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The mainstream motion prediction methods usually focus on short-term prediction, and their predicted long-term motions
often fall into an average pose, i.e. the freezing forecasting problem [27]. To mitigate this problem, we propose a novel
Bidirectional Transformer-based Generative Adversarial Network (BiTGAN) for long-term human motion prediction. The
bidirectional setup leads to consistent and smooth generation in both forward and backward directions. Besides, to make full
use of the history motions, we split them into two parts. The first part is fed to the Transformer encoder in our BiITGAN while
the second part is used as the decoder input. This strategy can alleviate the exposure problem [37]. Additionally, to better
maintain both the local (i.e., frame-level pose) and global (i.e., video-level semantic) similarities between the predicted motion
sequence and the real one, the soft dynamic time warping (Soft-DTW) loss is introduced into the generator. Finally, we utilize
a dual-discriminator to distinguish the predicted sequence at both frame and sequence levels. Extensive experiments on the
public Human3.6M dataset demonstrate that our proposed BiTGAN achieves state-of-the-art performance on long-term (4s)
human motion prediction, and reduces the average error of all actions by 4%.
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1 INTRODUCTION

Being able to predict the future motion of a person is essential for autonomous agents, e.g., assistant robots [21]
and self-driving cars [29], in order to understand human behaviors during human-agent interactions, human-robot
collaboration [28], and robot navigation. For instance, it is important to understand the behavior of pedestrians
and make proactive decisions for autonomous vehicle systems [29].

Due to the complexity of predicting high-dimensional features jointly, it is challenging to capture the various
motion patterns e.g., spatial-temporal dependencies for long-term motions. Specifically, one problem in the
motion prediction task is that the predicted future poses are often the static average poses with the highest
probability. This problem is also known as the freezing prediction problem [27]. Moreover, it is also difficult to
measure the similarity between two human motion sequences explicitly and semantically.

To address the aforementioned issues, recent motion prediction methods mainly use recurrent neural networks
(RNNs) [1, 12, 18, 35], feed-forward networks [23, 33, 34], and GANSs [15, 46]. However, the RNNs struggle to
encode long-term historical information for high-dimensional time-series data like human motion. For instance,
Martinez et al. [35] showed that RNNs have problems with the discontinuity of the predicted sequence at the last
seen frame, as well as a prediction that converges towards the mean pose of the ground-truth data for long-term
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Fig. 1. Overview of the proposed BiTGAN. It consists of a Transformer-based motion generator and a dual-discriminator.
The motion generator has a bidirectional processing loop. In the forward processing (red rectangle shown on the top), the
input is the history motion sequence, while the output is the predicted future motion sequence. In the backward processing
(blue rectangle shown at the bottom), the predicted motion sequence will be flipped and fed to the same motion generator as
the input, and the output is the history motion sequence. An inverse loss is used to.compute the difference between the
predicted historical motion and the real one. By adding the adversarial loss, we make the predicted frames look realistic to
the real ones in an adversarial way. The dual-discriminator contains a sequence-based discriminator and a frame-based
one. Both try to distinguish the predicted motion sequence from the real one but at two different levels, i.e., sequence level,
and frame level. Besides, the Soft-DTW loss is used to better measure the similarity between the predicted motion sequence
and the real one.

predictions. While the feed-forward networks can achieve more realistic predictions than RNNs, they still suffer
from long-term predictions. In addition, conventional approaches compare human motion sequences based on
estimating the L2 displacement error [35]. As shown by Martinez et al. [35], such measure tends to ignore the
specific motion characteristics, since the same representative poses repeated over a sequence may result in a
better match to a reference sequence compared to visually similar motion with different poses.

To sum up, previous works, in general, cannot capture long-range relationships, resulting in incoherent and
unnatural prediction results. To address this limitation, recently, Transformer has been employed [4, 5]. Cao
et al. [5] proposed a Transformer-based framework to exploit the scene context, while Cai et al. [4] exploited
Transformer with the global attention mechanism to capture the long-range spatial correlations and temporal
dependencies. Although these methods have achieved better performance, the freezing prediction problem still
persists.

To address the aforementioned problems, in this paper, we propose a novel Bidirectional Transformer Generative
Adversarial Network (BiTGAN), which can effectively exploit historical information and model the long-term
relationships among frames. BiITGAN consists of a novel Transformer-based motion generator and a dual-
discriminator (see Figure 1). We build our motion generator based on Transformer to model the long-range
relationships between historical frames and predicted frames.

Specifically, to tackle the freezing forecasting problem in long-term prediction, we use the bidirectional
generation strategy, leading to consistent forward and backward prediction results. The intuitive idea behind it is
that if the generated future poses converge to the mean pose for a long time, then the backward predicted results
will become worse with fewer dynamics compared to the history motion. Therefore, we add this constraint to
penalize the predictions. Such bidirectional generation is inspired by the cycle consistency in the image-to-image
translation task [49]. However, there are two major differences: (i) Our generator is different in content (human
poses) but the same in style (running, jumping, etc.), while cycle consistency is originally used to enforce the
same content (but different styles) in both input and output. (ii) We utilize forward and backward predictions to
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preserve the motion consistency temporally in the video domain rather than the spatial correspondence in the
image domain. In this way, our generator can predict the future motion frames from the input history motion
frames in the forward processing, while in the meantime, it can predict the history motion frames from the
predicted motion frames in the backward processing as shown in Figure 1.

In addition, there is a context discrepancy problem between the training and testing stages in the standard
Transformer, which is known as the exposure bias problem [37]. The discrepancy refers to the fact that the
decoder of the Transformer uses ground truth as input at training while using the predictions as input at testing.
The distributions of the predictions and the ground truth have a discrepancy. To avoid this problem, instead of
using the predicted sequence as the input of the decoder, we use part of the ground truth history sequence as the
input of the decoder. In this way, we can keep the consistency between training and testing. Moreover, we use 10
frames as a mini-batch during training and testing and this setup allows batch-wise inference.

Besides, to better maintain the high-level semantic similarity between the predicted motion sequence and
the real one both locally and globally, we add the soft dynamic time warping (Soft-DTW) loss to regularize our
motion generator. Different from the traditional L2 loss, which is widely used in motion prediction tasks, the
Soft-DTW loss is robust to shifts or dilatations across the time dimension, but it has been rarely used.

We also employ a GAN-based dual-discriminator [38], which is composed of a sequence-based discriminator
and a frame-based discriminator. Both discriminators aim at distinguishing the predicted sequences from both
local frame and global sequence levels. Extensive experiments on the Human3.6M dataset show that our BITGAN
achieves new state-of-the-art results on human motion prediction for both periodical and non-periodical actions
and substantially improves the accuracy of the predicted long-term (4s) poses:

The contributions of this paper are summarized as follows:

e We propose a novel bidirectional Transformer GAN (BiTGAN) for long-term motion prediction. The novel
bidirectional generation strategy can alleviate the freezing forecasting problem.

e For the Transformer-based generator, we design a novel data split strategy to alleviate the exposure bias
problem [37].

e We introduce a new dynamic time warping (DTW) metric to evaluate the underlying similarity between
two-time series and show that our method performs better.

2 RELATED WORK

Traditional Recursive Human Motion Prediction. Following the success of deep learning methods in
computer vision, various deep learning models have been investigated for human motion prediction, such as
RNNs and GANS.

With the rise and impressive performance of RNNs in sequence-to-sequence tasks, researchers leverage RNNs
to learn temporal dependencies for motion prediction [12, 14, 18, 22, 30, 35]. Jain et al. [18] developed a structural-
RNN incorporated with fixed spatial-temporal graphs to model human motion. However, the model is trained
for each motion individually, incurring a high computational cost. Tang et al. [43] incorporated an attention
module to summarize the recent pose history, followed by an RNN-based prediction network. Moreover, based
on the observations from the statistics research on hand motion [16], Martinez et al. [35] proposed a residual
architecture to model first-order motion derivatives, i.e., velocities instead of human poses. They show that their
simple method outperforms previous works.

Although these RNN-based approaches performed an interesting exploration, one can still observe unsatisfac-
tory aspects in the predicted motion sequences. In order to fix these limitations, several works use feed-forward
networks other than RNNs to model human pose [3, 23, 26, 33, 34, 40, 48]. For example, Butepage et al. [3]
proposed a deep learning fully-connected network that investigates different strategies to encode temporal,
and historical information and generalizes well to new, unseen motions. Li et al. [23] presented an approach
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based on convolutional neural networks (CNNs) to human motion modeling. The hierarchical structure of a
CNN enables it to effectively capture both spatial and temporal correlations. This method is more effective
than the RNN-based ones, but the manually-selected size of the convolutional window heavily influences the
temporal encoding. Mao et al. [34] show that encoding the short-term history in the frequency space using the
discrete cosine transform (DCT) followed by a graph convolutional network (GCN) to encode spatial and temporal
connections leads to better performance. They [33] further introduce a motion attention mechanism that allows
capturing the motion recurrence in the long-term history. The work related to ours is [34] and [33], which also
use DCT to encode motions, leverage GCNs as predictors as well as Mean Per Joint Position Error (MPJPE)[17] as
the evaluation metric. However, there are three important differences between our approach and theirs. First,
our method is developed to alleviate the problem of freezing forecasting for long-term (4s) prediction by the
proposed bidirectional setup, while [33] and [34] are mainly designed for mid-term (1s) forecasting. Second, we
design a Transformer-based Generative Adversarial Network for long-term human motion prediction. Finally, we
introduce a novel dynamic time warping (DTW) metric to better measure the semantic similarity between the
predicted motion sequence and the real one at video-level.

Apart from RNNs and feed-forward networks, some other models have also been proposed. For instance,

to facilitate more realistic human motion prediction and alleviate the discontinuity problem, Gui et al. [15]
incorporated adversarial training mechanisms to simultaneously validate the global plausibility and coherence
of the predicted motions. Recently, Lyu et al. [31] reformulate the human motion problem based on stochastic
differential equations and GANs. Moreover, to dynamically adjust the focus of the model, Li et al. [24] presented
a more generic motion forecasting framework with dynamic key information selection and ranking procedures
based on reinforcement learning and hybrid attention mechanism. Wang et al. [46] also introduced imitation
learning under a reinforcement learning formulation, which is computationally effective. However, one can still
observe that these methods cannot predict coherent and semantic-consistent motion sequences. More importantly,
most existing human motion prediction works mentioned above only forecast human motions for maximum 1s,
which is insufficient in many applications e.g., human-robot interaction.
Vision Transformers for Motion Prediction. Transformer is a state-of-the-art attention-based approach in
natural language processing (NLP) [7, 9, 32, 36, 47] and computer vision [10, 13, 19]. It was originally proposed
for NLP [44] and has recently been successfully applied for many computer vision tasks. For human motion
related tasks, there have also been several works that use Transformer-based methods. For instance, Duan et
al. [11] use Transformer to solve the motion completion problem under different application scenarios with a
unified framework. Li et al. [25] presented a two-stream motion Transformer generative model, which can capture
long-term dependencies and generate music-conditioned flexible poses. Li et al. [27] designed a cross-modal
Transformer-based architecture, which can generate realistic 3D dance motion given music and effectively
prevent freezing or drifting problem, which is common for long-term motion generation. The advantages of the
Transformer lie in the self-attention mechanism, which can capture global dependencies. Some of the recent
methods in the field of motion forecasting adopt Transformer as well [4, 5]. For instance, Cao et al. [5] applied
the standard Transformer network to predict 3D poses, but it requires an extra scene image as the input, which
is different from the setup in this paper.Cai et al. [4] proposed to leverage the Transformer-based architecture
to simultaneously capture the long-range spatial and temporal dependencies of human motion by treating the
sequential joints with encoded temporal features as the input.

Our proposed Transformer-based approach is different from these methods. We focus on developing a novel
bidirectional Transformer generative adversarial network (i.e., BITGAN) for long-term human motion prediction.
Moreover, to tackle the freezing forecasting problem for long-term prediction, we propose a novel bidirectional
generation strategy in the generator. In the backward prediction, as shown in Figure 1, we reuse the generated
future frames as the input to the Transformer, and the outputs are the history motion frames and pose an
extra inverse loss. Intuitively, in the backward prediction, if the input generated future frames are uniform
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Fig. 2. Overview of our Transformer-based motion generator. It has five components, i.e., Transformer encoder, Transformer
decoder, DCT, cross-modal attention, and GCN predictor. The earlier history motions are encoded directly by the Transformer
encoder. The recent history motions are the inputs of the Transformer decoder, and in the meanwhile, the Transformer decoder
aggregates the encoded earlier history motions. The DCT further encodes the temporal information of the recent historical
motions. The cross-modal attention is employed to fuse the outputs of the Transformer decoder and DCT coefficients. The
GCN predictor with learnable adjacency matrices models the spatial relationship among joints. During testing, as illustrated
by the black dashed line, we add the predicted frames as input and reversely forecast future poses.

freezing average pose, the predicted history poses will deviate far away from the ground truth. Thus, posing an
extra inverse loss may help us to calibrate the forward prediction results and force the model to capture more
human motion dynamics for a long-term span. Note that the inverse loss has a close relationship with the cycle
consistency loss in [49]. The major difference is that the cycle consistency loss in [49] computes the loss between
the original image and the reconstructed image, whereas the proposed inverse loss computes the loss between
the original motion sequence and the backward predicted motion sequence. Our emphasis is on the sequential
motion pattern consistency in the video domain rather than the correspondence of appearance structures in the
image domain.

3 METHODOLOGY

In this work, our goal is to tackle the task of human motion prediction. Given the sequence motion coordinates
fi.N, of one person for the past N steps, we aim to predict the future motion for the next P steps, i.e., fn+1:N+p. In
our case, fi € R/ describes the 3D coordinates of human joints, where J represents the number of the human
joints. Figure 1 illustrates the framework of our GAN-based bidirectional motion prediction model. The inverse
loss in the backward direction deals with the long-term average prediction problem. The Transformer-based
motion generator is employed for long-term motion prediction. Moreover, we observe that the Euclidean distance
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can only measure the physical difference between two individual frames at the same time stamp, failing to capture
the high-level long-term semantic difference. To solve this problem, we introduce a GAN-based dual-discriminator
which evaluates the predictions implicitly both at the frame level and the sequence level which encodes the
semantics. A soft-DTW loss is used to measure the similarity at the sequence level as it is robust to shifts or
dilatations across the time dimension.

3.1 Inverse Loss in the Bidirectional Generation

Inspired by the unsupervised vision tasks, e.g., domain adaption [2] and image translation [42, 49], with large
enough capacity, a network can map a set of input images to any permutation of images in the target domain, and
any of these learned mappings can produce an output distribution that matches the target distribution. To narrow
down the possible mapping functions, even more, Zhu et al. [49] argue that the learned mapping functions should
be cycle-consistent, meaning that for each image x from domain X, the image translation cycle should be able to
return x to its original form, as follows:

x = G(x) = Q(G(x)) ~ x. (1)
Eq. 1 formulates the cycle consistency. Similarly, as shown in Figure 1, for the previous sequence fi.n={fi,- - -, fv },
our motion prediction network G should also satisfy the forward-backward motion consistency. Let fN:1= { fN, S fl }

be the reversed prediction. We pose an inverse loss (i.e., L2 loss) to measure the distance between f;.ny and fN;I.
To make the two sequences match each other in the time dimension, we reverse fi.nx to fy.1 before computing
the inverse loss:

Linv = LZ(fN:l,fN:I)a (2)

where fN:l = Q(G(fi:n))- Note that we share the network parameter between G and Q to reduce the model
capacity.

3.2 Transformer-Based Motion Generator

Transformer-Based Prediction. The tremendous success of Transformers has been recently notable for their use
to model long-range dependencies between sequential data. As illustrated in Figure 1, we propose a Transformer-
based motion generator for the bidirectional prediction with the weight-sharing strategy. In particular, as shown
in the left part of Figure 2, in order to modify the Transformer to fit the motion prediction task, we propose to
define the latest observed frames as queries of the Transformer decoder, which is different from the most visual
Transformer architectures such as [10]. Firstly, our modified Transformer generator can avoid the exposure bias
[37] problem existing in the original Transformer structure. Exposure bias refers to the discrepancy of context
between the training and testing stages. Specifically, it is the scenario of the model trained to predict the next
object using the ground truth as context, while during inference only conditioned on the previous sequence
generated by the resulting model. This discrepancy results in error accumulation among the sequence since
the model has to predict based on a never seen distribution during training. While our proposed Transformer
generator has the same context at training and inference with no gap between them. Secondly, for every predicting
step, our modified Transformer generator allows for parallel computation not only at training but also at testing,
which can significantly reduce the inference time consumption compared to the original Transformer.

The detailed structure of the Transformer encoder and decoder is depicted in the right part of Figure 2. We
maintain the standard structure of the Transformer module described in [44] for simplicity. The Transformer
consists of several stacked encoder and decoder blocks. Each encoder block is constructed by multi-head self-
attention, layer normalization (LN), residual connections, as well as a position-wise feed-forward multi-layer
perceptron (MLP) block. The MLP contains two layers with a GELU non-linearity, while each decoder block has
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an extra encoder-decoder attention layer compared to the encoder. In addition, before the encoder and decoder
block, a learnable temporal positional encoding is conducted.

Specifically, given the motion sequence fi.xy = {f1, - - -, fv}, we splitit to {fi, ..., fx } and { fx+1, ..., fv} as encoder

input and decoder input, respectively. For each frame f;, we add the position embedding to retain the positional
information. The input of Transformer encoder FE with the size of [K, ], d] is the result after adding position
embedding, where J is the number of human joints and d is the embedding dimension of each joint. While the
input of Transformer decoder is FP with the size of [N — K, J, d]. The Transformer structure is the same as the
one in [44]. Notice that there is no mask when computing the multi-head attention in our Transformer decoder.
The output of Transformer encoder and decoder is O¢"¢ and O%¢. The size of these two outputs is the same as
their inputs, respectively.
Cross-Modal Attention. We utilize the cross-modal attention proposed in [41] as shown in Figure 2, whose
inputs are the output of the Transformer decoder 09 and the DCT coefficients 0%, The output of the cross-
modal attention is the refined feature, which will be fed into the GCN predictor. Specifically, we directly perform
a matrix multiplication between 0% and 09!, and apply a Softmax layer to produce a correlation matrix A,

eXp(OldecO;lct)
S, exp(0f0tr)’

®3)

Jji

where A j; measures the impact of the i-th position of 0% on the j-th position of the frequency code O%!. In
this crossing way, the model can capture more joint influence between O%°¢ and 0%, producing a richer feature.

We then perform a matrix multiplication between 09 and the transpose of A and reshape the result to the
original size of 0%, Finally, we multiply the result by a scale parameter « and conduct an element-wise sum
operation with the original 0% to obtain the refined feature Q%¢,

Odec —a Z(Ajiofec) + Odec’ (4)

i=1

where « is 0 in the beginning but is gradually updated. By doing so, each frame of the refined feature 0% is a
weighted sum of all frames of O%¢¢ and the previous O%¢. Thus, it has a global contextual view between O9¢¢
and 0% and it selectively aggregates useful contexts according to the correlation matrix A.

At the same time, we can update O%* using the cross-model attention model. Similar to Equation (3), we first
perform a matrix multiplication between 09 and 09¢¢, and apply a Softmax layer to produce another correlation
matrix B. Similar to Equation (4), we then perform a matrix multiplication between O9* and the transpose of B
and reshape the result to the same size of 0%, After that, we multiply the result by a scale parameter f and
conduct an element-wise sum operation with the original feature O%. Finally, we concatenate both O%¢ and
09 in channel-wise, and feed the result to the GCN predictor to produce the motion sequence.

3.3 Adversarial Dual-Discriminator

Frame-Based Discriminator. To achieve frame-based prediction between the generated sequence and the
real sequence, we use a frame-based discriminator Dr in [38] as one of the objectives of the proposed motion
generator G. The adversarial loss of the frame-based discriminator (Dr) can be expressed as follows,

N+P

L, = ), (Bf logDr(f)] +E; [log(1 - Dr(f)]). ?

i=N+1

By doing so, we make the generated frame ﬁ look realistic to the real frame f; in an adversarial way.
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Sequence-Based Discriminator. Another objective of the proposed motion generator G is to achieve temporal
coherence of the generated skeleton sequence. For example, when a man moves his left hand, his right hand
should keep still for multiple frames. Thus, we utilize a sequence-based discriminator Ds proposed in [38] to
achieve the coherence between consecutive frames of the generated sequences Fp = fANH:Ner and the real one
T}”ml = fn+1:N+p. Therefore, the adversarial loss of sequence-based discriminator Dy is defined as,

Lp, :E}@;eal logDs(?}rml) +Eg, [log(1 - Ds(Fp))] . (6)
Thus, the final adversarial loss of the GAN framework is the sum of both Equations (5) and (6),
Logo = LDF + £D5~ )

3.4 Optimization Objective

Mean Per Joint Position Loss. Similar to prior work [33, 34], we use the Mean Per Joint Position Error (MPJPE)
proposed in [17].
N+P

J
1 .
LvpipE = TxP Z Z kaj = fxj
k=N+1 j=1

where f; € R3, ﬁ € R3 are the ground truth and predicted motions at future time step k respectively.
Soft-DTW Loss. To measure the overall similarity between two-time series signals, we use the Soft-DTW loss
proposed in [6]. One advantage of Soft-DTW is that it is differentiable with respect to all of its arguments. It is
derived from the original DTW discrepancy. Different from the Euclidean distance, DTW is robust to time shifts
or dilatations.

Specifically, given two sequences x = (x1,...,Xp) and y = (y1, . . .,Yn), the Soft-DTW loss Ls.f-prw is defined
as:

2

: (®)

m
DTWY (x,y) = —y log Z exp

=1

(_ (€A y>>), o

Y

where y > 0 is the smoothing parameter, C is the alignment matrix. A(x,y) := [5 (xiy J)] ij € R™*" is the cost
matrix, where § is the substitution-cost function, which in most cases is the squared Euclidean distance.
Overall Optimization Objective. We use four different losses as our full optimization objective, i.e., adversarial
loss Lgdp, inverse loss Lipy;s Soft-DTW loss Lsox-prw, and the mean per joint position loss Lypjpg, which can be
expressed as,

Hgn Imax L = AadoLado + Ampjpe LMPIPE + AdiwLsott-DTW + Aino Lino, (10)
5.Df

where Aqgo, Amipjpes Asd and A, are the weights, measuring the corresponding contributions of each loss to the
total loss L. Here, we experimentally set these weights. However, we found that lower £;;,, will obtain better
performance since the inverse loss produced by the reconstructed input sequence is not that important compared
to the losses L4y, Lmpjpe and Lsog-prw With the real data.

4 EXPERIMENTS

In this section, we evaluate our method on the publicly available Human3.6M dataset [17] which is one of the
widest benchmark datasets in motion prediction. The dataset contains 15 activities collected from 7 different
human subjects. The high-quality 3D data are recorded by using a Vicon motion capture system. For each clip in
the dataset, there are 32 joints with 3D locations captured for one person. To enable the comparison of the results,
we follow the data processing settings of previous works. In particular, we calculate the 3D joint coordinates
using forward kinematics on a standard skeleton as in [33, 34]. As in [15, 23, 33-35, 45], we delete the global

ACM Trans. Multimedia Comput. Commun. Appl.



Bidirectional Transformer GAN for Long-Term Human Motion Prediction « 9

rotation, translation as well as constant angles. As in [15, 23, 33-35] we down sample the frame rate from 50
to 25. At inference time, we also test our method on Subject 5 as in [15, 33-35] and report our results on 256
sub-sequences per action for 3D coordinates as in [33].

Evaluation Metrics. We evaluate our model in terms of two metrics. Specifically, to measure the similarity of
the pose sequences directly, we evaluate our model in terms of the widely used Mean Per Joint Position Error
(MPJPE) [17] in millimeter. To capture the semantic relationship between two sequences, DTW error is also
reported. In particular, for the 3D position of each joint, MPJPE is computed by the average L2 distance between
ground truth and our prediction motion sequence overall predicted time steps. While the DTW error estimates
similarly of two sequences.

Implementation Details. The proposed network is implemented in PyTorch framework. Following the same
settings of [33], our method is trained using the Adam optimizer [20] for 50 epochs with data batches of size 32
for Human3.6M. For Equation (10), note that we split Lyppe and Lsos-prw to two parts, which are LICIPJPE and

LﬁPJPE, L?oft-DTW and ‘Lgoft—DTW’ respectively. Here, LI‘:‘/IPJPE represents the loss of earlier predicted frames, while

the ‘ESBoft—DTW represents the latter part of the predicted sequence. Accordingly, Ampjse and Ay are separated to

Afnpjpe and Afnpjpe, A;‘d and /Ifd, respectively.
Specifically, both Afnpjpe and Agd are set to 9.8, while both Arbnpjpe and /lsbd are set to 0.1. This selection is based
on the assumption that the first predicted poses will affect the later prediction due to the recursive forecasting
mechanism, as shown in Figure 2. In addition, A;j, is set to 0.1 because of the reason described in Section 3, and
Aado 18 set to 1.
State-of-the-Art Comparisons. We compare our approach with one RNN-based methods, residual sup. [35]
and three feed-forward models, ConvSeq2Seq [23], LTD [34], and His. Rep. [33], which constitutes the state of
the art. For the prediction sequence lasting within 1000ms, we take the results from [33] directly. Otherwise, we
use the results of His. Rep. [33], we utilized the pre-trained model released by the authors for Human3.6M, then

predict the longer motion sequence recursively.

4.1 Quantitative Results

Following the settings of our baselines [23, 33-35, 43], we present the results for mid-term and long-term
prediction. Specifically, in order to make comparisons with recent SOTAs conveniently, we defined those two
time scales as (500, 1000]ms and (1000, 4000]ms.

For Human3.6M, our model is trained with past 50 frames as input and predict future 10 frames. We further

produce poses literately in a recursive way by concatenating the predictions with the history.
Results on Human3.6M. We compare our method with seven state-of-the-art methods, including Residual
sup. [35], ConvSeq2Seq [23], LTD [34], His. Rep. [33], DMGNN [26], MSR-GCN [8], and STSGCN [39]. As shown
in Table 1, Table 2 and Table 3, we provide the results for mid-term and long-term prediction in 3D space,
respectively. Methods His. Rep. [33], MSR-GCN (8] and STSGCN [39] released their codes publicly, we used
the results from their pre-trained models or re-trained the models and tested under the same protocol for fair
comparison.

The results in Table 1 and Table 2 indicate that our method outperforms all the competing methods on
average for both mid-term and long-term prediction. Note that we surpass LTD-50-25 [34], DMGNN [26], and
STSGCN [39] almost all the time. In particular, as shown in Table 2, for the MPJPE metric, our method exceeds
STSGCN [39] and His. Rep. [33] by 12.8 and 7.8 averaging for the 4s prediction respectively. Also, we outperform
STSGCN [39] and His. Rep. [33] for 14 and 13 (15 totally) action classes in long-term prediction. Besides, Table 2
illustrates the effectiveness of our method especially for those acyclic motions, e.g., “walking dog”, “posing” and
“directions”, we even outperform the previous most competitive baseline MSR-GCN [8] by a large margin, which
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Table 1. MPJPE error of 3D joint position on Human3.6M for mid-term prediction. The error is measured in millimeter. The
two numbers after the method name “LTD” indicate the number of observed frames and that of predicted frames respectively.
Best results in bold.

Walking Eating Smoking Discussion

Milliseconds 560 720 880 1000 | 560 720 880 1000 | 560 720 880 1000 560 720 880 1000
Residual sup. (CVPR'17) [35]  71.6 725 76.0 79.1 | 749 859 938 98.0 | 78.1 88.6 96.6 1021|1095 1220 128.6 131.8
ConvSeq2Seq (CVPR’18) [23] 722 77.2 809 823 | 613 728 818 87.1 | 60.0 694 772 817 98.1 1129 1230 1293
LTD-50-25 (ICCV’19) [34] 50.7 544 574 603 | 515 626 713 758 | 505 593 67.1 721 889 103.9 113.6 1185
LTD-10-25 (ICCV’19) [34] 51.8 562 589 609 | 500 61.1 69.6 741 | 513 608 687 73.6 87.6 103.2 1131 1186

) [

) [

) [

LTD-10-10 (ICCV’19) [34] 53.1 599 662 70.7 | 51.1 625 729 786 | 494 592 669 718 88.1 1045 1155 121.6

His. Rep. (ECCV’20) [33] 47.4 52.1 555 581|500 614 706 757 |47.6 56.6 644 69.5 | 866 1022 1132 1198

DMGNN (CVPR’20) [26]  73.4 - - 95.8 | 58.1 - - 86.7 | 50.9 - - 72.2 | 819 - - 138.3

STSGCN (ICCV’21) [39] 580 60.7 641 702 | 574 69.7 779 826 | 555 656 723 76.1 91.1 1053 1142 1189

MSR-GCN (ICCV’21) [8] 533 554 581 63.7 | 508 614 69.7 754 | 505 595 671 721 87.0 101.9 1114 1168

Ours 498 550 585 605 | 485 59.2 682 730|484 575 650 700 858 1012 1116 1164

Directions Greeting Phoning Posing Purchases Sitting

Milliseconds 560 720 880 1000 560 720 880 1000 | 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000
Residual sup.(CVPR’17) [35 101.1 1145 1245 129.1 | 126.1 1388 1503 153.9 | 94.0 107.7 119.1 1264 | 1403 1598 173.2 183.2 | 122.1 1372 1480 1540 | 113.7 1305 1444 152.6
ConvSeq2Seq (CVPR’18) [23]  86.6 ~ 99.8 109.9 1158 | 1169 130.7 1427 1473 | 77.1 92.1 1055 114.0 | 1225 1488 171.8 187.4 | 1113 129.1 143.1 1515 | 824 988 1124 120.7
LTD-50-25 (ICCV’19) [34] 742  88.1 99.4 105.5 | 1048 1197 1321 136.8 | 688 83.6 968 1051 | 110.2 1378 160.8 1748 | 99.2 1149 127.1 1349 | 79.2 962 1103 1187
LTD-10-25 (ICCV’19) [34]  76.1 91.0 102.8 108.8 | 1043 1209 1346 1402 | 68.7 840 972 1051 | 1099 1368 1583 1717 | 994 1149 127.9 1359 | 785 957 1100 1188
LTD-10-10 (ICCV’19) [34] 72.2 86.7 98.5 1058 | 103.7 120.6 1347 1409 | 67.8 83.0 96.4 105.1 | 107.6 1361 159.5 175.0 | 98.3 115.1° 130.1 1393 | 764 93.1 1069  115.7
)
)

His. Rep. (ECCV’20) [33] 73.9 88.2 100.1 106.5 | 101.9 1184 1327 138.8 | 67.4 82.9 96.5 105.0 | 107.6 136.8 1614 1782 | 95.6 110.9 125.0 134.2 | 76.4 93.1 107.0 1159
DMGNN (CVPR'20) [26] 1101 - - 1158 1525 - - 1577 | 789 - - 986 [ 1639 - - 3101 | 1186 - <1538 | 601 - - 1049
STSGCN (ICCV’21) [39]  79.9 950 1039 109.6 | 1063 1199 1301 136.1| 73.1 879 100.6 1083 | 1197 1463 1654 1784 | 1068 1221 1341 1410 | 847 1024 1148 1214
MSR-GCN (ICCV'21) [8] 758 899 100.5 1059 | 1063 1200 1315 1363 | 67.9 825 958 1047 | 1125 140.1 1628 1765 | 992 1140 1269 1344 | 776 940 1077 1159
Ours 733 87.9 99.7 1063 | 101.1 117.8 1313 1364 | 67.3 823 94.9 103.2 | 107.1 1346 156.7 171.0 | 99.0 1137 127.1  135.1 76.0 92.0 1054 1144
Sitting down Taking photo Waiting Walking dog Walking together Average

Milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000
Residual sup. (CVPR’17) [35] 1388 159.0 176.1 187.4 | 110.6 1289 143.7 1539 | 1054 117.3 1281 1354 128.7 141.1 155.3 1645 | 80.2 873 9238 98.2 1063 1194  130.0 136.6
ConvSeq2Seq (CVPR'18) [23] 1065 1251 139.8 150.3 | 844 1024 1177 1281 | 873 1003 1107 117.7 | 1224 1338 1511 1624 | 720 77.7 829 874 | 907 1047 1167 1242
LTD-50-25 (ICCV'19) [34] 1002 1182 1331 1438 | 753 935 1084 1188 | 77.2 906 1011 1083 | 107.8 1203 1363 1464 | 560 603 631 657 | 796 936 1052 1124
LTD-10-25 (ICCV'19) [34]  99.5 1185 1336 1441 | 768 953 1103 1202 | 751 887 995 1069 | 1058 1187 132.8 1422 | 580 636 67.0 696 | 795 940 1056 1127
LTD-10-10 (ICCV'19) [34] 962 1152 1308 1422 | 725 909 1059 1163 | 734 882 998 107.5 | 1097 1228 1390 1501 | 557 613 664 698 | 783 933 1060 1140

)

)

His. Rep. (ECCV’'20) [33]  97.0 1161 1321 1436 | 72.1 904 1055 1159 | 745 89.0 100.3 108.2 | 108.2 120.6 1359 1469 | 52.7 57.8 62.0 64.9 | 77.3 918 1041 1121
DMGNN (CVPR’20) [26] 122.1 - - 168.8 | 91.6 - - 120.7 | 106.0 - - 136.7 | 194.0 - - 182.3 | 83.4 - - 115.9 | 103.0 - - 137.2
STSGCN (ICCV’21) [39] 105.2 124.8 139.2 1484 | 84.2 1046 116.6 1263 | 80.8 95.7 106.4 113.6 | 1154 128.1 141.6 1515 | 589 623 66.9 725 85.1 99.4 1099 117.0
MSR-GCN (ICCV’21) [8] 102.4 122.7 139.6 149.3 | 77.7 96.9 1123 1219 | 748 87.8 98.2 105.5 | 107.7 120.8 1357 1457 | 56.2 60.9 65.0 69.5 80.0 93.9 1055 112.9

Ours 96.2 114.5 1299 1413 | 742 92.6 1074 117.7 | 72.9 873 97.7 104.9 | 1054 1204 1364 1483 | 543 597 64.2 673 77.3 917 103.6 1111

are 10 and 11 for 4s prediction respectively. The most probable reason is that the other methods tend to generate
representative static poses or failed to forecast the long horizon dynamics.

Furthermore, we also provide the comparison results of the DTW metric in Table 3. Our approach surpasses all
the baselines on average. Specifically, the proposed method is much better than the previous method STSGCN [39]
by a margin of 2.4x107 averaging for 4s prediction. We also achieve the best results on 9 activities such as “eating”,
“smoking”, “discussion”, and so on. This performance gain clearly indicates that our method can produce sequences
more similar to the ground truth globally.

4.2 Qualitative Results

We also provide qualitative results in Figure 3 and Figure 4 for long-term and mid-term prediction including
smoking, eating, taking photo, walking dog and greeting actions. Compared with His. Rep. [33], STSGCN [39]
and MSR-GCN [8], our approach can predict more dynamic and accurate future poses, which can capture both
the key poses of the defined classes and the underlying dynamics for long-term prediction.

For instance, for the smoking action (see Figure 3 (a)), we can predict someone lighting a cigarette with right
hand, then put this hand down, while His. Rep. [33] can only predict the movement of lighting a cigarette, and
the frames in the black dashed box illustrate that the smoking poses almost stand still in more than a quarter
of the forecast duration. For the greeting action (see Figure 4 (a)), we can also forecast the underlying pattern
which is rising hands to greet and then laying down them, while His. Rep. [33] can only forecast the movement
of rising hands and quickly produce freezing motion (as shown in the black dashed box).

Furthermore, we can learn the action-conditioned pattern for parts of the human body. For example, for the
walking dog action (see Figure 3 (d)), our prediction is sitting while walking the dog, but His. Rep. [33] can not
predict the dynamic of human arms and tend to converge to the mean pose for a long time.
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Table 2. MPJPE error of 3D joint position on Human3.6M for long-term prediction. Best results in bold.

Milliseconds 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

His. Rep. (ECCV’20) [33]  59.1 61.6 66.5 722 734 79.8 83.0 84.9 84.5 93.8 94.7 96.7  100.3 109.8 106.5
STSGCN (ICCV’21) [39]  81.6 84.3 86.8 91.7 95.4 95.9 98.2 100.2 1042 1259 109.5 108.8 1104 1209 1123

Walking MSR-GCN (ICCV’21) [8] 628 60.9 680 768 788 797 836 844 832 889 930 947 964 1020 102.3
Ours 619 634 714 774 810 845 908 930 942 1018 1076 1077 1114 1202 1197

His. Rep. (ECCV’20) [33] 826 879 907 931 961 986 1003 1035 1063 1061 1057 1080 1106 1123 116.1

Eatin STSGCN (ICCV’21) [39] 1055 1120 1138 1195 1240 1263 127.1 1285 1320 1532 1334 1356 1362 1432 13658
g MSR-GCN (ICCV’21) [8] 852 889 913 944 963 973 987 1002 1027 1030 1042 1067 1084 108.3 1117

Ours 806 853 894 924 954 970 998 1020 1048 1040 1042 1058 1076 1093 1140

His. Rep. (ECCV’20) [33] 77.2  84.0 894 948 1018 1068 1104 1140 1175 1225 1257 1309 1349 1396 1422

Smokin STSGCN (ICCV’21) [39] 1129 1215 1262 1329 1406 1457 1477 1521 1558 1701 1608 1613 1641 - 1689 1657
8 MSR-GCN (ICCV’21) [8] 849 934 992 1045 1113 1170 1204 1236 1253 1300 1320 1350 1386 1427 1447

Ours 777 844 895 944 1005 1053 1098 1131 1171 1224 1257 1297 133.8 1368 1402

His. Rep. (ECCV’20) [33] 1313 1386 1443 1490 1511 1524 1593 163.1 1635 1666 1669 1697 1707 1735 1740

Discussion STSGCN (ICCV’21) [39]  138.1 1424 1473 1490 1522 1541 1580 1623 1614 1767 1647 1683 1690 1738 1680
MSR-GCN (ICCV’21) [8] 1321 1365 1404 1449 1472 1472 1514 1537 1543 1574 1590 1626 1642 1671 1663

Ours 1252 1308 1360 1400 142.6 1432 1484 1515 152.2 155.6 157.4 160.0 1618 163.9 163.2

His. Rep. (ECCV’20) [33] 1163 1214 1267 1300 1329 1361 1380 139.1 1418 1474 1528 1538 1538 1548 1567

Diseetions STSGCN (ICCV’21) [39] 1402 1453 1471 1512 1531 1556 1565 1574 1572 1830 1612 160.2° 1584 . 1687 156.4
MSR-GCN (ICCV’21) [8] 1263 1329 1388 1439 1464 1496 1519 1529 1546 1584 1624 1613 1595 1581 157.1

Ours 1161 1210 1264 1297 1321 1344 1356 1360 1382 1426 1467 147.3 1466 1458 147.1

His. Rep. (ECCV’20) [33] 1482 1524 1531 1502 150.6 1518 1507 1513 1555 1578 1500 1584 1509 1601 158.6

Greetin STSGCN (ICCV’21) [39] 1586 1578 1619 160.9 1633 1639 1627 1642 1664 1721 1670 1660 1639 1635 16458
8 MSR-GCN (ICCV’21) [8] 1511 1549 1540 1519 1509 1508 1483 1492 1534 1542 1553 1553 1541 1527 1517

Ours 1443 1473 1480 1444 1424 1442 1451 1445 1483 1495 1517 150.1 152.0 1530 1523

His. Rep. (ECCV’20) [33] 1189 1324 1442 1534 1623 169.6 1760 1814 1876 1925 1954 1966 2001 2022 2034

Phonin STSGCN (ICCV’21) [39] 1423 1503 157.6 1638 1679 1707 173.9- 1786 1826 1961 1905 1907 1912 1934 1910
s MSR-GCN (ICCV’21) [8] 120.2 1315 1418 1504 1574 1623 1670 1715 = 1764 1807 1845 1864 1889 1902 1918

Ours 1168 128.9 1404 148.6 1565 1611 167.0 1718 177.0 1810 1837 1842 1867 1884 189.3

His. Rep. (ECCV’'20) [33] 2025 2204 2333 2464 2546 2576 2563 2548 2549 2520 2512 2472 247.5 2498 2466

Posin STSGCN (ICCV’21) [39] 2061 2129 2215 2299 2343 /2372 2375 2300 2431 2496 2440 2406 2398 2380 2359
8 MSR-GCN (ICCV’21) [8] 2084 2213 2277 2336 2363 2366 2363 2386 2410 2403 2399 2359 2344 2350 2321

Ours 1918 2059 2164 2280 2365 2387 237.7 2367 237.9 2350 233.5 2269 2247 2242 2206

His. Rep. (ECCV’20) [33] 1459 1540 1625 1662 1722 1816 1867 1895 1928 1937 1949 1973 2073 2117 2135

Purchases STSGCN (ICCV’21) [39]  158.6 1663 1702 1736 1769 1841 1865 1888 1909 2104 1933 1951 1998 2101 2008
MSR-GCN (ICCV’21) [8] 147.8 1538 160.4 1638 1698 1782 1812 1821 1835 1837 1842 1853 1933 1972 1996

Ours 1452 1513 156.6 1582 1640 1721 1759 177.6 1794 179.5 180.6 183.0 1920 1956 197.1

His. Rep. (ECCV’20) [33] 1323 1477 1585 1682 1789 189.2 2007 2097 217.1 2231 2272 2320 2360 2397 2419

Sittng STSGCN (ICCV’21) [39] 1770 1873 1986 2069 2136 2175 2216 2247 227.6 2211 2320 2317 2321 2269 2315

MSR-GCN (ICCV’21) [8]  140.2 156.2° 166.6 1757 1855 1935 200.6 2058 209.2 2112 214.1 216.6 217.9 219.4 219.0
Ours 1313 146.4 156.7 165.6 176.1 1859 195.7 202.6 208.8 2132 217.7 222.1 2261 228.2 228.8

His. Rep. (ECCV’20) [33] - 159.9 177.6 1915 2043 217.4 2317 2467 2579 268.0 2763 2833 290.2 2949 2999 3018
STSGCN (ICCV’21) [39]  216.2 227.2 2369 247.1 2553 263.8 2715 277.3 2843 2878 2883 2902 2922 2923 2912
MSR-GCN (ICCV°21) [8] 179.3 196.7 209.5 221.1 2321 242.6 2528 261.0 2694 2748 2789 2827 283.8 2850 284.3

Ours 157.1 173.7 188.0 200.7 213.3 2259 239.2 248.5 258.1 264.9 272.2 278.6 283.4 2868 289.0

His. Rep. (ECCV’20) [33] 133.1 1485 161.0 1723 1823 1917 199.8 208.1 2122 2172 226.1 231.1 2347 2389 2415
STSGCN (ICCV’21) [39] 181.7 196.9 2021 211.8 2214 2303 2339 2409 2436 2547 249.0 2530 253.6 2579 251.8

Sitting Down

Taking Ph
aking Photo jop GON'(10CV?21) [8] 1533 1689 1790 1893 1973 2036 2087 2139 2160 2174 2219 2246 2255 2259 226.6
Ours 1348 1498 160.5 1713 1816 1907 1983 2057 2083 2118 219.2 224.2 2272 2291 2308
His. Rep. (ECCV’20) [33] 1195 1205 1381 1478 1563 1666 1724 1770 1819 1862 1897 1931 1966 2011 2037
—_— STSGCN (ICCV’21) [39] 1546 1610 1677 1740 1758 1790 1829 1856 1897 2010 1939 1942 1950 197.9 1949
& MSR-GCN (ICCV’21) [8] 1304 139.1 1447 1526 1578 1639 1696 1723 1753 177.5 1804 1828 186.1 188.7 187.4
Ours 1155 1247 132.6 1425 1513 1611 167.6 1716 1757 1786 1830 1874 1914 1941 1963
His Rep. (ECCV’20) [33] 1584 170.2 1802 189.8 1957 2043 2147 2215 2272 2306 227.6 2280 2307 2337 2335
Walking DY STSGCN (ICCV’21) [39] 1814 1924 1978 2068 2130 2221 2317 2380 2427 2567 2509 2512 2558 2644 2622
808 MSR-GON (ICCV’21) [8] 1666 177.2 187.2 1947 2001 207.4 2153 2240 2300 2339 2355 2387 2450 2507 2508
Ours 161.6 1745 1846 1937 1999 2069 2144 2163 220.8 2219 2165 216.6 2210 2247 227.3
His. Rep. (ECCV'20) [33]  69.2 72.0 767 824 857 875 900 931 943 951 971 986 1005 1024 103.9
Walking Tosether  STSGCN(CCV2D[39] 1139 1200 1224 1207 1353 1396 1412 1447 1467 1635 1472 1491 1500 1620 1562
& fog MSR-GCN (ICCV’21) [8] 723 746 782 853 896 925 951 952 961 990 1018 1046 1056 1101 1116
Ours 726 752 817 844 893 914 965 970 989 993 1037 1041 1060 1078 1120
His. Rep. (ECCV’20) [33] 1236 1332 1411 1480 1541 1604 1657 1699 1737 1774 1798 1821 1852 1886 189.6
Average STSGCN (ICCV’21) [39] 1513 1585 1638 169.9 1748 179.1 1821 1855 1885 2015 1924 1931 1941 1988 1946

MSR-GCN (ICCV°21) [8] 130.7 139.1 1458 1522 157.1 1615 1654 168.6 1714 1740 1765 1782 180.1 182.2 1825
Ours 122.2 130.8 1385 144.7 150.8 156.2 1614 164.5 168.0 170.7 173.6 175.2 178.1 180.5 1818
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Table 3. DTW error (x107) of different actions on Human3.6M for long-term (4s) prediction. Best results in bold.

Actions | Walking_Eating_Smoking _ Discussion | Directions_ Greeting_Phoning_Posing | Purchases _ Sitting_Sitting Down _ Taking Photo | Waiting_ Walking Dog__ Walking Together _ Average

His. Rep. (ECCV’20) [33] 31 6.5 6.7 13.8 123 14.7 15.5 27.1 17.4 175 28.5 17.4 14.4 214 4.3 14.7
STSGCN (ICCV’21) [39] 4.7 8.2 9.8 12.6 13.0 14.6 14.0 24.6 16.2 18.6 283 20.9 15.4 225 9.6 15.5
MSR-GCN (ICCV’21) [8] 3.9 59 6.7 119 125 13.7 12.3 23.5 15.2 14.6 241 16.6 12.9 20.3 5.1 133
Ours | 36 5.8 65 117 10.9 13.1 13.0 225 15.1 15.7 2538 15.8 133 19.0 46 13.1
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Fig. 3. Qualitative results of long-term (4s) prediction including smoking, eating, taking photo and walking dog actions on
the Human3.6M dataset. The first two frames are the latest observed frames, the others are predicted frames. The whole
sequence is down-sampled to 5 frames per second. (Best viewed when zoomed in.)
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Fig. 4. Qualitative results of 2s prediction on greeting action on the Human3.6M dataset. The first two frames are the latest
observed frames, the others are predicted frames. The whole sequence is down-sampled to 5 frames per second. (Best viewed
when zoomed in.)

Moreover, for motions with more complexity and randomness, e.g., taking photo and walking dog, our method
can generate more dynamic sequences than [33] evidently (see Figure 3), which instead produces mostly static
motions. The visualization results comparison shows the consistency that using the bidirectional predictor could
alleviate the average forecasting problem to a large extent.

In addition, although MSR-GCN [8] and STSGCN [39] can generate more dynamic motions than His. Rep. [33],
some of them are wrong or less accurate than ours. For example, for the smoking behavior in Figure 3(b), both
methods predict a person walking while smoking, but the ground truth sequence shows that the person stands
there most of the predicted duration. Also, as shown in other cases in Figure 3 and Figure 4, our results are closer
to the ground truth.

4.3 Ablation Studies

We conduct extensive ablation studies on the Human3.6M dataset to evaluate the effectiveness of different
components of the proposed BiITGAN. As shown in Table 4, the proposed BiTGAN has five variants (i.e., B1, B2,
B3, B4, B5). We also compare the performance of variants by the statistics and visualizations in Figure 5 and
Figure 6 respectively. In Figure 5(a), the average MPJPE errors are plotted at each future time stamp. In Figure
5(b), the MPJPE error at 4s for each action category are plotted.
e (i) B1: Motion Transformer. B1 only uses our designed Transformer module (as shown in Figure 2) to
encode-and decode the motion sequence. The output of motion Transformer is then concatenated with the
DCT coefficients of the last observed sub-sequence, fed as the input of GCN to predict the future poses.
e (ii) B2: B1 + Cross-modal Attention. Based on B1, B2 utilizes the cross-modal attention to model the
crossing relations between the outputs of Transformer decoder and DCT coeflicients.
o (iii) B3: B2 + bidirectional generation strategy. B3 adopts the proposed bidirectional generation strategy.
e (iv) B4: B3 + adversarial discriminators. B4 employs the associated adversarial discriminators to encour-
age the outputs indistinguishable from the ground truth at both frame and sequence levels.
e (v) B5: B4 + Soft-DTW loss. B5 adopts the Soft-DTW loss to add more constraints to the generator.
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Table 4. The ablation study of each component on Human3.6M. B6 is our BiTGAN which combines with each component

Method 80 160 320 400 560 720 880 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 Ave.
His. Rep. [33] 104 226 47.1 583 773 91.8 1041 1121 1236 1332 141.1 148.0 1541 160.4 1657 169.9 173.7 1774 179.8 1821 1852 188.6 189.6 1389
B1 Motion Transformer 107 229 473 588 77.7 923 1044 1112 1225 133.0 140.6 1473 1525 158.2 164.5 168.7 173.1 176.1 179.5 180.4 1832 186.3 187.9 138.0
B2 Bl + Cross-Modal Attention 107 237 478 59.0 783 921 1043 1124 1229 1325 1403 1472 150.9 1573 163.0 167.6 1728 1752 1789 179.5 182.6 1851 186.4 137.6

B3 B2 + Bidirectional Generation 109 233 482 59.2 777 921 1040 1115 1229 1321 139.6 1457 1515 157.2 162.6 166.2 169.5 172.6 1754 177.1 180.1 182.8 1842 136.4
B4 B3 + Adversarial Discriminators  11.0 23.3 484 594 777 917 1033 1105 121.7 1304 137.9 1444 1507 1563 1614 1649 168.7 171.6 1748 176.4 179.2 181.5 183.0 1355
B5 B4 + Soft-DTW Loss 11.0 233 482 59.0 773 917 103.6 111.1 1222 1308 1385 1447 150.8 156.2 1614 164.5 168.0 170.7 173.6 1752 178.1 180.5 181.8 135.2

(a) (b)

190 | —e— His. Rep. [33] —e— His. Rep. [33]

B1: Motion Transformer 300 B3: B2 + Bidirectional Generation
B2: B1 + Cross-Modal Attention +— B4: B3 + Adversarial Discriminators
B3: B2 + Bidirectional Generation B5: B4 + Soft-DTW Loss
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Fig. 5. (a) Comparison of average prediction error (MPJPE) over all action categories at different forecast times on the H3.6M
dataset. (b) Comparison of prediction error for each action category at 4s on the H3.6M dataset.

Effect of Motion Transformer. As illustrated in Figure 5(a), by comparison B1 with His. Rep. [33], the proposed
motion Transformer B1 improves performance over all the time stamps, especially for the long-term time stamp
(e.g., 3400ms, 3600ms, 3800ms, 4000ms). In Table 4, for 4s prediction, B1 reduces the error from 189.6 to 187.9,
which shows the motion Transformer can better capture long-range dependency.

Effect of Cross-Modal Attention. In Figure 5(a), adopting the cross-modal attention to model the crossing
relations between the outputs of Transformer decoder and DCT coefficients achieves a small gain over B1 all the
time, which uncovers the benefits of utilizing these features effectively.

Effect of Bidirectional Generation. As shown in Figure 5(a), there is an obvious improvement from B2 to
B3, highlighting the importance of the proposed bidirectional generation strategy for encoding motion patterns
and human dynamics. Furthermore, as observed by the difference in performance between His. Rep. [33] and
ours in Figure 6, B3 alleviates the freezing prediction problem for a long-term span, which produces poses that
keep moving during the forecast period. Specifically, B3 forecasts the right hand moves forward, which is the
same as the moving trend of ground truth. While many frames (in the black dashed box) are predicted by His.
Rep. [33] illustrate that the predicted poses do not change in more than half of the forecast duration. Regarding
the mitigation of our bidirectional structure to the average predicting problem, please refer to Section 4.2 for
more comparison.
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Fig. 6. Visualization of predicted poses of different methods on a sample of the H3.6M dataset for long-term prediction.
From top to bottom sequences correspond to ground truth, His. Rep. [33], B3, B4, B5 (our BiTGAN) respectively. The first two
frames are the latest observed frames, the others are predicted frames. The whole sequence is down-sampled to'5 frames per
second. (Best viewed when zoomed in.)

Effect of Adversarial Discriminators. As illustrated Figure 5(a) and in Table 4, B4 steadily improves over B3 for
long-term time stamps and achieves around 1.4 gain on the MPJPE metric at 4s. In visualization comparison (see
Figure 6), B4 predicts both hands are moving, which is more closely related to the ground truth sequence in general.
The boosted performance shows the advantage of adversarial discriminators (i.e., frame-based discriminator and
sequence-based discriminator), which leads to more realistic results by distinguishing the predicted results at
frame and sequence levels.

Effect of the Soft-DTW Loss. In Table 4 and Figure 5(a), we can see that the overall performance is further
facilitated by adding the Soft-DTW loss. Moreover, Figure 5(b) shows that B5 is better than B3 and B4, especially
on some difficult motions e.g., “posing” and “discussion”. In Figure 6, B5 forecasts the movement of the right hand
and legs over time, further narrowing the gap with the ground truth in the video level. These results are probably
due to the fact that Soft-DTW loss enables B5 better capture the overall movement of human joints, resulting in
more coherent and natural motion predictions. Note that B5 is our final model, which is significantly better than
His. Rep. [33], validating the effectiveness of each component of our BiTGAN.

Effect of Loss Hyper-Parameters. We also investigate the influence of A, pipe’ Af’n pipe’
formance of our model. As shown in Table 4, we list nine different loss parameter settings (i.e., L1-L9) and the
corresponding results. Note that we adopt the baseline model B4 in Table 4 with the proposed motion Transformer,
cross-modal attention and bidirectional generation for parameter selection since those three parts are more
critical to the proposed BiTGAN. When 14 =98, Ab = 0.1, Ajnp = 0.1, the prediction performance

: mpjpe mpjpe
achieves the best.

and Ajn, to the per-

Table 5. The influence of the loss hyper-parameter on Human3.6M.

Az’l'/l’f /"l;l'fl'!‘ Ainy 80 160 320 400 560 720 880 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 Ave.

L1 11 0.1 01 11.0 234 487 598 784 929 1046 1119 1227 131.2 138.7 1450 1509 157.0 162.2 1658 169.4 172.7 1759 1779 181.3 1846 186.2 136.6
L2 9 0.1 01 110 234 486 597 785 93.0 1052 1128 124.0 133.2 140.7 146.8 152.6 158.1 1634 167.0 170.7 1741 177.6 179.2 181.7 1844 186.0 137.6
L3 05 0.4 01 132 264 53.0 648 850 1014 1160 1250 136.1 1456 1528 159.1 163.8 168.2 172.6 1751 1773 179.1 1814 1824 1842 1856 186.0 145.0
L4 5 4 1 133 268 534 653 853 101.2 1150 123.9 1348 144.6 151.3 157.8 162.6 167.1 170.7 1729 1752 177.2 179.2 180.5 182.7 1844 1853 143.8

L5 095 0.04 0.01 115 243 500 61.2 79.9 940 1058 113.2 1242 1328 140.6 147.0 153.0 1584 1642 167.6 171.1 1741 177.0 178.6 181.3 183.8 185.0 137.8
L6 95 0.4 01 115 242 498 609 79.6 940 1057 113.1 1245 1333 1409 1473 153.1 1587 163.8 166.9 170.0 1725 1749 1769 180.0 182.8 184.5 1373

L7 30 0.1 0.1 11.0 234 487 60.0 78.7 932 1049 112.0 1229 131.7 139.2 1454 1514 1574 162.7 166.2 169.7 173.1 1757 177.4 180.5 183.2 1843 136.6
L8 7 2 1 123 253 511 629 828 989 113.0 1224 1341 1447 1523 1593 164.1 168.6 1724 1749 1768 1784 180.1 180.6 181.9 183.6 1842 1437
L9 938 0.1 01 109 233 482 59.2 77.7 921 1040 1115 1229 1321 139.6 1457 1515 157.2 1626 166.2 169.5 172.6 1754 177.1 180.1 182.8 184.2 136.4
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Fig. 7. Failure case (walking action) of our human motion prediction method for long-term (4s) prediction on the Human3.6M
dataset. The first two frames are the latest observed frames, the others are predicted frames. The whole sequence is down-
sampled to 5frames per second. (Best viewed when zoomed in.)

4.4 Limitations

Although our BiTGAN can produce dynamic poses for long-term prediction, it also has some limitations. Figure 7
illustrates a failure case of walking activity of our method. As we can see, for some frames; our prediction in leg
joints is less accurate, e.g., the knee bends a bit more, the steps are a bit smaller than the ground truth. The most
probable reason is that, for such simple poses, our model will introduce more uncertainties, which will affect the
accuracy of those actions with more certainties.

Table 6. The average MPJPE error of all actions on Human3.6M for short-term prediction. The best two results are highlighted
in red and blue.

Milliseconds ‘ Residual sup. [35] ConvSeq2Seq [23] LTD-50-25 [34] LTD-10-25[34] LTD-10-10 [34] His. Rep. [33] Ours

80 25.0 16.6 12.2 12.4 11.2 10.4 11.0
160 46.2 333 25.4 25.2 23.4 22.6 233

Besides, our model has competitive performance for short-term motion prediction. We have provided the
short-term prediction results in Table 6. We can observe that our approach achieves the second best results
(highlighted in red) while the best is His. Rep [33]. The underlying reason might be that our method is designed
for long-term prediction, which tends to produce more dynamic poses. Thus, compared with the static mean pose
produced by His. Rep [33], our method leads to higher errors for short-time but lower errors for a long-range
prediction.

5 CONCLUSIONS

In this paper, we propose a novel bidirectional Transformer GAN (BiTGAN) for long-term human motion
prediction. Our novel bidirectional generation paradigm can effectively leverage the limited training samples as
well as refrain from the freezing pose generation problem, especially for long-term prediction tasks. Besides,
we split the history sequence into two parts, with the earlier part being fed to the encoder and the recent one
being fed to the decoder. In this way, the Transformer generator can keep the distribution consistency between
training and testing, thus alleviating the exposure problem and making the inference efficient. Moreover, we also
introduce a soft-DTW loss and two discriminators to improve the capacity of maintaining the similarity between
the predicted sequence and the real one implicitly and semantically. Our experimental results demonstrate the
superiority of the proposed BiTGAN in predicting dynamic poses for both acyclic and periodic motions.
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