are typically generated.

2.1 Managing Variability
A configurable system consists of a set of possible products, which
share a set of common and varying properties, captured in a feature
model [3, 14]. The feature model of a configurable system manages
variability by specifying all possible configuration options (features)
and their dependencies [3, 6, 14, 34]. It is the representation of the
problem space of a configurable system, and an essential part of
each system version (i.e., commit of the system). A feature model
M = (F ,D) is a tuple consisting of a set of features F and a set
feature dependencies D. We define the features of a feature model
as F = {𝑓0, 𝑓1, . . . , 𝑓𝑜 } where 𝑓𝑖 represents a Boolean variable with
a unique feature name and 𝑜 is the total number of features in the
feature model dependencies 𝑑 ∈ D between features are typically
represented by propositional formulas in conjunctive normal form
(CNF) notation. We denote the set of all dependencies in the fea-
ture model as D = {𝑑0, 𝑑1, . . . , 𝑑𝑝 } where 𝑝 is the total number of
dependencies contained in the feature model.

Feature models are often visualized as feature diagrams to in-
crease human readability [4, 14]. A feature diagram orders features
in a tree structure based on their dependencies. Figure 1 shows the
feature diagram of a simplified car system, which we use as our run-
ning example. The feature model of our running example is inspired
by the car example feature model6 of FeatureIDE7. It consists of the
following eleven features: Car, Carbody, Radio, Gearbox, Ports,
Navigation, Bluetooth, Manual, Automatic, USB, CD. Throughout
the paper, we use a shorthand notation which represents features

3https://www.busybox.net/; https://github.com/kernkonzept/fiasco; https://github.
com/solettaproject/soletta; https://github.com/wbx-github/uclibc-ng/
4https://doi.org/10.5281/zenodo.8043550
5https://doi.org/10.5281/zenodo.7885905
6https://github.com/FeatureIDE/FeatureIDE/tree/develop/plugins/de.ovgu.featureide.
examples/featureide_examples/FeatureModels/Car
7https://featureide.github.io/

https://www.linuxjournal.com/article/7445
https://people.netfilter.org/hawk/presentations/ifdef2016/ifdef_FOSD2016.pdf
https://people.netfilter.org/hawk/presentations/ifdef2016/ifdef_FOSD2016.pdf
https://www.busybox.net/
https://github.com/kernkonzept/fiasco
https://github.com/solettaproject/soletta
https://github.com/solettaproject/soletta
https://github.com/wbx-github/uclibc-ng/
https://doi.org/10.5281/zenodo.8043550
https://doi.org/10.5281/zenodo.7885905
https://github.com/FeatureIDE/FeatureIDE/tree/develop/plugins/de.ovgu.featureide.examples/featureide_examples/FeatureModels/Car
https://github.com/FeatureIDE/FeatureIDE/tree/develop/plugins/de.ovgu.featureide.examples/featureide_examples/FeatureModels/Car
https://featureide.github.io/

Continuous T-Wise Coverage SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

Carbody (1)

Car (0)

Radio (2) Gearbox (3)

Ports (4) Navigation (5) Bluetooth (6) Manual (7) Automatic (8)

USB (9) CD (10)

Alternative Group

Or Group

Optional

MandatoryFeature

Legend:

Figure 1: Feature diagram of a simplified car system. Inspired
by FeatureIDE car example feature model.

by integer values. Feature names are directly mapped to integer
values by enumerating the features in the feature model. Figure 1
indicates the mapping for our running example using the numbers
in brackets. For instance, feature Car is mapped to 0, Carbody to 1,
and so on until feature CD which is mapped to literal 10.

A feature diagram captures the dependencies between features
through their edge types and propositional formulas below the
diagram (e.g., 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛 =⇒ 𝑈𝑆𝐵), so-called cross-tree con-
straints. Our running example contains four different edge types
to model the dependencies, mandatory feature (i.e., filled circle),
optional feature (i.e., empty circle), OR-group (i.e., filled arch), and
alternative-group (i.e., empty arch). A mandatory feature, such as
Carbody must always be true when its parent feature (e.g., Car) is
true, while optional features, such as Radio can be true when its
parent feature (e.g., Car) is true. The mandatory dependency be-
tween Car and Carbody can be written as ¬𝐶𝑎𝑟 ∨𝐶𝑎𝑟𝑏𝑜𝑑𝑦 in CNF,
or as {¬0, 1} in a shorthand notation. The dependency between the
features Ports, USB, and CD is called an Or-group. It describes that
if the parent feature (i.e., Ports) is true at least one of the features
USB, or CD must be true, and it can be written as {¬4, 9, 10} in our
shorthand notation. The features Gearbox, Manual, and Automatic
are modeled as alternative-group, which means that if Gearbox
is true either Manual, or Automatic, but not both simultaneously
must be true. It can be expressed as {(¬3, 7,¬8); (¬3,¬7, 8)} in
shorthand notation.

2.2 Configuration Testing
Users of a configurable system can build configurations by selecting
(i.e., setting a feature to true) and deselecting features (i.e., setting a
feature to false). A configuration represents a variant of the config-
urable system, which can be derived using a variability realization
mechanism [3, 6, 34]. We define a configuration C as the set of
selected and de-selected features of a feature model. For instance,
a users can create a configuration (𝐶1) of our running example
by selecting Car, Carbody, Gearbox, Manual and deselecting all
other features. In our shorthand notation we express the example
configuration as 𝐶1 =

{
1,¬2, 3,¬4,¬5,¬6, 7,¬8,¬9,¬10

}
.

A configuration is called valid, if it conforms to the constraints
defined by the corresponding feature modelM(F ,D). Throughout
our paper, we use the notation 𝐶 (M) to describe the set of valid
configuration for feature modelM(F ,D).

Real-world systems often provide many features, which results
in an enormous number of possible valid configurations, due to
the combinatorial explosion problem [18, 28, 36], and testing all of
those is not feasible. Instead, sample-based testing is often used to
verify the functional safety of a configurable system by testing a
representative subset of all valid configurations (i.e., a sample). We
define a sample as 𝑆 ⊆ C. Selecting a sample to test a configurable
system can be done by sampling algorithms, such as random sam-
pling [30], or t-wise interaction sampling [5, 7, 12, 15, 24, 31]. One
prominent criterion to rate the quality of a sample is the t-wise
feature interaction coverage a sample achieves [36].

A t-wise feature interaction (𝑓1 . . . 𝑓𝑡) is a tuple of size 𝑡 , that
contains selected or deselected features from the permutation set
2F of all features in the feature model. For instance,

{
(¬1, 2); (1, 3);

(¬2, 3)
}
are examples for pair-wise (𝑡 = 2) feature tuples for our

running example. We call a feature combination of size 𝑡 valid
if it can appear in at least one valid configuration C(M) of the
feature model. According to our definition of valid feature com-
binations, the tuple (¬1, 2) is not a valid feature interaction for
our running example because it violates the dependency that the
feature Carbodymust always be selected. We define the set of valid
t-wise feature interactions (I(𝑡,M)) for a feature model (M) by
I(𝑡,M) =

{
(𝑓1, . . . 𝑓𝑡)

�� (𝑓1, . . . 𝑓𝑡) ∈ 𝐶 (M)
}

A sample achieves full (i.e., 100%) t-wise feature interaction cov-
erage when all valid feature combinations are contained in at least
one configuration of the sample. Not all sampling algorithms gen-
erate samples that achieve full t-wise feature interaction cover-
age. The set of valid t-wise feature interactions contained in a
sample is defined by I(𝑡,M, 𝑆) =

{
(𝑓1, . . . 𝑓𝑡)

�� there exists 𝐶 ∈
𝑆 such as (𝑓1, . . . 𝑓𝑡) ⊆ 𝐶

}
. The ratio of achieved t-wise feature

interaction coverage is calculated by dividing the number of t-wise
feature interactions contained in a sample by the number of all
valid t-wise feature interactions of the feature model.

coverage (𝑡,M, 𝑆) = |I(𝑡,M, 𝑆) |
|I(𝑡,M)| (1)

3 PROBLEM STATEMENT
Achieving t-wise feature interaction coverage over time by accu-
mulating covered feature interactions for a number of previous
commits (commit window) may reduce testing effort for a commit.
We show this potential by a thought experiment.

Thought Experiment. Assumewe have our running example from
Figure 1, for which we want to ensure functional safety during the
system’s evolution. Typically, the system developers commit three
times a day, but the feature model is not changed. The system needs
to be tested with pair-wise feature interaction coverage for each
commit. Using the YASA sampling algorithm [15], we calculate
a pair-wise feature interaction sample containing seven configu-
rations in less than 20 seconds. However, we only have time to
test three configurations per commit. So, we cannot achieve full
pairwise feature interaction coverage in one commit because we
do not have the testing resources to fully test seven configurations.
However, if we soften the requirement of achieving pair-wise cov-
erage in every commit slightly to achieving coverage once per day,
this becomes feasible, by splitting the seven configurations so that
each is tested at least once after three commits.

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Tobias Pett, Tobias Heß, Sebastian Krieter, Thomas Thüm, and Ina Schaefer

Table 1: Configurations tested per commit of the evolution
history of the running example.

commit configuration
c1

{
0, 1,¬2, 3,¬4,¬5,¬6, 7,¬8,¬9,¬10

}
commit 0 c2

{
0, 1, 2, 3, 4, 5, 6, 7,¬8, 9,¬10

}
c3

{
0, 1,¬2, 3,¬4,¬5,¬6,¬7, 8,¬9,¬10

}
c4

{
0, 1, 2, 3, 4, 5, 6, 7,¬8,¬9, 10

}
commit 1 c5

{
0, 1, 2, 3, 4,¬5,¬6,¬7, 8, 9, 10

}
c6

{
0, 1, 2, 3,¬4,¬5, 6,¬7, 8,¬9,¬10

}
c7

{
0, 1, 2, 3,¬4, 5,¬6,¬7, 8,¬9,¬10

}
commit 2 c1

{
0, 1,¬2, 3,¬4,¬5,¬6, 7,¬8,¬9,¬10

}
c2

{
0, 1, 2, 3, 4, 5, 6, 7,¬8, 9,¬10

}
Table 1 shows the mapping between commits and tested configu-

rations. The first column of the table shows the numbered commits
from one to three, while the second column shows configurations
with configuration names one to seven and the set of features con-
tained by the configuration. According to our testing requirements
we can test three configurations per commit. In commit 1 and 2,
we test three configurations each. So that, we need to test only
one of those seven configurations in commit 3, which leaves test-
ing resources for retesting configurations (e.g., c1 and c2). Table 1
indicates that configurations c1 and c2 will be retested after the
coverage threshold is reached. This is an example to illustrate how
retesting of configurations can be done. In a real test scenario, the
order of retesting configurations could be adjusted appropriately.
Table 1 shows that it is possible to split a t-wise interaction sam-
ple over multiple commits to achieve t-wise feature interaction
coverage after the third commit. In practice, however, calculating
a sample in advance and distributing the configurations of that
sample across multiple commits is not useful due to changes in
the problem space and solution space. Instead, samples of the re-
quired size are created for each commit individually. Calculating
how much t-wise feature interaction coverage is achieved by sam-
ples of previous system versions is not possible with the currently
established one-shot metric, at least not without addressing the
following questions: 1) For which feature model do we compute
the t-wise feature interaction coverage? 2) Which feature tuples are
still valid for the chosen system version? 3) How can we make sure
that feature tuples are not considered multiple times, thus inflating
the t-wise interaction coverage? With continuous t-wise coverage,
we present a metric that addresses these questions and can that be
applied to an evolution history of a configurable system.

However, simply accumulating t-wise feature interaction cover-
age over time is not yet sufficient. In a real-world evolution scenario,
there are significant challenges that must be addressed by a well
defined metric. For example, many of the current testing proce-
dures focus on one-shot coverage, which should not be ignored
by the new metric. Therefore, we require equivalence (Req.1) be-
tween one-shot coverage and continuous t-wise coverage to allow
a seamless conversion of current procedures. Depending on the
nature and structure of the system and development process, real-
world testing scenarios differ strongly wrt. quality demands and
testing time. For example, testing a volatile system with many small
changes to the problem and solution space in a short period of time

will invalidate previously covered feature tuples on each commit,
and will likely not benefit from a large commit history. Instead,
it will be more beneficial for these systems to test more new con-
figurations, increasing the testing time per commit. On the other
hand, for a stable system with few changes to the problem and
solution space, covered feature tuples will remain valid for many
commits in the commit history. Therefore, testing these systems
will benefit from considering longer commit histories and testing
fewer configurations in each commit to spread the testing effort
over time. Therefore, we require that continuous t-wise coverage
must be adaptable (Req.2) wrt. the number of configurations tested
in one commit, and the number of commits that are used to achieve
t-wise feature interaction coverage over time. During the evolution
of configurable systems feature tuples may be covered by different
configurations or become invalid because of changes to the problem
or solution space of the system. We require tuple uniqueness (Req.3)
and robustness (Req.4) when calculating t-wise feature interaction
coverage, so that duplicate and invalid feature tuples do not distort
the result of continuous t-wise coverage.

4 CONTINUOUS T-WISE COVERAGE METRIC
In this section, we define continuous t-wise coverage as an exten-
sion of t-wise coverage and argue, how our definition satisfies the
requirements of Section 3.

4.1 Defining Commit and Sample Histories
We capture a systems’ evolution by its commit historyH . A commit
𝑐𝑜𝑚𝑚 represents all changes done by a developer to create a new
system version. We define the commit history as list of commits
H =

[
𝑐𝑜𝑚𝑚0, . . . , 𝑐𝑜𝑚𝑚ℎ

]
, which describes all changes to the

system throughout its history. Naturally, we define the length of
the commit history ℎ = |H | as the number of commits contained
in the commit history. The first element in the list (i.e., 𝑐𝑜𝑚𝑚0) is
the earliest commit of the system, while the last element in the list
(i.e., 𝑐𝑜𝑚𝑚ℎ) represents the most recent commit of the system. In
our running example (see Section 3), we have a commit history
containing three commits, starting with commit 0 at index 𝑐𝑜𝑚𝑚0
and ending with commit 2 at index 𝑐𝑜𝑚𝑚2.

In sample-based testing, tests are executed on a number of
selected system configurations (i.e., a sample 𝑆). Over the sys-
tems’ evolution, a history of tested samples is built, which we
define as the sample history 𝑆𝐻 =

[
𝑆0, . . . , 𝑆ℎ

]
of the system.

In case of our running example, 𝑆𝐻 contains three samples, i.e.,
𝑆𝐻 =

[
{𝑐1, 𝑐2, 𝑐3}, {𝑐4, 𝑐5, 𝑐6}, {𝑐7, 𝑐1, 𝑐2}

]
. A sample is tested for

each commit of the system. We define the size of 𝑆𝐻 to be equal to
the the length ofH . Further, we got a one-to-one mapping between
the elements of H and 𝑆𝐻 . Using this mapping, we can query a
sample 𝑆ℎ ∈ 𝑆𝐻 from the sample history by a commit 𝑐𝑜𝑚𝑚ℎ ∈ H
from the commit history.

4.2 Defining Continuous T-Wise Coverage
As defined in Equation 1, t-wise interaction coverage is measured
as the ratio between feature tuples contained in the configurations
of a sample and all possible feature tuples of the respective commit.
Our new metric, continuous t-wise coverage, extends this definition
of by considering a sequence of samples (i.e., a sample window 𝑆𝑊)

Continuous T-Wise Coverage SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

instead of a single sample. The size of this sequence (i.e., the size
of the sample window) can be adapted to any number of available
samples in the sample history 𝑆𝐻 . Equation 2 shows the resulting
formula to calculate continuous t-wise coverage.

contcoverage (𝑡,M, 𝑆𝑊) = |I(𝑡,M,∪𝑆∈𝑆𝑊 𝑆) |
|I(𝑡,M)|

= coverage (𝑡,M,∪𝑆∈𝑆𝑊 𝑆)
(2)

Recall that the function 𝐼 only considers valid and unique in-
teractions. Hence, per definition all invalid feature tuples caused
by problem space changes are excluded from the calculation of
continuous t-wise coverage so that continuous t-wise coverage
satisfies the robustness requirement (Req.4). As the function 𝐼 is
defined using sets, computing the union of samples from the sample
window yields itself a set of unique configurations, maintaining a
correct number of covered interactions, even if they are covered by
multiple sample configurations in different samples (i.e., continu-
ous t-wise coverage satisfies Req.3) Furthermore, as the union of
samples in the history constitutes a sample itself, it holds that the
continuous coverage of a sample window 𝑆𝑊 of size one equals
the classic coverage, which satisfies the first requirement Req.1.

4.3 Customization Options
An application of continuous t-wise coverage is to support the
efficient usage of testing resources by determining how many con-
figurations must be tested per commit for achieving t-wise feature
interaction coverage in a fixed number of commits. We define the
parameters window size 𝑛 and sample size𝑚 to make continuous
t-wise coverage adaptable for differing testing requirements.

We introduce the commit window 𝐶𝑊 to adjust the number of
considered commits when calculating continuous t-wise coverage.
The commit window 𝐶𝑊 is a sub-sequence of the commit history.
We define the size of the commit window𝑛 = |𝐶𝑊 | as the number of
commits the commit window contains. All commits in the commit
window are ordered as a list of elements 𝐶𝑊 =

[
𝑐𝑜𝑚𝑚ℎ, . . . ,

𝑐𝑜𝑚𝑚ℎ−𝑛
]
, starting with the most recent commit of the com-

mit history 𝑐𝑜𝑚𝑚ℎ and ending with the n-th most recent com-
mit counting backwards. Similar we define the sample window
𝑆𝑊 =

[
𝑆ℎ . . . 𝑆ℎ−𝑛

]
. In our running example, the commit window

𝐶𝑊 is equal to its commit historyH . However, we can imagine an-
other example where only two commits (i.e., 𝑛 = 2) in the running
example are considered to calculate continuous t-wise coverage. In
this case, the commit window contains the third and the second com-
mit𝐶𝑊 =

[
commit2, commit1

]
and the respective samplewindow

contains the configurations 𝑆𝑊 =
[
{𝑐1, 𝑐2, 𝑐7}, {𝑐4, 𝑐5, 𝑐6}

]
.

We define the number of configurations of a sample 𝑆 , by𝑚. With
this sample size parameter, we can choose howmany configurations
of a sample are tested in each commit. Consequently,𝑚 = 3 for our
running example. The commit window size 𝑛 and the sample size
𝑚, provide the freedom to experiment with various strategies to
achieve t-wise feature interaction coverage over time. Hence, our
metric can be applied flexibly to various testing scenarios, which
satisfies the adaptability requirement Req.2.

5 EVALUATION
RQ1: How does continuous coverage compare to one-shot coverage

over time? In RQ1, we measure how the accumulation of t-wise
feature tuples influences the t-wise feature interaction coverage
throughout the system’s evolution. In particular, we are interested
in analyzing the trend of continuous t-wise coverage compared to
one-shot coverage. As part of this analysis, we answer the following
sub-research questions: RQ1.1) Does continuous t-wise coverage
reach coverage values comparable to one-shot coverage values,
even if a significantly smaller sample size is used? Our expectation
for this sub-research question is that continuous t-wise coverage
achieves at least the same t-wise feature interaction coverage as
one-shot sampling, when the same sample size is used. If a smaller
sample size compared to one-shot sampling is used, we expect to
see a ramp-up phase for the first 𝑛 commits, where 𝑛 is the size
of the chosen commit window. We expect that continuous t-wise
coverage outperforms one-shot coverage after this ramp-up phase
even for significantly smaller sample sizes. RQ1.2) After how many
commits does continuous t-wise coverage achieve 98% of covered
feature interactions? After the ramp-up phase, we expect that the
achieved coverage will further increase until a threshold is reached.
Ideally this threshold will be at 100% t-wise feature interaction cov-
erage, but depends on the parameter configuration of the sample
size 𝑚 and the commit window size 𝑛. We will analyze various
parameter combinations for different subject systems, to evaluate
which parameter combinations achieve 98% covered feature inter-
actions after how many commits. RQ1.3) How strongly do changes
in the feature model influence continuous t-wise coverage? One
factor that influences which t-wise feature interaction coverage
can be achieved by continuous t-wise coverage are the changes in
the problem space (i.e., feature model changes) between commits.
Changing the feature model will influence the number of t-wise
feature tuples which need to be covered, by either increasing their
number (i.e., adding features, or removing restricting constraints)
or decreasing their number (i.e., removing features, or adding re-
strictive constraints). Our expectation is that in general continuous
t-wise coverage will be resilient against feature model changes. A
strong increase of feature tuples to be covered (i.e., adding new
feature, removing restrictive constraints) will result in a temporal
decrease of the calculated continuous t-wise coverage, because we
expect that the sample size 𝑚 is not large enough to cover the
newly added tuples in one commit. A strong decrease of feature
tuples to be covered (i.e., removing features, or adding restrictive
constraints) will not affect the continuous t-wise coverage metric,
because previously covered feature tuples will be invalidated, but
there will also be less feature tuples to be covered.

RQ2: What is the trade-off between test effort per commit and
time to achieve continuous t-wise interaction coverage? With this
research question, we analyze how the parameters sample size (𝑚)
and commit window size (𝑛) influence the increase of t-wise feature
interaction coverage over time. Based on this analysis, we achieve
an estimation of trade-offs for different testing scenarios. Theo-
retically, the ideal trade-off between sample size (𝑚) and commit
window size (𝑛) is to achieve high t-wise feature interaction cover-
age with low values for𝑚 and 𝑛. However, the actual best trade-off
between both parameters may depend on the testing scenario. We

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Tobias Pett, Tobias Heß, Sebastian Krieter, Thomas Thüm, and Ina Schaefer

Table 2: Subject Systems with the number of commits,
features, dependencies, changes of the variability model
throughout their commit history.

System #Commits #Feat. #Dep. #Changes
Fiasco 33 253 1795 2
Soletta 173 457 2319 153
Uclibc 177 235 1905 142
BusyBox 3713 631 1312 249

measure continuous t-wise coverage for various permutations of
sample size and commit window size to analyze the trade-off be-
tween them. As a result, we expect to find that a larger commit
window is necessary to achieve higher t-wise feature interaction
coverage when the sample size is reduced and vice versa.

5.1 Experiment Setup
In the following, we describe the setup of our experiments, starting
with selecting the subject systems and their commit histories.

Subject Systems. We use the commit histories of BusyBox, Fiasco,
Soletta, and Uclibc as subject systems in our evaluation. Those
are highly configurable and frequently evolving systems from real-
world applications, which use the kconfig language to model the
system’s variability. They are frequently used to evaluate newly
developed concepts in the domain of product-line research [15, 32]
because they represent small andmiddle-sized configurable systems.
Table 2 shows details of the most recent commits from the subject
systems used in our experiment. Even though the most recent
commit does not reflect the whole system evolution, it is still an
indicator of the system’s size and complexity. The system details
for all commits can be found in our data package 8 The first column
of Table 2 shows the system’s name. The second column shows
how many system commits were used in our experiments. Column
three shows the number of features for the most recent commit
of each subject system, while column four shows the number of
dependencies. The fifth column shows the number of commits that
change the variability model of the respective subject system. To
identify which commit changes the variability model, we analyze
the uniqueness of each system version based on a hash value as
indicator. We use a hashing algorithm to build a checksum value
for each version of the variability model in the evolution history
of our subject systems. We then compare the checksum values of
consecutive versions against each other. If the checksum differs,
we mark the newer variability model version as changed.

Acquiring Samples. Continuous t-wise coverage can be calcu-
lated as long as the underlying sampling approach generates a set
of configurations for the commits of a system. It is therefore ir-
relevant which underlying sampling approach is used to generate
the samples. However, continuous t-wise coverage is affected by
the underlying sampling strategy. For example, using a t-wise sam-
pling algorithm to create samples for each commit of the system
will result in higher continuous t-wise coverage values because

8https://doi.org/10.5281/zenodo.7885905

each configuration in the commit window 𝑛 contains specifically
selected t-wise feature interaction tuples.

In our evaluation, we aim to reduce the influence of the un-
derlying sampling approach in order to obtain meaningful results.
Therefore, we use uniform random sampling to generate the sam-
ples for the evaluation. Uniform random sampling considers each
configuration from the configuration space equally likely. Therefore,
the distribution of the configuration space is reflected in the sample,
and no biased algorithm optimizations are introduced. However,
uniform random sampling does not guarantee that a generated sam-
ple achieves 100% feature interaction coverage and may introduce
a bias based on the randomly selected configurations. We repeat
our experiments ten times to counter the bias of randomly selected
configurations. Not achieving 100% t-wise feature interaction cover-
age using a single sample is irrelevant in our experiments because
we are interested in investigating how continuous t-wise coverage
behaves over time and compares to one-shot coverage.

Configuration Selection. For each subject system, we select a
sample of size 𝑚 for each commit of its evolution history. The
sample size 𝑚 is an essential parameter for our experiments be-
cause it strongly influences how fast continuous t-wise coverage
may achieve a certain ratio of t-wise feature interaction coverage.
Therefore, we perform multiple experiments with different sample
sizes. The chosen sample sizes allow us to analyze the behavior
of continuous t-wise sampling on a broad scale, starting with a
detailed analysis of small differences in the sample size and the
possibility of analyzing the effects of large differences in the sample.
We use uniform random sampling to generate the samples with
different sample sizes. The random selection of configurations by
uniform random sampling may influence our results because each
configuration selected after the initial configuration may cover a
different ratio of t-wise feature interaction tuples. As mentioned
before, we mitigate the influence of randomness in our results by
executing the experiments ten times. Each of those executions gen-
erates an intermediate result. We build the arithmetic mean value
of the intermediate results for our discussion.

Evaluation Hardware. We perform our experiments on a vir-
tual server running an Ubuntu 20.04 operating system. The server
has a virtual processor with eight cores running at 2400MHz. The
server’s physical memory is 16 GB, from which we use 12 GB as
virtual memory to execute our experiments. The experiments are
executed as Java command-line tools integrating functionality from
the FeatureIDE library. For running our command-line tool, we
use OpenJDK version 1.8.0_292. We provide our command tooling
online as open source package 9. We are unable to provide our open
source tooling for the double blind review, because details about the
authors maybe leaked in the source code.

5.2 Experiment Execution
We perform multiple experiments to investigate continuous cover-
age for various permutations of the parameters sample size𝑚 and
window size 𝑛. We start our experiments by generating samples
with the following sample sizes𝑚 :

{
1, 2, 4, 8, 16, 32, 64, 128, 256,

9Anonymous

https://doi.org/10.5281/zenodo.7885905

Continuous T-Wise Coverage SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

Figure 2: Comparison between one-shot coverage and con-
tinuous t-wise coverage for 𝑛 = 4. Each box accumulates the
results for all of our subject systems.

512, 1024
}
for each commit in the commit history of each sub-

ject system under consideration. The samples are generated by
using an implementation of uniform random sampling contained
in FeatureIDE 10. For each calculated sample, we calculate the ra-
tio of t-wise feature interaction coverage for multiple values of
t (e.g., 𝑡 = 1, 𝑡 = 2) using our continuous t-wise coverage met-
ric with a window size of 𝑛 = 1. Calculating continuous t-wise
coverage with a window size of 1 is equivalent to calculating one-
shot coverage, as discussed in Section 4.3. Therefore, we use the
calculated coverage values as a baseline for our evaluation. In
addition to calculating the baseline coverage for each generated
sample, we compute continuous t-wise coverage values for the
following window sizes: 𝑛 :

{
2, 3, 4, 5, 6, 7, 8, 9, 10

}
. In practice,

this means that for each commit of our subject systems, we calcu-
late a continuous t-wise coverage for the parameter combinations{
(𝑚 = 1, 𝑛 = 1); (𝑚 = 2, 𝑛 = 1); . . . (𝑚 = 1024, 𝑛 = 10);

}
resulting

in 110 coverage values per commit. We order the calculated cover-
age values for each subject system chronologically so that we can
correlate the coverage values to changes in the variability model of
the subject system. We use the calculated t-wise feature interaction
coverage ratios to answer RQ1 by analyzing the behavior of con-
tinuous t-wise coverage over time compared to one-shot coverage.
Furthermore, we use our results to investigate the trade-off between
sample size𝑚 and window size 𝑛, to answer RQ2.

5.3 Results
For the analysis required for RQ1, we visualize the calculated val-
ues as a box plot (i.e.,Figure 2) and as scatter plot (i.e., Figure 3).
Answering RQ2 requires a direct comparison between continuous
t-wise coverage values of various parameter combinations, which
we show as a heat map (i.e., Figure 4).

RQ1. Figure 2 shows accumulated results for one-shot coverage
(grey box, far left) and continuous t-wise coverage (boxes in green
gradient) measured across all subject systems for a sample size of
𝑚 = 4. Each box in the plot represents a corresponding parameter
combination of sample size (𝑚) and window size (𝑛). For contin-
uous t-wise coverage, the results are shown for all window sizes
used in the experiment. The y-axis of Figure 2 shows the measured
feature interaction coverage in percent. It ranges from 20% to 100%,
10https://featureide.github.io/

since for no parameter combination t-wise feature coverage was
measured below 20%. We use three trend lines (shown in purple)
to highlight the difference between the measurements. The bot-
tom trend line indicates the smallest measured coverage. For each
parameter combination, this value is 25%. The middle trend line
shows the average over the results from all subject systems for
the corresponding parameter combination. It increases continu-
ously from a value of 60% (one-shot) to a value of 62% (continuous
coverage with 𝑛 = 10). The upper trend line shows the highest
coverage measured for the corresponding parameter combination.
There is a continuous increase from 80% one-shot coverage to 100%
for all parameter combinations of continuous t-wise coverage with
window size 𝑛 ≥ 6.

Figure 3 depicts the results for the subject system Fiasco as a
surrogate. We visualize the calculated continuous coverage values
for the parameter combination

{
(𝑚 = 16, 𝑛 = 1); (𝑚 = 1024, 𝑛 =

1); (𝑚 = 8, 𝑛 = 10); (𝑚 = 128, 𝑛 = 10)
}
as representatives for our

results. Our supplementary material11 contains the results com-
puted for the different subject systems and parameter combinations.
The parameter combinations (𝑚 = 16, 𝑛 = 1) (i.e., lower bound)
and (𝑚 = 1024, 𝑛 = 1) (i.e., upper bound) represent the behavior
of one-shot coverage overtime on the Fiasco subject system. The
parameter combination (𝑚 = 8, 𝑛 = 10), and (𝑚 = 128, 𝑛 = 10)
represent the behavior of continuous coverage over time. On the
x-axis of Figure 3, we show the version numbers of commits in our
analyzed commit window in chronological order. On the y-axis, we
show 2-wise feature interaction coverage in percent (%). The y-axis
starts with 40% as the lowest value measured in this experimental
setup. The highest value of the y-axis is 100%, indicating that all
possible t-wise feature tuples are covered. A data point in the scatter
plot represents the 2-wise feature interaction coverage achieved
by a certain parameter combination for the respective commit. As
representative for our over all results for Fiasco, we visualize data
points for 𝑚 = 16 (gray circles), and 𝑚 = 1024 (gray diamonds)
as examples for one-shot sampling (i.e., 𝑛 = 1). Additionally we
visualize the parameter combinations (𝑚 = 8, 𝑛 = 10) (green stars),
(𝑚 = 128, 𝑛 = 10) (green triangles) for continuous coverage. We
use a purple background color for commits that do not change the
variability model. For the Fiasco, we observe that the variability
model changes frequently throughout the system’s evolution.

As depicted in Figure 3, one-shot coverage with sample size𝑚 =

16, varies between 46% to 66% (i.e., a variation of about 20%). For one-
shot coverage with sample size𝑚 = 1024, we observe the highest
coverage ratio at 94% and lowest at 64%, which shows a variation in
coverage of 30%. For continuous coverage (parameter combination
(𝑚 = 8, 𝑛 = 10)), a general upwards trend can be observed between
versions one and ten, which is exactly the window size used in this
experimental setup. During this ramp-up phase, the coverage ratio
increases from 49% to 81%. After that, small variations between 83%
coverage at peaks and 78% as lowest values can be observed until a
downward trend from version 24 to version 33 sets in. During this
downward trend, the coverage ratio decreases from 78% to 67%.

11https://doi.org/10.5281/zenodo.7885905

https://featureide.github.io/
https://doi.org/10.5281/zenodo.7885905

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Tobias Pett, Tobias Heß, Sebastian Krieter, Thomas Thüm, and Ina Schaefer

Figure 3: Results of measuring continuous t-wise coverage for (m = 8, n=10), and (m = 128, n=10), as well as one-shot coverage
(m = 16, m = 512, and m = 1024) over time, for Fiasco.

RQ2. In RQ2, we analyze the influence of sample size and commit
window size to continuous t-wise coverage. We calculate contin-
uous t-wise coverage for various combinations of sample size𝑚
and the commit window size 𝑛. We use a heat map to visualize the
differences and the distribution of t-wise feature interaction cover-
age between various parameter combinations. Figure 4, shows the
calculated results for our subject systems BusyBox, Fiasco, Soletta,
and Uclibc in four different heat maps. We represent and discuss
our results using the Fiasco subject system as a surrogate.

The x-axis of the heat map represents the window sizes used for
calculating continuous t-wise coverage, while the y-axis represents
the sample sizes. An entry in the heat map represents the average
pair-wise feature interaction coverage ratio calculated with con-
tinuous t-wise coverage for the combination of commit window
size (𝑛) and sample size𝑚. For instance, the t-wise feature interac-
tion coverage ratio of the entry in the top left corner of the heat
map is calculated for the parameter combination (𝑛 = 1,𝑚 = 1).
Each rectangle is shaded using a color scale that reaches from blue
(low coverage ratio) to red (high coverage ratio). The color scale is
shown on the right side of Figure 4. A dark blue shade represents
the lowest possible t-wise feature interaction ratio, while a dark
red shade represents the highest ratio.

While the concrete coverage ratios differ for all depicted subject
systems, we can observe a trend in all of them. This trend indi-
cates that the lowest coverage ratio (e.g., 32% for Fiasco) is always
achieved for a parameter combination of𝑚 = 1 and 𝑛 = 1 (i.e., the
upper-left corner of the heat map). From there, increasing one of
the parameters increases the calculated coverage value. The highest
coverage values are always reached for the parameter combination
𝑚 = 1024 and 𝑛 = 10. As for our surrogate Fiasco, the highest
coverage value is 96%.

5.4 Discussion
RQ1: As a basis for the discussion of this research question, we

use the results computed for Fiasco as an example. For the other
subject systems, we observe slight deviations in details such as the

concrete ratio of computed feature interaction coverage. However,
the same general trend for continuous t-wise coverage can be ob-
served for all subject systems, as seen in Figure 2. It shows that
continuous t-wise coverage achieves at least the minimum t-wise
feature interaction coverage for all window sizes across all of our
subject systems. It also shows a slight increase in the achieved
t-wise feature interaction coverage on average, while a significant
increase in the highest value for t-wise feature interaction coverage
is shown. The detailed analysis for the Fiasco subject system un-
derlines these results. Our results for Fiasco show that continuous
t-wise coverage increases over time until the maximum window
size is reached. Using a sample size of𝑚 = 8 and a window size of
𝑛 = 10, increases the achieved coverage ratio by about 32% over the
first ten system versions. During this ramp-up phase, continuous
t-wise coverage considers feature tuples from each previously used
sample, which explains the strong increase in the coverage ratio.
Between the 10th and 23rd system versions, the measured t-wise
coverage ratio no longer increases. Instead, it remains stable with a
small fluctuation of about 5%. This behaviour is expected because
continuous t-wise coverage replaces feature tuples covered by older
system versions with newer feature tuples. This limits the num-
ber of feature interaction tuples that can be covered, meaning the
maximum t-wise interaction coverage ratio is also limited. From
the 24th to the 33rd system version, we discovered a downward
trend in the achieved coverage ratio of continuous t-wise coverage
(i.e., a reduction of 8%). This trend is also visible for the calculated
baseline configurations of one-shot coverage, which indicates that
achieving a high t-wise feature interaction ratio for the last system
versions of a Fiasco is generally hard.

In comparison to the baseline results (i.e., upper and lower
limit) from Figure 3, we observe that after the ramp-up phase,
continuous t-wise coverage is higher than the lower baseline (i.e.,
(𝑚 = 16, 𝑛 = 1)), but remains mostly lower than the upper baseline
(i.e., (𝑚 = 1024, 𝑛 = 1)). This behaviour is expected for the shown
parameter combinations since after the ramp-up phase, continu-
ous t-wise coverage accumulates feature-interaction tuples from

Continuous T-Wise Coverage SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

(a) Fiasco (b) Soletta (c) Uclibc (d) Busybox

Figure 4: Achieved t-wise feature interaction coverage using various parameter combinations (𝑚 and 𝑛) for continuous t-wise
coverage. The heatmaps show for all subject systems that increasing either the sample size or the window size increases
pair-wise feature interaction coverage.

800 configurations per system version. Compared to 16 configu-
rations, feature tuples from 800 configurations should achieve a
higher t-wise feature interaction coverage, while compared to 1024
configurations, the achieved t-wise feature interaction coverage
should be lower. We observe similar results for the other subject
systems in our experimental setup.

RQ1.1: In our experiments, continuous t-wise coverage is compa-
rable to one-shot coverage within the limitations of certain param-
eter combinations. For instance, we cannot expect that continuous
t-wise coverage using the parameter combination𝑚 = 2 and 𝑛 = 10
achieves higher t-wise interaction coverage than one-shot coverage
using a sample size of𝑚 = 1024. However, Figure 3 shows that after
the second commit, continuous t-wise coverage with the parameter
combination 𝑚 = 8 and 𝑛 = 10 reaches a higher t-wise feature
interaction coverage ration than one-shot coverage with double
the sample size (i.e.𝑚 = 16).

RQ1.2: Our results show that reaching a certain amount of pair-
wise feature interaction coverage with continuous t-wise coverage
depends on the parameter combination of sample size (𝑚) and
window size (𝑛). The visualized results for the parameters𝑚 = 8
and 𝑛 = 10 never reach 98% of pair-wise coverage, while increasing
the sample size to 128 is enough to reach this threshold for Fiasco
One-shot sampling with a sample size of 1024 does not achieve pair-
wise feature interaction coverage either. Therefore, t is particularly
difficult to reach this threshold using uniform random sampling.
We observe similar results for Busybox, Soletta, and Uclibc.

RQ1.3: The variation in coverage mostly depends on the nature
of the commits. If a feature model is changed often, continuous cov-
erage will be more varied. If a feature model is changed drastically,
the variation will be larger. Our results for Fiasco, where the feature
model changes frequently, show that the calculated coverage ratios
remain decently stable with at most 6% of fluctuation between con-
secutive system versions. We observe similar results for the other
subject systems, with slightly higher fluctuation rates. Consider-
ing that all samples are generated with uniform random sampling,

we argue that those results indicate that continuous coverage is
resilient to most changes in the feature model.

RQ1 Summary: Continuous coverage has a great advantage com-
pared to one-shot coverage. For one, if the same sample size is used,
the achieved coverage outperforms one-shot coverage overtime.
Consequently, smaller sample sizes can achieve the same coverage
over time. Another benefit of continuous coverage is its resilience
towards feature model changes. First, changes to the feature model
do not affect one-shot coverage, as the sample configurations are
always computed wrt. the current feature model version. How-
ever, continuous coverage achieves higher coverage nevertheless
and suffers smaller coverage losses over time, as the knowledge of
previous samples mitigates the impact of feature model changes.

RQ2: With RQ2, we aim to identify a beneficial trade-off between
sample size (𝑚) and commit window size (𝑛). Therefore, we use
continuous t-wise coverage to calculate the pair-wise feature in-
teraction coverage ratio for various combinations of𝑚 and 𝑛. We
visualize the results of those calculations as a heat map, shown in
Figure 4. The lowest pair-wise feature interaction coverage ratio
for all systems is computed for the combination (𝑚 = 1, 𝑛 = 1).
We observe that increasing𝑚 and 𝑛 simultaneously increases the
ratio of computed t-wise feature interaction coverage the fastest.
For instance, 81% pair-wise feature interaction coverage for Fi-
asco is achieved for a combination of 𝑚 = 32 and 𝑛 = 4 when
using continuous t-wise coverage for the calculation. Achieving the
same coverage in one commit (𝑛 = 1), requires 1024 configurations
(𝑚 = 1024), which results in high testing effort for the commit.
Minimizing the testing effort by considering one configuration per
commit (𝑚 = 1) increases the risk of missing a fault because in
general only about 25% of pair-wise coverage is achieved per com-
mit, and it takes a long time to achieve 100% of pair-wise coverage.
Testing 16 configurations (𝑚 = 16) per commit over eight commits
(𝑛 = 7) achieves a better pair-wise coverage for Fiasco as testing
1024 configurations in one commit. This averages the testing effort
and the risk of missing faults per commit, which is a beneficial
trade-off for testing a configurable system.

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Tobias Pett, Tobias Heß, Sebastian Krieter, Thomas Thüm, and Ina Schaefer

The results achieved in our experiments indicate that the ratio of
pair-wise feature interaction coverage calculated with continuous
t-wise coverage depends on the total number of configurations
considered over time. To achieve equal coverage ratios, we can
reduce the number of considered configurations per commit, but
then we must increase the size of our commit window. This dis-
covery means that splitting coverage between multiple commits
can reduce testing effort per commit while still achieving t-wise
feature interaction coverage. However, the more commits it takes
to achieve t-wise feature interaction coverage, the higher is the risk
of losing the traceability of faults.

Based on our results, we can answer RQ2 that there is a direct
trade-off between testing effort (i.e., sample size 𝑚) and testing
uncertainty (i.e., commit window size 𝑛). By investigating different
subject systems, we identified that the optimal trade-off depends
on the system itself and the testing strategy applied to the system.

5.5 Threats to Validity
Internal Validity. A threat to internal validity is that we use pre-

processed variability models as input for our evaluation. Means
of acquiring those models (e.g., using Tseitin transformation [16])
may influence the validity of our results. However, we argue that
the variability models used in our experiments must be of high
quality because they were already used in peer-reviewed publica-
tions. A second threat is that we may have introduced faults while
implementing our evaluation tool kit. We mitigate this threat by
using the well-validated FeatureIDE library as a resource for utility
implementation wrt. processing and analyzing variability models.

External Validity. A threat to external validity is that we only
use four subject systems with their variability modeled in KConfig
for our evaluation. Using subject systems that use different vari-
ability languages may cause differing evaluation results. However,
we argue that KCofig is a well-known language to model variabil-
ity used in many configurable software systems. To mitigate this
threat even further, we selected small and middle-sized real-world
systems, which are often used to evaluate new concepts in the
software-product line domain [15, 32]. The next threat to external
validity is choosing uniform random sampling as underlying sam-
pling approach over a t-wise sampling approach. Using a t-wise
sampling approach would have resulted in generally higher and less
fluctuating values for continuous t-wise coverage, making it easier
to show the capabilities of our new metric. However, those results
would always be influenced by the concrete implementation of
the sampling algorithm. Choosing random configurations as input
for calculating continuous t-wise coverage threatens the external
validity because random fluctuations may appear. We mitigate the
influence of random selection by performing our experiments ten
times, each with different randomly selected configurations. The
results of those experiment executions are accumulated using the
arithmetic mean value. The last threat to external validity is that our
results only measure pair-wise feature interaction coverage. Results
for high t-wise coverage strengths will differ from our results, wrt.
calculated coverage ratios. However, we expect that the general
behaviour of continuous t-wise coverage and the comparison to
one-shot coverage will remain the same.

Influence of Solution Space Changes. Our evaluation focuses on
the influence of problem space changes (i.e., feature model changes)
on continuous t-wise coverage. An empirical evaluation of solution
space changes (i.e., feature code changes) was beyond the scope
of this paper and is part of our ongoing research. Nevertheless,
solution space changes are an essential part of the evolution of a
configurable system, and must be considered when arguing about
continuous t-wise coverage calculation.

In practice, the solution space realization of a feature may change
dramatically between two commits. For instance, the source code
of a feature may be replaced completely by a refactoring action.
In context of a continuous testing approach, this means that the
changed features and all feature tuples which they are included in
must be retested. Therefore, considering solution space changes
when accumulating t-wise feature tuples over time requires the
identification of changed features. Feature changes can be found by
applying a change impact and dependency analysis. All previously
covered feature tuples that contain a changed feature cannot be
considered as covered anymore. Therefore, all feature tuples that
contain at least one changed feature (i.e., impacted feature tuples)
must be removed from the set of already covered feature tuples,
when accumulating t-wise feature interaction coverage over time.

We estimate that the described approach for considering solution
space changes will result in a large number of impacted feature
tuples. Since those feature tuples will be removed from the set of
covered tuples, the continuous t-wise coverage for the subject sys-
tem under consideration is also be reduced. Especially changing the
solution space of multiple features will reduce continuous t-wise
coverage drastically in between commits. Accumulating t-wise cov-
erage for development phases with solution space changes in many
features does not result in more benefits than one-shot sampling.
However, in development phases where only a few features are
changed between commits accumulating t-wise coverage over time,
will be beneficial in reducing the test effort per commit.

6 RELATEDWORK
This section elaborates on previous research related to our concept
of continuous t-wise coverage. We start by discussing various types
of state-of-the-art one-shot sampling algorithms [1, 5, 11, 13, 15]. Af-
ter that, we elaborate on the existing regression testing procedures
for configurable systems [17, 19, 20].

6.1 One-Shot Sampling Algorithms
Over the past decades, many different t-wise feature interaction
sampling algorithms were introduced. Varshosaz et al. [36] present
an extensive overview of current research of sampling algorithms.
Currently, YASA [15] shows the best performance values between
the established t-wise feature interaction sampling algorithms, in-
cluding Chvatal [5], ICPL [13], and IncLing [1]. Those algorithms
are primarily used to generate a sample for the most recent commit
of the system. Applying them in a continuous sampling approach is
challenging, because they use a metric for t-wise feature interaction
coverage that cannot consider previously calculated configurations
(i.e., one-shot coverage). One-shot coverage does not allow to make
an informed trade-off between testing effort and the risk of miss-
ing faults while testing a commit, which makes it impossible to

Continuous T-Wise Coverage SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

know which feature tuples are already covered by previous samples.
With continuous t-wise coverage, we introduce a coverage metric
that considers the evolution of the system to make this informed
trade-off possible and enable the use of continuous sampling.

6.2 Regression Testing of Configurable Systems
Over the past decades regression testing for configurable systems
was mostly applied for the selection of test cases [17, 20–23]. The
selection and prioritization of product configurations that consider
the systems evolution, is not as well researched [19, 25]. The fol-
lowing paragraphs elaborate on how the systems evolution was
previously used for test case and configuration selection strategies.

Test Case Selection and Prioritization. Lochau et al. [21–23] pro-
posed a workflow for incremental testing of configurable systems,
where test results are reused for consecutively tested product con-
figurations of the same system version. Lity et al. [17, 20] extend
this workflow so that test artifacts and test results are also usable for
testing versions of variants. The presented approaches work on the
level of test case selection, while our concept of continuous t-wise
coverage addresses the configuration selection over the evolution of
a configurable system. However, a combination between approach
on configuration level and existing approaches on test case level
is possible, by using information about previously covered feature
tuples in the selection of test-cases that address them specifically.

Product Configuration Selection and Prioritization. Lima et al. [19]
propose strategies to prioritize all configurations under test to
reduce the testing effort for evolving configurable systems in a
regression-based test environment. Marijan et al. [25] introduce an
algorithm to calculate configurations that achieve single feature
interaction coverage for evolving configurable systems. Their al-
gorithm is intended to be explicitly used for regression testing in
continuous integration. None of the existing approaches uses the
ratio of achieved t-wise feature interaction coverage over time as a
prioritization criterion because the current metric is not designed
for this use case. With continuous t-wise coverage, we propose
a metric exactly for this use case. Therefore, we may be able to
guide the configuration selection and prioritization in sample-based
regression testing to be more efficient.

7 CONCLUSION AND FUTUREWORK
In this paper, we present continuous t-wise coverage as a new con-
cept to calculate the ratio of t-wise feature interaction coverage.
Our concept accumulates feature tuples tested for commits con-
tained in a commit window and uses the accumulated set of feature
tuples for calculating the t-wise feature interaction coverage. Con-
tinuous t-wise coverage allows distributing the testing effort for
covering all t-wise feature interactions between multiple commits
(i.e., reducing the testing effort per commit). However, distributing
the testing effort increases the risk of missing faults per commit be-
cause it takes more commits to cover all t-wise feature interactions.
We evaluated our concept on four real-world systems (BusyBox,
Fiasco, Soletta, and Uclibc). Our evaluation shows a direct trade-off
between the configurations tested per commit and the number of
commits it takes to achieve t-wise interaction coverage. We discover
that continuous t-wise coverage makes it possible to demonstrate

trade-offs of existing testing settings, and analyze their efficiency
for frequently evolving configurable systems.

In the future, we aim to expand our evaluation to more real-
world systems with richer evolution histories to show that our
results are valid for a broader set of systems. Further, we want
to analyze how continuous t-wise coverage behaves for higher
strength values of t-wise feature interaction coverage (i.e., 𝑡 = 3,
𝑡 = 4, 𝑡 = 5). We also plan to measure continuous t-wise coverage
based on established t-wise sampling algorithms, such as YASA,
and compare those results with the results presented in this paper.
Since, in the current evaluation, we only investigate the influence of
problem space changes (i.e., changed featuremodels), it is part of our
future research to investigate solution space changes (i.e., changed
source code) as well. Besides strengthening our existing evaluation
results, we aim to develop an incremental sampling algorithm that
uses continuous t-wise coverage to select configurations. We plan
to analyze the actual trade-off between the risk of missing faults
and reducing test effort per commit by using concepts of mutation
testing to introduce faults into the subject systems and execute test
cases on the mutated systems. Comparing the fault finding rate
between continuous t-wise testing and one-shot testing will then
reveal its effectiveness.

ACKNOWLEDGMENTS
This work was supported by funding from the topic Engineering Se-
cure Systems of the Helmholtz Association (HGF) and by KASTEL
Security Research Labs (46.23.03). This publication is also partially
based on the research project SofDCar, which is funded by the
German Federal Ministry for Economic Affairs and Climate Ac-
tion under the grant number 19S21002. The authors would like
to thank the Ministry of Science, Research and Arts of the Fed-
eral State of Baden-Württemberg for the financial support of the
projects within the Innovations Campus Future Mobility (ICM). We
thank Niklas Mund for developing first concepts and prototype im-
plementation during his master thesis. We also thank Tim Witschel
and Elias Kuiter for providing the framework implementations to
analyze KConfig-based variability models.

REFERENCES
[1] Mustafa Al-Hajjaji, Sebastian Krieter, Thomas Thüm, Malte Lochau, and Gunter

Saake. 2016. IncLing: Efficient Product-line Testing Using Incremental Pairwise
Sampling. 144–155.

[2] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge
University Press.

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines.

[4] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A Survey of Variability
Modeling in Industrial Practice. 7:1–7:8.

[5] Vasek Chvatal. 1979. A Greedy Heuristic for the Set-Covering Problem. Math-
ematics of operations research 4, 3 (1979), 233–235. https://pubsonline.informs.
org/doi/abs/10.1287/moor.4.3.233

[6] Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns.

[7] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. 2008. Constructing Interac-
tion Test Suites for Highly-Configurable Systems in the Presence of Constraints:
A Greedy Approach. 34, 5 (2008), 633–650.

[8] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:
improving software quality and reducing risk. Pearson Education.

[9] Martin Fowler and Matthew Foemmel. 2006. Continuous integration.
[10] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,

and Benoit Baudry. 2019. Test them all, is it worth it? Assessing configuration
sampling on the JHipster Web development stack. 24, 2 (2019), 674–717. https:
//doi.org/10.1007/s10664-018-9635-4

https://pubsonline.informs.org/doi/abs/10.1287/moor.4.3.233
https://pubsonline.informs.org/doi/abs/10.1287/moor.4.3.233
https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1007/s10664-018-9635-4

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Tobias Pett, Tobias Heß, Sebastian Krieter, Thomas Thüm, and Ina Schaefer

[11] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. 2011. Properties
of Realistic Feature Models Make Combinatorial Testing of Product Lines Feasible.
638–652. https://link.springer.com/chapter/10.1007/978-3-642-24485-8_47

[12] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. 2012. An
Algorithm for Generating T-Wise Covering Arrays from Large Feature Models.
46–55.

[13] Martin Fagereng Johansen, ØysteinHaugen, Franck Fleurey, AnneGrete Eldegard,
and Torbjørn Syversen. 2012. Generating Better Partial Covering Arrays by
Modeling Weights on Sub-Product Lines. 269–284.

[14] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21.

[15] Sebastian Krieter, Thomas Thüm, Sandro Schulze, Gunter Saake, and Thomas
Leich. 2020. YASA: Yet Another Sampling Algorithm. Article 4, 10 pages.

[16] Elias Kuiter, Sebastian Krieter, Chico Sundermann, Thomas Thüm, and Gunter
Saake. 2023. Tseitin or Not Tseitin? The Impact of CNF Transformations on
Feature-Model Analyses. In Proceedings of the 37th IEEE/ACM International Con-
ference on Automated Software Engineering (Rochester, MI, USA) (ASE ’22). As-
sociation for Computing Machinery, New York, NY, USA, Article 110, 13 pages.
https://doi.org/10.1145/3551349.3556938

[17] Remo Lachmann, Sascha Lity, Sabrina Lischke, Simon Beddig, Sandro Schulze, and
Ina Schaefer. 2015. Delta-oriented test case prioritization for integration testing
of software product lines. In Proceedings of the 19th International Conference on
Software Product Line. 81–90.

[18] Jihyun Lee, Sungwon Kang, and Danhyung Lee. 2012. A Survey on Software
Product Line Testing. 31–40.

[19] Jackson A. Prado Lima, Willian D. F. Mendonça, Silvia R. Vergilio, and Wesley
K. G. Assunção. 2020. Learning-based prioritization of test cases in continuous in-
tegration of highly-configurable software (SPLC ’20). Association for Computing
Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3382025.3414967

[20] Sascha Lity, Manuel Nieke, Thomas Thüm, and Ina Schaefer. 2019. Retest test
selection for product-line regression testing of variants and versions of variants.
JSS 147 (Jan. 2019), 46–63. https://doi.org/10.1016/j.jss.2018.09.090

[21] Malte Lochau. 2012. Model-Based Conformance Testing of Software Product Lines.
Ph. D. Dissertation. Verlag Dr. Hut.

[22] Malte Lochau, Sascha Lity, Remo Lachmann, Ina Schaefer, and Ursula Goltz. 2014.
Delta-oriented model-based integration testing of large-scale systems. Journal of
Systems and Software 91 (2014), 63–84.

[23] Malte Lochau, Ina Schaefer, Jochen Kamischke, and Sascha Lity. 2012. Incre-
mental Model-Based Testing of Delta-oriented Software Product Lines. In ACM
Transactions on Applied Perception. 67–82.

[24] Roberto E. Lopez-Herrejon, Stefan Fischer, Rudolf Ramler, and Aalexander Egyed.
2015. A First Systematic Mapping Study on Combinatorial Interaction Testing
for Software Product Lines. 1–10.

[25] Dusica Marijan, Arnaud Gotlieb, and Marius Liaaen. 2019. A learning algorithm
for optimizing continuous integration development and testing practice. 49, 2
(2019), 192–213. https://doi.org/10.1002/spe.2661

[26] Dusica Marijan, Arnaud Gotlieb, Sagar Sen, and Aymeric Hervieu. 2013. Practical
Pairwise Testing for Software Product Lines. 227–235.

[27] John McGregor. 2010. Testing a Software Product Line. In Testing Techniques in
Software Engineering. 104–140.

[28] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi.
2015. The Love/Hate Relationship with the C Preprocessor: An Interview Study.
In 29th European Conference on Object-Oriented Programming (ECOOP 2015).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 495–518.

[29] Mathias Meyer. 2014. Continuous integration and its tools. IEEE Software 31, 3
(2014), 14–16.

[30] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. 2019.
Uniform Random Sampling Product Configurations of Feature Models That Have
Numerical Features. 289–301.

[31] Changhai Nie and Hareton Leung. 2011. A Survey of Combinatorial Testing.
Comput. Surveys 43, 2, Article 11 (2011), 11:1–11:29 pages.

[32] Tobias Pett, Sebastian Krieter, Tobias Runge, Thomas Thüm, Malte Lochau, and
Ina Schaefer. 2021. Stability of Product-Line Samplingin Continuous Integration.
In 15th International Working Conference on Variability Modelling of Software-
Intensive Systems. 1–9.

[33] Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter, Malte Lochau, and
Ina Schaefer. 2019. Product Sampling for Product Lines: The Scalability Challenge.
78–83.

[34] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques.

[35] Sean Stolberg. 2009. Enabling agile testing through continuous integration. In
2009 agile conference. IEEE, 369–374.

[36] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Moham-
mad Reza Mousavi, and Ina Schaefer. 2018. A Classification of Product Sampling
for Software Product Lines. 1–13.

https://link.springer.com/chapter/10.1007/978-3-642-24485-8_47
https://doi.org/10.1145/3551349.3556938
https://doi.org/10.1145/3382025.3414967
https://doi.org/10.1016/j.jss.2018.09.090
https://doi.org/10.1002/spe.2661

	Abstract
	1 Introduction
	2 Background
	2.1 Managing Variability
	2.2 Configuration Testing

	3 Problem Statement
	4 Continuous T-Wise Coverage Metric
	4.1 Defining Commit and Sample Histories
	4.2 Defining Continuous T-Wise Coverage
	4.3 Customization Options

	5 Evaluation
	5.1 Experiment Setup
	5.2 Experiment Execution
	5.3 Results
	5.4 Discussion
	5.5 Threats to Validity

	6 Related Work
	6.1 One-Shot Sampling Algorithms
	6.2 Regression Testing of Configurable Systems

	7 Conclusion and Future Work
	Acknowledgments
	References

