
22

Batching of Tasks by Users of Pseudonymous Forums:
Anonymity Compromise and Protection
ALEXANDER GOLDBERG, Carnegie Mellon University, USA

GIULIA FANTI, Carnegie Mellon University, USA

NIHAR B. SHAH, Carnegie Mellon University, USA

There are a number of forums where people participate under pseudonyms. One example is peer review, where

the identity of reviewers for any paper is confidential. When participating in these forums, people frequently

engage in “batching”: executing multiple related tasks (e.g., commenting on multiple papers) at nearly the

same time. Our empirical analysis shows that batching is common in two applications we consider – peer

review and Wikipedia edits. In this paper, we identify and address the risk of deanonymization arising from

linking batched tasks. To protect against linkage attacks, we take the approach of adding delay to the posting

time of batched tasks. We first show that under some natural assumptions, no delay mechanism can provide

a meaningful differential privacy guarantee. We therefore propose a “one-sided” formulation of differential

privacy for protecting against linkage attacks. We design a mechanism that adds zero-inflated uniform delay to

events and show it can preserve privacy. We prove that this noise distribution is in fact optimal in minimizing

expected delay among mechanisms adding independent noise to each event, thereby establishing the Pareto

frontier of the trade-off between the expected delay for batched and unbatched events. Finally, we conduct a

series of experiments on Wikipedia and Bitcoin data that corroborate the practical utility of our algorithm in

obfuscating batching without introducing onerous delay to a system.
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1 INTRODUCTION
In a number of applications where anonymity is critical, users act under pseudonyms to preserve

their privacy. For instance, in scientific peer review using online forums like OpenReview.net,

reviewers make comments on papers that are publicly viewable. Reviewers (and meta-reviewers)

who have been assigned multiple papers operate under different pseudonyms across their papers to

remain anonymous. Other examples of publicly visible tasks where users operate under pseudonyms

include Wikipedia editing and cryptocurrency transactions.
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In many settings, it is common for users to engage in batching— the completion of several similar

tasks at the same time. Batching occurs both due to natural bursts in activity (e.g., a person visits a

website and makes many comments at once) or as a productivity strategy used to streamline work.

Indeed, both academic studies [5, 24, 29] and popular media [25, 32, 33] recommend performing

tasks like responding to emails in batches in order to improve efficiency and reduce work-related

stress.

In peer-review forums such as computer science conferences, reviewers and meta-reviewers are

often assigned multiple papers. We find empirically that reviewers and meta-reviewers are highly

likely to batch their comments and/or reviews. Specifically, we analyze data from a top Computer

Science conference
1
with thousands of papers, reviewers, and discussion comments. We find that

when reviewers and meta-reviewers comment on multiple papers, they have a 30.10% chance of

batching their comments within 5 minutes of one other. In comparison, any randomly chosen pair

of reviewers and meta-reviewers had only a 0.66% chance of making comments on different papers

within 5 minutes of each other.

While batching is normal human behavior, it introduces a risk of deanonymization in peer-review

settings.
2
For example, in many open peer-review settings, comments are publicly posted. Further-

more, many conferences have policies that (meta-)reviewers for any paper know the identities of

other (meta-)reviewers on that paper. Now, when a (meta-)reviewer batches their comments, an

author may observe that two comments are generated at nearly the same time on their own paper

and on another paper. The author can then link the identity of this anonymous (meta-)reviewer on

their own paper to a (meta-)reviewer on the other paper. If the author knows the identity of the

(meta-)reviewers on the other paper—for instance, if the author is the meta-reviewer or another

reviewer for that paper—this can uncover the identity of the (meta-)reviewer of their own paper.

A back-of-the-envelope calculation based on our aforementioned measurements in peer review

suggests that if an author has a uniform prior over 10 possible (meta-)reviewers of their paper, then

after observing a comment posted on their own paper within 5 minutes of another comment from

one of these (meta-)reviewers on another paper, their posterior probability that this (meta-)reviewer

made the comment increases to
0.301

0.301+9(0.0066) = 83.51% as compared to the prior of 10%. Thus, the

linking of (meta-)reviewers across papers using batched comments can undermine the anonymity

of the peer review process.

Similar privacy risks due to batching arise in many systems where users generate publicly logged

events under pseudonyms. For instance:

• Inferring the identity of editors on Wikipedia articles.Wikipedia provides public edit histories of

articles. While edit history is public, Wikipedia users are known to maintain their anonymity

for a variety of important reasons, such as harassment or loss of reputation [14]. In order to

address these privacy concerns, Wikipedia’s terms of service explicitly allow for the use of a

pseudonymous alternate account [43]. However, as in the peer review example, batched timing of

article revisions can enable linkage of the second account to a known primary account. In practice,

the batching of edits is ubiquitous on Wikipedia; our analysis of publicly logged Wikipedia article

revisions shows that over 50% of all edits are made within 5 minutes of an edit from the same

user on a different article.

1
Name redacted for privacy.

2
This outcome is bad for a review system that needs a lot of interaction with the authors, but not for conferences where this

is not expected nor allowed, like AAAI and IJCAI. The conference we analyzed was not on OpenReview.net but on a different

conference management platform that does not make discussions public and has only a single-shot interaction between

reviewers and authors (via a "rebuttal"). It is of interest to see an analogous analysis on conferences on OpenReview.net, but

we do not have access to such data.
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• Clustering crypto-currency transactions on a public blockchain. In cryptocurrencies like Bitcoin,

users’ transaction histories are recorded on a public blockchain where a person can send or

receive currency to an associated public key, which acts as a pseudonym. Users can have multiple

addresses, each containing its own funds and identified by a different public key [4]. A transaction

can (and often does) draw funds from multiple input addresses, particularly if no single address

contains sufficient funds for a given transaction [2]. However, a common heuristic used in practice

is to link multiple input addresses to a single transaction to the same user [3, 31]. Hence, users

who wish to preserve their privacy can separate inputs from different addresses into different

transactions to obfuscate the linkage between transactions from the same person [3].
3
However,

if a user batches these transactions in time across addresses, an adversary may use this timing

(along with other signals) to still link together their multiple addresses. Linking pseudonyms

together is a common first step in a full deanonymization attack. For instance, attacks on Bitcoin

transactions begin by leveraging a user’s “idioms of use” to cluster together addresses likely

belonging to the same person [31]. The attacker then leverages a single known link to a real-world

identity to de-anonymize the entire cluster.

These scenarios motivate the need for defenses against timing-based linkage attacks that exploit

the batching of tasks. Strict constraints in our setting prevent existing privacy-preserving data

release methods from being applicable. A common component of existing privacy-preserving

systems is the introduction of fake events to obscure patterns among the real events. However,

in all three applications — peer review, Wikipedia, and cryptocurrency — generating fake events

is impractical or undesirable, as is withholding events indefinitely. In these settings, fake events

correspond to fake reviewer comments (peer review), fake article edits (Wikipedia), and fake

transactions (cryptocurrencies), all of which represent unacceptable overhead. Hence, our approach

is to design delay mechanisms that introduce random delays to the time at which events are posted

on the platform (without using dummy data).

Our contributions. In this work, we introduce the problem of anonymity compromise due to

batching of tasks in pseudonymous forums and propose defenses. Our primary contributions are:

• We identify the problem of deanonymization risk due to the batching of tasks by users of

pseudonymous online forums. By analyzing data from an actual peer-reviewed conference,

we demonstrate that a simple attack using the timing of comments on an online forum can

link anonymous (meta)-reviewer’s identities, increasing their certainty about a specific (meta)-

reviewer’s identity to 83% from a prior of 10%. In analysis of Wikipedia article revisions, we

show that batching of tasks on Wikipedia makes it possible to link editors across articles with an

accuracy of 85% based only on the timing of their revisions.

• We formulate the problem of trading off privacy and delay in pseudonymous forums where

users engage in batching. We show that standard notions of differential privacy (DP) [10] cannot

be satisfied in our problem setting without introducing fake events or withholding events for

impractically long. Therefore, we consider a “one-sided” relaxation of traditional DP [23]. Our

formulation aims to prevent an adversary from inferring when batching happened, but allows an

adversary to learn that batching did not happen.

• We propose a general framework for designing mechanisms that guarantee one-sided DP by

adding independent random delay to batched and unbatched comments. We instantiate this

frameworkwith a number of different distributions and guarantee privacy. Notably, it is possible to

guarantee privacy with non-negative versions of typical distributions used for differential privacy

like the Laplace distribution and the Staircase distribution. It is also possible to guarantee privacy

3
There exist other cryptographic solutions (e.g., CoinJoin) that leak more information in exchange for cost benefits compared

to generating multiple transactions [30].
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at any setting of the privacy parameters by adding delay drawn from a uniform distribution with

inflated probability mass at 0, which we call the Zero-Inflated Uniform Mechanism.

• We establish the optimality of our Zero-Inflated Uniform Mechanism among mechanisms that

add independent noise to each comment. We give a full characterization of the Pareto frontier

of the expected delay added to batched and unbatched events by any mechanism that adds

independent non-negative noise to comments, at any setting of privacy parameters, and show

that our proposedmechanism achieves this frontier.While the uniform distribution is not typically

used in the design of two-sided DP algorithms, our results show that for one-sided DP when

only non-negative noise can be added (as is the case for streaming timing data) the Zero-Inflated

Uniform Mechanism can optimally trade off privacy for utility.

• We conduct a series of experiments simulating linkage attacks exploiting batched of tasks on

Wikipedia article revision data and Bitcoin transaction data. These experiments reveal the

applicability of our methods in preserving privacy without exceedingly large delays.

All of our code is available online at https://github.com/akgoldberg/batching-privacy.

2 RELATEDWORK
There is a substantial body of work on anonymity when sending packets over a network (surveyed

in [12]). Specifically, prior work has described deanonymization attacks which leverage correlated

timing of packet arrivals. The work gives various defenses against such attacks [1, 17, 20, 27, 37–39].

Anonymous networking seeks to prevent an adversary from inferring the sender and recipient

of a given message. Packets are routed through a sequence of “mix nodes” to obscure the path

taken. The highly correlated arrival times of packets on the first mix node and the last mix node in

one path can enable inferences that a specific sender and recipient are communicating with one

another. Prior work [27, 37] demonstrates the practical viability of deanonymization attacks that

take advantage of batching in anonymous networks.

The defenses proposed in these papers rely on a combination of delaying packets and introducing

dummy packets or “cover traffic” to a network, obscuring any instance of batching amidst many

instances of spurious batching. In contrast, a critical constraint in the settings we consider is

the infeasibility of generating fake data as a means of preserving privacy. Therefore, our work

will consider mechanisms that are permitted only to delay batched arrivals in order to preserve

anonymity. As such, our approach adds more delay than approaches deployed in the anonymous

networking setting, but we require this higher latency since the introduction of fake data is

unacceptable in pseudonymous online forums.

Our work defines privacy based on a “one-sided” relaxation of the popular notion of differential

privacy [10]. The definition of one-sided DP was introduced in the paper [23] in a setting where

contributors of individual data-points to a database have different privacy constraints and hence

data-points can be classified as “sensitive” and “non-sensitive.” In our work, we argue that this

classification of sensitive and non-sensitive data-points is applicable to batched and unbatched

events. Interestingly, while the paper [23] shows that one-sided DP can improve utility compared

to standard two-sided DP, we find that in our problem setting, one-sided DP admits useful privacy-

preserving algorithms where two-sided DP does not admit any useful algorithms at all. We cannot

readily apply algorithms from the paper [23] due to the constraint that we publish all data. Therefore,

while they develop mechanisms that release a subset of non-sensitive data with no noise addition,

while withholding all sensitive data entirely, we consider mechanisms that add noise to both

sensitive and non-sensitive data-points and release all data-points.

Geng and Viswanath [16] address the question of optimal distributions for noise addition in

standard differential privacy. They show that in order to minimize the magnitude of noise added to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 22. Publication date: March 2023.
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a query with known sensitivity, noise should be drawn from a “staircase" distribution, which has a

probability density function that is roughly a piece-wise constant approximation of the Laplace

distribution. Our work can be seen as an analogous result in the one-sided DP regime. Specifically,

we prove that for the one-sided relaxation of differential privacy, adding staircase noise is no

longer optimal, but rather adding uniform noise with a possibly inflated probability of sampling 0

minimizes the magnitude of noise addition.

Our running application in this paper is that of peer review. A few previous papers have con-

sidered certain issues of privacy in peer review, but with very different objectives and methods.

The paper [7] considers the problem of miscalibration [13, 15, 35, 41] in peer review. They consider

privacy leakage when correcting for such miscalibration and provide methods (for a simplified

setting) to mitigate this leakage. The paper [8] provides privacy-preserving algorithms for re-

leasing some peer-review data to allow researchers at large to analyze and address problems like

subjectivity [26, 34] and miscalibration. The paper [19] considers the problem of coalition-based

fraud [18, 28, 40, 44] in peer review, and provides a randomized algorithm to assign reviewers to

papers to mitigate such fraud. They argue that such a randomized assignment algorithm has another

benefit: it can allow for release of the data that underlies the automated assignment algorithm

while still preserving some privacy about which paper was assigned to which reviewer. We refer

the reader to [36] for an overview of research on peer review.

3 PROBLEM FORMULATION
We now describe our problem formulation under the running example of peer-review.

Comment Arrivals.We call the event when a reviewer makes a comment on a paper a comment
arrival. Each comment arrival consists of 4 elements: the text of the comment, a timestamp 𝑡 when

the comment arrived, a paper 𝑝 to which it responds, and the reviewer 𝑟 who made the comment.

We assume that comments arrive in continuous time over an infinite time horizon, as this is the

most general setup, although our analysis extends to any finite time horizon (for example, in the

case where a conference has an end time after which comments can no longer be posted). We

consider settings where the comments are publicly observable.

Batching. In our initial model, we consider comments to be “batched” if they arrive simulta-

neously. Specifically, a set of 2 or more comment arrivals is batched if all comments come from

the same reviewer at the same time, and furthermore, the comments are all on different papers. In

Section 5.2 we discuss how to extend the model to allow for a short gap between batched comments.

Comment Posting Mechanism. A comment posting mechanismM receives comments as

they arrive and can choose to delay when they are posted, with the comments only becoming

publicly visible at the time they are posted. The mechanism receives a streaming set of comment

arrivals 𝐴 as input. It outputs a set of comments where each comment has identical content, paper,

and reviewer to a comment in the input but with a potentially delayed timestamp. We place the

following natural constraints on any valid comment posting mechanism:

(1) (Delay-Only) If a comment arrives at time 𝑡 it must be output at time 𝑡 or later.

(2) (No Fake Data) Any comment posted at time 𝑡 must have arrived at or before time 𝑡 .

(3) (Eventual Release of All Comments) For any comment, letting 𝑑 denote the potentially-random

delay introduced to the comment by the mechanism, it must be that lim

𝐷→∞
Pr[𝑑 ≤ 𝐷] = 1.

Privacy. Our goal is to protect against an adversary who is trying to infer whether a specific

pair of comment arrivals was batched. Following the widely-adopted framework of differential

privacy, we consider a strong adversary who knows exactly when all comments arrived, except for

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 22. Publication date: March 2023.



22:6 Alexander Goldberg, Giulia Fanti, and Nihar B. Shah

one pair of comments that either arrived in a batch or at separate times. The adversary knows the

exact inter-arrival time of the pair of comments if they arrive unbatched. In preserving privacy

against such a strong adversary, we also provide privacy guarantees for general classes of weaker

adversaries with less prior knowledge. For instance, in Section 5.1 we discuss an adversary who

knows the probability distribution of inter-arrival times when comments are unbatched, rather

than the exact inter-arrival time.

Ideally, we would like to provide a privacy guarantee with respect to the standard notion of

differential privacy (DP). Such a DP guarantee would promise difficulty of distinguishing whether

the mechanism was run on one of two neighboring inputs, where one input has an additional

batched pair of comments compared to its neighbor. Unfortunately, as we prove in Section 4.4,

it is impossible to guarantee standard 𝜖-DP in this setting. There are two main reasons for this

impossibility. First, consider defining neighboring inputs to a DP mechanism where a pair of

comments arrives simultaneously in one input when batched, but arbitrarily far apart when

unbatched in the neighboring input. Then, to satisfy a traditional DP guarantee, batched comments

must be delayed indefinitely to make these two inputs indistinguishable. Second, even with a

bounded change in arrival time for any comment on neighboring inputs, we show that if the

neighboring relation is symmetric (i.e., a pair of comments can be batched in one input and

unbatched in the other, and it doesn’t matter which input contains the batched comments), then to

satisfy 𝜖-DP the mechanism must delay a batched comment indefinitely.

In order to address the aforementioned roadblocks, we relax the definition of neighboring inputs

in two ways. First, we introduce a real-valued parameter 𝑔 > 0 into our formulation of neighbors

that bounds how far in time a batched comment can move in a neighboring input where it arrives

unbatched. Second, we define neighbors in a one-sided manner: a set of comment arrivals neighbors

another set only if it contains one additional pair of batched comments as compared to its neighbor.

In contrast, a set of comment arrivals does not neighbor another set if it contains one fewer pair of
batched comments than its potential neighbor. Formally, we define neighboring comment arrival

sets as follows:

Definition 3.1 (𝑔-Neighboring Comment Arrival Sets). A set of comment arrivals 𝐴 (𝐵) is 𝑔-
neighboring to set of comment arrivals 𝐴, if 𝐴 (𝐵) can be obtained from 𝐴 by batching together one

pair of comments that arrive separately in𝐴. The comments must arrive within𝑔 units of time of one

another in𝐴 and the later comment moves to the earlier comment in𝐴 (𝐵) to create a batch. Formally,

∃(𝑐, 𝑡, 𝑝, 𝑟 ), (𝑐′, 𝑡 ′, 𝑝′, 𝑟 ) ∈ 𝐴 such that 𝑝 ≠ 𝑝′, 0 < 𝑡 ′ − 𝑡 ≤ 𝑔 and 𝐴 (𝐵) = (𝐴 \ {𝑐′}) ∪ {(𝑐′, 𝑡, 𝑝′, 𝑟 )}.

Note that this definition of adjacency is asymmetric. As an example, consider the following pair

of comment arrival sets 𝐴 and 𝐴 (𝐵) :

𝐴 ={(𝑐1, 𝑡 = 1, 𝑝1, 𝑟1), (𝑐2, 𝑡 = 2, 𝑝1, 𝑟2), (𝑐3, 𝑡 = 3, 𝑝2, 𝑟1)(𝑐3, 𝑡 = 3, 𝑝2, 𝑟1)(𝑐3, 𝑡 = 3, 𝑝2, 𝑟1)}, and

𝐴 (𝐵) ={(𝑐1, 𝑡 = 1, 𝑝1, 𝑟1), (𝑐3, 𝑡 = 1, 𝑝2, 𝑟1)(𝑐3, 𝑡 = 1, 𝑝2, 𝑟1)(𝑐3, 𝑡 = 1, 𝑝2, 𝑟1), (𝑐2, 𝑡 = 2, 𝑝1, 𝑟2)}.

Then, under our definition above, 𝐴 (𝐵) is 2-neighboring to 𝐴 while 𝐴 is not 2-neighboring to 𝐴 (𝐵) .4

Now, we define privacy of a (randomized) mechanism using a notion similar to the definition

of one-sided differential privacy introduced in [23]. We note that apart from the one-sidedness of

neighbors, our privacy formulation differs substantially from that of [23] as we focus on inputs

4
The reader may have observed that the definition of neighboring comment arrival sets has a technical condition that a

batched comment moves later in time in a neighboring input with one fewer instance of batching. It is possible to modify the

formulation to let a batched pair of comments arrive at either one of the later or earlier arrival times of an unbatched pair in

an adjacent input. This modified formulation would capture an even stronger adversary who knows the exact time-frame in

which a batched pair arrives. However, ensuring privacy against this adversary would require even more delay added to the

system, Hence, we do not pursue this formulation.
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differing in the timing of a pair of comments due to batching, while [23] considers databases where

arbitrary entries are considered non-private.

For any finite time horizon 𝑇 and set of comment arrivals 𝐴, we will letM𝑇 (𝐴) denote the

random output of the mechanism up to time 𝑇 . Then, we define privacy as follows:

Definition 3.2 ((𝜖, 𝑔)-One-Sided Differential Privacy (OSDP)). For any 𝜖 ≥ 0 and 𝑔 > 0, a comment

posting mechanismM is (𝜖, 𝑔)-one-sided differentially private if for any 𝐴,𝐴 (𝐵) such that 𝐴 (𝐵) is
𝑔-neighboring to 𝐴, for any time horizon𝑇 , and for any subset of possible outputs 𝑆 ⊆ Range(M𝑇 )
of the mechanism:

Pr[M𝑇 (𝐴 (𝐵) ) ∈ 𝑆] ≤ 𝑒𝜖Pr[M𝑇 (𝐴) ∈ 𝑆]
where the probability is taken over the coin flips of the (randomized) mechanism.

This privacy definition guarantees that the likelihood of observing an outcome on an input

with at least one instance of batching is never much larger than the likelihood of observing that

outcome on an input with one fewer batched pair. Therefore, the mechanism obscures the fact

that any pair of comments was batched. However, it is possible for the mechanism to reveal that a

pair of comments was unbatched; we allow for outputs that occur with non-zero probability given

input 𝐴 but zero probability given input 𝐴 (𝐵) (unlike in standard two-sided DP). We argue that

the one-sided definition effectively captures privacy risk due to batching, since the presence of a

batched pair of comments is sensitive, while the absence of batching is non-sensitive.

The privacy definition requires two parameters: 𝜖 and 𝑔. The interpretation of 𝜖 is similar to two-

sided DP as it quantifies the “level” of privacy: for smaller 𝜖 it is harder to distinguish neighboring

inputs, whereas for larger 𝜖 it is easier. The 𝑔 parameter captures domain knowledge about what

types of inputs can be neighbors, similar to restricting the domain of inputs in two-sided DP.

Roughly, 𝑔 should capture how far apart consecutive comments would plausibly arrive if batching

were not occurring. It is necessary for a practitioner to include this domain knowledge in the form

of finite value 𝑔 as we prove that batched comments must be delayed by at least 𝑔 (in Section 4.3)

and hence without this bound, comments must be withheld indefinitely. We give heuristics for

how to set 𝑔 based on a hypothesis testing interpretation of the privacy definition in Section 5.1.

In particular, we propose setting 𝑔 to be a percentile (e.g., the median) of the measured inter-

arrival time distribution of comment arrivals in the absence of batching, where a higher percentile

corresponds to a stronger privacy guarantee.

Utility. We measure the cost of our mechanism in terms of expected delay added to comments.

Because the privacy guarantee is asymmetric, the mechanism can behave differently on batched

and unbatched comments. Therefore, we will consider measuring utility in terms of expected delay

to batched comments denoted E[𝐵], expected delay to unbatched comments denoted E[𝑈 ] or more

generally any weighted sum of the two expectations. Note that we allow our mechanism to post

comments in a different order than they arrived. In some settings, like Wikipedia editing, this

reordering may be an additional source of dis-utility. We design a privacy-preserving mechanism

that maintains global ordering of arrivals in Appendix E, but this mechanism requires additional

assumptions about the arrival process of comments.

Goal. Our goal is to design comment posting mechanisms that guarantee (𝜖, 𝑔)-one-sided differen-

tial privacy for chosen privacy parameters 𝜖 and 𝑔 while minimizing the expected delay added to

comments. We may add random delay to batched and unbatched comments drawn from different

distributions 𝐵 and 𝑈 respectively. Therefore, we wish to design (𝜖, 𝑔)-OSDP mechanisms that are

Pareto optimal in trading off between E[𝐵] and E[𝑈 ] at any setting of 𝜖 and 𝑔. Moreover, we want

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 22. Publication date: March 2023.
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to allow practitioners to choose a mechanism on this Pareto frontier that minimizes an appropriate

cost function suiting the requirements of their system. For instance, a system with a higher rate

of batching may wish to weight delay to batched comments higher in their cost function than a

system with a lower rate of batching. To this end, we consider minimizing any cost function that is

a convex combination of expected delay to batched and unbatched comments. We aim to provide

the exact mechanism on the Pareto frontier that minimizes𝑤E[𝐵] + (1 −𝑤)E[𝑈 ] for any choice of

weighting parameter𝑤 ∈ [0, 1] and any privacy parameters 𝜖 and 𝑔. We note that this choice of

utility function is without loss of generality. In particular, the feasible region of E[𝐵] and E[𝑈 ]
is convex (as we prove in Appendix C.3, Lemma C.6.) Therefore, any Pareto optimal mechanism

minimizes the weighted cost function for some choice of𝑤 (since any point on the Pareto frontier

of a convex feasible region optimizes a weighted sum objective per [6, Chapter 4.7]).

Fig. 1. Success probability of de-anonymizing a
(meta)-reviewer after learning that a pair of com-
ments arrived together vs. learning that a pair of
comments did not arrive together.

Example: De-anonymizing reviewers. We now dis-

cuss the one-sided nature of privacy risk inher-

ent to batching using the running example of a

meta-reviewer de-anonymizing a reviewer or meta-

reviewer of a paper they have authored. Recall

the introductory scenario where an meta-reviewer

observes two comments 𝑐 and 𝑐′ that arrive con-

secutively on different papers and are made by

(meta)-reviewers 𝑟1 and 𝑟
′
respectively (where it is

possible that 𝑟 ′ = 𝑟1). The meta-reviewer knows

that the first comment was made by 𝑟1 and has

a uniform prior over 𝐾 possible reviewers who

could have made 𝑐′ (including 𝑟1). They wish to

de-anonymize 𝑟 ′ based on whether or not 𝑐′ ar-
rived in a batch with 𝑐 . From our aforementioned

analysis of a conference peer review where we de-

fine two comments as “arriving together” if they

arrive within 5 minutes of one another, we estimate

that: Pr[𝑐, 𝑐′ arrive together | 𝑟 ′ = 𝑟1] ≈ 0.3, while

Pr[𝑐, 𝑐′ arrive together | 𝑟 ′ ≠ 𝑟1] ≈ 0.0066. There-

fore, after learning that 𝑐 and 𝑐′ arrived together,

the meta-reviewer’s posterior puts the most weight on Pr[𝑟 ′ = 𝑟1 | 𝑐, 𝑐′ arrived together] =
0.301

0.301+0.0066(𝐾−1) . On the other hand, after learning that 𝑐 and 𝑐
′
did not arrive together, their posterior

puts the most weight on: Pr[𝑟 ′ = 𝑟𝑘 | 𝑐1, 𝑐2 did not arrive together] = 0.9934
0.699+0.9934(𝐾−1) for 𝐾 ≠ 1.

We give further detail on how these statistics were estimated in Appendix D.

As shown in Figure 1, in learning that the pair of comments was batched, the meta-reviewer

can identify the (meta)-reviewer of a paper they authored with much higher confidence than

before observing the batched timing; on the other hand, by learning that the pair of comments was

unbatched, the meta-reviewer’s posterior hardly changes from the prior. Our one-sided privacy

definition captures this asymmetric privacy risk: an adversary learns little about sensitive informa-

tion (whether two comments are likely to be batched), but it may learn insensitive information

(two comments were unbatched).

4 THEORETICAL RESULTS
In this section, we present our main theoretical results. First, in Section 4.1, we propose an algorith-

mic framework to design comment posting mechanisms that guarantee (𝜖, 𝑔)-one-sided differential
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privacy under batching. In this framework, we add random noise to the timestamps of batched

and unbatched comments, drawing the noise from a pair of distributions (𝐵,𝑈 ) that depend on

parameters 𝜖 and 𝑔. Within this framework, there are many possible choices of the noise distribu-

tions (𝐵,𝑈 ); in Section 4.2, we show that some natural choices of distribution (e.g., exponential,

one-sided staircase) are suboptimal in terms of privacy-delay tradeoff. In Section 4.3 we provide

another distribution – a zero-inflated uniform distribution with carefully chosen parameters – that

we show guarantees one-sided differential privacy in our setting and also achieves a an optimal

privacy-delay trade-off. Finally, in Section 4.4, we motivate our formulation as a means of capturing

the privacy-delay trade-off by showing that the popular two-sided definition of DP does not yield a

useful privacy-delay trade-off for valid comment posting mechanisms.

4.1 Algorithmic Framework
In Algorithm 1, we present a general recipe for designing randomized delay mechanisms. The

meta-algorithm receives as input privacy parameters 𝜖 and 𝑔 as well as probability distributions

𝐵 and 𝑈 that depend on 𝜖 and 𝑔. We will then prove that if pairs of distributions satisfy an

“indistinguishability” property then Algorithm 1 yields a (𝜖, 𝑔)-OSDP mechanism.

Algorithm 1 Framework for Designing a Randomized Delay Mechanism

Input: privacy parameter 𝜖 > 0, maximum time gap 𝑔 > 0, noise addition distributions 𝐵 and𝑈

for each comment arrival time 𝑡 do
if a set of batched comments arrives then
For each comment, independently sample 𝑑 ∼ 𝐵(𝜖/2, 𝑔) and post the action at time 𝑡 + 𝑑 .

else if if an unbatched comment arrives then
Post the comment at time 𝑡 + 𝑑 where 𝑑 ∼ 𝑈 (𝜖/2, 𝑔)

end if
end for

Mechanisms within this framework satisfy two useful qualitative properties for deployment

in real applications. First, because the noise is sampled at arrival time, we can tell each user the

duration of the delay on their comment as soon as they create it. Second, because the noise is

sampled independently for each comment, the algorithm does not require a centralized coordinator

to determine post time; privacy-sensitive individuals can implement the algorithm themselves. Any

choice of (𝐵,𝑈 ) can satisfy (𝜖, 𝑔)-OSDP if 𝐵 and𝑈 are indistinguishable in the following sense:

Definition 4.1 (One-Sided Indistinguishable Distributions). Let 𝐵 and 𝑈 be non-negative ran-

dom variables. We say that the ordered pair (𝐵,𝑈 ) is (𝜖, 𝑔)-one-sided indistinguishable if, for any
measurable set 𝑆 ⊆ R and any 𝑡0 ∈ [0, 𝑔], the distributions satisfy:

Pr[𝐵 ∈ 𝑆] ≤ 𝑒𝜖Pr[𝑈 ∈ 𝑆 − 𝑡0],
where for any 𝑆 ⊆ R, 𝑡 ∈ R : 𝑆 − 𝑡 = {𝑠 − 𝑡 |𝑠 ∈ 𝑆}.

The following theorem shows sufficiency of such one-sided indistinguishable distributions for

guaranteeing privacy.

Theorem 4.2 (Privacy of Randomized Delay Mechanisms). Let (𝐵,𝑈 ) be any pair of (𝜖/2, 𝑔)-
one-sided indistinguishable distributions. Then, Algorithm 1 using 𝐵 and𝑈 as noise-addition distribu-
tions guarantees (𝜖, 𝑔)-one-sided differential privacy.

We give the proof of the above theorem in Appendix C.1. The proof follows by observing that in

neighboring inputs, a pair of comments that was batched becomes unbatched with one comment
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arrival moved forward by at most 𝑔 time units. Hence, if 𝐵 and 𝑈 have a likelihood ratio bounded

by 𝑒𝜖/2 for any values within 𝑔 time units of one another, it is hard to distinguish whether the

mechanism was given an input with two unbatched comments arriving 𝑔 time units apart or two

batched comments arriving at the same time (up to a multiplicative factor of 𝑒𝜖 ).

4.2 Privacy-preserving delay distributions
We now describe a number of possible choices for (𝜖, 𝑔)-one-sided indistinguishable distributions

(𝐵,𝑈 ) that can be used in our algorithmic framework. We show that we can use an exponential

distribution, which is the one-sided version of the Laplace distribution. We can also add noise

from the absolute value of the staircase distribution. The staircase distribution is the distribution

resulting from approximating the p.d.f. of the Laplace distribution with a piece-wise constant

function and was proven in [16] to be optimal for noise addition in two-sided DP, giving smaller

delay than the exponential. Alternatively, we can add noise to unbatched comments drawn from a

zero-inflated uniform distribution where we add 0 delay with probability 1− 𝜂 (for some parameter

𝜂) and delay drawn from a uniform distribution with probability 𝜂.

Theorem 4.3 (Choices of One-Sided Indistinguishable Distributions). The following choices
of 𝐵 and𝑈 are (𝜖, 𝑔)-one-sided indistinguishable:
(1) Exponential5: 𝐵 = 𝑔 + Exponential(𝜖/𝑔),𝑈 = Exponential(𝜖/𝑔)
(2) Staircase [16]6: 𝐵 = 𝑔 + |Staircase(𝜖, 𝑔) |, 𝑈 = |Staircase(𝜖, 𝑔) | 𝐵 = Uniform(𝑔, 1

1−𝑒−𝜖 𝑔), 𝑈 =

Uniform(0, 1

1−𝑒−𝜖 𝑔)
(3) Zero-inflated Uniform with parameter 𝜂. For 𝑒−𝜖 < 𝜂 ≤ 1:

𝐵 = Uniform
(
𝑔,

𝜂

𝜂−𝑒−𝜖 𝑔
)

𝑈 =

{
0 with probability 1 − 𝜂
Uniform

(
0,

𝜂

𝜂−𝑒−𝜖 𝑔
)

with probability 𝜂.

These choices of (𝐵,𝑈 ) incur the following expected delays:
(1) Exponential: E[𝐵] = 𝑔(1 + 1

𝜖
) and E[𝑈 ] = 𝑔 1

𝜖

(2) Staircase: E[𝐵] = 𝑔(1 + 𝑒𝜖/2

𝑒𝜖−1 ), E[𝑈 ] = 𝑔
𝑒𝜖/2

𝑒𝜖−1
(3) Uniform: E[𝐵] = 1

2
𝑔

(
1 + 1

1−𝑒−𝜖
)
and E[𝑈 ] = 1

2
𝑔

(
1

1−𝑒−𝜖
)

(4) Zero-inflated Uniform with parameter 𝜂: E[𝐵] = 1

2
𝑔

(
𝜂 + 𝜂

𝜂−𝑒−𝜖
)
and E[𝑈 ] = 1

2
𝑔

(
𝜂2

𝜂−𝑒−𝜖
)
.

The proof of the above theorem is in Appendix C.2. Note that (uniform, uniform) noise additions

are a special case of (uniform, zero-inflated uniform) taking 𝜂 = 1. In the next section, we show

that a zero-inflated uniform distribution is Pareto optimal for appropriate choice of 𝜂.

Notably, the choice of parameters for the exponential and staircase distributions given in Theo-

rem 4.3 are the optimal choice of parameters in the sense that they minimize expected delay at

fixed values of privacy parameters 𝜖 and 𝑔 when adding i.i.d. exponential or staircase noise plus a

constant offset to all comments. Therefore, the exponential and staircase are strictly sub-optimal

in minimizing expected delay as zero-inflated uniform noise can achieve lower expected delay

at the same privacy level. We formally state and prove these results on the sub-optimality of the

exponential and staircase distributions in Appendix A.

5
In the notation to follow, we parameterize the exponential distribution by its rate.

6
The staircase distribution is parameterized by 3 values 𝜖,Δ, 𝑔 in [16]. Here, we take Staircase(𝜖, 𝑔) to mean the staircase

distribution with 𝜖 = 𝜖 , Δ = 𝑔 and 𝛾 = 1

1+𝑒𝜖/2 , which is the optimal value of 𝛾 to minimize expectation per [16].
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(a) Expected delay to unbatched comments (b) Expected delay to batched comments

Fig. 2. Expected delay (as a multiple of𝑔) for Algorithm 1 with the exponential, staircase, zero-inflated uniform
and uniform distributions at varying values of 𝜖 . All distributions use the optimal setting of parameters at a
given 𝜖 . The zero-inflated uniform parameter is chosen to minimize delay to unbatched comments. The delay
(y axis) is plotted on a log scale.

Algorithm 2 Zero-Inflated Uniform Mechanism

Input: privacy parameter 𝜖 > 0, maximum time gap 𝑔 > 0, weighting of expected delay to

batched comments𝑤 ∈ [0, 1]

Set 𝜂 = min

{
𝑒−𝜖/2

(
1 +

√︃
1 + 𝑒𝜖/2 𝑤

1−𝑤

)
, 1

}
for each comment arrival time 𝑡 do
if a set of batched comments arrives then

For each comment, independently sample 𝑑 ∼ Uniform

(
𝑔,

𝜂

𝜂−𝑒−𝜖/2𝑔
)
and post the comment

at time 𝑡 + 𝑑 .
else if an unbatched comment arrives then
Post the comment at time 𝑡 + 𝑑 where 𝑑 = 0 with probability 1 − 𝜂 and 𝑑 ∼
Uniform

(
0,

𝜂

𝜂−𝑒−𝜖/2𝑔
)
with probability 𝜂.

end if
end for

In this setting, the exponential and staircase distributions typically used in two-sided DP add

significantly more delay than zero-inflated uniform noise, especially at small values of 𝜖 . In Figure 2,

we show the expected delay for the optimal exponential, staircase, uniform, and zero-inflated

uniform at each setting of 𝜖 . For both batched and unbatched comments, the uniform and zero-

inflated uniform distributions add a factor of nearly two times less delay than the staircase and

exponential at small values of 𝜖 . In the next section, we formally prove that zero-inflated uniform

noise is Pareto optimal and characterize the optimal choice of 𝜂 for any objective function that is a

weighted sum of E[𝑈 ] and E[𝐵] based on the setting of 𝜖 .

4.3 Pareto-optimal Algorithm
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In this section, we derive the Pareto frontier (trading off the expected delay for batched and

unbatched comments) of noise-addition distributions for a given (𝜖, 𝑔)-one-sided indistinguishability
constraint (Definition 4.1). We show that adding zero-inflated uniform noise with appropriate choice

of parameter 𝜂 achieves optimal expected delay among mechanisms that add independent noise to

each comment. While the optimality result holds only within the class of mechanisms that adds

independent noise to each comment, this constraint allows for an algorithm to be implemented

locally without requiring coordination by a centralized server. This constraint is a common property

of many deployed privacy-preserving algorithms. For instance, local differential privacy [22]

requires that randomization needed for privacy is added locally by each holder of a data-point,

and the Tor anonymous network [9] protocol requires that initiators of connections choose the

(random) path on which to send a message themselves.

Given an (𝜖, 𝑔)-one-sided privacy constraint, our algorithmic framework (Algorithm 1) has many

choices of noise-addition distributions that can guarantee privacy. In terms of delay, there are two

quantities to optimize – the delay incurred by batched comments and that incurred by unbatched

comments. A natural utility objective to consider is a convex combination of the two expectations:

𝑤E[𝐵] + (1 −𝑤)E[𝑈 ], for a given parameter𝑤 ∈ [0, 1] .
The parameter 𝑤 ∈ [0, 1] determines how much weight is given to batched comments in the

utility function. For example, a user of our algorithm may estimate the relative rate of batching

in the system and set𝑤 to this value to optimize for the overall average expected delay across all

comments.

We present our main algorithm as Algorithm 2. Our algorithm follows our previously introduced

framework (Algorithm 1). It chooses 𝑈 as a zero-inflated uniform distribution with a carefully

chosen value of parameter 𝜂 (dependent on 𝜖 and𝑤 ), and chooses 𝐵 as a uniform distribution. The

following theorem now proves that for any privacy parameters our algorithm is indeed Pareto

optimal – it optimally trades off privacy and unbatched delay and batched delay.

Theorem 4.4 (Pareto optimality of the Zero-Inflated Uniform Mechanism). Algorithm 2
is Pareto optimal between expected delay to batched and unbatched comments at a given setting of
(𝜖, 𝑔) among valid (𝜖, 𝑔)-OSDP mechanisms that add independent noise to each comment. Further,
given weight parameter 𝑤 ∈ [0, 1] and privacy parameters (𝜖, 𝑔) as input, Algorithm 2 minimizes
cost function 𝑤E[𝐵] + (1 − 𝑤)E[𝑈 ] at any given privacy level (𝜖, 𝑔) among mechanisms adding
independent noise drawn from distributions 𝐵 and𝑈 to batched and unbatched comments respectively.

We give a proof sketch below, for the full proof see Appendix C.3.

Proof sketch. Roughly, the proof proceeds as follows:

• We consider any (𝜖, 𝑔)-indistinguishable noise addition distributions (𝐵,𝑈 ) added to batched

and unbatched comments respectively. Using results from [16], we argue that for large enough

𝑖 ∈ N, we can approximate 𝐵 and𝑈 arbitrarily well with random variables that have piece-wise

constant probability density functions and each constant interval has length 𝑔/𝑖 .
• We establish properties of any Pareto optimal (𝐵𝑖 ,𝑈𝑖 ) by directly proving that we can decrease the
expectation of both E[𝐵𝑖 ] and E[𝑈𝑖 ] for any pair of distributions that violates these properties.

Taken together the properties yield the exact form of any Pareto optimal 𝐵𝑖 and 𝑈𝑖 . Taking

limits as 𝑖 →∞ gives that the Pareto frontier is realized by uniform and zero-inflated uniform

distributions for some setting of 𝜂.

• Finally, we analytically solve for the value of parameter 𝜂 in the zero-inflated uniform distribution

that minimizes weighted objective𝑤E[𝐵] + (1 −𝑤)E[𝑈 ] for any𝑤 ∈ [0, 1].
□
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Fig. 3. Pareto frontier for the expected delay added to batched
and unbatched comments (E[𝐵] and E[𝑈 ]) at different values
of privacy parameter 𝜖 . For fixed 𝜖 , the frontier is obtained by
varying weighting parameter 𝑤 , which determines the weight
given to batched comments.

As shown in Figure 3, for smaller

privacy budgets where 𝜖 ≤ 2 ln(2),
there is a single point on the Pareto

frontier. Adding uniform noise with

no inflated probability mass at 0 mini-

mizes E[𝐵] and E[𝑈 ] simultaneously.

For larger 𝜖 , it is possible to trade off

between E[𝐵] and E[𝑈 ], achieving
near-zero delay to unbatched com-

ments. In practice, a user can de-

cide what value of 𝜂 to use based on

their preferred convex combination

of E[𝐵] and E[𝑈 ].

4.4 Impossibility of
“Two-Sided” Differential Privacy
We next prove the impossibility of

guaranteeing two-sided differential

privacy under the constraints of a

valid comment posting mechanism.

These results motivate our modeling

assumptions on the adversary’s prior knowledge about batching and attempted attacks that are

used in the definition of (𝜖, 𝑔)-OSDP.
First, we recall the standard definition of two-sided differential privacy. The key difference

between this definition and our one-sided Definition 3.2 is in the formulation of “neighboring”

inputs. In our one-sided definition, we use an asymmetric relation for neighboring inputs where

one input with an additional batched pair of comments neighbors an input with one fewer pair.

This captures the notion that batching is sensitive while the absence of batching is insensitive. For

two-sided DP, we will give a definition with an abstract notion of neighbors and then concretely

instantiate this definition with different possible notions of neighboring inputs. We will consider

symmetric relations for neighboring inputs in the definition of two-sided DP. This corresponds to

preventing an adversary from inferring whether batching did or did not occur.

Recall thatM𝑇 (𝐴) denotes the output of the mechanism up to time 𝑇 . Then:

Definition 4.5 (Two-Sided Differential Privacy for Batched Arrivals:). For any 𝜖 ≥ 0, 𝛿 ∈ [0, 1], a
comment posting mechanismM is (𝜖, 𝛿)-differentially private if, for any time horizon 𝑇 and for

any subset 𝑆 ⊆ Range(M𝑇 ) of possible outputs of the mechanism:

Pr[M𝑇 (𝐴′) ∈ 𝑆] ≤ 𝑒𝜖Pr[M𝑇 (𝐴) ∈ 𝑆],

where 𝐴 and 𝐴′ are two “neighboring” sets of comment arrivals.

Now, we state our main impossibility result. We consider three natural definitions of neighboring

sets of comment arrivals. We show that it is not possible to guarantee privacy with a useful delay

trade-off for any of these notions of neighbors.

Theorem 4.6 (Impossibility of Two-Sided Differential Privacy). For any of the following
natural definitions of “neighboring” sets of comment arrivals, there is no two-sided differentially private,
valid comment posting mechanism with delay scaling as 𝑜 (1/𝛿):
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Definition of “Neighboring” Sets of
Comment Arrivals

Impossibility Result

(1) Add or remove a batched comment
No valid (𝜖, 𝛿)-DP posting mechanism

for 𝜖 < ∞, 𝛿 < 1

(2) Move a batched comment to another
arrival time where it is no longer batched

No valid (𝜖, 𝛿)-DP posting mechanism
for 𝜖 < ∞, 𝛿 < 1

(3)
Move a batched comment by at most 𝑔
units of time to another arrival time

where it is no longer batched

For any 𝐷 ≥ 0, any valid (𝜖, 𝛿)-DP
posting mechanism delays a comment

by at least 𝐷 with probability
≥ 1 − 2𝛿

(
𝐷
𝑔
+ 1

)
The proof of the above theorem can be found in Appendix C.4. Intuitively, we cannot guarantee

privacy with definition (1) of neighbors because it would require creating a fake comment since a

comment that exists in one input does not exist in the adjacent input. It is not possible to satisfy

privacy with definition (2) of neighbors, as a comment could move arbitrarily far in time, requiring

infinite delay to be added to comments. For definition (3) of neighbors, we show that we can define

a sequence of neighboring inputs such that a comment is shifted 𝑔 units of time in the future on

every other input in the sequence. Since the privacy guarantee must hold pairwise between each

neighboring input in the sequence, the mechanism can only release comments within time 𝐷 with

probability of roughly 𝛿𝐷/𝑔 in order to make inputs that are 𝐷/𝑔 neighbors away from each other

in the sequence sufficiently indistinguishable from one another.

Note that even if we considered mechanisms acting on a finite time horizon, the proof above

suggests the only mechanism admitted under two-sided DP using definition (2) is the trivial

mechanism that releases all comments at the end of the time period. This is both intuitively

and formally sufficient for preserving privacy from timing attacks since it eliminates all timing

information, but is expensive in terms of delay incurred. In particular, in the peer review setting,

releasing all comments simultaneously at the end of the review period eliminates potential for

replies and ongoing discussion.

It follows from the impossibility of definition (3) of neighboring sets that there is no valid

comment posting mechanism satisfying differential privacy with 𝛿 = 0 for this notion of neighbors,

since any differentially private mechanism would violate the property that valid comment posting

mechanisms eventually release all comments. Even taking 𝛿 > 0, the probability of experiencing a

delay longer than 𝐷 only decreases linearly in 𝛿 and 𝐷 . Typically, 𝛿 is selected to be 𝑜 (1/𝑛) [11],
where 𝑛 is the database size—in our case, the number of comments in the observed stream. For

𝑔 = 𝑂 (1), this implies that any mechanism satisfying a two-sided DP guarantee for 𝑔-neighboring

inputs (and choosing 𝛿 = 𝑜 (1/𝑛)) has a non-negligible probability of delaying comments by Ω(𝑛).

5 PRACTICAL CONSIDERATIONS FOR IMPLEMENTATION
In this section, we address two important practical considerations to putting into practice our

privacy formulation and algorithm. First, we provide theoretically motivated heuristics for setting

the parameter 𝑔 in the privacy definition. Second, we give simple extensions to the privacy model

and algorithm that allow for handling the realistic setting where batched comments do not arrive

all at the same exact time, but rather with a short duration in between.
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5.1 Setting privacy parameters
Recall that our privacy definition includes a parameter 𝑔 that captures what types of inputs can be

neighbors. In particular, 𝑔 bounds how far apart in time a pair of potentially-batched comments

could arrive if batching had not taken place. In this section, we will argue that a reasonable way to

set 𝑔 is as a percentile of an empirical distribution of comment inter-arrival times. For example, in

a peer-reviewed conference we might set 𝑔 to be the median inter-arrival time of comments at a

similar prior conference. We provide more examples of setting 𝑔 in practice in our experiments on

Wikipedia and Bitcoin in Section 6.

First, we motivate this heuristic by modeling an adversary conducting a hypothesis test to

determine if a comment was batched or not. The privacy parameters 𝑔 and 𝜖 can be chosen based

on the desired (in)efficacy of this adversary’s test. Consider an adversary—say, a meta-reviewer

who submitted a paper to a conference—who suspects that a comment 𝑐 made on their paper may

share a reviewer with one of the papers in the set 𝐶 of papers they are handling. The adversary

conducts a hypothesis test to determine whether the comment they received arrived in a batch

with any comment on papers in that set. Let 𝑡1 denote the arrival time of 𝑐 and let 𝑡2 denote the

arrival time of the comment in 𝐶 that arrives closest in time to 𝑡1. The adversary knows that if the

comments did not arrive in a batch, then they arrived with a gap 𝑡2 − 𝑡1 following some distribution

D (for instance, this might be the empirical distribution of comment inter-arrival times on the

previous day). If the pair of comments does arrive in a batch, the adversary assumes they arrived

simultaneously. Thus, the adversary wishes to distinguish between the following hypotheses:

𝐻0 : 𝑡2 − 𝑡1 ∼ D (𝑐 is not batched with any comment in 𝐶)
𝐻1 : 𝑡1 = 𝑡2 (𝑐 is batched with at least one comment in 𝐶)

The adversary will observe the output of the mechanism and decide to either accept or reject the

null hypothesis. If they reject the null hypothesis, they conclude that the comment was batched

with a comment in 𝐶 . Their hypothesis test is defined by “rejection region” 𝑅, or the set of outputs

on which the adversary concludes that batching occurred. The quality of a given test is determined

by the trade-off between its “power” and “type I error”:

Power = Pr[M(𝑆) ∈ 𝑅;𝐻1]
Type I Error = Pr[M(𝑆) ∈ 𝑅;𝐻0]

Similar to prior work on differential privacy [42], [21], we show that an adversary conducting a

hypothesis test to determine if batching occurred will face a poor trade-off between power and

type I error given an output of a mechanism that is OSDP with gap 𝑔:

Proposition 5.1. If a mechanismM satisfies (𝜖, 𝑔)-OSDP, then for any comment 𝑐 , set of comments
𝐶 arriving with inter-arrival time distribution D, and any hypothesis test deciding if 𝑐 was batched
with a consecutively arriving comment in 𝐶 :

Power ≤ 𝑒𝜖

𝐹D (𝑔)
(Type I Error)

where 𝐹D (𝑔) = Pr[|𝑥 | ≤ 𝑔;𝑥 ∼ D] is the CDF of inter-arrival times.

The proof of this proposition can be found in Appendix C.5. This interpretation of the (𝜖, 𝑔)-OSDP
guarantee in terms of error rates of an attacker’s hypothesis test motivates our heuristic to choose

the parameter 𝑔. Previous work on timing attacks [27, 37] measures the success of attacks in terms

of the trade-off between power and type I error. In particular, these works report a single number

“error crossover rate,” the point at which type I error = 1 − power. We envision the system operator

(i.e., the entity adding the delay) first specifying a tolerable error crossover rate; for example,
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consistent with prior work on timing attacks [27, 37], the operator might choose to tolerate an error

crossover rate of 0.25. Next, the system operator should choose a privacy parameter 𝜖 . Since the

interpretation of 𝜖 is similar to traditional two-sided DP, operators may use common heuristics for

selecting 𝜖 ; for instance, our operator might choose 𝜖 = 0.8. Given these parameters, Proposition

5.1 shows how to select 𝑔 to ensure that the desired error crossover rate is satisfied. In our running

example, we would choose 𝑔 to be the 75th percentile of the inter-arrival time distribution.

If 𝑔 is specified to be smaller than the system designer intended, we can still provide a privacy

guarantee in terms of the crossover rate. For instance, in the aforementioned scenario, suppose

the true inter-arrival distribution of comments has a slower rate of arrivals than expected and

so the selected 𝑔 actually corresponds to the 50-th percentile instead of the 75-th percentile of

the distribution. In this case, we can still guarantee that an adversary who knows the correct

inter-arrival distribution can conduct an attack with power at most 4.5 times the type I error (giving

a crossover error rate of roughly 0.18.)

5.2 Handling Non-Simultaneous Batching
In our basic model of batching, we make the idealized assumption that all comments in a batch

arrive at the same exact clock time. In practice, in many settings, batched actions will not be taken

at the exact same time, but rather with some short delay between them. For example, it is natural

for a Wikipedia editor to spend many minutes working on a revision, so revisions in a single batch

may arrive with a few minutes of delay in between.

In this section, we describe a simple extension to our model and algorithm to handle non-

simultaneity in practice. We introduce a new parameter 𝛽 , representing the time threshold below

which we consider two comments to have been batched. We will assume that 𝛽 < 𝑔, since batching

leads a comment to arrive earlier than it would have without batching. We modify the problem

formulation to allow batched comments to arrive 𝛽 time units apart. We give the full revised privacy

definition in Appendix B.

Now, we consider two possible ways to extend our algorithmic framework (Algorithm 1) to

handle non-simultaneous batching. First, we propose a simple front-end change if we trust users to

accurately report when they will engage in batching. We ask users when they create a comment

if they plan on creating more comments on other papers within the next 𝛽 units of time. If the

user answers affirmatively, then we add delay drawn from 𝐵 to the batched comments appearing

within 𝛽 time units. If not, we add delay from 𝑈 . Here, we take (𝐵,𝑈 ) to be one-sided (𝜖/2, 𝑔 + 𝛽)-
indistinguishable. Since neighboring inputs can differ on two comments with arrival times at (𝑡, 𝑡−𝛽)
and (𝑡 + 𝛽, 𝑡 + 𝑔) respectively, it is now necessary to add noise from (𝜖/2, 𝑔 + 𝛽)-indistinguishable
distributions to preserve privacy by the same reasoning as Theorem 4.2.

In settings where we do not expect users to reliably report that they will batch tasks, we can use

a simple extension to our algorithmic framework, where we delay all comments by an additional 𝛽

units of time, using that duration to determine whether or not the comment was batched and then

add delay drawn from (𝜖/2, 𝑔 + 𝛽)-indistinguishable distributions (we provide the pseudo-code of
this extended algorithm in Algorithm 3 of Appendix B). In general, our initial problem formulation

captures the most essential features of the problem of preserving privacy in the presence of batching.

As we have shown in this section, it is straightforward to extend our model to better capture the

properties specific to a given application.

6 EXPERIMENTS
We conduct two sets of experiments using publicly available data on Wikipedia article revisions

and Bitcoin transactions.
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(a) 𝑔 set to 11 minutes (b) 𝑔 set to 36 minutes

Fig. 4. Accuracy in linking pairs of Wikipedia article revisions on “21st-century American Politicians” based
on batched timing (averaged over 5 runs of the randomized privacy mechanism).

Mean Delay Maximum Delay

𝜖 = 0.1 𝜖 = 0.5 𝜖 = 1.0 𝜖 = 2.0 𝜖 = 0.1 𝜖 = 0.5 𝜖 = 1.0 𝜖 = 2.0

(a) 𝑔 = 11 118 31 20 15 229 54 33 22

(b) 𝑔 = 36 343 83 50 35 672 152 88 56

Table 1. Mean and maximum delay (in minutes) added to Wikipedia article revisions on “21st-century
American Politicians” for 𝑔 set to the (a) 25th and (b) 50th percentile of the historical inter-arrival distribution.

6.1 Wikipedia
In a dataset of revisions on all Wikipedia articles from January 1st to 31st, 2022 obtained from the

WikiMedia API, we aggregate over 3.5 million article revisions (after filtering out bot accounts),

averaging roughly 80 revisions per minute. Due to the high baseline rate of editing, it would be

difficult for an adversary to identify that two revisions are batched without narrowing down the

set of possible articles. One natural clustering of articles likely to contain batched revisions is by

category: each article on Wikipedia is associated with a set of categories capturing the main topics

covered. In the following experiments, we analyze articles belonging to the category “21-st century

American Politicians.” We chose this category because it contains potentially controversial political

topics so editors may have privacy concerns in editing these pages. Additionally, this category

receives a large number of revisions per month, yielding a sample size of 13,430 revisions. Among

these, roughly 20% were generated in a batch with another revision on a page in the same category

(where we consider revisions from the same user to be batched if they arrive within 5 minutes of

one another). The threshold of 5 minutes captures 92% of pairs of immediately consecutive revisions

by a single editor on different articles within this category.

While we do not have access to the true identities of editors who use multiple accounts, we can

track all revisions made by the same account and identify when this account engages in batching.We

simulate an attack where an adversary tries to link revisions to their creator on the basis of timing,

while ignoring the usernames of editors. We consider a simple attack model that proves to be quite
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effective in the absence of any privacy-preserving mechanism. In the attack, the adversary tries to

classify each pair of revisions on two different articles as either batched or unbatched. The adversary

chooses a cutoff 𝐼 ≥ 0: if a pair of revisions are posted within 𝐼 minutes of one another, the adversary

classifies the pair as batched and concludes that the comments were made by the same person, and if

not, the adversary classifies the pair as unbatched (in which case, the adversary draws no conclusion).

When the adversary correctly classifies a batched pair as batched, we call this a true positive, while

if the adversary incorrectly classifies an unbatched pair as batched, we call this a false positive.

The adversary can trade off between false positives and true positives by choosing the value of 𝐼

accordingly, with higher values of 𝐼 yielding more true positives, but also more false positives, than

smaller values of 𝐼 . The efficacy of the attack is measured in terms of its precision and recall where

precision =
number of pairs correctly classified as batched

total number of pairs classified as batched
and recall =

number of pairs correctly classified as batched

total number of pairs that were batched
.

An effective attack has simultaneously high precision and recall.

In Figure 4, we show the precision and recall of this attack under various settings of privacy

parameters 𝜖 and 𝑔. We find that attack efficacy is high when no privacy mechanism is deployed —

for instance, recall is 85% at a precision of 80%. We then apply the zero-inflated uniform mechanism

(Algorithm 2) and measure the reduction in attack efficacy over the “no privacy” baseline. We run

the mechanism with𝑤 set to 1, as this minimizes the worst-case expected delay added to any single

comment in the system. Because batching is not perfectly simultaneous on Wikipedia — editors

take time between making each revision — we simulate deployment of the user interface extension

to Algorithm 2 described in Section 5.2 where 𝛽 = 5 minutes. We set 𝑔 based on the heuristic from

Section 5.1 where 𝑔 is a percentile of the inter-arrival distribution of revisions made in the first

week of the month. We then simulate deployment of the algorithm over the last three weeks of the

month. Using this method, we can set 𝑔 = 11 minutes by choosing the 25th percentile or 𝑔 = 36

minutes at the 50th percentile. The experiment reveals that precision and recall are significantly

improved by use of the mechanism as shown in Figure 4. In terms of delay, Table 1 shows the mean

and maximum delay added to comments. We provide additional results, setting 𝑔 based on the 75th

percentile of the inter-arrival distribution, in Appendix F.1.

We find that Algorithm 2 renders the privacy attack much less effective while introducing

reasonable delay. For instance, taking 𝑔 = 11 and 𝜖 = 0.5 corresponds to an average delay of roughly

1 hour 20 minutes and maximum delay of 2.5 hours, but makes the attack substantially less accurate:

the attack now achieves around 65% recall at 60% precision compared to the non-private baseline

which achieves 85% recall at 80% precision. The heuristic attack used in Figure 4 may not be optimal

for an adversary who has knowledge of the zero-inflated uniform mechanism, but not access to the

internal randomness of the mechanism. Identifying an optimal attack is beyond the scope of this

work. However, since the same noise distribution 𝐵 is added to all comments that arrive in a batch,

we expect the heuristic attack to perform well in expectation.

6.2 Bitcoin
In Bitcoin, we wish to protect against linkage attacks on users of Bitcoin who use multiple addresses

to transmit currency to the same recipient address at the same time. We aggregate data of all

confirmed transactions broadcast to the Bitcoin peer-to-peer network in the week of August 1,

2022 to August 7, 2022, consisting of approximately 250,000 transactions per day. While we cannot

tie different addresses to real-world identities, for the purposes of our experiments, we consider

the following proxy: we define a “batch” to have occurred when two transactions from different

input addresses are sent to the same output address within 1 minute of one other. This represents a

key use-case of our algorithm, wherein a person holding Bitcoin in multiple addresses wishes to

draw from these different sources to complete a transfer to a single output address. After filtering
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Fig. 5. Performance of basic and informed linkage attacks on Bitcoin transactions when 𝑔 is set to the median
historical inter-arrival time for an output address.

for transactions originating from addresses with unusually high volume of transactions that likely

represent cryptocurrency exchanges, there are about 3,000 transactions per day arriving in a batch

per our definition, representing 1.2% of all transactions.

We consider a privacy attack similar to the linkage attack described in the Wikipedia application.

In the Bitcoin setting, an adversary tries to identify whether pairs of transactions arrived in a batch

or not. The adversary observes the times at which transactions to the same output address are

broadcast to the Bitcoin P2P network and applies a threshold to the time difference between the

pair to decide whether the transactions arrived in a batch. In a “basic” attack, the adversary uses a

single threshold for all transactions. In an “informed” attack, we assume the adversary knows the

value of 𝑔 that was used by the privacy mechanism for each transaction (which the mechanism may

vary by output address) and sets a per-address threshold as a linear function of the 𝑔 used for that

address. In incorporating this additional information about the privacy mechanism, the adversary

can obtain a better trade-off between false positives and true positives. We measure efficacy of the

attack in terms of precision and recall. Since we define batching to occur when multiple inputs are

sent to the same output address within 1 minute of each other, the adversary can observe exactly

when batching occurred if no privacy mechanism is deployed and obtain a precision and recall

of 100% in identifying whether transactions arrived at the same time or not (recall that in this

experiment, we lack ground truth about batched transactions).

To obscure the timing of transactions, we simulate the zero-inflated uniform mechanism (Algo-

rithm 2) to add delay to the time at which transactions are broadcast to the Bitcoin P2P network. In

order to select the value of 𝑔, we estimate the inter-arrival distribution of transactions to a given

output address in the prior 7 days and set 𝑔 to a percentile of this distribution. In particular, in this

section we use the median of the inter-arrival distribution. In Appendix F.2, we give additional

results for experiments where 𝑔 is set to the 25th and 75th percentile of the inter-arrival distribution.

If the output address of a transaction received no other transactions in the prior 7 days, we set 𝑔 to

10 minutes, as this is the baseline duration of time a Bitcoin user has to wait for a transaction to be

confirmed on the blockchain. Most (> 90%) unbatched transactions are sent to output addresses

with no recent transaction history, so we use the value of 𝑔 = 10 for these transactions. However,

roughly 80% of batched transactions are sent to output addresses with transaction history.
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Fig. 6. Cumulative distribution of delay added to batched
Bitcoin transactions (averaged over 5 trials). Delay is drawn
from a privacy-preserving uniform distribution with 𝑔 set
to the median of the inter-arrival time of transactions to an
output address within the past 7 days.

The use of Algorithm 2, with 𝑔 set per

output address, makes it difficult to iden-

tify whether transactions to the same out-

put address arrived at the same time as

shown in Figure 5.For 𝜖 = 1, even the in-

formed attack has precision of only 20%

at high recall. The basic attack performs

much worse, indicating that an adver-

sary needs to incorporate additional in-

formation about baseline inter-arrivals of

transactions in order to accurately iden-

tify batching. This improvement in privacy

comes at the expense of added latency. In

Figure 6, we show the cumulative density

function of delay added to batched Bitcoin

transactions averaged over 5 trials. In gen-

eral, we can add delay of less than 4 hours

to most transactions. For the setting of

𝜖 = 1, the mechanism adds delay of under 2 hours to 70% of transactions. While this is slower

than a Bitcoin transaction when no privacy mechanism is used, it is still substantially faster than

many other means of transferring money, like wire transfers. As such, privacy-sensitive users

could realistically deploy this algorithm in their Bitcoin wallets to protect the unlinkability of their

transactions.

7 DISCUSSION
This work introduces the problem of anonymity compromise due to task batching in pseudonymous

forums. We propose defenses and theoretically and empirically establish their efficacy.

Global Ordering. We find in empirical evaluations of Wikipedia data that the zero-inflated

uniform mechanism is likely to release article revisions in a different order than they arrived. In

our experiments, at reasonable settings of the privacy parameters, roughly 10% of revisions were

reordered within an article. This can create confusion when there are dependencies between article

revisions. A similar problem arises in peer review, where comments may respond to one another.

In Appendix E, we discuss a privacy-preserving queue-based mechanism that outputs delayed

comments in the same order in which they arrived. While this algorithm does not satisfy the

(𝜖, 𝑔)-OSDP guarantee, it satisfies a different relaxation of differential privacy. An open question is

whether the uniform zero-inflated mechanism can be extended to enforce ordering constraints for

an appropriate privacy guarantee.

Partial adoption. In actual deployments, many participants may be privacy-insensitive and opt

out of additional protections that preserve anonymity at the cost of increased delay. Our privacy

guarantee holds for any pair of events where each event uses the delay mechanism independently

of what other users choose to do. So, for a single user who deploys the zero-inflated uniform

mechanism on all events, it will be difficult for an adversary to tell whether any pair of their

events is batched. However, there may be additional amplification of privacy that comes from

widespread usage and permits lower setting of 𝑔 and 𝜖 with the same privacy guarantees in practice.

Quantifying the dependence of adoption rate on privacy guarantees is an interesting open question.
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Appendices
In Appendix A, we provide formal statements and proofs for the sub-optimality of adding

exponential or staircase noise in our setting, which we discuss informally in the main text in

Section 4.2. In, Appendix B, we provide further technical detail on extending the problem formulation

and algorithms to handle non-simultaneous batching In Appendix C, we present proofs of results

that were claimed but not proven in the main text. In Appendix D, we detail the methods used

to measure the prevalence of batching and resulting deanonymization risk in peer review. In

Appendix E, we describe an alternative privacy formulation that gives rise to a queue-based

mechanismwhich preserves the order of comment arrivals. Finally, in Appendix F we give additional

empirical results of experiments on Wikipedia and Bitcoin for additional parameter settings not

presented in the main text.

A SUB-OPTIMALITY OF EXPONENTIAL AND STAIRCASE DISTRIBUTIONS
In this section, we formally prove that the exponential and staircase distributions are strictly sub-

optimal as the zero-inflated uniform distribution adds less delay in expectation at any fixed privacy
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level. First, we formally prove that the choice of parameters for the exponential and staircase

distributions given in Theorem 4.3 are the optimal choice of parameters in the sense that they

minimize expected delay at fixed values of privacy parameters 𝜖 and𝑔when adding i.i.d. exponential

or staircase noise plus a constant offset to all comments:

Theorem A.1 (Optimal Choice of Parameters for the Exponential and Staircase Distri-

butions). Let 𝐵,𝑈 be non-negative noise-addition distributions that guarantee (𝜖, 𝑔)-OSDP when
used in Algorithm 1 where 𝐵 = 𝑎𝐵 + 𝐷 and 𝑈 = 𝑎𝑈 + 𝐷 for constants 𝑎𝐵, 𝑎𝑈 > 0 and non-negative
random variable 𝐷 . Then, if 𝐷 is an exponential random variable or a staircase random variable, E[𝐵]
and E[𝑈 ] are minimized at any values of 𝜖, 𝑔 by the choice of parameters in Theorem 4.3 such that
𝐵,𝑈 are (𝜖/2, 𝑔)-one-sided indistinguishable.

Proof. First, in the following two lemmas we argue that the offset terms 𝑎𝐵 and 𝑎𝑈 must be set

to 𝑎𝐵 = 𝑔 and 𝑎𝑈 = 0 in any expectation-minimizing pair of distributions that guarantees privacy.

Lemma A.2. Let 𝐵,𝑈 be non-negative noise-addition distributions that guarantee (𝜖, 𝑔)-OSDP when
used in Algorithm 1 where 𝐵 = 𝑎𝐵 +𝐵0 and𝑈 = 𝑎𝑈 +𝑈0 for constants 𝑎𝐵, 𝑎𝑈 > 0 and random variables
𝐵0 and𝑈0 with support [0,∞). Then, 𝑎𝐵 − 𝑎𝑈 ≥ 𝑔.

Proof. By Lemma C.1, in order for privacy to hold it must be that∀𝑆, 𝑆 ′ ⊆ support(𝐵), 𝑡0 ∈ [0, 𝑔]:
Pr[𝐵 ∈ 𝑆]Pr[𝐵 ∈ 𝑆 ′]

Pr[𝑈 ∈ 𝑆]Pr[𝑈 ∈ 𝑆 ′ − 𝑡0]
≤ 𝑒𝜖 .

so taking 𝑡0 = 𝑔 and 𝐵 = 𝑎𝐵 + 𝐵0 and𝑈 = 𝑎𝑈 +𝑈0 we have that

Pr[𝐵0 ∈ 𝑆 − 𝑎𝐵]Pr[𝐵0 ∈ 𝑆 ′ − 𝑎𝐵]
Pr[𝑈0 ∈ 𝑆 − 𝑎𝑈 ]Pr[𝑈0 ∈ 𝑆 ′ − (𝑎𝑈 + 𝑔)]

≤ 𝑒𝜖 .

Suppose for the sake of contradiction that 𝑎𝐵 < 𝑎𝑈 + 𝑔. Then, taking 𝑆 = 𝑆 ′ = [𝑎𝐵, 𝑎𝑈 + 𝑔) we
have that Pr[𝐵0 ∈ 𝑆 ′ − 𝑎𝐵] = Pr[𝐵0 ∈ [0, 𝑎𝑈 + 𝑔 − 𝑎𝐵)] > 0, but Pr[𝑈0 ∈ 𝑆 ′ − (𝑎𝑈 + 𝑔)] = Pr[𝑈0 ∈
[𝑎𝐵 − 𝑎𝑈 − 𝑔, 0)] = 0 so the likelihood ratio is unbounded yielding a contradiction. □

Lemma A.3. Let 𝐵,𝑈 be non-negative noise-addition distributions that guarantee (𝜖, 𝑔)-OSDP when
used in Algorithm 1 where 𝐵 = 𝑎𝐵 +𝐵0 and𝑈 = 𝑎𝑈 +𝑈0 for constants 𝑎𝐵, 𝑎𝑈 > 0 and random variables
𝐵0 and𝑈0 where either 𝐵0 and𝑈0 are both exponential random variables or staircase random variables.
Then, 𝐵′ = 𝑔 + 𝐵0 and𝑈 ′ = 0 +𝑈0 guarantee (𝜖, 𝑔)-OSDP when used in Algorithm 1.

Proof. Let 𝐵 = 𝑎𝐵 + 𝐵0 and 𝑈 = 𝑎𝑈 +𝑈0 be distributions that satisfy (𝜖, 𝑔)-OSDP when used in

Algorithm 1. First, define 𝐵′ = 𝐵 − 𝑎𝑈 and 𝑈 ′ = 𝑈 − 𝑎𝑈 . Note that by Lemma A.2, 𝑎𝐵 > 𝑎𝑈 so 𝐵′

is still non-negative. Since we both random variables are shifted by the same constant offset, 𝐵′

and𝑈 ′ still satisfy the sufficient condition to guarantee privacy in Lemma C.1. Now, suppose that

𝑎𝑈 = 0 and 𝑎𝐵 > 𝑔. Note that both the staircase distribution or the exponential distribution have

monotonically decreasing probability density functions above 0 so Pr[𝐵0 ∈ 𝑆−𝑎𝐵] ≥ Pr[𝐵0 ∈ 𝑆−𝑔].
Therefore, setting 𝐵′ = 𝑔 + 𝐵0 the sufficient condition for privacy in Lemma C.1 still holds. □

Now, taking 𝐵 = 𝑔 + 𝐷 and𝑈 = 𝐷 , by Lemma C.1, distribution 𝐷 must satisfy the condition that

∀𝑆, 𝑆 ′ ⊆ [𝑔,∞), 𝑡0 ∈ [0, 𝑔)
Pr[𝐷 ∈ 𝑆 − 𝑔]Pr[𝐷 ∈ 𝑆 ′ − 𝑔]
Pr[𝐷 ∈ 𝑆]Pr[𝐷 ∈ 𝑆 ′ − 𝑡0]

≤ 𝑒𝜖 .

Taking 𝑡0 = 0 and 𝑆 = 𝑆 ′, the privacy constraint requires that ∀𝑆 ⊆ [𝑔,∞):
Pr[𝐷 ∈ 𝑆 − 𝑔]
Pr[𝐷 ∈ 𝑆] ≤ 𝑒𝜖/2. (1)
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Algorithm 3 Framework for Handling Non-Simultaneous Batching

Input: privacy parameter 𝜖 > 0, maximum gap 𝑔 > 0, batching threshold 0 ≤ 𝛽 < 𝑔, noise

addition distributions 𝐵 and𝑈

for comment arriving at time 𝑡 do
Hold the comment until time 𝑡 + 𝛽 .
if the same reviewer batched another comment during time 𝑡 to 𝑡 + 𝛽 then

Sample 𝑑 ∼ 𝐵(𝜖/2, 𝑔 + 𝛽) and post the action at time 𝑡 + 𝛽 + 𝑑 .
else
Post the comment at time 𝑡 + 𝛽 + 𝑑 where 𝑑 ∼ 𝑈 (𝜖/2, 𝑔 + 𝛽)

end if
end for

So, if 𝐷 is an exponential distribution with rate parameter 𝜆, then ∀𝑥 ∈ [𝑔,∞)
𝜆 exp{−𝜆(𝑥 − 𝑔)}
𝜆 exp{−𝜆𝑥} = exp{𝜆𝑔} ≤ exp{𝜖/2}

Then, the expectation of 𝐵 and𝑈 is minimized by taking 𝜆 = 𝜖
2𝑔
.

If 𝐷 is a staircase distribution, it follows from the proof of optimality in [16] (Theorem 4), that

the staircase distribution with parameters (𝜖′,Δ, 𝛾) set to 𝜖′ = 𝜖/2, Δ = 𝑔 and 𝛾 = 1

1+𝑒𝜖/2 respectively
is optimal in minimizing the expectation of 𝐷 while respecting Inequality (3) completing the

proof. □

Then, by Theorem 4.3 and Theorem A.1, adding i.i.d. exponential or staircase noise plus a

constant offset is strictly sub-optimal in minimizing expected delay as zero-inflated uniform noise

can achieve lower delay at the same privacy level:

Corollary A.4. Among (𝜖, 𝑔)-OSDP mechanisms following the framework of Algorithm 1, taking
𝐵 and𝑈 to be i.i.d. exponential or staircase distributions (with constant offsets) is strictly sub-optimal
in minimizing E[𝐵] and E[𝑈 ] for any values of 𝜖 and 𝑔. In particular, using the zero-inflated uniform
mechanism with appropriate choice of 𝜂 can achieve lower expected delay for both E[𝐵] and E[𝑈 ] at
any values of privacy parameters 𝜖 and 𝑔.

B TECHNICAL DETAILS ON HANDLING NON-SIMULTANEOUS BATCHING
In this section, we give further technical detail on extending our problem formulation and algorithms

to handle non-simultaneous batching. Recall from Section 5.2, that we introduce a parameter 𝛽

representing the time threshold below which we consider two comments to have been batched,

where 𝛽 < 𝑔. We then replace the notion of neighbors in our model with the following:

DefinitionB.1 (𝑔-Neighboring Comment Arrival Sets with 𝛽-batching). For 𝛽 < 𝑔, a set of comment

arrivals 𝐴 (𝐵) is 𝑔-neighboring with 𝛽-batching to set 𝐴, if 𝐴 (𝐵) can be obtained from 𝐴 by batching

together a pair of comments that arrive separately within 𝑔 time units of one another in 𝐴, moving

the later comment to within 𝛽 of the earlier comment. Specifically, ∃(𝑐, 𝑡, 𝑝, 𝑟 ), (𝑐′, 𝑡 ′, 𝑝′, 𝑟 ) ∈ 𝐴 such

that 𝑝 ≠ 𝑝′, 0 ≤ 𝑡 ′ − 𝑡 ≤ 𝑔 and 𝐴 (𝐵) = 𝐴 \ {𝑐′} ∪ {(𝑐′, 𝑡 ′′, 𝑝′, 𝑟 )} where 0 ≤ |𝑡 ′′ − 𝑡 | ≤ 𝛽 .

We define privacy the same as in Definition 3.2, but with this modified notion of 𝑔-neighboring

with 𝛽-batching.

Then, we can guarantee privacy using this new notion of neighbors by holding comments for

a period of 𝛽 time units to decide whether they are batched or not and then adding noise drawn

from (𝜖/2, 𝑔 + 𝛽)-indistinguishable distributions as detailed in Algorithm 3.
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C PROOFS
In this section we present proofs of results that were claimed but not proven in the main text.

Throughout we will use the following notation to denote element-wise addition and subtraction

for a set: for any 𝑆 ⊆ R, 𝑡 ∈ R, we define 𝑆 − 𝑡 := {𝑠 − 𝑡 |𝑠 ∈ 𝑆}.

C.1 Proof of Theorem 4.2 (Privacy of Random Delay Mechanisms with
Indistinguishable Noise-Addition Distributions)

First, we prove a general necessary and sufficient condition to guarantee (𝜖, 𝑔)-OSDP when a

mechanism adds independent noise from distributions 𝐵 and𝑈 to batched and unbatched comments

respectively.

Lemma C.1. LetM be any mechanism that adds independent random delay to comments with
delay drawn from distribution 𝐵 for batched comments and𝑈 for unbatched comments. Then,M is
(𝜖, 𝑔)-OSDP if and only if ∀𝑆, 𝑆 ′ ∈ R and ∀𝑡0 ∈ [0, 𝑔] it holds that

Pr[𝐵 ∈ 𝑆]Pr[𝐵 ∈ 𝑆 ′] ≤ 𝑒𝜖Pr[𝑈 ∈ 𝑆]Pr[𝑈 ∈ 𝑆 ′ − 𝑡0] .

Proof. First, letM be any (𝜖, 𝑔)-OSDP mechanism adding independent random delay to com-

ments with delay drawn from distributions 𝐵 and𝑈 . Suppose for the sake of contradiction that there

exists some 𝑆, 𝑆 ′ ∈ R and 𝑡0 ∈ [0, 𝑔] such that Pr[𝐵 ∈ 𝑆]Pr[𝐵 ∈ 𝑆 ′] > 𝑒𝜖Pr[𝑈 ∈ 𝑆]Pr[𝑈 ∈ 𝑆 ′ − 𝑡0].
Let 𝐴 and 𝐴 (𝐵) be 𝑔-neighboring inputs differing in the arrival time of a single comment. In 𝐴 (𝐵) , a
pair of comments 𝑐 and 𝑐′ arrive in a batch at time 0. In𝐴, comment 𝑐 arrives unbatched at time 0 and

comment 𝑐′ arrives unbatched at time 𝑡0. All other comments arrive at the same times in𝐴 and𝐴 (𝐵) .
Let𝑂 denote the set of possible outputs where 𝑐 is posted at a time in 𝑆 and 𝑐′ is posted at a time in

𝑆 ′ and all other comments are posted at any time in R. Then, since delay is added independently to

each comment: Pr[M(𝐴 (𝐵) ) ∈ 𝑂] = Pr[𝐵 ∈ 𝑆]Pr[𝐵 ∈ 𝑆 ′] and Pr[M(𝐴) ∈ 𝑂] = Pr[𝑈 ∈ 𝑆]Pr[𝑈 ∈
𝑆 ′ − 𝑡0]. However, by the initial assumption Pr[𝐵 ∈ 𝑆]Pr[𝐵 ∈ 𝑆 ′] > 𝑒𝜖Pr[𝑈 ∈ 𝑆]Pr[𝑈 ∈ 𝑆 ′ − 𝑡0]
contradicting the (𝜖, 𝑔)-OSDP ofM.

Now, we prove the other direction. LetM be any mechanism adding independent random delay

to comments with delay drawn from distributions 𝐵 and𝑈 such that ∀𝑆, 𝑆 ′ ∈ R and ∀𝑡0 ∈ [0, 𝑔] it
holds that

Pr[𝐵 ∈ 𝑆]Pr[𝐵 ∈ 𝑆 ′] ≤ 𝑒𝜖Pr[𝑈 ∈ 𝑆]Pr[𝑈 ∈ 𝑆 ′ − 𝑡0] . (2)

Note that taking 𝑆 = R, Pr[𝐵 ∈ 𝑆] = Pr[𝑈 ∈ 𝑆] = 1 so it must hold that ∀𝑆 ′ ∈ R, 𝑡0 ∈ [0, 𝑔]
Pr[𝐵 ∈ 𝑆 ′] ≤ 𝑒𝜖Pr[𝑈 ∈ 𝑆 ′ − 𝑡0] . (3)

Let 𝐴 and 𝐴 (𝐵) be any 𝑔-adjacent comment arrival sets. Let 𝑐, 𝑐′ denote the pair of comments

that arrive in a batch together in 𝐴 (𝐵) but do not arrive in a batch together in 𝐴. In 𝐴, the two

comments both arrive at time 𝑡 , while in 𝐴 (𝐵) comment 𝑐 arrives at time 𝑡 and comment 𝑐′ arrives
at time 𝑡 + 𝑡0 with 𝑡0 ∈ [0, 𝑔] by the definition of 𝑔-adjacency. All other comments arrive at the

same time in 𝐴 and 𝐴 (𝐵) . Let 𝑜 and 𝑜 ′ denote the randomized times at which the mechanismM
releases comments 𝑐 and 𝑐′ respectively.
Let 𝑂 be any set of possible outputs of the mechanism during time horizon 𝑇 and let 𝑆 denote

the values of 𝑜 in 𝑂 and 𝑆 ′ the values of 𝑜 ′ in 𝑆 ′. Then, becauseM adds noise independently to

each comment and all comments other than 𝑐 and 𝑐′ are equivalent in 𝐴 and 𝐴 (𝐵) , the probabilities
factor as

Pr[M(𝐴 (𝐵) ) ∈ 𝑂] = 𝑘Pr[𝑜 ∈ 𝑆 ;𝐴 (𝐵) ]Pr[𝑜 ′ ∈ 𝑆 ′;𝐴 (𝐵) ]
and Pr[M(𝐴) ∈ 𝑂] = 𝑘Pr[𝑜 ∈ 𝑆 ;𝐴 (𝐵) ]Pr[𝑜 ′ ∈ 𝑆 ′;𝐴 (𝐵) ]
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where 𝑘 captures the probability that all comments other than 𝑆 and 𝑆 ′ are posted at post times in

the set of outputs 𝑂 .

Consider two cases for the size of the batch in which 𝑐 and 𝑐′ arrive in 𝐴 (𝐵) . First, suppose the
batch has 2 comments. Then, on input 𝐴, both comments are unbatched, so for some 𝑡0 ∈ [0, 𝑔]
and 𝑑𝑈 , 𝑑

′
𝑈

iid∼ 𝑈 : 𝑜 = 𝑡 + 𝑑𝑈 and 𝑜 ′ = 𝑡 + 𝑡0 + 𝑑 ′𝑈 . On input 𝐴 (𝐵) , 𝑜 = 𝑡 + 𝑑𝐵 and 𝑜 ′ = 𝑡 + 𝑑 ′
𝐵
where

𝑑𝐵, 𝑑
′
𝐵

iid∼ 𝐵. Therefore,

Pr[M(𝐴 (𝐵) ) ∈ 𝑂] = 𝑘Pr[𝑡 + 𝑑𝐵 ∈ 𝑆]Pr[𝑡 + 𝑑 ′𝐵 ∈ 𝑆 ′] = 𝑘Pr[𝐵 ∈ 𝑆 − 𝑡]Pr[𝐵 ∈ 𝑆 ′ − 𝑡]
and Pr[M(𝐴) ∈ 𝑂] = 𝑘Pr[𝑡 + 𝑑𝑈 ∈ 𝑆]Pr[𝑡 + 𝑡0 + 𝑑 ′𝑈 ∈ 𝑆 ′] = 𝑘Pr[𝑈 ∈ 𝑆 − 𝑡]Pr[𝑈 ∈ 𝑆 ′ − 𝑡 − 𝑡0] .

So, by Inequality (1) we have Pr[M(𝐴 (𝐵) ) ∈ 𝑂] ≤ 𝑒𝜖Pr[M(𝐴) ∈ 𝑂]. In the case where the batch

containing 𝑐 and 𝑐′ has only two comments, the probability of the output on input 𝐴 (𝐵) remains

the same, but on 𝐴, 𝑜 = 𝑡 + 𝑑𝐵 , since comment 𝑐 is still treated as batched, so Pr[M(𝐴) ∈ 𝑂] =
𝑘Pr[𝐵 ∈ 𝑆 − 𝑡]Pr[𝑈 ∈ 𝑆 ′ − 𝑡 − 𝑡0] and by Inequality (2), Pr[M(𝐴 (𝐵) ) ∈ 𝑂] ≤ 𝑒𝜖Pr[M(𝐴) ∈ 𝑂] so
M is (𝜖, 𝑔)-OSDP. □

LetM be any mechanism adding independent delay from 𝐵 and𝑈 to batched and unbatched

comments respectively, where 𝐵 and𝑈 are (𝜖/2, 𝑔)-one-sided indistinguishable distributions. Con-

sider any 𝑆, 𝑆 ′ ∈ R and 𝑡0 ∈ [0, 𝑔]. Then, by indistinguishability Pr[𝐵 ∈ 𝑆] ≤ 𝑒𝜖/2Pr[𝑈 ∈ 𝑆] and
Pr[𝐵 ∈ 𝑆 ′] ≤ 𝑒𝜖/2Pr[𝑈 ∈ 𝑆 − 𝑡0], so Pr[𝐵 ∈ 𝑆]Pr[𝐵 ∈ 𝑆 ′] ≤ 𝑒𝜖Pr[𝑈 ∈ 𝑆]Pr[𝑈 ∈ 𝑆 ′ − 𝑡0]. Applying
Lemma C.1 we conclude thatM is (𝜖, 𝑔)-OSDP completing the proof.

C.2 Proof of Theorem 4.3 (Privacy-preserving distributions)
First, note that by the definition of one-sided indistinguishability (Definition 4.1), if 𝐵 and 𝑈 have

probability density functions𝑏 and𝑢 respectively then𝐵 and𝑈 are (𝜖, 𝑔)-one-sided indistinguishable
if and only if

𝑏 (𝑡 )
𝑢 (𝑡−𝑡0 ) ≤ 𝑒

𝜖 ∀𝑡 ≥ 0, 𝑡0 ∈ [0, 𝑔] for which 𝑏 (𝑡) > 0. So,

(1) Exponential: for any 𝑡 < 𝑔, 𝑏 (𝑡) = 0 while for any 𝑡 ≥ 𝑔, 𝑡0 ∈ [0, 𝑔] it holds that 𝑏 (𝑡 )
𝑢 (𝑡−𝑡0 ) =

exp{−𝜖 (𝑡−𝑔)/𝑔}
exp{−𝜖 (𝑡−𝑡0 )/𝑔) } ≤

exp{−𝜖 (𝑡−𝑔)/𝑔}
exp{−𝜖𝑡/𝑔) } = 𝑒𝜖 .

(2) Staircase: by indistinguishability of the staircase distribution proven in [16].

(3) Uniform: for any 𝑡 ∈ [𝑔, 1

1−𝑒−𝜖 𝑔] , 𝑡0 ∈ [0, 𝑔] we have that
𝑏 (𝑡 )

𝑢 (𝑡−𝑡0 ) =
(1−𝑒−𝜖 )/(𝑒−𝜖𝑔)
(1−𝑒−𝜖 )/𝑔 = 𝑒𝜖 and

𝑏 (𝑡) = 0 for all other values of 𝑡 so 𝑏 (𝑡) = 0 ≤ 𝑒𝜖𝑢 (𝑡 − 𝑡0) for all other values of 𝑡 .
(4) Zero-inflated uniform: for any closed interval [𝑎, 𝑏] ⊂ [0, 𝑔) or [𝑎, 𝑏] ⊂ [ 𝜂

𝜂−𝑒−𝜖 𝑔,∞), we
have that Pr[𝐵 ∈ 𝑆] = 0. For any interval [𝑎, 𝑏] ⊆ [𝑔, 𝜂

𝜂−𝑒−𝜖 𝑔], we have that Pr[𝐵 ∈ [𝑎, 𝑏]] =
(𝑏 − 𝑎) 𝑝−𝑒

−𝜖

𝑒−𝜖𝑔 while for any 𝑡0 ∈ [0, 𝑔] we have that Pr[𝑈 ∈ [𝑎 − 𝑡0, 𝑏 − 𝑡0]] ≥ (𝑏 − 𝑎) 𝑝−𝑒
−𝜖

𝑔
so

the ratio
Pr[𝐵∈𝑆 ]

Pr[𝑈 ∈𝑆−𝑡0 ] is bounded by 𝑒𝜖 for any measurable set 𝑆 .

C.3 Proof of Theorem 4.4 (Pareto frontier)
The proof will proceed in three parts. First, in Section C.3.1 we argue that we can restrict attention

to distributions 𝐵 and 𝑈 such that 𝐵 and 𝑈 are (𝜖/2, 𝑔)-one-sided indistinguishable. Second, in

Section C.3.2, we prove that among (𝜖/2, 𝑔)-one-sided indistinguishable distributions any Pareto

optimal pair of distributions must be zero-inflated uniform distributions. Finally, in Section C.3.3

we derive the optimal choice of parameters of the zero-inflated uniform distribution as a function

of privacy parameters 𝜖, 𝑔 and choice of weighted utility function𝑤E[𝐵] + (1 −𝑤)E[𝑈 ].
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C.3.1 Restricting attention to (𝜖/2, 𝑔)-one-sided indistinguishable distributions. We being by arguing

that we can restrict attention to finding optimal noise addition distributions 𝐵,𝑈 such that 𝐵

and 𝑈 are (𝜖/2, 𝑔)-one-sided indistinguishable distributions (Definition 4.1) and then use these

distributions within the framework of Algorithm 1 to design an optimal mechanism.

Lemma C.2. LetM be any valid (𝜖, 𝑔)-OSDP comment posting mechanism that adds independent
noise drawn from distributions 𝐵 and𝑈 to batched and unbatched comments respectively. Then, (𝐵,𝑈 )
must be (𝜖, 𝑔)-one-sided indistinguishable.

Proof. By Lemma C.1, in order for privacy to hold for a mechanism that adds independent noise

drawn from distributions 𝐵 and𝑈 respectively, it must be that ∀𝑆, 𝑆 ′ ⊆ R such that Pr[𝐵 ∈ 𝑆] > 0

and Pr[𝐵 ∈ 𝑆 ′] > 0 and ∀𝑡0 ∈ [0, 𝑔]:
Pr[𝐵 ∈ 𝑆]Pr[𝐵 ∈ 𝑆 ′]

Pr[𝑈 ∈ 𝑆]Pr[𝑈 ∈ 𝑆 ′ − 𝑡0]
≤ 𝑒𝜖 .

Then, taking 𝑆 = R, Pr[𝐵∈𝑆 ]
Pr[𝑈 ∈𝑆 ] = 1, so

Pr[𝐵′∈𝑆 ′ ]
Pr[𝑈 ′∈𝑆 ′−𝑡0 ] ≤ 𝑒

𝜖 ∀𝑆 ′ ⊆ R, 𝑡0 ∈ [0, 𝑔]. □

Note that Algorithm 1 (of which optimal Algorithm 2 is an instance) adds noise from (𝜖/2, 𝑔)-
indistinguishable distributions, which is a stronger condition than requiring (𝜖, 𝑔)-indistinguishable
distributions.Wewill prove below (in LemmaC.10) that for any Pareto optimal (𝜖, 𝑔)-indistinguishable
distributions (𝐵,𝑈 ), 𝑈 must be monotonically non-increasing above 0. It follows that the distribu-

tions must be (𝜖/2, 𝑔)-indistinguishable in order for Algorithm 1 to be (𝜖, 𝑔)-OSDP:

Lemma C.3. LetM be any valid (𝜖, 𝑔)-OSDP comment posting mechanism that adds independent
noise drawn from distributions 𝐵 and 𝑈 to batched and unbatched comments respectively where 𝑈
is monotonically non-increasing (above 0). Then, (𝐵,𝑈 ) must be (𝜖/2, 𝑔)-one-sided indistinguishable
(Definition 4.1).

Proof. By Lemma C.1, it must be that ∀𝑆, 𝑆 ′ ⊆ R such that Pr[𝐵 ∈ 𝑆] > 0 and Pr[𝐵 ∈ 𝑆 ′] > 0

and ∀𝑡0 ∈ [0, 𝑔]:
Pr[𝐵 ∈ 𝑆]Pr[𝐵 ∈ 𝑆 ′]

Pr[𝑈 ∈ 𝑆]Pr[𝑈 ∈ 𝑆 ′ − 𝑡0]
≤ 𝑒𝜖 .

Taking 𝑆 = 𝑆 ′ and 𝑡0 = 0 gives
Pr[𝐵∈𝑆 ]
Pr[𝑈 ∈𝑆 ] ≤ 𝑒𝜖/2 ∀𝑆 ⊆ R. Since 𝑈 is non-increasing, Pr[𝑈 ∈

𝑆 − 𝑡0] ≥ Pr[𝑈 ∈ 𝑆] for 𝑡0 ≥ 0, so
Pr[𝐵∈𝑆 ]

Pr[𝑈 ∈𝑆−𝑡0 ] ≤ 𝑒
𝜖/2

as well and 𝐵 and 𝑈 are (𝜖/2, 𝑔)-one-sided
indistinguishable. □

C.3.2 Pareto optimal distributions. The main portion of this proof characterizes Pareto optimal

distributions (𝐵,𝑈 ) such that 𝐵 and𝑈 are (𝜖, 𝑔)-one-sided indistinguishable. From Section C.3.1,

we can then choose (𝜖/2, 𝑔)-indistinguishable distributions for use in Algorithm 1 to obtain an

optimal mechanism.

Let P𝜖,𝑔 denote the set of all pairs of (𝜖, 𝑔)-one-sided indistinguishable distributions (Defini-

tion 4.1). To derive the Pareto frontier of P𝜖,𝑔, we follow the high-level approach of [16], which

derives the optimal two-sided differential privacy noise-addition distribution. The proof proceeds

by showing that if 𝐵 and 𝑈 are (𝜖, 𝑔)-one-sided indistinguishable distributions added to batched

and unbatched comments respectively, then:

(1) 𝐵 and𝑈 can be approximated arbitrarily well by a random variable defined by an appropriately

chosen piece-wise constant probability density function.

(2) We derive various properties of Pareto optimal 𝐵 and 𝑈 by showing that we can shift

probability mass around in the piece-wise constant approximations to 𝐵 and 𝑈 , such that we
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decrease expected delay while maintaining indistinguishability. In particular, we show that

𝐵 must place 0 probability mass below 𝑔 and any Pareto optimal 𝐵 must be monotonically

non-increasing above 𝑔. We show that𝑈 is uniquely defined by 𝐵 to put as little probability

mass at each point as possible to maintain indistinguishability with 𝐵 and put any excess

probability mass at 0. We then prove that these properties imply that the zero-inflated uniform

distribution is Pareto optimal.

For a random variable 𝑋 and for any positive integer 𝑖 > 0, define a random variable 𝑋𝑖 that

approximates 𝑋 where 𝑋𝑖 has probability density function 𝑓
(𝑋 )
𝑖
(·) with constant density over

intervals of length
𝑔

𝑖
:

𝑓
(𝑋 )
𝑖
(𝑡) =


Pr

(
𝑋 ∈

[
𝑘
𝑔

𝑖
,(𝑘+1) 𝑔

𝑖

))
𝑔

𝑖

if 𝑡 ∈ [𝑘 𝑔
𝑖
, (𝑘 + 1) 𝑔

𝑖
) for 𝑘 ∈ N

0 if 𝑡 < 0.

(4)

Given (𝐵,𝑈 ) ∈ P𝜖,𝑔, for any positive integer 𝑖 > 0 define (𝐵𝑖 ,𝑈𝑖 ) to be the random variables with

probability density functions 𝑓
(𝐵)
𝑖
(·) and 𝑓 (𝑈 )

𝑖
(·) taken to be the step-function approximations

to 𝐵 and𝑈 defined in Equation (3). Since the probability density function of each distribution is

piece-wise constant, we define a “probability density sequence” of each distribution ({𝑏 (𝑖 )
𝑘
}∞
𝑘=0

and

{𝑢 (𝑖 )
𝑘
}∞
𝑘=0

respectively) to be the sequence of values of the pdf for each constant interval of length

𝑔/𝑖 . For instance, 𝑏 (𝑖 )
0

corresponds to the constant probability density for values in range 0 to 𝑔/𝑖
while 𝑏

(𝑖 )
𝑖

corresponds to the probability density over range 𝑔 to (𝑔 + 1)/𝑖 .

Lemma C.4 (Piecewise Constant Approximation). For any 𝐵,𝑈 ∈ P𝜖,𝛾 and 𝑖 ∈ N the following
properties hold for piece-wise constant approximations (𝐵𝑖 ,𝑈𝑖 ) to (𝐵,𝑈 ) with probability density
functions 𝑓 (𝐵)

𝑖
and 𝑓 (𝑈 )

𝑖
respectively:

(i) (Valid Probability Distributions) 𝑓 (𝐵)
𝑖

and 𝑓 (𝑈 )
𝑖

are non-negative functions that integrate to 1.
(ii) (Indistinguishability) (𝐵𝑖 ,𝑈𝑖 ) ∈ P𝜖,𝛾 .
(iii) (Convergence of Expected Value) lim𝑖→∞ (E[𝐵𝑖 ],E[𝑈𝑖 ]) = (E[𝐵],E[𝑈 ]).

Proof. We prove each claim separately:

(i) For any random variable 𝑋 with approximation 𝑋𝑖 we have∫ ∞

0

𝑓
(𝑋 )
𝑖
(𝑡)𝑑𝑡 =

∞∑︁
𝑘=0

∫[
𝑘𝑔

𝑖
,
(𝑘+1)𝑔
𝑖

) 𝑓 (𝑋 )
𝑖
(𝑡)𝑑𝑡 =

∞∑︁
𝑘=0

Pr(𝑋 ∈ [ 𝑘𝑔
𝑖
,
(𝑘+1)𝑔
𝑖
)) = 1.

(ii) For any ℓ ∈ {0, . . . ,min(𝑖, 𝑘)}:

𝑏
(𝑖 )
𝑘

𝑢
(𝑖 )
𝑘−ℓ

=
Pr(𝐵 ∈ [𝑘𝑔/𝑖, (𝑘 + 1)𝑔/𝑖])

Pr(𝑈 ∈ [(𝑘 − ℓ)𝑔/𝑖, (𝑘 − ℓ + 1)𝑔/𝑖]) ≤ 𝑒
𝜖

by indistinguishability of 𝐵 and𝑈 and since the interval in the denominator is the same length

interval as the numerator shifted by at most 𝑔 to the left. Hence, for any 𝑡 ∈ [0,∞), 𝑡0 ∈ [0, 𝑔]:
𝐵𝑖 (𝑡 )

𝑈𝑖 (𝑡−𝑡0 ) ≤ 𝑒
𝜖
so (𝐵𝑖 ,𝑈𝑖 ) ∈ P𝜖,𝑔.

(iii) In [16] Lemma 19 in Appendix B proves that for any random variable𝑋 and approximation𝑋𝑖
defined as above, lim𝑖→∞ E[𝑋𝑖 ] = E[𝑋 ]. So, lim𝑖→∞ (E[𝐵𝑖 ],E[𝑈𝑖 ]) = (lim𝑖→∞ E[𝐵𝑖 ], lim𝑖→∞ E[𝑈𝑖 ]) =
(E[𝐵],E[𝑈 ]).

□

It follows from from parts (ii) and (iii) of Lemma C.4 that
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Corollary C.5. For any fixed [𝑤𝐵,𝑤𝑈 ] ∈ [0, 1]2 with𝑤𝐵 +𝑤𝑈 = 1:

inf

(𝐵𝑖 ,𝑈𝑖 ) ∈
⋃∞

𝑖=1 P
(𝑖 )
𝜖,𝑔

𝑤𝐵E[𝐵𝑖 ] +𝑤𝑈E[𝑈𝑖 ] = inf

(𝐵,𝑈 ) ∈P𝜖,𝑔
𝑤𝐵E[𝐵] +𝑤𝑈E[𝑈 ] .

Now, we show that deriving the Pareto frontier of P𝜖,𝑔 is equivalent to optimizing any weighted

sum of E[𝐵] and E[𝑈 ] because the feasible region is convex. Therefore, we can focus on character-

izing P (𝑖 )𝜖,𝑔 that are optimal for the weighted sum objective and take the limit as 𝑖 →∞ to derive

the entire Pareto frontier of P𝜖,𝑔.

Lemma C.6. If (𝐵,𝑈 ) is Pareto optimal, then it minimizes some weighted sum of E[𝐵] and E[𝑈 ]:
∃(𝑤𝐵,𝑤𝑈 ) ∈ [0, 1]2 with𝑤𝐵 +𝑤𝑈 = 1 such that

(𝐵,𝑈 ) ∈ argmin

(𝐵′,𝑈 ′ ) ∈P𝜖,𝑔
𝑤𝐵E[𝐵′] +𝑤𝑈E[𝑈 ′] .

Proof. We argue that the feasible region {(E[𝐵],E[𝑈 ]) | (𝐵,𝑈 ) ∈ P𝜖,𝑔} is convex. Take

(𝐵1,𝑈1), (𝐵2,𝑈2) ∈ P𝜖,𝑔 with 𝐸1 = (E[𝐵1],E[𝑈1]) and 𝐸2 = (E[𝐵2],E[𝑈2]). For any 𝑝 ∈ [0, 1]
define random variable 𝐵3 to be the random variable that samples 𝐵1 with probability 𝑝 and 𝐵2
with probability (1 − 𝑝) and define𝑈3 accordingly with respect to𝑈1,𝑈2. Then, for any measurable

set 𝑆 ⊆ R,

Pr[𝐵3 ∈ 𝑆] = 𝑝Pr[𝐵1 ∈ 𝑆]+(1−𝑝)Pr[𝐵2 ∈ 𝑆] ≤ 𝑒𝜖𝑝Pr[𝑈1 ∈ 𝑆]+(1−𝑝)𝑒𝜖Pr[𝑈2 ∈ 𝑆] = 𝑒𝜖Pr[𝑈3 ∈ 𝑆]

so (𝐵3,𝑈3) ∈ P𝜖,𝑔 and have expectations 𝑝𝐸1 + (1 − 𝑝)𝐸2. Then, we apply the fact that all points

in the Pareto frontier of a convex feasible region are solutions to a weighted sum optimization

problem (see, for instance, Boyd [6, Chapter 4.7]). □

Properties of Pareto Optimal 𝐵𝑖 ,𝑈𝑖 : Below, we establish the following properties of any Pareto

optimal (𝐵𝑖 ,𝑈𝑖 ) ∈ P (𝑖 )𝜖,𝑔 for any 𝑖 ∈ N with probability density sequences {𝑏 (𝑖 )
𝑘
}∞
𝑘=0

and {𝑢 (𝑖 )
𝑘
}∞
𝑘=0

respectively:

(1) 𝑏
(𝑖 )
𝑘

= 0 for all 𝑘 < 𝑖 , {𝑏 (𝑖 )
𝑘
} is non-increasing for all 𝑘 ≥ 𝑖 , and 𝑏 (𝑖 )

𝑘
is bounded by 𝑏

(𝑖 )
𝑘
≤ 1−𝑒−𝜖

𝑒−𝜖𝑔

for all 𝑘 .

(2) 𝑢
(𝑖 )
𝑘

is fully determined by choice of 𝑏
(𝑖 )
𝑘

, that is, 𝑢
(𝑖 )
𝑘

= 𝑒−𝜖𝑏 (𝑖 )
𝑖

for all 𝑘 ∈ [1, 𝑖), 𝑢 (𝑖 )
𝑘

= 𝑒−𝜖𝑏 (𝑖 )
𝑘

for all 𝑘 ≥ 𝑖 , and 𝑢 (𝑖 )
0

= 𝑖
𝑔
(1 − 𝑒−𝜖 − (𝑖−1)

𝑖
𝑔𝑒−𝜖𝑏 (𝑖 )

𝑖
) ≥ 1−𝑒−𝜖

𝑔
.

Lemma C.7 (Support of 𝐵). Let 𝐵 and𝑈 be any (𝜖, 𝑔)-one-sided indistinguishable distributions.
Then, Pr[𝐵 < 𝑔] = 0.

Proof. By indistinguishability
Pr(𝐵∈[0,𝑔) )
Pr(𝑈 ∈[−𝑔,0) ) ≤ 𝑒

𝜖
, but by non-negativity, Pr(𝑈 ∈ [−𝑔, 0)) = 0. So,

Pr(𝐵 ∈ [0, 𝑔)) = 0. □

Note that by definition of 𝐵𝑖 , the above lemma proves that 𝑏
(𝑖 )
𝑘

= 0 for all 𝑘 < 𝑖 , since any interval

below 𝑖 corresponds to the density of the random variable at a value below 𝑔.

Lemma C.8 (Upper bound on 𝑏). For any, (𝐵,𝑈 ) ∈ P𝜖,𝑔, if 𝐵 has probability density function 𝑏,
then:

𝑏 (𝑡) ≤ (1 − 𝑒
−𝜖 )

𝑒−𝜖𝑔
∀𝑡 ∈ [0,∞).
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Proof. Since 𝑏 (·) is non-negative and integrates to 1 it must be bounded. Take any 𝑡∗ ∈
argmax𝑡 ∈[𝑔,∞) 𝑏 (𝑡). Then,

1 =

∫ ∞

0

𝑢 (𝑡) 𝑑𝑡 (5)

=

∫ 𝑡∗−𝑔

0

𝑢 (𝑡) 𝑑𝑡 +
∫ 𝑡∗

𝑡∗−𝑔
𝑢 (𝑡) 𝑑𝑡 +

∫ ∞

𝑡∗
𝑢 (𝑡) 𝑑𝑡 (6)

≥
∫ 𝑡∗−𝑔

0

𝑒−𝜖𝑏 (𝑡 + 𝑔) 𝑑𝑡 +
∫ 𝑡∗

𝑡∗−𝑔
𝑒−𝜖𝑏 (𝑡∗) 𝑑𝑡 +

∫ ∞

𝑡∗
𝑒−𝜖𝑏 (𝑡) 𝑑𝑡 (7)

= 𝑔𝑒−𝜖𝑏 (𝑡∗) +
∫ ∞

𝑔

𝑒−𝜖𝑏 (𝑡) 𝑑𝑡 (8)

= 𝑔𝑒−𝜖𝑏 (𝑡∗) + 𝑒−𝜖 , (9)

where (3) follows from the indistinguishability definition and (1) and (5) follow since 𝐵 and𝑈 both

must integrate to 1 to be valid probability density functions. Then, max

𝑡 ∈[0,∞)
𝑏 (𝑡) = 𝑏 (𝑡∗) ≤ 1−𝑒−𝜖

𝑒−𝜖𝑔 .

□

Lemma C.9 (𝐵𝑖 determines𝑈𝑖 ). For any 𝑖 ∈ N, let (𝐵𝑖 ,𝑈𝑖 ) ∈ P (𝑖 )𝜖,𝑔 be Pareto optimal distributions
(within P (𝑖 )𝜖,𝑔 ) with probability density sequences 𝑏 (𝑖 )

0
, 𝑏
(𝑖 )
1
, . . . and 𝑢 (𝑖 )

0
, 𝑢
(𝑖 )
1
, . . . respectively. Then,

∀𝑘 ∈ Z>0 it holds that 𝑢 (𝑖 )𝑘 = max

𝑗∈[0,𝑖 ]
𝑒−𝜖𝑏 (𝑖 )

𝑘+𝑗 and 𝑢
(𝑖 )
0

= 𝑖
𝑔

(
1 −

∞∑
𝑘=1

𝑔

𝑖
𝑢
(𝑖 )
𝑘

)
.

Proof. Informally, this proof will argue that if𝑈𝑖 has any “excess” probability mass in an interval

greater than 0, we can move that probability mass to the interval at 0 and reduce the expectation

of 𝑈𝑖 . By Lemma C.4, 𝐵𝑖 and 𝑈𝑖 are (𝜖, 𝑔)-one-sided indistinguishable so ∀𝑘 ∈ Z>0 it must be

that 𝑢
(𝑖 )
𝑘
≥ max

𝑗∈[0,𝑖 ]
𝑒−𝜖𝑏 (𝑖 )

𝑘+𝑗 . Assume for the sake of contradiction that there is some value ℓ > 0

for which 𝑢
(𝑖 )
ℓ

> max

𝑗∈[0,𝑖 ]
𝑒−𝜖𝑏 (𝑖 )

ℓ+𝑗 =: 𝑀 . Then, define 𝑈 ′𝑖 to have 𝑢
′(𝑖 )
ℓ

= 𝑀 , 𝑢
′(𝑖 )
0

= 𝑢
(𝑖 )
0
+ 𝑢 (𝑖 )

ℓ
− 𝑀

and 𝑢
′(𝑖 )
𝑘

= 𝑢
(𝑖 )
𝑘

for all other values of 𝑘 . Then, 𝑈 ′𝑖 is still a valid probability distribution and is

(𝜖, 𝑔)-indistinguishable from 𝐵𝑖 , but has lower expected value than 𝑈 ′ contradicting the Pareto

optimality of (𝐵𝑖 ,𝑈𝑖 ). The value of 𝑢 (𝑖 )
0

follows by requiring that the probability densities integrate

to 1. □

Lemma C.10 ({𝑏 (𝑖 )
𝑘
} and {𝑢 (𝑖 )

𝑘
} are non-increasing). For any 𝑖 ∈ N, let (𝐵𝑖 ,𝑈𝑖 ) ∈ P (𝑖 )𝜖,𝑔 be Pareto

optimal distributions (within P (𝑖 )𝜖,𝑔 ) with probability density sequences 𝑏 (𝑖 )
0
, 𝑏
(𝑖 )
1
, . . . and 𝑢 (𝑖 )

0
, 𝑢
(𝑖 )
1
, . . .

respectively. Then, ∀𝑘 ≥ 𝑖 it must be that 𝑏 (𝑖 )
𝑘
≥ 𝑏 (𝑖 )

𝑘+1 and ∀𝑘 ≥ 0 it must be that 𝑢 (𝑖 )
𝑘
≥ 𝑢 (𝑖 )

𝑘+1.

Proof. Suppose that (𝐵𝑖 ,𝑈𝑖 ) ∈ P (𝑖 )𝜖,𝑔 are a Pareto optimal pair of distributions with density

sequences {𝑏 (𝑖 )
0
, 𝑏
(𝑖 )
1
, . . .} and {𝑢 (𝑖 )

0
, 𝑢
(𝑖 )
1
, . . .} respectively. We will construct new random variables

(𝐵′𝑖 ,𝑈 ′𝑖 ) with monotonically non-increasing density sequences {𝑏′(𝑖 )
0
, 𝑏
′(𝑖 )
1
, . . .} and {𝑢′(𝑖 )

0
, 𝑢
′(𝑖 )
1
, . . .}

and argue that E[𝐵′𝑖 ] ≤ E[𝐵] and E[𝑈 ′𝑖 ] ≤ E[𝑈𝑖 ]. We construct the new density sequences and a

permutation 𝜋 : N→ N mapping {𝑏 (𝑖 )
𝑘
} to {𝑏′(𝑖 )

𝑘
} as follows.

Pr[𝐵′𝑖 < 𝑔] = 0 by Lemma C.7, so:

𝑏
′(𝑖 )
𝑘

= 𝑏
(𝑖 )
𝑘

= 0, ∀𝑘 ∈ Z, 0 ≤ 𝑘 ≤ (𝑖 − 1)
𝜋 (𝑘) = 𝑘, ∀𝑘 ∈ Z, 0 ≤ 𝑘 ≤ (𝑖 − 1).
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Then, we sort {𝑏 (𝑖 )
𝑘
} by moving the interval with highest probability mass in {𝑏 (𝑖 )

𝑘
} (breaking

ties to the left) as far to the left as possible in {𝑏′(𝑖 )
𝑘
}:

∀𝑚 ∈ Z,𝑚 ≥ 𝑖 :

𝐼𝑚 = argmax

𝑘∈N\{𝜋 ( 𝑗 ) | 𝑗<𝑚}
𝑏
(𝑖 )
𝑘

𝜋 (𝑚) = min

𝑛∈𝐼𝑚
𝑛

𝑏
′(𝑖 )
𝑚 = 𝑏

(𝑖 )
𝜋 (𝑚) .

Finally, by Lemma C.9, {𝑢′
𝑘
} must be determined by {𝑏′

𝑘
} in order to be Pareto optimal, so take:

𝑢
′(𝑖 )
𝑘

=


𝑒−𝜖𝑏′(𝑖 )

𝑘
𝑘 ≥ 𝑖

𝑒−𝜖𝑏′(𝑖 )
𝑖

1 ≤ 𝑘 ≤ (𝑖 − 1)
𝑖
𝑔
(1 − 𝑒−𝜖 ) − (𝑖 − 1)𝑒−𝜖𝑏′(𝑖 )

𝑖
𝑘 = 0

First, we argue that (𝐵′𝑖 ,𝑈 ′𝑖 ) ∈ P
(𝑖 )
𝜖,𝑔 . {𝑏′𝑘 } defines a valid probability distribution since {𝑏′(𝑖 )

𝑘
}

is a permutation of {𝑏 (𝑖 )
𝑘
} so the distribution integrates to 1. Then, by construction, {𝑢′(𝑖 )

𝑘
} is

also a valid probability density sequence and integrates to 1. By Lemma C.8, 𝑏
(𝑖 )
𝜋 (𝑖 ) ≤

1−𝑒−𝜖
𝑒−𝜖𝑔 so

𝑢
′(𝑖 )
0
≥ 𝑒−𝜖𝑏 (𝑖 )

𝜋 (𝑖 ) = 𝑒−𝜖𝑏′(𝑖 )
𝑖

. Hence, the two distributions satisfy the (𝑔, 𝜖)-indistinguishability
constraint by construction since 𝑏′ is non-increasing above interval 𝑖 , and 𝑢′(𝑖 )

𝑘
≥ 𝑒−𝜖𝑏′(𝑖 )

𝑖
∀𝑘 ≤ 𝑖

and 𝑢
′(𝑖 )
𝑘

= 𝑒−𝜖𝑏′(𝑖 )
𝑘
∀𝑘 ≥ 𝑖 .

Now, we argue that E[𝐵′𝑖 ] ≤ E[𝐵𝑖 ] since {𝑏
′(𝑖 )
𝑘
} is a permutation of {𝑏 (𝑖 )

𝑘
} that shifts probability

mass to the left. By construction ∀𝑡 ∈ [0,∞), it holds that Pr[𝐵′𝑖 ≤ 𝑡] ≥ Pr[𝐵𝑖 ≤ 𝑡]. So,

E[𝐵′𝑖 ] =
∫ ∞

0

1 − Pr[𝐵′𝑖 ≤ 𝑡] 𝑑𝑡 ≤
∫ ∞

0

1 − Pr[𝐵𝑖 ≤ 𝑡] 𝑑𝑡 = E[𝐵𝑖 ] .

Finally, we want to show that E[𝑈 ′𝑖 ] ≤ E[𝑈𝑖 ]. We will analyze the contribution to the expectation

coming from intervals below 𝑖 and above 𝑖 separately.

Note that the expectation E[𝑈𝑖 ] =
∑∞
𝑘=0

(
𝑢
(𝑖 )
𝑘

𝑔

𝑖

) (
2𝑘+1
2

𝑔

𝑖

)
so we can split the difference between

the expectations as follows:

2

(
𝑖
𝑔

)
2

(E[𝑈𝑖 ] − E[𝑈 ′𝑖 ]) =
∞∑︁
𝑘=𝑖

(2𝑘 + 1) (𝑢 (𝑖 )
𝑘
− 𝑢′(𝑖 )

𝑘
) +

𝑖−1∑︁
𝑘=0

(2𝑘 + 1) (𝑢 (𝑖 )
𝑘
− 𝑢′(𝑖 )

𝑘
).

Now, we state the following two observations, which we will apply repeatedly in the remainder of

the proof:

(i) ∀𝑘 ≥ 𝑖 : 𝑢 (𝑖 )
𝜋 (𝑘 ) ≥ 𝑒

−𝜖𝑏 (𝑖 )
𝜋 (𝑘 ) = 𝑢

′(𝑖 )
𝑘

, by indistinguishability of 𝐵 and𝑈 and the definition of𝑈 ′.

(ii) 𝜋 (·) is a bijection on [𝑖,∞) so ∑∞
𝑘=𝑖
𝑢
(𝑖 )
𝑘

=
∑∞
𝑘=𝑖
𝑢
(𝑖 )
𝜋 (𝑘 ) .

By properties (i) and (ii) above, there is “excess probability density” above interval 𝑖 in𝑈 compared

to𝑈 ′ of

𝑀 =

∞∑︁
𝑘=𝑖

𝑢
(𝑖 )
𝑘
− 𝑢′(𝑖 )

𝑘
=

∞∑︁
𝑘=𝑖

𝑢
(𝑖 )
𝜋 (𝑘 ) − 𝑢

′(𝑖 )
𝑘
≥ 0.
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Since

∑∞
0
𝑢
′(𝑖 )
𝑘

=
∑∞

0
𝑢
(𝑖 )
𝑘

, by symmetry there is excess probability mass of𝑀 below 𝑖 in𝑈 ′ compared

to𝑈 :

𝑀 =

𝑖−1∑︁
𝑘=0

𝑢
′(𝑖 )
𝑘
− 𝑢 (𝑖 )

𝑘
.

Since {𝑢′(𝑖 )
𝑘
}∞
𝑘=1

is non-increasing and by properties (i) and (ii) above the {𝑢′(𝑖 )
𝑘
} are a permutation

of {𝑢 (𝑖 )
𝑘
}with some values increased, the difference in expectations between𝑈 and𝑈 ′ above interval

𝑖 is minimized by putting all of the excess probability mass𝑀 in interval 𝑖 , so:

∞∑︁
𝑘=𝑖

(2𝑘 + 1) (𝑢 (𝑖 )
𝑘
− 𝑢′(𝑖 )

𝑘
) ≥ 𝑀 (2𝑖 + 1).

To analyze the difference in expectations coming from intervals in 𝑘 ∈ [0, 𝑖 − 1], we first argue
that𝑈 ′ puts more probability mass on 0 than𝑈 , that is 𝑢

′(𝑖 )
0
≥ 𝑢 (𝑖 )

0
In particular, we will argue that∑∞

𝑘=1
𝑢
′(𝑖 )
𝑘
≤ ∑∞

𝑘=1
𝑢
(𝑖 )
𝑘

. By indistinguishability, ∀𝑘 ≥ 1 𝑢
(𝑖 )
𝑘
≥ 𝑒−𝜖𝑏 (𝑖 )

𝑘+𝑖 and 𝑢
(𝑖 )
𝑘
≥ 𝑒−𝜖𝑏 (𝑖 )

𝑘
so

∞∑︁
𝑘=1

𝑢
(𝑖 )
𝑘
≥
𝜋 (𝑖 )−𝑖−1∑︁
𝑘=1

𝑒−𝜖𝑏 (𝑖 )
𝑘+𝑖 +

𝜋 (𝑖 )−1∑︁
𝑘=𝜋 (𝑖 )−𝑖

𝑒−𝜖𝑏 (𝑖 )
𝑖
+

∞∑︁
𝑘=𝜋 (𝑖 )

𝑒−𝜖𝑏 (𝑖 )
𝑘

=

𝜋 (𝑖 )−1∑︁
𝑘=𝑖

𝑒−𝜖𝑏 (𝑖 )
𝑘
+

∞∑︁
𝑘=𝜋 (𝑖 )

𝑒−𝜖𝑏 (𝑖 )
𝑘
+ (𝑖 − 1)𝑒−𝜖𝐵𝑖 =

∞∑︁
𝑘=1

𝑢
′(𝑖 )
𝑘

.

Next, we argue that 𝑢
(𝑖 )
𝑘

is non-decreasing on [1, 𝑖 − 1]. By Lemma C.9, for ∀𝑘 ∈ Z, (𝑖 − 1) ≥
𝑘 ≥ 1 : 𝑢

(𝑖 )
𝑘

= max

𝑗∈[𝑖,𝑖+𝑘 ]
𝑒−𝜖𝑏 (𝑖 )

𝑗
≤ max

𝑗∈[𝑖,𝑖+𝑘+1]
𝑒−𝜖𝑏 (𝑖 )

𝑗
= 𝑢
(𝑖 )
𝑘+1. Therefore, putting the excess probability

mass𝑀 in𝑈 ′ compared to𝑈 as far to the right as possible gives

𝑖−1∑︁
𝑘=0

(2𝑘 + 1)𝑢 (𝑖 )
𝑘
≥ 𝑢′(𝑖 )

0
+
𝑖−1∑︁
𝑘=0

(
(2𝑘 + 1)

(
𝑢
′(𝑖 )
𝑘
− 𝑀

𝑖 − 1

))
=

(
𝑖−1∑︁
𝑘=0

(2𝑘 + 1)𝑢′(𝑖 )
𝑘

)
−𝑀 (𝑖 + 1),

so

𝑖−1∑︁
𝑘=0

(2𝑘 + 1) (𝑢′(𝑖 )
𝑘
− 𝑢 (𝑖 )

𝑘
) ≤ 𝑀 (𝑖 + 1).

Thus, we conclude that

2

(
𝑖
𝑔

)
2

(E[𝑈 ] − E[𝑈 ′]) =
∞∑︁
𝑘=𝑖

(2𝑘 + 1) (𝑢 (𝑖 )
𝑘
− 𝑢′(𝑖 )

𝑘
) +

𝑖−1∑︁
𝑘=0

(2𝑘 + 1) (𝑢 (𝑖 )
𝑘
− 𝑢′(𝑖 )

𝑘
)

≥ 𝑀 (2𝑖 + 1) −𝑀 (𝑖 + 1)
≥ 𝑀𝑖 ≥ 0,

giving E[𝑈 ] ≥ E[𝑈 ′]. □

Pareto Frontier of 𝐵𝑖 ,𝑈𝑖 : Now, we use the properties of Pareto optimal 𝐵𝑖 ,𝑈𝑖 to give an exact

characterization of the probability density functions of Pareto optimal 𝐵𝑖 ,𝑈𝑖 :

Lemma C.11. For any 𝑖 ∈ N, let 𝑆𝐿 = {(𝐵𝑖 ,𝑈𝑖 ) ∈ P (𝑖 )𝜖,𝑔 : 𝑏
(𝑖 )
𝑖

= 𝐿 and (𝐵𝑖 ,𝑈𝑖 ) are Pareto optimal}
be all distributions in the Pareto frontier of P (𝑖 )𝜖,𝑔 where 𝑏 (𝑖 )

𝑖
is fixed to be some value 𝐿 ≤ 1−𝑒−𝜖

𝑒−𝜖𝑔 . Then,
either 𝑆𝐿 = ∅ or 𝑆𝐿 contains a single pair of distributions where letting 𝑛 = ⌊ 𝑖

𝑔
· 1
𝐿
⌋:
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(i) 𝑏 (𝑖 )
𝑘

= 𝐿 for 𝑘 ∈ [𝑖, 𝑛], 𝑏 (𝑖 )
𝑛+1 =

𝑖
𝑔
(1 − 𝑔

𝑖
𝑛𝐿), and 𝑏 (𝑖 )

𝑘
= 0 for all other values of 𝑘 .

(ii) 𝑢 (𝑖 )
𝑘

= 𝑒−𝜖𝐿 for 𝑘 ∈ [1, 𝑛], 𝑢 (𝑖 )
𝑛+1 = 𝑒

−𝜖𝑏 (𝑖 )
𝑛+1, 𝑢

(𝑖 )
0

= 𝑖
𝑔
(1 − 𝑒−𝜖 − (𝑖−1)

𝑖
𝑔𝑒−𝜖𝐿) and 𝑢 (𝑖 )

𝑘
= 0 for all

other 𝑘 .
so 𝐵𝑖 is a “nearly uniform” distribution above 𝑔 with any excess probability mass in the final constant
interval, and 𝑈𝑖 has the same probability mass as 𝐵𝑖 discounted by 𝑒−𝜖 except in a small band around
0 where it may have inflated probability mass.

Proof. First, note that fixing 𝑏
(𝑖 )
𝑖

= 𝐿, by Lemma C.9 we have that 𝑢
(𝑖 )
𝑘

is fully determined by 𝐿

for 𝑘 ∈ [0, 𝑖). Therefore, for any Pareto optimal𝑈𝑖 , 𝐵𝑖 with 𝑏
(𝑖 )
𝑖

= 𝐿:

E[𝑈𝑖 ] = Pr[𝑈𝑖 < 𝑔]E[𝑈𝑖 |𝑈𝑖 < 𝑔] + Pr[𝑈𝑖 ≥ 𝑔]E[𝑈𝑖 |𝑈𝑖 ≥ 𝑔] = 𝐶𝐿 + (1 − 𝑒−𝜖 )E[𝐵𝑖 ],
where𝐶𝐿 is a constant determined by 𝐿. Therefore, there is a unique minimizer of E[𝑈𝑖 ] and E[𝐵𝑖 ]
over 𝑆𝐿 that is obtained by minimizing E[𝐵𝑖 ]. Since 𝐵𝑖 is monotonically non-increasing above 𝑖 ,

the distribution that minimizes its expectation puts mass equal to 𝑏
(𝑖 )
𝑖

= 𝐿 at as many intervals

as possible giving 𝑛 = ⌊ 𝑖
𝑔
1

𝐿
⌋ intervals with 𝑏 (𝑖 )

𝑘
= 𝐿 and any remaining mass needed to make

the distribution integrate to 1 in the final interval, yielding the unique optimal distributions for

(𝐵𝑖 ,𝑈𝑖 ). □

Taking limits as 𝑖 →∞ of each distribution in the set of distributions from Lemma C.11 yields

exactly the set of zero-inflated Uniform distributions in Theorem 4.4, so we conclude that any

optimizer of a weighted sum objective must come from this set of distributions and hence the

Pareto frontier consists of Zero-inflated Uniform distributions.

C.3.3 Optimal choice of parameter 𝜂. Finally, we derive the optimal choice of parameter 𝜂 given

𝜖, 𝑔 and weighting parameter𝑤 . From Theorem 4.3 the zero-inflated Uniform with parameters 𝜖, 𝑔

has expectation: E[𝐵] = 1

2
𝑔

(
𝜂 + 𝜂

𝜂−𝑒−𝜖
)
and E[𝑈 ] = 1

2
𝑔

(
𝜂2

𝜂−𝑒−𝜖
)
. Therefore, by Pareto optimality

of the zero-inflated Uniform proven in Section C.3.2, for any𝑤 ∈ [0, 1], the weighted sum of the

expectations can be optimized by choosing

𝜂∗ ∈ argmin

𝜂∈ (𝑒−𝜖 ,1]
𝑤

(
𝜂 + 𝜂

𝜂 − 𝑒−𝜖

)
+ (1 −𝑤) 𝜂2

𝜂 − 𝑒−𝜖 .

This objective is convex on (𝑒−𝜖 , 1] as it has second derivative with respect to 𝜂 of𝑤
(
1 + 1

𝜂−𝑒−𝜖
)
+

(1 −𝑤) 𝜂2

𝜂−𝑒−𝜖 > 0 for any𝑤 ∈ [0, 1] and 𝜂 ∈ (𝑒−𝜖 , 1].
The first derivative of this objective with respect to 𝜂 is

1

(𝜂−𝑒−𝜖 )2
(
𝑤 (𝑒−2𝜖 − 𝑒−𝜖 ) + 𝜂 (𝜂 − 2𝑒−𝜖 )

)
.

Note that for any 𝑤 , the derivative begins at a negative value on the interval (𝑒−𝜖 , 1] and is

increasing on this interval. Therefore, letting 𝜂 denote the value at which the first derivative is 0, we

obtain 𝜂 = 𝑒−𝜖
(
1 +

√︁
1 + 𝑒𝜖 𝑤

1−𝑤

)
. Since 𝜂 must fall in the interval (𝑒−𝜖 , 1] we take 𝜂∗ = min{1, 𝜂}

to get the optimal 𝜂 given in Algorithm 2, where 𝜂∗ is optimal since the utility function must be

decreasing on [𝑒−𝜖 , 1) in the case that 𝜂 > 1.

C.4 Proof of Theorem 4.6 (Impossibility of Two-Sided DP)
We prove the result for each of following definitions of “neighboring” separately:

(1) Add or remove a batched comment. Consider any input𝐴 where an instance of batching occurs

at some time 𝑡 . Let𝐴′ be identical to𝐴, except some comment 𝑐 that arrived in a batch at time

𝑡 does not arrive at all in 𝐴′. Then on input 𝐴′, since any valid comment posting mechanism

cannot generate fake data, for any 𝑑 > 0 and time 𝑇 = 𝑡 + 𝑑 , the mechanism outputs 𝑐 at
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time 𝑇 with probability 0. However, if the mechanism is (𝜖, 𝛿)-DP with 𝜖 < ∞, then for any

release time 𝑇 the mechanism outputs 𝑐 within time 𝑇 with probability at most 𝛿 < 1 and so

the mechanism violates the eventual release of all comments property.

(2) Move a batched comment to another arrival time where it is no longer batched. Consider any
input𝐴 with an instance of batching that occurs at some time 𝑡 . Fix any time horizon𝑇 = 𝑡 +𝑑
where 𝑑 > 0. Define 𝐴′ to be an identical set with one comment 𝑐 moved from time 𝑡 to time

𝑇 . Since a valid comment posting mechanism must delay comments and cannot generate

fake data, the mechanism outputs comment 𝑐 at time 𝑇 or later on input 𝐴′ with probability

1. However, if the mechanism is (𝜖, 𝛿)-DP with 𝜖 < ∞ then it must delay comment 𝑐 until

at least time 𝑇 = 𝑡 + 𝑑 with probability at least 1 − 𝛿 . Taking 𝑑 to be arbitrarily large, the

mechanism violates the eventual release of all comments property for any 𝛿 < 1.

(3) Move a batched comment by at most 𝑔 units of time to another arrival time where it is no longer
batched. Let 𝐴 (1) be an input where a single comment arrives every 𝑔 units of time. Then,

define 𝐴 (1)
′
to be a neighboring input to 𝐴 (1) where 𝑐2 arrives in a batch with 𝑐1 at time 0.

Define 𝐴 (2) to be a neighboring input to 𝐴 (1)
′
where 𝑐1 and 𝑐2 arrive separately with 𝑐1 at

time 𝑔 and 𝑐2 at time 0 and so on:

𝐴 (1) = {𝑐1, 𝑡 = 0}, {𝑐2, 𝑡 = 𝑔}, {𝑐3, 𝑡 = 2𝑔}, . . .
𝐴 (1)

′
= {𝑐1, 𝑐2, 𝑡 = 0}, ∅, {𝑐3, 𝑡 = 2𝑔}, . . .

𝐴 (2) = {𝑐2, 𝑡 = 0}, {𝑐1, 𝑡 = 𝑔}, {𝑐3, 𝑡 = 2𝑔}, . . .
𝐴 (2)

′
= {𝑐2, 𝑡 = 0}, {𝑐1, 𝑐3, 𝑡 = 𝑔}, ∅, . . .

Now, for any 𝑗 : 𝐴 ( 𝑗 ) and 𝐴 ( 𝑗 )
′
are neighbors and 𝐴 ( 𝑗 ) and 𝐴 ( 𝑗−1)

′
are neighbors. On input

𝐴 ( 𝑗 ) , comment 𝑐1 arrives at time 𝑗𝑔 and so any valid comment posting therefore posts 𝑐1 at

time 𝑗𝑔 or later with probability 1 since it can only delay comments. Likewise, because𝐴 ( 𝑗−1)
′

neighbors 𝐴 ( 𝑗 ) and the mechanism cannot generate fake data, any (𝜖, 𝛿)-DP mechanism

releases 𝑐1 at a time earlier than 𝑗𝑔 with probability at most 𝛿 on input 𝐴 ( 𝑗−1)
′
. Since 𝐴 ( 𝑗−1)

neighbors 𝐴 ( 𝑗−1)
′
, the mechanism releases 𝑐1 at a time earlier than 𝑗 with probability at most

2𝛿 on this input. Thus, on input 𝐴 (1) , comment 𝑐1 gets posted before time 𝑗𝑔 with probability

less than 2 𝑗𝛿 . This suggests that the comment gets delayed by at least 𝐷 with probability at

least 1 − 2𝛿 (𝐷
𝑔
+ 1).

C.5 Proof of Proposition 5.1 (Hypothesis Testing Interpretation of OSDP)
Fix comment 𝑐1 and let 𝑐2 denote the closest comment to arrive in 𝐶 . Let 𝑅 denote the rejection

region of the adversary’s chosen hypothesis test. Let𝐴 (𝐵) be any arrival set where 𝑡1 = 𝑡2. Let𝐴𝑑 be
an identical arrival set, except that 𝑐2 arrives unbatched 𝑑 units of time after 𝑐1 (so 𝑡2 − 𝑡1 = 𝑑) and
let 𝐴′

𝑑
be an identical arrival set except that 𝑐1 arrives 𝑑 units of time after 𝑐2. Then, conditioning

on the event that 𝑡2 − 𝑡1 ≤ 𝑔, we have that for any rejection region 𝑅:

Type I Error ≥
𝑔∑︁
𝑛=0

Pr[𝑡2 − 𝑡1 = 𝑑 ;D]Pr[M(𝐴𝑑 ) ∈ 𝑅] +
𝑔∑︁
𝑛=0

Pr[𝑡1 − 𝑡2 = 𝑑 ;D] · Pr[M(𝐴′𝑑 ) ∈ 𝑅]

≥ 𝑒−𝜖𝐹D (𝑔)Pr[M(𝐴 (𝐵) ) ∈ 𝑅] = 𝑒−𝜖𝐹D (𝑔)Power,

where the second line follows from the one-sided differential privacy guarantee on 𝑔-adjacent

inputs.
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D ESTIMATION OF BATCHING DEANONYMIZATION RISK STATISTICS
Recall that in Section 1, we provided statistics on the rate of batching at a peer-reviewed conference.

We used these statistics in Figure 1 to estimate the linkage risk arising due to observing batched

comments. In this section, we provide details about the measurement method used to estimate the

batching statistics.

In order to estimate the prevalence of batching in the peer-review process of a conference, we

measure the following statistics. For any individual reviewer or meta-reviewer, we order all of their

comments on all papers in increasing order of post time. If two comments arrive immediately next to

each other in this sequence and were made on different papers, we consider these to be “consecutive

comments from the same (meta)-reviewers on different papers.” Note that this excludes comments

that are made on the same paper by the same (meta)-reviewer consecutively, because consecutive

comments by the same (meta)-reviewer on the same paper do not generate additional linkage risk

for the (meta)-reviewer. For example, consider the following sequence of comment arrivals from a

single (meta)-reviewer (where units of time are minutes from the start of the commenting period):

(𝑐1, 𝑝1, 𝑡1 = 0), (𝑐2, 𝑝2, 𝑡2 = 5), (𝑐3, 𝑝2, 𝑡2 = 6), (𝑐4, 𝑝2, 𝑡2 = 8) (𝑐5, 𝑝3, 𝑡3 = 100).
In this example, we count the first two comments (𝑐1 and 𝑐2) and the last two comments (𝑐4 and 𝑐5)

as consecutive arrivals on different papers. We then capture the rate of batching under 5 minutes

by computing the number of consecutive comments that arrive within 5 minutes of each other

divided by the total number of consecutive comment arrivals. So, in the example above, the rate of

batching is 50% since comments 𝑐1 and 𝑐2 arrive within 5 minutes of one another, while 𝑐4 and 𝑐5
do not. Applying this measurement method to a dataset of comments made by reviewers and meta-

reviewers on papers at a top Computer Science conference, we find that there is a 30.10% chance

that a comment arrives in a batch with a consecutive comment from the same (meta)-reviewer.

For a baseline, we additionally compute how often comments from different (meta)-reviewers

may appear at times close to each other. We look at each pair of distinct reviewers from the set of

all reviewers. We then calculate whether any pair of comments from these two (meta)-reviewers

arrived within a cutoff of 5 minutes of one another. We find that there is a 0.66% chance that a

randomly chosen pair of (meta)-reviewers makes a pairs of comments that arrive within 5 minutes

of one another. We note that the first statistic capturing the rate of batching excludes reviewers

who made only a single comment in the entire conference, as it is not possible for these reviewers

to engage in batching. In contrast, the second statistic capturing the baseline rate of close arrivals

includes cases where a reviewer makes only a single comment. These comments are counted in the

statistic, since any comment may appear to be batched with an anonymized comment made by a

different reviewer from the perspective of an observer who does not know reviewer identities.

E A QUEUE-BASED MECHANISM FOR PRIVACY AGAINST BATCHED TIMING
ATTACKS

In this section, we discuss an alternative privacy formulation that we call “𝜖-batching privacy”

and give an algorithm that satisfies privacy under this formulation by delaying comments using a

queue to preserve privacy. In doing so, our queue-based mechanism preserves the ordering in which
comments arrive, a property that may be useful in certain applications. The privacy guarantees are

not directly comparable to (𝜖, 𝑔)-OSDP because we make substantially different sets of assumptions

in the adversarial model. However, one can think of both approaches as responses to the impossibility

results for standard two-sided proven in Section 4.4. While (𝜖, 𝑔)-OSDP relaxes two-sided DP by

introducing a bound 𝑔 on the gap between unbatched comments and by making the notion of

neighbors asymmetric, 𝜖-batching privacy introduces distributional assumptions on the inputs that

capture an adversary’s uncertainty about comment arrivals.
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E.1 Problem Formulation
In this problem formulation, we assume that comment arrivals are drawn i.i.d. from some unknown

distribution over papers and reviewers. We call this the arrival process. We assume discrete time
comment arrivals over an infinite time horizon so comments arrive at each time-step drawn from

this unknown distribution.

First, we present the arrival process if no batching occurs. In the absence of batching, a single

comment arrives at every unit of time. We make an i.i.d. assumption on arrivals. At each time-step,

the paper-reviewer pair associated with the comment is drawn independently from a (potentially

unknown) probability distribution D over P × R (where P is the set of all papers and R is the set

of all reviewers). For instance, D could be a uniform distribution over P × R although it need not

be uniform or even known to the algorithm. We say 𝐴← A (0) if the arrivals are drawn from this

no-batching process.

An instance of potential batching consists of multiple comments. The batch arrives at a single

time-step, but the adversary is uncertain as to which papers and reviewers are in the batch. Thus,

when potential batching occurs, the arrival process remains the same except for one modification—

batches consisting of more than one comment arrive at specific fixed time-steps. Formally, let 𝐵 be

a multi-set of time-steps at which batching occurs. The arrival process proceeds as follows:

• On time-steps not contained in 𝐵, no batching occurs and a single comment arrives.

• For each time-step contained in 𝐵, an additional comment arrives due to batching. For

instance, if 𝐵 = {10, 10, 15} then a single comment arrives at each time-step, but two additional

comments arrive at time 10 due to batching and one additional comment arrives at time 15

due to batching.

The paper-reviewer pairs associated with the batched comments are drawn independently with

replacement from distributionD. We say that𝐴← A (𝐵) if the arrivals are drawn from this process

with batchings occurring at time-steps in A (𝐵) . We allow comments to arrive according to A (𝐵)
for any finite multi-set of time-steps 𝐵. We do not assume any prior knowledge of either 𝐵 nor |𝐵 |.
Then, we define a comment posting mechanism to be 𝜖-batching private in this formulation, if

the mechanism obscures whether the inputted comment arrival set arrived per the batching process

(with any number of batches) or the no batching process (whereby 0 batches appeared):

Definition E.1 (Batching Privacy). A comment posting mechanismM is 𝜖-batching private with
respect to arrival processes (A (0) ,A (𝐵) ) if for all time horizons𝑇 ≥ 1, all finite batching multi-sets

𝐵, and any output of the mechanism between time 1 and 𝑇 , 𝑆𝑇 :

Pr[M(𝐴) = 𝑆𝑇 ;𝐴← A (𝐵) ] ≤ 𝑒𝜖Pr[M(𝐴) = 𝑆𝑇 ;𝐴← A (0) ] and
Pr[M(𝐴) = 𝑆𝑇 ;𝐴← A (0) ] ≤ 𝑒𝜖Pr[M(𝐴) = 𝑆𝑇 ;𝐴← A (𝐵) ] .

Note that unlike typical differential privacy formulations, this notion of privacy requires distri-

butional assumptions on the data-generating process as we assume that comments are generated

by an i.i.d. arrival model.

E.2 Results
Under this formulation, we design a mechanism described in Algorithm 4 that delays comments by

deploying them to a queue. The algorithm guarantees perfect batching privacy (𝜖 = 0), as shown in

the following result.

Proposition E.2 (Privacy). Algorithm 4 guarantees perfect batching privacy (𝜖 = 0) for comments
arriving according to A (0) and A (𝐵) for any 𝐵.
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Algorithm 4 Queue Mechanism

Initialize empty queue 𝑄 = ∅
for t= 1, 2, . . . do
if set of batched comments 𝐴 arrives then
if 𝑄 ≠ ∅ then
Dequeue comment 𝑐′ from 𝑄 and post it.

Enqueue all comments in 𝐴 to 𝑄 in a random order.

else
Choose 𝑐 ∈ 𝐴 uniformly at random to post.

Enqueue all comments in 𝐴 \ {𝑐} to 𝑄 in a random order.

Post comment 𝑐 immediately.

end if
else if a single comment 𝑐 arrives then

if Q≠ ∅ then
Dequeue comment 𝑐′ from 𝑄 and post it.

Enqueue comment 𝑐 to 𝑄 .

else
Post comment 𝑐 .

end if
end if

end for

Proof. Fix a time horizon𝑇 and multi-set of batching times 𝐵. We letD(𝑐) denote the probability
of observing the comment 𝑐 under distribution D. When the algorithm is applied to comments

drawn according to the no batching process, one comment arrives at each time-step and all

comments are posted immediately so by the i.i.d. assumption, Pr[M(𝐴) = 𝑐1:𝑇 ;𝐴 ← A (0) ] =∏𝑇
𝑖=1D(𝑐𝑡 ).
If comments were drawn according to the process where batching occurred at times 𝐵, then at

any time-step before the first instance of batching occurs the mechanism posts the single comment

that arrives so the probability of observing output {𝑐} is D(𝑐) independent of other-timesteps. On

the first instance of batching, the mechanism posts one of the batched comments chosen uniformly

at random from the batch, so due to the i.i.d. arrivals of the batch the probability of observing

this output {𝑐} at this time-step is also D(𝑐). At any later time-step, the algorithm posts the

comment at the top of the queue, which consists of previous comments that arrived i.i.d. drawn

from D. Therefore, the probability of observing any output is still Pr[M(𝐴) = 𝑐1:𝑇 ;𝐴← A (𝐵) ] =∏𝑇
𝑖=1D(𝑐𝑡 ). □

The algorithm delays comments by a deterministic value depending on the number of batched

comments that have arrived already.

Proposition E.3 (Delay). If comments arrive according toA (𝐵) , then Algorithm 4 adds worst-case
delay to any comment equal to |𝐵 |.
Proof. After the last instance of batching in 𝐵, there are 𝑇 + |𝐵 | comments that have arrived

in total. The mechanism posts the earliest-arriving comment at each time-step and delays the

incoming comment so the queue has length |𝐵 | and any single incoming comment is delayed for

|𝐵 | timesteps before being posted. Any comments arriving before all instances have batching have

occurred are delayed by the number of additional comments arriving due to batching at an earlier

time-step, so have delay less than |𝐵 |. □
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In fact, this perfectly private mechanism is optimal for this privacy formulation as it achieves

the best possible worst-case delay to any comment at any value of 𝜖 . In particular, at any setting of

𝜖 any batching-private comment posting mechanism must delay a comment by at least |𝐵 | in the

worst-case:

Proposition E.4 (Lower Bound, Minimum Delay). Any comment posting mechanism guaran-
teeing 𝜖-batching privacy with any 𝜖 < ∞ for comments arriving according to A (0) and A (𝐵) must
introduce delay of at least |𝐵 | to at least one comment when applied to comments arriving according
to A (𝐵) .

It follows immediately that since the Queue Mechanism (Algorithm 4) achieves this lower bound

it is optimal among 𝜖-batching private mechanisms in minimizing worst-case delay:

Corollary E.5. For any setting of privacy parameter 𝜖 , Algorithm 4 is optimal among 𝜖-batching
private comment posting mechanisms in minimizing the worst-case delay added to any comment.

Proof. Let 𝑇 ′ = max{𝐵} be the latest time-step when batching occurs and 𝑇 = 𝑇 ′ + |𝐵 |. Then,
if comments arrive according to A (𝐵) , 𝑇 ′ + |𝐵 | + 1 = 𝑇 + 1 comments arrive up until time 𝑇 ′ + 1.
Assume for the sake of contradiction that all of the comments arriving before time𝑇 ′ + 1 are posted
with delay strictly less than |𝐵 |. Then, when acting on comments arriving according to A (𝐵) , the
mechanism must post at least𝑇 + 1 comments within time horizon𝑇 (with probability 1). However,

under arrival process A (0) , only 𝑇 comments have arrived up until 𝑇 , so no mechanism can ever

output 𝑇 + 1 comments up until time 𝑇 . Hence, any output of the mechanism up until time 𝑇 on

comments arriving per A (𝐵) contains 𝑇 + 1 comments with probability 1, while for comments

arriving per A (0) any output up until time 𝑇 contains 𝑇 + 1 comments with probability 0. □

The above formulation and corresponding queue-based mechanism offer an alternative approach

to provide privacy in light of the impossibility results for two-sided DP. Here, we relax the problem

by introducing distributional assumptions on inputs to the mechanism. While this does not yield a

privacy-delay trade-off in 𝜖 , it allows for a mechanism that preserves the ordering of comments. As

noted in Section 7, an interesting direction of future work is to understand how we might make the

Zero-Inflated Uniform Mechanism order-preserving as well.

F ADDITIONAL EXPERIMENTAL RESULTS
In this section, we provide experimental results that augment those presented in the main text.

F.1 Wikipedia
In the main text, we showed results setting 𝑔 = 11 minutes by choosing the 25th percentile of

prior inter-arrival times for the category “21-st century American Politicains” and 𝑔 = 36 minutes

at the 50th percentile. Here, we provide additional results, setting 𝑔 = 79 minutes based on the

75th percentile of the inter-arrival distribution as shown in Figure 7 and Table 2. Algorithm 2 adds

significantly higher delay at this setting of 𝑔, and consequently the adversary’s batched timing

linkage attack performs quite poorly. For instance, taking 𝜖 = 0.5 corresponds to an average delay

of roughly 3 hours and maximum delay of 6 hours, but renders the attack highly inaccurate: the

attack now achieves around 80% recall at 10% precision compared to the non-private baseline which

achieves 85% recall at 80% precision.

F.2 Bitcoin
In the main text, we showed results using Algorithm 2 with 𝑔 set to the median of the historical

inter-arrival times of transactions sent to a given output address (with a default of 10 minutes when
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Fig. 7. Accuracy in linking pairs of Wikipedia article revisions on “21st-century American Politicians” based
on batched timing (averaged over 5 runs of the randomized privacy mechanism) for 𝑔 set to 79 minutes.

Mean Delay Maximum Delay

𝜖 = 0.1 𝜖 = 0.5 𝜖 = 1.0 𝜖 = 2.0 𝜖 = 0.1 𝜖 = 0.5 𝜖 = 1.0 𝜖 = 2.0

𝑔 = 79 820 192 115 77 1615 360 205 129

Table 2. Mean and maximum delay (in minutes) added to Wikipedia article revisions on “21st-century
American Politicians” for 𝑔 set to the 75th percentile of the historical inter-arrival distribution.

there were no prior transactions.) In this section, we give results for alternative settings of 𝑔. In

Figure 8 and Figure 9 we show the delay added to comments and the success of attacks when 𝑔

is set to a more lenient value based on the 25-th percentile of historical transaction inter-arrival

times. In Figure 10 and Figure 11 we show results for a stricter setting of 𝑔 to the 75-th percentile

of historical transaction inter-arrival times.
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Fig. 8. Performance of basic and informed attacks on Bitcoin transactions when 𝑔 is set to the 25th percentile
historical inter-arrival time for an output address.

Fig. 9. Cumulative distribution of delay added to batched Bitcoin transactions (averaged over 5 trials). Delay
is drawn from a privacy-preserving uniform distribution with 𝑔 set to the 25th percentile of the inter-arrival
time of transactions to an output address within the past 7 days.
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Fig. 10. Performance of basic and informed attacks on Bitcoin transactions when 𝑔 is set to the median
historical inter-arrival time for an output address.

Fig. 11. Cumulative distribution of delay added to batched Bitcoin transactions (averaged over 5 trials). Delay
is drawn from a privacy-preserving uniform distribution with 𝑔 set to the median of the inter-arrival time of
transactions to an output address within the past 7 days.
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