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ABSTRACT
The Universal Variability Language (UVL) is a community effort
towards a widely adopted textual specification for feature models.
For widespread usage, the language should be simple to under-
stand and easy to embed in existing tools. Also, many different use
cases should be covered, which requires an expressive language
design. To incorporate these clashing requirements in UVL, we
enrich the language with several optional extensions that add more
expressive language features. Furthermore, we provide conversion
strategies that translate between those language levels by replacing
the complex constructs with equivalent but simpler ones. With our
library, other tool developers can select their supported language
levels and automatically convert more complex language constructs.
Those constructs are then replaced with semantically equivalent
expressions that are supported by the tool.

CCS CONCEPTS
• Software and its engineering → Software product lines;
System modeling languages.
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1 INTRODUCTION
The Universal Variability Language (UVL) is textual notation for
variability models recently developed as community effort [16].
With UVL, the MODEVAR initiative [2] aims to achieve widespread
adoption for one language as the multitude of available formats
hinders exchange between tools.

With the variety of use cases in practice, different language fea-
tures are often demanded. For example, numerical constraints over
feature attributes (e.g., limiting the amount of power consumption)
are often considered in variability languages [1]. Still, some popular
formats, such as FeatureIDE xml [12], do not provide support for
numerical constraints.

We extend UVL with optional language levels to enable a tailored
language specification depending on the use case. In particular, we
provide a first concrete realization of earlier suggestions on lan-
guage levels for feature models [17]. With the language levels, UVL
still has a simple core language but is able to cover more sophisti-
cated expressions. The language levels encapsulate constructs that
can be potentially analyzed with the same reasoning engine [17].
We envision that variability modeling tools can then select the sup-
ported language levels based on the underlying reasoning engine.
For instance, FeatureIDE uses a SAT solver (SAT4J [11]) as backend
and, thus, should use the Boolean level of UVL. Clafer [10] uses
SMT [6] and, thus, could also use the Arithmetic language level.

To simplify exchange, we extend the notion of language lev-
els [17] by adding conversion strategies between those levels. Sim-
ple exchange of models between tools is vital for the usability [3].
Employing the language levels without further support vastly hin-
ders exchange as UVL models specified in more complex language
levels are not directly usable in tools that only support simpler lev-
els. A conversion strategy can be used to automatically transform
complex language levels in simpler constructs that are supported
by the tool of interest.

Our Java-based library UVLParser extends UVL with two new
(resulting in overall three) major language levels that each encap-
sulate related language features. In particular, the three major lev-
els contain (1) boolean expressions over features, (2) arithmetic
expressions over features and attributes, and (3) features with a
non-boolean type (e.g., integer features). Each major level consists
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of some core language features and small optional extensions (i.e.,
minor levels). UVLParser supports reading, writing, and automatic
conversion of language levels for UVL models. When embedding
the library, developers can simply specify the supported language
levels of their tool and the library automatically converts unsup-
ported levels. We provide a video showing the usage of our tool.1

2 UNIVERSAL VARIABILITY LANGUAGE
The Universal Variability Language (UVL) is a community effort
towards a unified textual format for variability models [2, 16]. List-
ing 1 shows a variability model describing a simplified PC in UVL
notation. Each UVL model describes the set of features as a tree
hierarchy. The core language supports the following parent-child
relationships: alternative, or, mandatory, and optional. In our run-
ning example, PC is the root feature with three mandatory children
RAM, CPU, and Power Unit, and one optional child Designated GPU.
In addition to the tree hierarchy, additional constraints in proposi-
tional logic can be specified. The following operators are supported:
& (and), | (or), => (imply), and <=> (iff). In our running example, a
Designated GPU requires the Large power unit to be selected.

Listing 1: UVL Example
features

PC
mandatory

RAM
or

"8GB"
"16GB"

CPU
"Power Unit"

alternative
Large
Small

optional
"Designated GPU"

constraints
"Designated GPU" => Large

Listing 2: UVL Imports
imports

submodel as s

features
PC

mandatory
s.RAM
CPU
"Power Unit"

alternative
Large
Small

optional
"Designated GPU"

constraints
"Designated GPU" => Large

UVL also comes with an import mechanism that can be used
to reference UVL models from other files. For instance, the RAM
subtree could be specified in a separate file. The submodel can then
be attached in the feature tree as seen in Listing 2.

The core level of UVL is simple and still expressive enough for
some popular feature-modeling tools, such as FeatureIDE [12]. Still,
some use cases are difficult to express. For instance, in our running
example, the need of selecting a large power unit probably depends
on power usage and not specifically a designated GPU. Hence, the
current constraint "Designated GPU"⇒ Large is rather tedious
to maintain. Adding more components with a high power usage
requires updating the constraint. In the following, we present the
extensionmechanism of UVL that addsmore sophisticated language
properties while still keeping a sparse and simple base language.

3 LANGUAGE LEVELS IN UVL
Different use cases typically induce varying requirements for vari-
ability languages. Just adding additional language features to UVL,
however, makes the integration into existing tools more complex.

1https://youtu.be/rah_z-uwWjU
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Figure 1: Language Levels in UVL

Each language feature would need to be handled by every tool inte-
grating UVL. To support the inclusion only a subset of the language
features, we propose a simple base language with optional exten-
sions. To add more sophisticated language features, UVL employs
optional language levels as suggested for variability languages in
previous work [17].

Figure 1 shows the three language levels of UVL. The language
levels group features by reasoning engines required to compute a
solution. We expect that a variability-modeling tool that includes a
SAT solver as backend can use all language features of the Boolean
level but not for the arithmetic level. Each major level consists of
a language core with some features and additional optional mi-
nor features. In the following, we present each of the three major
language levels and their minor language levels.

3.1 Boolean Level
The basic UVL language presented in section 2 is the core of the
Boolean level. As consequence, the core Boolean level consists of the
language features described above: group keywords (e.g., or) and
propositional cross-tree constraints. In addition, the Boolean level
contains a sublevel for group cardinality. Instead of a group-type,
the minimum and maximum number of features can be specified
with [min..max]. For instance, the or group specifying the type of
RAM modules could also be specified as [1..2].

3.2 Arithmetic Level
The arithmetic level introduces numeric constraints to UVL. Ex-
pressions with the following operators are supported: +, -, *, /,
==, >, and >=. These operators can be applied to create terms over
constants and to numerical feature attributes as variables. Hereby,
only terms resolving to Boolean are supported to be then used in
the propositional constraints.

The minor level feature cardinality enables selecting one feature
multiple times. Hereby, the same syntax as for group cardinalities
is used (i.e., a feature can be selected [min..max] times). In our
running example adapted for SMT (cf. Listing 3), between one and
four 8GB RAM modules can be included.

The second arithmetic minor level aggregate functions enables
the usage of the aggregate functions sum and avg. Both functions
require the name of a numeric feature attribute as input. The aggre-
gate functions then consider the attribute values with that name of
all selected features. In addition to the attribute name, the functions
can take a feature as second parameter. Then, only the feature and
its descendants are considered for the aggregation. In Listing 3, an
overall sum of required power larger than 120 requires the large
power unit.

https://youtu.be/rah_z-uwWjU
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Listing 3: SMT Language Level in UVL
features

PC
mandatory

RAM
or

"8GB" cardinality [1..4] {Power 5}
"16GB" {Power 8}

CPU {Power 100}
"Power Unit"

alternative
Large
Small

optional
"Designated GPU" {Power 50}

constraints
sum(Power) > 120 => Large

Listing 4: Type Language Level in UVL
features

PC
mandatory

RAM
or

"8GB" {Power 5}
"16GB" {Power 8}

Boolean CPU {Power 100, Manufacturer 'Intel'}
"Power Unit"

optional
String Manufacturer
Integer Watt

optional
"Designated GPU" {Power 50}

constraints
sum(Power) < Watt
CPU.Manufacturer ==Manufacturer

3.3 Type Level
The type level introduces new feature domains, namely real, inte-
ger, and string features. In the previous levels, features are always
boolean (i.e., can only be assigned true or false during configura-
tion). For, e.g., an integer feature, a user may select an arbitrary
integer as value. In the running example enriched with type level
features (Listing 4), an integer value can now be configured for
Watt. The aggregate functions (e.g., sum) can also be applied to
numerical features in addition to attributes. Furthermore, the man-
ufacturer can be configured with a string input. The domain of
Boolean features can be explicitly set but is otherwise considered
as default (e.g., CPU and RAM are both Boolean features).

The minor level String constraints introduces cross-tree con-
straints over string features and string constants. The following
operators are supported: len(<string>) and == equality. The len
function evaluates to a number and can be used in any arithmetic
expression supported in the arithmetic level.

3.4 Explicit Declaration of Levels
In general, UVLParser automatically detects the used language
levels. In some cases, it may make sense to actively chose supported
language levels and explicitly declare them as shown in Listing 5.
The include-keyword can be used to enable either just the core of

Listing 5: Include Mechanism in UVL
include

Boolean
Arithmetic.aggregate−functions
Type.∗

a major level (<major>), specific minor levels (<major>.<minor>),
and all minor levels (<major>.*). Note that the respective core level
for a minor level is always implicitly included. If modelers then
introduce a language feature that is part of an excluded level, they
get a warning. Otherwise, their change may not be supported by
the employed reasoning engine. By default (i.e., no includes are
specified), all language constructs are allowed.

4 CONVERSION STRATEGIES
With our notion of language levels, a major problem is still unsolved.
Exchanging variability models with differing language levels is
not possible without, possibly immense, overhead or information
loss [8]. For instance, models with SMT-level language features
cannot be directly used in a tool supporting the Boolean level.

To enable automated exchange, we thus employ conversion
strategies between the language levels. The idea is to replace unsup-
ported language features with syntactically different but semanti-
cally equivalent constructs. Using our parser, a tool can specify the
supported language levels and each construct beyond those levels
is converted. As lower language level constructs can always be used
in higher language levels, we limit the conversion strategies to one
direction for now. In some cases, the conversion of a language level
may result in an exponential blowup [4]. As fallback, users can
decide to drop the language constructs instead of converting them.

Naively implementing conversion strategies requires one con-
version from each level to each other level. To reduce the number of
required conversions but still be able to convert each level to lower
ones, we apply a transitive approach. The dashed arrows in Figure 1
indicate a one-direction conversation between two language levels.
Each major level requires a conversion to the next lower major
level (e.g., Arithmetic to Boolean). Minor levels need a conversion
to their respective core (e.g., String Constraints to Type core).

Table 1 gives a short overview on the different conversions em-
ployed. For instance, we convert group cardinalities by enumer-
ating the valid feature combinations in propositional cross-tree
constraints. Due to space restrictions, we refer to the repository for
further insights on the implementation of conversion strategies.2
With our conversion strategies, we translate language constructs
according to their semantics following the literature. However,
for feature cardinality, the interaction between a feature with a
cardinality or its children and cross-tree constraints is not always
clear [5, 14]. For UVL, we adopted the approach of creating repeated
subtrees for the cardinalities and repeat cross-tree constraints with
indexed features [5].

5 TOOL SUPPORT
Our tool UVLParser enriched with language levels and conver-
sion strategies is available as Java library.2 The library is realized

2https://github.com/Universal-Variability-Language/uvl-parser-java

https://github.com/Universal-Variability-Language/uvl-parser-java
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Table 1: Conversion Strategies

Level Target Level Conversion Strategy

Bo
ol
ea
n Core - -

Group Card. Boolean Core Enumerating constraints

A
rit
hm

et
ic Core Boolean Core Enumerating constraints

Feat. Card. Arithmetic Core Repeated subtrees for feature instances

Aggregates Arithmetic Core Expand (e.g., 𝑎1 + . . . + 𝑎𝑛 for sum)

Ty
pe Core Arithmetic Core Non-Boolean as feature attributes

String Const. Type Core Dropped

Listing 6: Library Usage in Java
// Read
UVLModelFactory uvlModelFactory = new UVLModelFactory();
FeatureModel featureModel = uvlModelFactory.parse(Files.readString("input.uvl"));

// Convert unsupported language levels
uvlModelFactory.convertExceptAcceptedLanguageLevels(featureModel,

↩→ supportedLanguageLevels);

// Write
Files.write(Paths.get("output.uvl"), featureModel);

as Maven project. Thus, the library can be embedded into other
projects based on Maven or exported as .jar. UVLParser is already
integrated in FeatureIDE [12] and TRAVART [7]. The parsing is
based on ANTLR [13]. Hence, a parser supporting the language
levels could also be generated for other target languages, such as
Python. Enabling the language levels and conversion strategies
would, however, require additional effort.

Usage for Variability Modeling Tools. The API of UVLParser can
be used to read and write UVL models and automatically apply
conversion strategies. Internally, a UVL model is stored as feature
model enriched with some semantic information to enable conver-
sions and simplify external usage. Listing 6 showcases the usage
of our library for (1) reading an UVL file, (2) converting unsup-
ported language levels, and (3) writing the updated model to a
new file. When integrating the parser library into a new tool, the
developer just needs to specify their supported language levels to
automatically convert UVL models.

6 RELATEDWORK AND TOOLS
UVL Parsers. In previous work, multiple research groups, includ-

ing authors of this work, implemented parsers based on Clojure [16]
and Python [9]. Both parsers do not support any language levels or
conversion strategies. For compatibility, UVLParser closely follows
the respective grammars of the existing parsers for core of UVL. In
recent work, we implemented a Rust-based language server proto-
col for UVL that also includes a parser.3 The supported syntax is
equivalent to the syntax of the parser presented here including the
language levels. However, conversion strategies are not supported.

Variability Languages. Several other variability languages have
been proposed and used in practice [1, 15]. ter Beek et al. [1] provide
an overview on structural properties of available textual variability
languages. While some other variability languages support the

3https://github.com/Universal-Variability-Language/uvl-lsp

language features UVL has, none of them comes with a notion of
language levels. Furthermore, none of the other languages supports
conversion strategies.

7 CONCLUSION AND FUTUREWORK
The Universal Variability Language is a community effort towards a
widely adopted textual format for specifying variability models. In
this work, we present an extension mechanism based on two main
components. Language levels facilitate a simple core language with
optional, more complex extensions. Conversion strategies vastly
simplify exchange between tools that supported different language
levels. In the future, we plan to further improve the conversion
strategies for better scalability in practice. Furthermore, we envision
to maintain a tight cooperation with the community to discuss and
realize other levels for UVL.
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