
Managing Cyber-Physical Production Systems Variability using
V4rdiac: Industrial Experiences

Hafiyyan Sayyid
Fadhlillah

CDL VaSiCS, LIT CPS Lab
Johannes Kepler University

Linz
Linz, Austria

hafiyyan.fadhlillah@jku.at

Antonio M. Gutiérrez
Fernández

CDL VaSiCS, LIT CPS Lab
Johannes Kepler University

Linz
Linz, Austria

antonio.gutierrez@jku.at

Rick Rabiser
CDL VaSiCS, LIT CPS Lab
Johannes Kepler University

Linz
Linz, Austria

rick.rabiser@jku.at

Alois Zoitl
CDL VaSiCS, LIT CPS Lab
Johannes Kepler University

Linz
Linz, Austria

alois.zoitl@jku.at

ABSTRACT
Cyber-Physical Production Systems (CPPSs) are highly robust and
versatile production systems that utilize diverse hardware compo-
nents through control software. Employing a systematic variability
management approach for developing variants of control software
can reduce cost and time-to-market to build such complex systems.
However, employing this approach in the CPPS domain is chal-
lenging. Engineering CPPSs require multidisciplinary engineering
knowledge (e.g., process, signal, mechanical). Knowledge about
CPPS variability is thus typically scattered across diverse engineer-
ing artifacts. Also, variability knowledge is usually not documented
explicitly but rather tacit knowledge of mostly senior engineers.
Furthermore, control software is commonly implemented using
a graphical Domain-Specific Modeling Language (DSML) which
only provides minimal support to express variability. This paper
describes our experiences dealing with these challenges in an in-
dustrial context using a multidisciplinary variability management
approach called Variability for 4diac (V4rdiac). V4rdiac is an inte-
grated approach that allows CPPS engineers to conduct stepwise
product configuration based on heterogeneous variability mod-
els from multiple engineering disciplines. V4rdiac also provides a
mechanism to automatically generate control software based on
a set of selected configuration options. We evaluate how V4rdiac
implements and manages CPPS control software variants in the
metallurgical production plant domain. We describe the benefits
and lessons learned from using V4rdiac in this domain based on
feedback from industrial practitioners.

CCS CONCEPTS
• Software and its engineering→ Software product lines.

KEYWORDS
Variability Modeling, Software Product Line, Cyber-Physical Pro-
duction System, Software Configuration

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’23, August 28-September 1, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0091-0/23/08. . . $15.00
https://doi.org/10.1145/3579027.3608994

ACM Reference Format:
Hafiyyan Sayyid Fadhlillah, Antonio M. Gutiérrez Fernández, Rick Rabiser,
and Alois Zoitl. 2023. Managing Cyber-Physical Production Systems Vari-
ability using V4rdiac: Industrial Experiences. In 27th ACM International
Systems and Software Product Line Conference - Volume A (SPLC ’23), August
28-September 1, 2023, Tokyo, Japan. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3579027.3608994

1 INTRODUCTION
The market is currently experiencing unprecedented fluctuations
and immense pressure for customization, resulting in high demand
for the development of versatile and long-running Cyber-Physical
Production Systems (CPPSs) [3, 39]. CPPSs are a type of Cyber-
Physical System (CPS) which employ diverse hardware components
through control software to deliver production functionality [16,
26, 35]. Developing a CPPS involves a team comprising multiple
engineering disciplines (e.g., process, mechanical, and electrical) [5].
During the design phase, engineers from each discipline produce
diverse domain-specific engineering artifacts (e.g., Computer-Aided
Design (CAD) drawings, P&I diagrams, and Detailed Technical
Specification (DTS)) with diverse semantics describing domain-
specific knowledge to build such complex systems. Specifically,
control software is typically developed using a graphical Domain-
Specific Modeling Language (DSML) defined by industry standards
such as IEC 61499 [18] or IEC 61131 [36].

The challenges posed by a globalized market have driven in-
dustries, including CPPS industries, to reduce the time and effort
required to develop system variants [3, 31]. To achieve this, in-
dustries must address challenges in their engineering processes.
Building a system with artifacts from multiple engineering disci-
plines raises the learning curve. Variability knowledge is typically
scattered across domain-specific engineering artifacts from mul-
tiple disciplines and mostly not explicitly documented but tacit
knowledge by senior engineers. Although there are mechanisms
for configuring certain subsystems, high engineering efforts are still
required. In particular, DSMLs used for building control software
do not provide a formal mechanism to express variability.

To address these challenges, we proposed a multidisciplinary
variability management approach for CPPS called Variability for
4diac (V4rdiac) [6, 7]. The approach is inspired by Software Prod-
uct Line (SPL) engineering [1, 27] and developed in a long-term
industry-academia collaboration project. The goal of this project is
to reduce the implementation and maintenance effort required for
developing control software variants. We built V4rdiac by utilizing

https://orcid.org/0000-0001-8361-6190
https://orcid.org/0000-0001-8361-6190
https://orcid.org/0000-0002-2669-5942
https://orcid.org/0000-0002-2669-5942
https://orcid.org/0000-0003-3862-1112
https://orcid.org/0000-0002-1306-3209
https://doi.org/10.1145/3579027.3608994
https://doi.org/10.1145/3579027.3608994
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579027.3608994&domain=pdf&date_stamp=2023-08-28

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Fadhlillah, et al.

an open-source framework for developing industrial distributed
control software called Eclipse 4diac™ [41]1 as well as the feature-
oriented software development framework FeatureIDE 2. V4rdiac
encourages each engineering discipline of a CPPS to explicitly doc-
ument variability using a variability model of their choice. The
overall CPPS variability is represented by linking these models
using cross-discipline constraints. Furthermore, V4rdiac provides a
delta modeling approach for IEC 61499 DSML to express control
software variants. V4rdiac also provides tooling that enacts con-
figuration options from the variability models to support stepwise
product configuration. CPPS engineers can automatically generate
(parts of) the control software based on a set of selected configura-
tion options and the delta models.

In this paper, we describe our experiences of using V4rdiac for
managing industrial CPPS control software variants. Specifically,
we describe a scenario from one CPPS that motivates using the
V4rdiac approach. We also present the V4rdiac tool architecture
and the process activities to use it in CPPS engineering process.
Then, we describe how V4rdiac provides benefits that can address
different challenges of managing CPPS variability. Additionally, we
describe the lessons learned and further challenges captured from
industrial practitioners using V4rdiac in this domain.

Due to non-disclosure agreements, we cannot reveal details about
our industry partner. However, we show real examples from their
CPPS throughout this paper and discuss engineers’ feedback. Our
aim is also to make our work better generalizable and applicable to
other CPPSs. Thus, we selected examples that we expect to also be
relevant in other domains. For example, control software in many
CPPSs will have to deal with the variability of valves, pumps, and
tanks (cf. Section 2).

The remainder of this paper is structured as follows. In Section 2,
we motivate our work with a concrete CPPS scenario. We then
describe the V4rdiac approach in Section 3. In Section 4, we describe
benefits and lessons learned based on experiences of using V4rdiac
for a concrete CPPS in the industrial context. We discuss related
work in Section 5 and conclude our paper in Section 6.

2 CHALLENGES OF MANAGING CPPS
VARIABILITY IN INDUSTRY

We use the example of a metallurgical production plant to illustrate
the challenges of managing CPPS variability and our approach to
address these challenges. A metallurgical production plant aims
to produce a steel product (e.g., steel coils or slabs) with a desired
thickness and/or one or more mechanical properties. Such a plant
comprises various highly complex machinery such as casting ma-
chines, hot rolling mills, and cold rolling mills. These machines typ-
ically have different hardware components, such as Valves, Pumps,
Fluid Tanks, or Roll Gap Controls. To build such a system, the cus-
tomer and the business department first discuss the requirements
of such a plant and later create a Bill of Material (BOM) written
in textual documents (e.g., spreadsheets and/or word documents).
Based on these requirements, engineers from multiple disciplines
(e.g., signal, metallurgical, electrical, and process) define the overall
production strategy. These engineers typically use artifacts such as

1https://www.eclipse.org/4diac/
2https://featureide.github.io/

CAD drawings, P&I diagrams, and/or DTS to describe their engi-
neering knowledge. Control software engineers use such artifacts
as input to develop the control software of a plant.

The components’ properties in each machine vary depending on
customer and technical requirements (cf. Fig. 1). For example, the
engineers’ decision to use a Proportional, Servo, or Solenoid
valve influences energy efficiency and the overall project cost of the
metallurgical production plant. Engineers can also decide which
Measurement type is used in the valve component. Also, the engi-
neers can decide which Type of pump is used for each machine in
the plant. A Circulation pump is used to circulate residual fluid
after being used in the machine while a Pressure pump is used to
circulate fluid from the tank component. Additionally, engineers
can decide whether a pump is used as a Main or backup (Emergency)
pump. Engineers require different granularities of Level measure-
ment inside tank components depending on the fluid’s importance
in the metallurgical process. Engineers must also decide whether
to keep certain liquids warm or hot inside the tank component
by using HeatingDevices. To ensure the steel product matches
certain metallurgical characteristics, the engineers must decide the
type of Instrumentation used in roll gap control component. A
roll gap control can also be designed to be fully automatic (Auto)
and/or have an interface to control it (Manual). Furthermore, there
can be multiple instances of components in each machine. A casting
machine can have two pressure pumps and one circulation pump
while a hot-rolling mill machine might have two circulation pumps.
Decisions about the number of components and their properties
later influence which sensors, actuators, electrical components, and
signals can be used in the machines.

In our research, we are currently focusing on providing variabil-
ity support for control software implemented using a DSML defined
in IEC 61499 [18]. IEC 61499-based control software is defined by
creating a network of interconnected Function Blocks (FBs) of cer-
tain types. FB types and instances could be compared to classes and
objects in an object-oriented programming language such as Java.
Each FB type encapsulates an algorithm and provides an event and
data communication interface. Types can be stored in a type library,
thus creating a collection of reusable software components. The
standard also defines additional concepts such as subapplication
and adapter to improve the modularity and reusability of the FB
types and its instances [40].

The development of control software with IEC 61499 can be chal-
lenging. First, there is no explicit mechanism to represent system
variability. Decisions regarding variability in each software develop-
ment stage (requirements, design, and implementation) are mostly
based on implicit knowledge of the engineers and information from
documents and spreadsheets. This leads to a high dependence on
experts (with several years of experience) in project development.
On the other hand, the lack of explicit models also prevents the
formalization of dependencies between disciplines that would allow
change impact analysis (e.g., assessing the effects of changing a
valve model on the software). Employing change impact analysis is
especially important after the deployment phase and in commis-
sioning because machine downtime costs are high. Finally, the size
and complexity of control software are also challenging. Although
certain aspects of software generation have been automated, they
still depend on manual actions such as integrating new components

https://www.eclipse.org/4diac/
https://featureide.github.io/

Managing Cyber-Physical Production Systems Variability using V4rdiac: Industrial Experiences SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

(a) Valve Variability (b) Pump Variability

(c) Tank Variability (e) Roll Gap Control Variability

Figure 1: (Partial) Variability models of typical components of a CPPS, illustrated using FeatureIDE feature model [23].

or manually adapting certain parameters. Industrial-scale control
software can have ten up to a hundred thousand interconnected
FB instances. Following a clone-and-own approach for creating
variants for customers thus quickly becomes infeasible. Thus, the
industry comes up with custom-developed approaches to manage
variability, e.g., by defining configuration parameters allowing to re-
move or deactivate parts of the software. Nevertheless, development
and maintenance remain challenging and thus further motivate a
more systematic approach to variability management in CPPS.

3 V4RDIAC
We use our existing multidisciplinary variability management ap-
proach V4rdiac [6, 7] to address the described challenges.

3.1 Process Activities
Using V4rdiac, engineers can use any type of variability model
to describe the variability in their domain. Engineers can later
define cross-discipline constraints using propositional logic for
specifying include/exclude relations between variation points from
multiple variability models. V4rdiac uses delta modeling [33] as
a mechanism to define variability in the control software. The
delta models describe changes from an existing application model
(e.g., adding or removing FBs) according to one or more variation
points. V4rdiac also supports a stepwise product configuration
process, i.e., the engineer can define one or more configuration
steps where each step shows the configuration options defined in
one variability model. After the product configuration is finished,

V4rdiac generates the control software that reflects the selected
configuration options.

Fig. 2 illustrates the process activities to perform domain en-
gineering using V4rdiac and the stakeholders involved in each
of them. The first activity is to (1) define multidisciplinary CPPS
variability to formalize engineers’ knowledge into one or more
variability models. In this activity, each organizational unit or engi-
neering discipline can use its engineering artifacts and technical
documents as a source of variability knowledge within their do-
main. We allow them to define the variability in a variability model
of their choice. For example, hierarchical variability in mechanical
engineering might be described using a feature model while behav-
ioral variability in process engineering might better be described
using a decision model [24].

In the second activity, engineers (2) define the stepwise configura-
tion, i.e., define a sequence of steps and which variability model is
configured in each step. The purpose of the stepwise configuration
is to provide a flexible configuration that adapts to the state of
practice. For instance, the engineers may define a stepwise configu-
ration to configure variability models from different engineering
disciplines (process, electrical, etc.) according to their daily engi-
neering procedure. We encourage only one variability model to
be configured per step, although V4rdiac would allow configuring
multiple variability models per step. Additionally, the users can
create multiple stepwise configuration setups in V4rdiac to describe
different ways to perform stepwise configuration.

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Fadhlillah, et al.

Figure 2: Domain Engineering process activities for expressing CPPS variability using V4rdiac, extended from [7].

In the third activity, engineers must (3) define cross-discipline
constraints to formalize include/exclude relations between varia-
tion points from different organizational units and engineering
disciplines. Some additional variability can arise in the second and
third activities based on the discussions between all organization
units and engineering disciplines. Engineers can still incorporate
new variability into their variability models while defining the
configuration steps and cross-discipline constraints.

In the fourth activity, the control software engineers (4) define
the core control software, which shall be used as a basis. Then, they
(5) define control software variability using delta models that reflect
the changes to adjust this core control software according to the
variation points from the variability models. In the last activity,
engineers (6) define a mapping between the variation points and the
delta models (delta configuration).

Based on these artifacts, engineers can perform the application
engineering using the V4rdiac product configuration tool. Users
first need to select the stepwise configuration setup that will be
used when performing product configuration (cf. Fig. 6). After the
product configuration process is finished, the tool can automatically
generate a control software variant based on the user’s selection of
configuration options defining which changes (specified in delta
model) to execute.

3.2 V4rdiac Architecture
V4rdiac has diverse components (cf. Fig 3) to support the process
activities in both domain and application engineering.

In domain engineering, V4rdiac mainly uses a Standardized
Models Provider, a Cross-Discipline Constraints Reader, a Multi-Level
Configuration Provider, and an IEC 61499 Delta Modeling component.
V4rdiac uses the Standardized Models Provider to load all variability
models for further usage. These variability models are first trans-
formed into a single standardized representation by utilizing the
variability model transformation framework TRAVART [11]. We
currently use FeatureIDE feature models [23] as our standardized
representation. Currently, the standardized representation is hid-
den from the user and used for creating cross-discipline constraints
and enacting configuration options. Then, the Cross-Discipline Con-
straints Reader component loads all the cross-discipline constraints
written by the users into V4rdiac. Later, these constraints are used
by Multi-Level Configuration Propagator to validate the selected
configuration options. The Multi-Level Configuration Provider com-
ponent provides a wizard to create the stepwise configuration setup.
Specifically, in this wizard, the user can define all the product config-
uration steps and assign variability models into these configuration
steps. Furthermore, the IEC 61499 Delta Modeling component pro-
vides the infrastructure to support users when creating delta models
and delta configuration files. Currently, we provide a textual lan-
guage to create delta models in V4rdiac [8]. This component mainly
utilizes several components from Eclipse 4diac. Specifically, we use
Eclipse 4diac IDE and its default Type Library, which contains all
the necessary functionalities to develop IEC 61499-based control
software. Control software engineers are allowed to add additional
FB types that are necessary when developing their CPPS control
software into the Type Library.

Managing Cyber-Physical Production Systems Variability using V4rdiac: Industrial Experiences SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

Figure 3: V4rdiac Architecture.

During application engineering, V4rdiac uses a Multi-Level
Feature Configuration User Interface, a Multi-Level Configuration
Propagator, and the 4diac Generator component. The Multi-Level
Configuration Propagator component works: (1) as a “global valida-
tor”, i.e., it validates the selected configuration options according to
all the variability models as well as the cross-discipline constraints
loaded by the Cross-Discipline Constraints Reader and (2) as a local
validator, i.e., it validates the selected configuration options accord-
ing to the variability models configured in a particular step. This
component also provides a functionality to automatically select one
or more configuration options according to the local and global val-
idator. As a result, users are guided to select feasible configuration
options that are valid for both validators. To deliver these func-
tionalities, the Multi-Level Configuration Propagator component
extends the FeatureIDE Configuration Propagator component [23]
and SAT4j 3 to deliver all its functionality. The Multi-Level Feature
Configuration User Interface presents configuration options in a
stepwise manner according to the stepwise configuration setup.
We extended FeatureIDE’s Feature Configuration Interface compo-
nent [23] for this purpose. Furthermore, we also use the Config-
uration Reasoner embedded in the Feature Configuration Interface
to provide a textual description why one or more configuration
options are automatically selected. Users can only access a new
step if the selected options are valid according to the local valida-
tor. Additionally, users can only finish the product configuration if
the global validator confirms validity. After the product configura-
tion is finished, V4rdiac invokes the 4diac Generator component to
generate the control software variant.

4 USING V4RDIAC TO MANAGE CPPS
VARIABILITY IN INDUSTRY

Together with engineers from our industry partner, we conducted
several workshops and proof of concept studies to manage control
software variability in their industrial CPPS using V4rdiac [6, 7].
Based on this, we describe our experiences in terms of Benefits

3https://www.sat4j.org/

(B) and Lessons Learned (LL). Each benefit describe a positive
aspect experienced by our industry partner when using V4rdiac in
their engineering process. On the other hand, each lesson learned
describes a necessary improvement for V4rdiac to further increase
its usability in the CPPS engineering process. In each subsection,
we explain the benefits and lessons learned related to domain engi-
neering process activities (cf. Fig 2) and product configuration to
derive control software variants.

4.1 Define Multidisciplinary CPPS Variability
We used two approaches to capture the overall metallurgical pro-
duction plant variability. First, we conducted multiple workshops
with engineers to gather the plant’s variability. We created initial
variability models based on these workshops and by analyzing
engineering artifacts provided to us by the engineers. Also, we
manually reviewed control software together with engineers. We
allowed engineers to refine the initial variability models and dis-
cussed the feedback on the models in multiple workshops. We could
successfully define variability models for several components in
a metallurgical production plant (cf. Fig 1). As a further example,
Fig. 4 depicts the motor control variability, which acts as an inter-
face between hardware and control software. Additionally, a motor
control can also include an optional temperature sensor to guar-
antee its operation depending on the temperature and an operator
panel to configure operation in runtime.

B1 - Reaffirm engineers’ variability knowledge. Current
documents to describe the systems (CAD, spreadsheets, etc.) do
not or only partially describe the systems’ variants. Configuration
decisions about the system are made based on expert knowledge
and certain documents (e.g., specification documents). It is thus hard
to assess the impacts of changes. Formalizing the variability using
V4rdiac facilitates a direct understanding of the existing variants
for each part of the system (e.g., a motor) and also considers the
relationships between elements of the same part (e.g., a motor with
a specific hardware and the possible controller devices for that
hardware).

https://www.sat4j.org/

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Fadhlillah, et al.

Figure 4: Motor control variability, illustrated using a Fea-
tureIDE feature model [23].

Furthermore, creating variability models allows engineers to
confirm their understanding of the variability in their engineer-
ing discipline. During one of the workshops, we created an initial
feature model that represents the overall variability of a certain
machine based on the BOM document. Following the BOM docu-
ment, we define that a machine can only have 1-6 Pressure and
1-3 Circulation pumps. However, in practice, the engineers com-
mented that only up to 4 Pressure and 2 Circulation pumps are
possible. Thus, the BOM document could be refined in addition to
now having a formal document describing the variability of the
machine.

LL1 - Variability modeling requires experience. In the first
workshops, we introduced feature modeling and showed engineers
how to describe variability using a feature model. In addition, we
showed the expressiveness of the feature model and the configura-
tion support provided based on feature models. However, engineers
instinctively treated the variability model as a software configurator
for each software variant rather than capturing the overall systems’
variability. For instance, they created one variability model for each
control software variant to describe its parameters. To address such
issues, we performed multiple workshops to refine the variability
models created by the engineers. We conclude that variability mod-
eling requires some experience and approaches must provide clear
guidelines [22], e.g., on creating variability models.

4.2 Define Stepwise Configuration and
Cross-Discipline Constraints

After creating the variability models, we interviewed several senior
CPPS engineers about the plant’s overall variability. We demon-
strated how to create the stepwise product configuration setup us-
ing V4rdiac. In this demonstration, we use a configuration wizard
provided by V4rdiac to define the configuration steps. For instance,
the engineers used the configuration wizard to define the tank to be
configured in the first step followed by pump, valve, roll gap control,
Human-Machine Interface (HMI), and motor control as illustrated
in Fig. 5. Additionally, we asked them about include/exclude rela-
tions between variation points from different variability models
and documented these relations in a cross-discipline constraints
file (cf. Listing 1). We simulated how configuration options can be
shown step-by-step according to the stepwise product configura-
tion setup and the cross-discipline constraint file. Then, we asked

Figure 5: Defining Stepwise Configuration Steps in V4rdiac.

the engineers for feedback about adopting the stepwise product
configuration as a common design practice.

B2 - Detecting inconsistencies between components. De-
cisions in one component can directly affect other components.
For instance, it is necessary to equip a display monitor in a mo-
tor control (by selecting WithDisplay feature) if Full and Medium
measurement levels are required for monitoring liquid in the tank
during the machine operation (cf. CD4 in Listing 1). Such knowledge
is often communicated manually, e.g., through emails or meetings,
making synchronizing changes across disciplines or tracing deci-
sions difficult or at least harder to manage. Explicitly describing
such relations (as cross-discipline constraints) in a centralized place
allows all engineers to trace relations without or with less manual
communication.

CD1) Ro l lGapCon t ro l #Type#Auto => Valve #Overview #Type#
Servo ;

CD2) Va lve #Measurement # Temperature | | Tank#Measurement #
Temperature => MotorContro l # TemperatureModule ;

CD3) Tank# Hea t ingDev i ce | | Pump#Type# C i r c u l a t i o n #
Cool ingSys tem => MotorContro l # Ope ra t o rPane l ;

CD4) Tank#Measurement # Leve l #Medium && Tank#Measurement #
Leve l # F u l l <=> MotorContro l # Ope ra t o rPane l #
WithDisp lay ;

Listing 1: Cross-discipline constraint example.

Formalizing relations between different components, potentially
from different engineering disciplines in CPPSs, also facilitates de-
tecting inconsistencies. For instance, a process engineer commented
that the Circulation valve could only be pairedwith Circulation
pump. This knowledge is derived based on the process engineer’s
experience from the ongoing development of several plants. How-
ever, senior engineers from electrical engineering described that
the Circulation valve could also be paired with Pressure pump
for some old plants. Based on this discussion, we could refine the
cross-discipline constraints.

Managing Cyber-Physical Production Systems Variability using V4rdiac: Industrial Experiences SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

Figure 6: Choosing a Stepwise Configuration Setup in
V4rdiac.

LL2 - Incremental configuration processes are more realis-
tic. We learned that configuring a CPPS cannot be done in a strictly
sequential manner. For instance, the configuration process could
start by selecting/deselecting some configuration options in the
Type subtree of pump, roll gap control, and valve components while
the rest remains unsolved. A process engineer then might configure
a subset of production processes related to these components. The
configuration process would then go back to resolve the remaining
pump, valve, roll gap control, and tank configuration options before
proceeding back to the process engineer or moving on to the next
configurations step.

In V4rdiac, the users can create multiple stepwise configuration
setups allowing them to select different variants (cf. Fig 6). However,
V4rdiac only allows its users to configure the next configuration
step if the local validator in the current step confirms validity. In
most cases, the engineers need to resolve all the configuration
options to complete the current step and proceed to the next con-
figuration step. Thus, V4rdiac can only partially support such an
incremental configuration process. Providing an additional mecha-
nism to mark some constraints as soft [21] could help to refine the
validation process and enable engineers to access all steps without
satisfying all local constraints.

LL3 - A rich semantic language is needed for defining
complex constraints. Constraints in industrial CPPSs can be-
come quite complex. For example, in the motor control (cf. Fig. 4),
the IOModule acts as a communication interface between the ma-
chine components and the control software. Each input and out-
put module within the IOModule provides a limited number of
input/output ports. Therefore, to ensure that we can connect all the
ports required by the machine components, an adequate number of
IOModules must be provided. Each component requires a different
number of Input ports, for instance: (1) Pressure measurement
of a valve requires 2 ports, (2) Level measurement of a tank needs
1-4 ports, depending on the selected granularity Level, and (3) the
Instrumentation of a roll gap control requires 2 ports for each
instrument. Additionally, each Input in the MotorControl also has
a different number of ports. The DI1 contains 4 ports while both
DI2 and DI3 only have 2 ports. Furthermore, one Input can only be
paired with one unique device from a component. For instance, we

can pair Pressure measurement with 2 ports from DI1 albeit leave
the other 2 ports unused. As a result, selecting different variation
points for each machine component influences the number of motor
controls required to build a metallurgical production plant. Finding
an optimal number of motor controls (cf. Listing 2) is necessary to
optimize the cost of building such metallurgical production plants.
Unfortunately, V4rdiac currently does not provide a mechanism to
express and evaluate such expressions. Providing a language such
as pvSCL [4, 29] instead or in addition to the simple propositional
logic constraints that V4rdiac currently supports could be a starting
point to address this issue.
LET a l l L e v e l F e a t = g e t S e l e c t e d F e a t u r e (L eve l)
LET g r a n u l a r L e v e l s = a l l L e v e l F e a t . f i l t e r (t h i s . c h i l d r e n s .

e v a l (i s O p t i o n a l ()) . count () > 1) . count ()
LET p r e s s u r e F e a t = g e t S e l e c t e d F e a t u r e (P r e s s u r e) . f i l t e r (

t h i s . r o o t == Valve)
LET forceMeasurement = g e t S e l e c t e d F e a t u r e (

ForceMeasurement)
LET t h i c k n e s s = g e t S e l e c t e d F e a t u r e (Th i cknes s)
LET motorCont ro l = g r a n u l a r L e v e l s
LET 2 Por t sReq = (a l l L e v e l F e a t . count () − g r a n u l a r L e v e l s) +

p r e s s u r e F e a t . count () + forceMeasurement . count () +
t h i c k n e s s . count ()

2 Por t sReq = 2 Por t sReq − g r a n u l a r L e v e l s ∗ 2
motorCont ro l = motorCont ro l + 2 Por t sReq / 3
RETURN motorCont ro l

Listing 2: Complex constraint example. Calculating the
optimal number of MotorControls given a set of selected
machine components.

4.3 Define Core Control Software and Delta
Models

In this activity, we did a series of workshops with a senior CPPS
engineer and a control software engineer. Both engineers have
knowledge of the relationship between variation points and a sub-
set of interconnected FBs. In the first interview, we asked these
engineers to provide a core control software of the valve compo-
nent (cf. Fig. 1). We discovered that the core control software of the
valve uses an architectural pattern, i.e., a 150% model [17] where all
variants are implemented (cf. Fig. 7). Consequently, our delta mod-
els then have to remove unnecessary FB instances or connections
based on unselected variation points (cf. Listing 3, which is applied
when Proportional is unselected when configuring a valve com-
ponent). On the other hand, the core control software for roll gap
control is a minimum variant containing a minimum set of features.
In this case, the delta models mainly add and modify the necessary
FB instances or connections to reflect the selected variation points.
We created the delta models after the first workshop. Then, we used
follow-up workshops to validate and refine our delta models. After
the delta models were completed, we asked the engineers for their
opinion on the delta models. The engineers stated some benefits of
using delta models to express control software variability. Addition-
ally, they are interested in experimenting more with delta modeling
since it enables them to automatically generate (part of) the plant’s
control software (cf. Subsection 4.5). However, the engineers also
expressed concerns that must be addressed before using the delta
modeling approach in their engineering process.

B3 - Delta models allow to discuss software architecture.
Engineers discovered that they could use delta models as a basis

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Fadhlillah, et al.

Figure 7: Core control software of a valve component. Colors
assigned to each FB indicate its purpose (Orange is manda-
tory, Light Blue is unique for Proportional, and Purple is
unique for Servo).

to discuss control software architecture. The number of changes
stored in a delta model increases if there are unnecessary FB in-
stances that are duplicated/cloned. These clones typically exist for
variants of a core control software representing a 150% model. To
introduce a variant of certain functionality, the engineers first copy
a subset of FB instances related to the original functionality. Then,
the engineers adjust the copied FB instances by connecting them
to new FB instances or removing existing FB instances. As a result,
some FB instances are completely the same yet exist multiple times
in the core control software. For instance, Fig. 7 shows that FBs
with type DIF and LIM are used in both the Proportional and
Servo valve. Each variant instantiates these FB types separately
and they are also wired differently. Thus, delta models for both
Proportional and Servo valves will contain the same operations
to remove FBs with type DIF and LIM. Engineers could investigate
how to use the same instance of FB type DIF and LIM for both
Proportional and Servo. Additionally, the number of delta mod-
els also increases if the changes related to a variation point are
scattered across different hierarchies. IEC 61499 provides a mecha-
nism to decompose an application model into multiple hierarchies.
In our approach, each delta model only modifies one hierarchy at a
time. As a result, having changes in multiple hierarchies will lead
to creating multiple delta models. In comparison, populating the
changes in one hierarchy requires creating only one delta model.

LL4 - Visualization support for delta models. After several
workshops, we learned that control software engineers found it
difficult to use a textual language when creating delta models. En-
gineers in practice mostly use a graphical DSML for developing the
control software. Thus, using a textual language particularly makes
it hard to see the relations between delta operations and function
blocks. Furthermore, the engineers are already accustomed to the
usability of a graphical editor. For instance, the engineers are unable
to see in the delta model text file where the new EvtMerger FB and
its connections will be added when the delta model in Listing 3 is
applied to the core control software. To address this challenge, we
plan to provide a visualization in V4rdiac which allows engineers
to see which FB instances or connections will be added or removed
by deltas and where.

LL5 - Tool support for creating delta models. Creating delta
models for real-world control software is error-prone and cumber-
some [37]. For instance, the engineer must identify a valid pair of
source and destination interfaces to define a connection. All these
interfaces must be manually typed in a textual representation (cf.
Listing 3). In comparison, users only need to drag a line from a
source to a destination interface in the 4diac IDE graphical editor.
Tool support to create delta models using a graphical editor could
significantly improve V4rdiac’s usability. Another feedback from
the control software engineers was to (semi-)automatically mine
the delta models by comparing multiple control software variants.
We have already started to address this feedback by implementing
a modification recording operation in 4diac IDE and investigating
different graph and model comparison algorithms [9].
d e l t a DRemoveProp ;
u se s Va lve . MainFunc . MachineAlg ;
{

<Remove> NetworkElement name=PropNCM ;
<Remove> NetworkElement name=PropCa lc ;
<Remove> NetworkElement name=PropDIF ;
<Remove> NetworkElement name=PropMERGE ;
<Remove> NetworkElement name=Prop_LIM ;
<Add> FB name=EvtMerger type=RT_E_REND ;
<Add> EventConnec t ion sou r c e =Comm_NSW. CNF

d e s t =EvtMerger . E1
<Add> EventConnec t ion sou r c e =ServoLIM . CNF

d e s t =EvtMerger . E2
}

Listing 3: IEC 61499 textual delta model example to derive a
Servo Valve from the Valve Core Control Software.

4.4 Delta Models and Variation Points Mapping
We performed this step together with the same engineers from
previous activities. At first, we demonstrated how to create the
mapping between delta models and variation points (cf. Listing 4).
After that, we gathered engineers’ feedback on the usability of
creating this mapping in V4rdiac.
p r o d u c t l i n e Me t a l l u r g i c a l P L ;
v a r i a t i o n s Valve #Overview #Type# Servo ,

Va lve #Overview #Type# P r opo r t i o n a l ,
Pump#Type# C i r c u l a t i o n # Cool ingSys tem ;

d e l t a DServo when Valve #Overview #Type# Servo ;
d e l t a DP ropo r t i ona l when Valve #Overview #Type# P r o p o r t i o n a l

;
d e l t a DPumpCoolingSystem a f t e r (DValveAssembly &&

DTankAssembly) | | (DPressure | | DC i r c u l a t i o n) when
Pump#Type# C i r c u l a t i o n # Cool ingSys tem ;

Listing 4: A delta configuration file example specifying
several application conditions.

LL6 - Visual support for creating the delta configuration.
The control software engineers commented that defining this map-
ping in V4rdiac is a cumbersome task and makes them reluctant to
adopt our approach for daily use. Currently, several delta models
are related to multiple variation points defined in variability mod-
els with complex relations. Furthermore, these complex relations
also exist when one or more delta models must be executed in
a certain order. For instance, in Listing 4, DPumpCoolingSystem
can be executed if one of the following conditions is satisfied:
(1) DValveAssembly and DTankAssembly have been executed, or

Managing Cyber-Physical Production Systems Variability using V4rdiac: Industrial Experiences SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

(2) DPressure or DCirculation have been executed. Additionally,
the engineers commented that it is difficult to trace the configu-
ration and delta modules using the current textual representation.
To address these issues, engineers asked us to provide a visualiza-
tion in which they can observe and create the mapping between
variation points in variability models and delta models.

4.5 Application Engineering
Most of our collaboration effort is currently allocated to domain
engineering (cf. Fig 2). We frequently perform interviews and work-
shops to create the variability models and the delta models for the
industrial CPPSs. However, this process prevents us from fully per-
forming the application engineering. Thus, so far, we have mainly
demonstrated how V4rdiac’s configurator can generate a part of the
control software based on already existing variability models and
delta models. After the demonstration, we captured the engineers’
feedback.

B4 - Configuring control software based on explicitly de-
fined rules/constraints. The engineers commented that having a
software configurator based on a variability model ensures their
configuration process is valid according to predefined rules/con-
straints. Currently, engineers perform the validation process man-
ually by looking at the engineering artifacts produced for each
variant. Thus, automating this process can guide the engineers to
minimize inconsistencies when selecting variation points from mul-
tiple components and disciplines. Fig. 8 depicts V4rdiac’s product
configuration interface, showing the step to configure the pump
component. The users can go to the next configuration step using
the Next button when the selected options are valid according to
the local validator (Local label displaying true). Furthermore, the
Finish button will be enabled when the selected options from all
the configuration steps are valid according to the global validator.
When the users click the Finish button, the 4diac Generator com-
ponent immediately generates a control software according to the
selected configuration options (cf. Fig. 3).

B5 - Automatically generating control software variants.
Having a software generator is beneficial for our industry partner to
speed up their development process. The engineers commented that
V4rdiac could at least assist them in providing an initial template
for developing control software. Since this initial template already
reflects the selected configuration options, the development effort
will be reduced. The engineers can focus more on fine-tuning the
generated control software in further development phases (e.g.,
commissioning). In practice, the fine-tuning process depends on
the project requirements and can range from changing parameters
in one or more FBs, to minor adjustments in the FB network, to
additional development.

LL7 - Positioning of function blocks is important.We learned
that the position of FB instances and connections in the network
affects control software engineers’ understanding of the control
software. When developing control software, control software engi-
neers apply a certain graphical pattern defining where they put the
FB instances in the network. For instance, the engineers put all FB
instances related to the Proportional valve in the same area (cf.
Fig 7). V4rdiac currently does not provide any mechanism to specify
a specific location where newly added FBs will be positioned in a

Figure 8: V4rdiac product configuration interface.

network. As a result, the engineers commented that they could not
easily see where the changes from the delta models are located, in-
creasing the complexity of verifying whether the generated variants
are valid. We thus added two solutions to address this particular
issue: (1) we now allow specifying a relative location in an <Add>
FB delta operation and (2) engineers can use a clustering algorithm
to group FB instances that are related in the same area. Our general
approach is to place newly added FB instances nearby existing FBs
in the core control software. Additionally, the placement of existing
FB instances must remain unchanged to ensure the pattern imposed
by the engineers still exists after the generation process.

LL8 - Generate control software variants based onmultiple
configuration files. This lesson also compliments LL2 regarding
the need for supporting incremental product configuration. In par-
ticular, we need to better separate the product configuration and
the control software generation processes. We will modify V4rdiac
to create a configuration file representing a set of selected options
whenever the product configuration process for each stepwise con-
figuration file has been finished. The users can then input all the
created configuration files to automatically generate a control soft-
ware variant for the entire system. By doing this, the engineers can
perform the incremental configuration process for each machine
component and store the result in a configuration file. After all
the machine components are configured, the engineers can invoke
the control software generation process to generate the control
software for the overall machine’s functionality.

5 RELATEDWORK
Several works have proposed describing industrial systems’ variabil-
ity using multiple variability models. Safdar et al. [32] developed a
conceptual framework that supports multi-step and multi-stage pro-
duction configuration for CPSs. This conceptual framework defined
a conceptual model where we can relate one or more variability
models with a base model and resolution models that form all the
necessary artifacts to build the CPS. Fang [10] proposed a multi-
view modeling approach for expressing the variability of industrial

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Fadhlillah, et al.

automation management systems. This approach uses a feature
model to extend the existing model commonly used for expressing
topological and process views. As a result, users can now express
variability within the topological and process model. Meixner et al.
[24, 25] extend the Product-Process-Resource (PPR) language also
to describe product, production process, and production resource
variability in the CPPS domain. Existing interdisciplinary product
line approaches propose using multiple feature models when de-
scribing the overall variability in the manufacturing [12, 20] and
industrial automation [30] domains.

Additionally, existing tools and approaches can express soft-
ware variability using multiple variability models. For instance,
pure::variants [4] is a commercial tool allowing users to create
multiple feature models to describe the overall system’s variability.
Clafer [2, 19] is a unified modeling language that unifies feature
and class modeling to describe structural and behavioral variabil-
ity. InVar [15] is a toolchain to integrate heterogeneous (types of)
variability models for expressing system variability.

In summary, all these works allow using one or more variability
models when expressing a system’s variability. Each variability
model represents a specific view, dimension, aspect, or engineering
discipline involved in the system’s development. However, no ap-
proach except InVar and our approach allows using different types
of variability models. Our V4rdiac approach specifically focuses on
CPPS variability. Each engineering discipline can use its preferred
variability model type. Compared to InVar [15], we use a different
mechanism to relate variability models. In InVar, each variability
model must have an Inter-Model Dependency Information (IMDI)
file for expressing the relation between different variability models.
V4rdiac relies on an existing variability transformation framework
TRAVART [11] to automatically transform different (types of) vari-
ability models. We use this framework to transform the different
(types of) variability models into a standardized representation.
The standardized representation is then used for defining cross-
discipline constraints and enacting configuration options. V4rdiac
can be extended to deal with custom variability representations by
relying on TRAVART.

Several variability realization mechanisms for model-based sys-
tems engineering have been applied in industry [34]. While clone-
and-own, parameterization, or custom-made mechanisms are still
widely used in industry to deal with variability [3, 13], adopting a
systematic variability mechanism for industrial control software
domain is still at the early phase. For instance, existing work uses a
feature model to describe variability within AutomationML [38] to
express variability within multiple engineering artifacts or models.
Another work [28] uses a feature model and augmented feature-to-
code mapping to express control software variants developed using
the IEC 61131-3 standard. Existing work also extended decision
modeling to be used in IEC 61499-based control software to config-
ure which FBs can exist inside the application model [14]. Further-
more, an approach that uses feature modeling and delta modeling
has also been proposed to express Matlab/Simulink-based control
software variability [17]. In comparison, our V4rdiac approach uses
delta modeling to express IEC 61499-based control software. We
also provide a mechanism to relate the delta models and variation

points from the variability models. This relation is later used to de-
rive IEC 61499-based control software given a set of configuration
options selected during V4rdiac product configuration.

6 CONCLUSION & FUTUREWORK
In this paper, we described our experiences of managing CPPS con-
trol software variability using V4rdiac approach. We performed
a series of workshops with engineers of our industry partner to
assess how V4rdiac can be used in industry. These workshops fo-
cused on performing domain engineering for expressing the overall
CPPS variability and the related control software variability us-
ing V4rdiac. We also demonstrated how V4rdiac could generate
(parts of) CPPS control software. We conclude that V4rdiac pro-
vides several benefits including improvement of CPPS engineering
knowledge, formalizing tacit variability knowledge, and a mecha-
nism to generate variants of control software. We also identified
several lessons learned, including the need for visualization support
and incremental product configuration. These lessons learned are
important for enhancing V4rdiac’s usability and further ease CPPS
engineering process.

In our future work, we will prioritize addressing the challenges
from our lessons learned. We will provide a mechanism to express
and evaluate more complex constraints between variation points
defined in multiple variability models. We will implement visual-
ization support for IEC 61499 delta modeling. Additionally, we will
improve the language and provide editor support for creating cross-
discipline constraints. We also plan to further improve the process
of variability elicitation for different CPPS engineers. To achieve
this, we investigate possible mechanisms to derive feature models
based on engineering artifacts automatically. In parallel, we are
investigating different graph-based and model-based comparison
algorithms to provide a (semi-)automatic delta model mining mech-
anism based on comparing multiple variants of IEC 61499-based
control software. Furthermore, we are also investigating product
line evolution mechanism to reflect changes made during commis-
sioning back to delta and variability models.

ACKNOWLEDGMENTS
The financial support by the Austrian Federal Ministry for Digi-
tal and Economic Affairs, the National Foundation for Research,
Technology and Development, and the Christian Doppler Research
Association is gratefully acknowledged. We explicitly want to thank
our industry partner for their continuous support. In writing this
paper, we used Grammarly and ChatGPT to correct and improve
the grammar of our writing. We have rephrased, corrected, and
extended this generated text.

REFERENCES
[1] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines - Concepts and Implementation. Springer.
[2] Kacper Bak, Zinovy Diskin, Michal Antkiewicz, Krzysztof Czarnecki, and Andrzej

Wasowski. 2016. Clafer: unifying class and feature modeling. Softw. Syst. Model.
15, 3 (2016), 811–845. https://doi.org/10.1007/s10270-014-0441-1

[3] Thorsten Berger, Jan Philipp Steghöfer, Tewfik Ziadi, Jacques Robin, and Jabier
Martinez. 2020. The state of adoption and the challenges of systematic variability
management in industry. Empirical Software Engineering 25, 3 (2020), 1755–1797.

[4] Danilo Beuche. 2019. Industrial Variant Management with Pure::Variants. In
Proceedings of the 23rd Int’l Systems and Software Product Line Conf. - Volume B

https://doi.org/10.1007/s10270-014-0441-1

Managing Cyber-Physical Production Systems Variability using V4rdiac: Industrial Experiences SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

(Paris, France) (SPLC ’19). Association for Computing Machinery, New York, NY,
USA, 37–39.

[5] Stefan Biffl, Detlef Gerhard, and Arndt Lüder. 2017. Introduction to the Multi-
Disciplinary Engineering for Cyber-Physical Production Systems. Springer Interna-
tional Publishing, Cham, 1–24.

[6] Hafiyyan Sayyid Fadhlillah, Kevin Feichtinger, Philipp Bauer, Elene Kutsia, and
Rick Rabiser. 2022. V4rdiac: Tooling for Multidisciplinary Delta-Oriented Vari-
ability Management in Cyber-Physical Production Systems. In Proceedings of the
26th ACM International Systems and Software Product Line Conference - Volume B
(Graz, Austria) (SPLC ’22). Association for Computing Machinery, New York, NY,
USA, 34–37.

[7] Hafiyyan Sayyid Fadhlillah, Kevin Feichtinger, Kristof Meixner, Lisa Sonnleithner,
Rick Rabiser, and Alois Zoitl. 2022. Towards Multidisciplinary Delta-Oriented
Variability Management in Cyber-Physical Production Systems. In Proceedings of
the 16th International Working Conference on Variability Modelling of Software-
Intensive Systems (Florence, Italy) (VaMoS ’22). Association for Computing Ma-
chinery, New York, NY, USA, Article 13, 10 pages.

[8] Hafiyyan Sayyid Fadhlillah, Shubham Sharma, Antonio Manuel Gutiérrez Fernán-
dez, Rick Rabiser, and Alois Zoitl. 2023. Delta Modeling in IEC 61499: Expressing
Control Software Variability in Cyber-Physical Production Systems. In 28th IEEE
International Conference on Emerging Technologies and Factory Automation, ETFA
2023, Sinaia, Romania, September 12-15, 2023. IEEE.

[9] Hafiyyan Sayyid Fadhlillah, Shubham Sharma, Rick Rabiser, and Alois Zoitl.
2022. Supporting Variability Management in Cyber-Physical Production Sys-
tems: Towards Semi-Automatic Delta Model Mining for IEC 61499. In 27th
IEEE International Conference on Emerging Technologies and Factory Automa-
tion, ETFA 2022, Stuttgart, Germany, September 6-9, 2022. IEEE, 1–4. https:
//doi.org/10.1109/ETFA52439.2022.9921660

[10] Miao Fang. 2019. Model-Based Software Derivation for Industrial Automation
Management Systems. Ph. D. Dissertation. Technische Universität Kaiserslautern.

[11] Kevin Feichtinger, Johann Stöbich, Dario Romano, and Rick Rabiser. 2021.
TRAVART: An Approach for Transforming Variability Models. In 15th Int’l Work-
ing Conf. on Variability Modelling of Software-Intensive Systems (Krems, Austria)
(VaMoS’21). ACM, New York, NY, USA, 8:1–8:10.

[12] Stefan Feldmann, Christoph Legat, and Birgit Vogel-Heuser. 2015. Engineering
support in the machine manufacturing domain through interdisciplinary product
lines: An applicability analysis. IFAC-PapersOnLine 48, 3 (2015), 211–218.

[13] Juliane Fischer, Safa Bougouffa, Alexander Schlie, Ina Schaefer, and Birgit Vogel-
Heuser. 2018. A Qualitative Study of Variability Management of Control Software
for Industrial Automation Systems. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 615–624. https://doi.org/10.1109/
ICSME.2018.00071

[14] Roman Froschauer, Alois Zoitl, and Paul Grünbacher. 2009. Development and
adaptation of IEC 61499 automation and control applications with runtime vari-
ability models. In Proc. of the 2009 IEEE Int’l Conf. on Industrial Informatics. IEEE,
905–910.

[15] José A. Galindo, Deepak Dhungana, Rick Rabiser, David Benavides, Goetz Botter-
weck, and Paul Grünbacher. 2015. Supporting distributed product configuration
by integrating heterogeneous variability modeling approaches. Information and
Software Technology 62, 1 (2015), 78–100.

[16] Volkan Gunes, Steffen Peter, Tony Givargis, and Frank Vahid and. 2014. A Survey
on Concepts, Applications, and Challenges in Cyber-Physical Systems. KSII
Transactions on Internet and Information Systems 8, 12 (December 2014), 4242–
4268. https://doi.org/10.3837/tiis.2014.12.001

[17] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bern-
hard Rumpe, and Ina Schaefer. 2013. First-Class Variability Modeling in Mat-
lab/Simulink. In Proceedings of the 7th International Workshop on Variability
Modelling of Software-Intensive Systems (Pisa, Italy) (VaMoS ’13). Association for
Computing Machinery, New York, NY, USA, Article 4, 8 pages.

[18] International Electrotechnical Commission (IEC), TC65/WG6. 2012. IEC 61499-1,
Function Blocks - part 1: Architecture: Edition 2.0.

[19] Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michal Antkiewicz,
Krzysztof Czarnecki, and Andrzej Wasowski. 2018. Clafer: Lightweight Mod-
eling of Structure, Behaviour, and Variability. CoRR abs/1807.08576 (2018).
arXiv:1807.08576 http://arxiv.org/abs/1807.08576

[20] Matthias Kowal, Sofia Ananieva, Thomas Thüm, and Ina Schaefer. 2017. Support-
ing the Development of Interdisciplinary Product Lines in the Manufacturing
Domain. IFAC-PapersOnLine 50, 1 (2017), 4336–4341.

[21] Sami Lazreg, Vladyslav Bohlachov, Loveneesh Rana, Andreas Hein, and Maxime
Cordy. 2022. Variability-Aware Design of Space Systems: Variability Modelling,
Configuration Workflow and Research Directions. In Proceedings of the 16th
International Working Conference on Variability Modelling of Software-Intensive
Systems (Florence, Italy) (VaMoS ’22). Association for Computing Machinery, New
York, NY, USA, Article 4, 10 pages.

[22] Kwanwoo Lee, Kyo Chul Kang, and Jaejoon Lee. 2002. Concepts and Guidelines
of Feature Modeling for Product Line Software Engineering. In Software Reuse:
Methods, Techniques, and Tools, 7th International Conference, ICSR-7, Austin, TX,
USA, April 15-19, 2002, Proceedings (Lecture Notes in Computer Science, Vol. 2319),
Cristina Gacek (Ed.). Springer, 62–77.

[23] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

[24] Kristof Meixner, Kevin Feichtinger, Rick Rabiser, and Stefan Biffl. 2022. Efficient
Production Process Variability Exploration. In Proceedings of the 16th Interna-
tional Working Conference on Variability Modelling of Software-Intensive Systems
(Florence, Italy) (VaMoS ’22). Association for Computing Machinery, New York,
NY, USA, Article 14, 9 pages.

[25] Kristof Meixner, Rick Rabiser, and Stefan Biffl. 2019. Towards modeling variabil-
ity of products, processes and resources in cyber-physical production systems
engineering. In Proceedings of the 23rd International Systems and Software Product
Line Conference-Volume B. ACM, 49–56.

[26] László Monostori. 2014. Cyber-physical Production Systems: Roots, Expectations
and R&D Challenges. Procedia CIRP 17 (2014), 9–13. Variety Management in
Manufacturing.

[27] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. 2005. Software product line
engineering: foundations, principles and techniques. Springer Science & Business
Media.

[28] Herbert Prähofer, Daniela Rabiser, Florian Angerer, Paul Grünbacher, and Pe-
ter Feichtinger. 2016. Feature-oriented development in industrial automation
software ecosystems: Development scenarios and tool support. In 2016 IEEE 14th
Int’l Conf. on Industrial Informatics (INDIN). IEEE, 1218–1223.

[29] pure-systems GmbH. 2022. pure::variants User’s Guide Version 5.0.10.685. Online
Document. https://www.pure-systems.com/fileadmin/downloads/pure-variants/
doc/pv-user-manual.pdf Last Access 2023-04-02.

[30] Daniela Rabiser, Herbert Prähofer, Paul Grünbacher, Michael Petruzelka, Klaus
Eder, Florian Angerer, Mario Kromoser, and Andreas Grimmer. 2018. Multi-
purpose, multi-level feature modeling of large-scale industrial software systems.
Software and Systems Modeling 17, 3 (2018), 913–938.

[31] Rick Rabiser and Alois Zoitl. 2021. Towards Mastering Variability in Software-
Intensive Cyber-Physical Production Systems. Procedia Computer Science 180
(2021), 50–59.

[32] Safdar Aqeel Safdar, Hong Lu, Tao Yue, Shaukat Ali, and Kunming Nie. 2021. A
framework for automated multi-stage and multi-step product configuration of
cyber-physical systems. 20, 1 (2021), 211–265.

[33] Ina Schaefer. 2010. Variability Modelling for Model-Driven Development of
Software Product Lines.. In Proc. of the 4th Int’l Workshop on Variability Modelling
of Software-Intensive Systems. ICB-Research Report 37, Universität Duisburg-
Essen 2010, 85–92.

[34] Andreas Schäfer, Martin Becker, Markus Andres, Tim Kistenfeger, and Florian
Rohlf. 2021. Variability Realization in Model-Based System Engineering Using
Software Product Line Techniques: An Industrial Perspective. In Proceedings of
the 25th ACM International Systems and Software Product Line Conference - Volume
A. Association for Computing Machinery, New York, NY, USA, 25–34.

[35] Daniel Stock, Daniel Schel, and Thomas Bauernhansl. 2019. Cyber-Physical
Production System Self-Description-Based Data Access Layer. In 2019 24th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA).
168–175.

[36] Michael Tiegelkamp and Karl-Heinz John. 2010. IEC 61131-3: Programming
industrial automation systems. Springer.

[37] Birgit Vogel-Heuser, Jakob Mund, Matthias Kowal, Christoph Legat, Jens Folmer,
Sabine Teufl, and Ina Schaefer. 2015. Towards interdisciplinary variability mod-
eling for automated production systems: Opportunities and challenges when
applying delta modeling: A case study. Proc. of the 2015 IEEE Int’l Conf. on
Industrial Informatics (2015), 322–328.

[38] Manuel Wimmer, Petr Novák, Radek Šindelár, Luca Berardinelli, Tanja May-
erhofer, and Alexandra Mazak. 2017. Cardinality-based variability modeling
with AutomationML. In 2017 22nd IEEE Int’l Conf. on Emerging Technologies and
Factory Automation (ETFA). IEEE, 1–4.

[39] Tao Yue, Shaukat Ali, and Bran Selic. 2015. Cyber-Physical System Product Line
Engineering: Comprehensive Domain Analysis and Experience Report. In Pro-
ceedings of the 19th International Conference on Software Product Line (Nashville,
Tennessee) (SPLC ’15). Association for Computing Machinery, New York, NY,
USA, 338–347.

[40] Alois Zoitl and Robert Lewis. 2014. Modelling control systems using IEC 61499.
2nd Edition. Institute of Electrical Engineers.

[41] Alois Zoitl, Thomas Strasser, and Antonio Valentini. 2010. Open source initiatives
as basis for the establishment of new technologies in industrial automation:
4DIAC a case study. In 2010 IEEE Int’l Symp. on Industrial Electronics. IEEE, 3817–
3819.

https://doi.org/10.1109/ETFA52439.2022.9921660
https://doi.org/10.1109/ETFA52439.2022.9921660
https://doi.org/10.1109/ICSME.2018.00071
https://doi.org/10.1109/ICSME.2018.00071
https://doi.org/10.3837/tiis.2014.12.001
https://arxiv.org/abs/1807.08576
http://arxiv.org/abs/1807.08576
https://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf
https://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf

	Abstract
	1 Introduction
	2 Challenges of Managing CPPS Variability in Industry
	3 V4rdiac
	3.1 Process Activities
	3.2 V4rdiac Architecture

	4 Using V4rdiac to Manage CPPS Variability in Industry
	4.1 Define Multidisciplinary CPPS Variability
	4.2 Define Stepwise Configuration and Cross-Discipline Constraints
	4.3 Define Core Control Software and Delta Models
	4.4 Delta Models and Variation Points Mapping
	4.5 Application Engineering

	5 Related Work
	6 Conclusion & Future Work
	Acknowledgments
	References

