© Owner/Author | ACM 2023. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of the 50th Annual International Symposium on Computer Architecture (ISCA '23). Association for Computing Machinery, New York, NY, USA,
Article 30, 1-13, http://dx.doi.org/10.1145/3579371.3589065

DynAMO: Improving Parallelism Through Dynamic
Placement of Atomic Memory Operations

Victor Soria-Pardos*, Adria Armejach*, Tiago Miick?, Darfo Sudrez Gracia®, José A. Joaot,
Alejandro Rico¥ and Miquel Moret6!
*Barcelona Supercomputing Center,Universitat Politécnica de Catalunya, fArm,
§Universidad de Zaragoza,ﬂAMD

Abstract—With increasing core counts in modern multi-core - 75
designs, the overhead of synchronization jeopardizes the scala- 8 Atomic-Near
bility and efficiency of parallel applications. To mitigate these o 701 -A- AtomicLoad-Far
overheads, modern cache-coherent protocols offer support for 5 651 Y 4 AtomicStore-Far
Atomic Memory Operations (AMOs) that can be executed near- 0 60 1 —_.,—I - s~<

wn B ~

core (near) or remotely in the on-chip memory hierarchy (far). O 55 AA S<o

This paper evaluates current available static AMO execution <§(501 % S~
policies implemented in multi-core Systems-on-Chip (SoC) de- s 45 SET .
signs, which select AMOs’ execution placement (near or far) c 40 =% ===__
based on the cache block coherence state. We propose three static 235 SS=aay
policies and show that the performance of static policies is appli- s 12 4 8 6 2

cation dependent. Moreover, we show that one of our proposed
static policies outperforms currently available implementations.

Furthermore, we propose DynAMO, a predictor that selects
the best location to execute the AMOs. DynAMO identifies the
different locality patterns to make informed decisions, improving
AMO latency and increasing overall throughput. DynAMO out-
performs the best-performing static policy and provides geomet-
ric mean speed-ups of 1.09x across all workloads and 1.31x on
AMO-intensive applications with respect to executing all AMOs
near.

I. INTRODUCTION

Multi-core designs have dominated the CPU market since
the end of Dennard’s scaling [21]. Despite chip manufacturers
getting closer to the end of Moore’s Law [49], recent designs
continue to deliver higher core counts. For instance, AMD’s
EPYC 7773X uses a chiplet-based architecture and 3D stack-
ing to support up to 64 cores and a 768MiB Last-Level Cache
(LLC) [15]. Other vendors have released even higher core
counts, such as the 128-core Ampere Altra Max [26]. This
trend towards many-core architectures makes synchronization
operations critical for scaling the performance of parallel ap-
plications: a larger core count leads to longer communication
latency between cores and more contention in the shared
system interconnect.

Shared memory is the preferred programming model to
parallelize applications in multi-core architectures. In this
paradigm, parallel applications enforce correctness through
explicit synchronization primitives, such as locks, barriers,
and condition variables. These synchronization primitives use
expensive atomic Read-Modify-Write (RMW) operations to
update shared variables.

Modern Instruction Set Architectures (ISAs), such as x86,
POWER, Armv9, and RISC-V, implement RMW operations as
a single Atomic Memory Operation (AMO) instruction. AMOs
can perform simple operations such as bit-wise arithmetic (OR,

Threads
Fig. 1. Throughput of near and far AMOs. Far AMOs are split into two sets:
AtomicLoads are AMOs that return the previously stored value, AtomicStores
do not return any value.

AND, XOR), fetch-and-add, swap, and Compare-And-Swap
(CAS). Programmers can directly use AMO through compiler
built-in macros [54] or using specific libraries [18]. Typically,
on an AMO, the core fetches the target cache block with
exclusive permissions into its private cache to modify it locally
(near AMOs). Alternatively, systems have implemented mech-
anisms to execute AMOs on different locations on the chip (far
AMOs); for example: on the directory, the LLC, the memory
controller, or dedicated modules [5, 30, 33, 38, 42, 58, 63].
Recent processors [36, 43], GPUs [64], and the Advanced
Micro-controller Bus Architecture (AMBA) 5 Coherent Hub
Interface (CHI) standard [9] have reintroduced the concept of
far AMOs, including mechanisms to support them.

Figure 1 illustrates that near and far AMOs are comple-
mentary mechanisms comparing the throughput of a memory
update using near and far AMOs on an AMBA 5 CHI based
system (see Section VI-A for simulation details). In the case of
far AMO, AMBA 5 CHI distinguishes two versions depending
on whether the AMO transaction returns the previously stored
value (AtomicLoad-Far) or not (AtomicStore-Far).

When near AMOs, Atomic-Near, run in single-threaded
programs, they achieve the highest possible throughput, since
their cache blocks are always present in the first-level cache.
However, as the thread count increases, we observe how the
throughput gradually degrades as threads compete to update
the shared variable. When switching to far AtomicLoad and
AtomicStore, the throughput of single-thread significantly re-
duces as AMOs execute in the shared LLC, increasing the
latency of AMOs. However, as the thread count increases,
the trend reverses specially for AtomicStore transactions (56%

better than Atomic-Near for 32 cores), as the data does not
move to private caches, and all the updates are centralized and
serialized by the directory. Figure 1 reveals that near and far
AMOs perform differently depending on contention and the
memory access pattern.

This paper proposes and evaluates different static AMO
placement policies that decide whether to execute the AMO
near (L1D) or far (LLC) based on the current L1D cache
block state. Our analysis and evaluation conclude that, while
some policies best suit specific applications, there is no one-
size-fits-all static policy. Therefore, we propose DynAMO, a
simple predictor that dynamically decides the best location
to execute the AMO (near or far). DynAMO identifies the
different locality patterns of data accessed by AMOs to make
informed decisions, improving AMO latency and increasing
overall throughput.

This paper makes the following contributions:

« We investigate the design space of static AMO policies
and propose three new static policies that target common
access patterns and are not implemented in current chip
designs.

« We implement and evaluate the proposed static policies as
well as two state-of-the-art static AMO policies, available
in current chips, using a detailed AMBA CHI model
within the gem5 simulator [48]. We find out that one
of our proposed static policies is the best performing,
yielding speed-ups of 1.05x across all applications and
1.19x on AMO-intensive applications with respect to
executing all AMOs near.

« We observe that there is no static policy able to outper-
form the rest on all applications. Therefore, we propose
DynAMO, a dynamic AMO placement predictor that
leverages data access locality patterns to decide whether
AMOs should be executed near or far. We show that
DynAMO can achieve better performance than the best
static policy. DynAMO obtains speed-ups of 1.09 x across
all applications and of 1.31x for AMO-intensive appli-
cations with respect to executing all AMOs near.

II. BACKGROUND
A. Near and Far AMO Architectures

ISA specifications usually do not define where AMOs
execute in the micro-architecture, near the core in the L1D
cache or far in remote components such as the shared LLC or
the memory controller, among others, where a small arithmetic
logic unit performs the operation. Near AMOs implementa-
tions are typical due to their simple design and lower imple-
mentation and verification costs. However, far AMOs have
been widely studied as one of the first examples of Near Data
Processing. Rather than fetching cache blocks into private
levels of cache to be updated, operations are sent to where
the data resides, typically the LLC or a memory controller.
Hence, this mechanism prevents the cache block from “ping-
ponging” between cores, reduces the number of snoops issued
by the directory, and may improve overall performance. While

Near AMO
RN-0 RN-1

| uD
>

IR N

i Data |

4— Executes
Operation

ub

Far AMO
I ub
>
———
Gl S Sroin

I

S
OurceDat
| 4——‘@’— Executes _p-

Operation

Fig. 2. CHI near and far transaction specifications. The Request Nodes (RNs)
encapsulate the cores and private caches. The Home Node (HN) is the point-
of-coherence for the cache block and contains the directory and LLC.

many systems only implement near AMOs, very few systems
implement only far AMOs. Most were classic commercial
systems like the NYU Ultracomputer [31], the Cray T3D [38],
the T3E [58], or the SGI Origin [42]. Modern multi-core
architectures have recently incorporated support for both near
and far AMO execution, such as POWERY [43] or Armv8 [34]
through the AMBA 5 CHI standard [9] for cache coherent
Networks-on-Chips (NoCs).

Several works have widely discussed the implementation
of near and far AMOs [10, 24, 41]. Other works have tried
to improve the performance of far AMOs by (i) reducing
the latency between consumer and producer through data
forwarding [24, 68], or (ii) speeding-up lock exchange [3, 20].
However, most of these proposals rely on specific communi-
cation NoCs or memory consistency models (e.g., Total Store
Ordering), cause significant extra traffic, or use simple trace-
based models to simulate AMOs. We further discuss other
prior works in Section VII.

B. The CHI Cache Coherence Protocol

The AMBA 5 CHI is an open specification [9] for shared
system interconnects targeting large-scale systems with a weak
consistency model. CHI supports both near and far AMO
transactions and is used on recent servers and cloud-grade
systems-on-chip [7, 26, 36]. CHI implements a tunable and
modular MOESI cache coherence protocol. CHI uses a differ-
ent name convention from classic MOESI: Unique Clean (UC,
Exclusive), Unique Dirty (UD, Modified), Shared Clean (SC,
Shared), Shared Dirty (SD, Owned), and Invalid (I, Invalid).
The protocol specifies multiple transactions with different
message flows and semantics for each possible operation
an agent in the system can perform. For instance, a cache
controller can select which of these transactions is issued

depending on the cache level, the state of the cache block,
the type of operation, and the cache inclusion policy, among
other parameters.

In the case of AMOs, the AMBA CHI specification states
that an AMO can execute through two types of transactions,
which we refer to as near and far. Figure 2 defines the message
flow of these transactions, which we have implemented in
gem5. A near AMO performed by a request node (RN-0)
generates a ReadUnique transaction to gain exclusiveness of
the cache block and perform the atomic operation locally. The
directory, or home node (HN), is the point of coherence that
issues the required snoops to invalidate other local copies of
the cache block (e.g., the invalidation of RN-1’s local copy
in Figure 2). Finally, the HN answers by sending the cache
block to the L1D cache of RN-0 in either UniqueClean or
UniqueDirty state, where the AMO executes. If the block is
already in Unique state at the L1D cache, the AMO is directly
performed locally without issuing any transaction (not shown
in Figure 2).

A far AMO always issues an atomic transaction to the HN.
As in near AMOs, the HN must ensure all local copies are
invalidated before modifying the block by sending snoops. In
parallel to the snoop messages, the HN requests the RN-0
L1D cache controller to forward the data operands required to
perform the atomic operation. Once all copies are invalidated,
the HN answers with the original value stored in the accessed
memory position (AtomicLoad) or by sending an acknowledg-
ment message that ends the transaction (AtomicStore) before
performing the AMO. Finally, once the HN receives the source
operands, the atomic operation is performed in the HN.

There is a pathological case for far AMOs when the
requestor has the targeted cache block in the L1D cache in UC
or UD state. In this case, the HN must send a snoop message
to the RN-0 L1D cache (the requestor). This snoop message
increases the critical path of the flow and delays its completion,
making far AMO impractical. Therefore, whenever the L1D
cache has the block in UC/UD state, the preferred choice
should always be to perform a near AMO.

Currently, existing processors implementing AMBA CHI
usually execute AMOs near in the L1D cache. More re-
cently, Arm’s Neoverse CPUs support executing AMOs near
or far when connected to a CMN-600 or CMN-700 mesh
interconnect network. The configuration mode of AMO’s can
be changed through a machine register [8]. However, Arm
recommends configuring AMOs to execute always near due
to different pitfalls [35] that we explain in the next section.

ITII. MOTIVATION

This section elaborates on the possible use cases of near
and far AMOs. They are presented as a possible solution to
mitigate the growing synchronization bottleneck that shared
memory multi-cores suffer. We also explain the main pitfalls
that may limit the performance of AMOs.

A. Near and Far AMOs Use Cases

As shown in Figure 1, near and far AMOs can alterna-
tively achieve the highest throughput in different situations.

RNO HN RN1 RNO HN RN1 o
- E
O inc +1 Inc +1 =
s " Inc+1 Inc+1 :
1
f Inc +1 Inc +1
u‘? Inc+1 Inc +1 '
Inc +1 Inc +1
Inc +1 Inc +1
Inc +1
) Inc +1
S Inval Inc+1 Inc+1
< Inval
®
% Inc +1 Inval fﬂg I}
Inc +1
(a) Low Reuse (b) High Reuse
Fig. 3. Simplified diagram that shows (a) low and (b) high reuse access
patterns for far and near AMO executions.
Cache Block
PADDING
Aquire Release
1 Read Kind 1 Read Kind
2 CAS Lock 2 Write NUsers
3 Read & Write Owner|| 3 Write Owner
4 Write NUsers 4 SWAP Lock

Fig. 4. Top: Pthread Mutex data members distribution within a cache block.
Bottom: Pthread Mutex operations performed to acquire and release the lock.

Figure 3 presents a simplified message diagram, omitting some
messages, to illustrate two different access patterns. In this
example, two threads on different cores or request nodes (RNO
and RN1) increment a shared variable through AtomicStore
instructions. In access pattern (a), threads perform an AMO
on the shared counter in turns. In this scenario, far AMOs
executed at the home node (HN) perform better than near
AMOs because they avoid the ping-pong effect of the cache
block caused by the highly contended variable. Section VI-B
will show how benchmarks like GMETIS and RADIOSITY
have this access pattern.

Meanwhile, in access pattern (b), each thread performs four
AMOs on the shared counter, exhibiting locality. In this case,
near AMOs perform better, as bringing the cache block into
the L1D is a better choice than paying the cost of far AMOs
for each access. This access pattern is present in several
applications, such as FLUIDANIMATE and SPT.

The main takeaway is that the decision to execute AMOs
near or far impacts performance and depends on different
application and system-level factors such as AMO locality
and the memory access pattern. To maximize performance,
computer architects must implement dynamic mechanisms to
select the best placement for a given AMO.

B. Far AMO Pitfalls and Best Practices

Even though far AMOs aim to reduce on-chip data move-
ment and improve system’s overall throughput, their use in
specific scenarios can cause significant global traffic and
may increase the execution latency of AMOs. For example,
forcing all AMOs to execute far in single-thread programs may
prevent some variables from being fetched into private caches,
increasing AMO access latency as a result. Additionally, other

scenarios can trigger pathological behaviors that harm the
overall system performance. We now discuss the main pitfalls
and bottlenecks of AMOs, including solutions that can be
adopted to mitigate some of these issues.

1) Consistency Model: Cores usually issue AMOs at com-
mit stage to preserve memory ordering and sequential program
semantics. AMOs are guaranteed to complete once sent to the
memory subsystem. Moreover, AMOs that have both read and
write (RMW) semantics, e.g., fetch-and-add (AtomicLoad),
return the read value stored in the memory position before the
update, which delays the completion of the AMO, potentially
stalling the pipeline. These restrictions make near AMOs that
miss in the L1D cache, and far AMOs in general, quite expen-
sive, as they can block the commit stage for multiple cycles.
On top of that, branches are the most frequent instructions
that consume the return value of an AMO, exacerbating the
problem.

The core can speculatively issue a read before the AMO
arrives at the commit stage to mitigate the long latency
of AMOs with a return value. However, since AMOs are
typically used to implement synchronization primitives and
update shared variables, the speculative read will likely be
invalidated, thereby increasing the number of messages and
invalidations. Therefore, computer architects must apply this
optimization judiciously.

Several ISAs, such as RISC-V, Armv9, and Power9, have
included atomic-no-return instructions, also known as Atomic-
Store. These instructions read-modify-write without returning
the original read value to the requestor, that just needs a data-
less acknowledge message to complete the transaction. These
instructions have lower consistency constraints, allowing cores
to commit AMOs earlier. Therefore, replacing AtomicLoads
for AtomicStores when possible is critical to improve per-
formance, especially for far AMOs. However, while Atomi-
cLoads are supported and generated by most compilers and
libraries, we have observed that AtomicStores are typically
not generated unless explicitly expressed by the programmer
via inline assembly. Most compilers do not even have built-
in macros yet for AtomicStores. Thus, we have manually
replaced AtomicLoads for AtomicStores whenever possible in
the benchmarks used in Section VI-A to take into account this
insight.

2) Home Node Throughput: Far AMOs centralize the
execution of synchronization instructions at the HN level
to deliver high throughput, thereby increasing parallelism in
contended scenarios. However, specific implementation details
can hinder the throughput of far AMOs.

When an AMO request arrives at the corresponding HN
slice and hits in the LLC, the cache controller reads the
data SRAM cells that store the cache block to obtain the
stored value. Then, an Arithmetic Logic Unit performs the
AMO over the data. Finally, the result is written back into
the SRAM cells. Accessing the LLC data arrays can take
tens of cycles, as LLCs are optimized for storage rather
than latency. Fortunately, cache blocks that receive AMOs are
likely to experience temporal (mutex) or spatial (reductions)

locality. Therefore, this bottleneck can be alleviated by having
a small dedicated buffer to store the cache blocks that AMOs
recently accessed, avoiding high-latency reads and writes into
the SRAM cells and improving overall far AMO throughput.
Thus, we adopt this approach as the baseline implementation
for far AMOs.

3) Software Stack Support: Modern runtimes, libraries, and
software stacks have been developed and optimized for several
years for multiple systems with different synchronization in-
structions. Consequently, we have modular software that works
on a wide range of systems, but does not always consider the
particular characteristics of each machine.

The Pthread Mutex is one of the most used synchronization
primitives by programmers. A simple analysis of the Pthread
Mutex specification reveals that it is not ready to work with
far AMOs in an efficient manner. Figure 4 shows the data
members in blue that compose the Pthread Mutex struct, their
distribution within a cache block, and how they are accessed
to acquire and release the mutex. In both routines, we observe
several read and write operations to elements placed on the
same cache block. To understand how near and far AMOs
interact with the rest of the memory accesses, we analyze these
routines step by step.

In the case of lock acquire, the Kind field is read to
determine the implementation version of the Pthread Mutex.
This read operation fetches the cache block with read-only
permissions. Then, a far AMO is issued to acquire the mutex
modifying the Lock variable if free, invalidating the local copy.
If the thread acquires the mutex, then it overwrites the fields
Owner and NUsers, fetching the block again into the L1D
cache, now with write permissions. In contrast, if the thread
performs a near AMO, it fetches the block with read and write
permissions from the beginning. Hence, the subsequent read
and write operations would hit the L1D cache.

For lock release, the Kind field is again read. Then two write
operations are performed to Owner and NUsers. These two
instructions fetch the cache block into the L1D cache and in-
validate all the other copies. Then a SWAP instruction releases
the Lock variable. As we have mentioned in Section II-B, when
the cache block is already present with exclusive permissions
at the L1D cache, then the AMO should always be performed
as a near AMO to avoid the extra cost of writing back the
block and issuing a far AMO.

We can conclude that performing near AMOs in Pthread
Mutex routines will consistently outperform far AMOs. In
Section VI, we will see how this expected behavior matches
the results of our experiments. Consequently, a new version
of the Pthread Mutex struct should be devised so that far
AMOs can match the performance of near AMOs. Simple
approaches such as splitting the Pthread Mutex data members
into different cache blocks may degrade the performance of
near AMOs. Therefore, a different interface layout may need
to be used, as current implementations hinder the performance
of AMOs that execute remotely. However, this additional work
is out of the scope of this research and we keep the default
Pthread Mutex configuration.

TABLE I
EXISTING AND PROPOSED STATIC AMO POLICIES BASED ON
CURRENT L1D CACHE BLOCK STATE. NEAR (N), FAR (F).

Policy Name UC UD SC SD 1
2 All Near N N N N N
(2}
5 Unique Near N N F F F
3 Present Near N N N N F
% Dirty Near N N F N F
& Shared Far N N F F N

IV. StaTic AMO POLICIES

Section II-B describes the implementation of near and
far AMOs in the AMBA 5 CHI protocol. However, the
protocol does not enforce when the cache controller must issue
a near or a far AMO - being implementation dependent.
Some implementations, such as the Neoverse N1 [8], allow
execution of AMOs to be configured depending on the cache
block’s state. However, only a limited number of policies are
supported. We have performed a Design Space Exploration
to cover a broader number of AMO policies. The controller
can issue any of the two AMO transactions for each of the
five cache block states in the MOESI coherence protocol.
Thus, we can derive up to 32 different static AMO policy
implementations. However, many of these static policies are
very similar or do not make sense from a practical point of
view. They may trigger pathological cases that add significant
serialization; e.g., performing a far AMO on blocks already
in unique state in the L1D cache (UC and UD states). As a
result, the number of possible static AMO policies is reduced
to just eight options. From these options, we select the five
most representative implementations. We omit the remaining
three policies because they show very similar performance.

Table I defines the five selected policies. For each policy, the
table shows where the AMO is executed (near (N) or far (F))
for each L1D cache block state. We refer to these policies as
static AMO policies as they always perform the same decision
based only on the cache block coherence state. We have split
the static AMO policies into two groups. The first one is
that of existing implemented policies, and includes the two
policies found in the Neoverse core family. The second group
contains three static AMO policies we propose and evaluate
in this paper. The next paragraphs describe each policy in
detail, highlighting their rationale. Section VI-B evaluates their
performance.

The first existing static policy is All Near. It executes all
AMOs in the L1D cache (near to the CPU). The All Near
policy is the default AMO policy for those multi-core SoCs
that do not have support for far AMOs, as well as for Arm’s
Neoverse CPUs, which support far AMO execution [8]. All
Near performs well in scenarios where cache blocks have
temporal locality and is worth fetching them into the L1D
cache.

On the other extreme of the design space, we have the

Unique Near policy. For I, SC, and SD cache block states,
Unique Near issues an atomic transaction to execute the AMO
far in the HN. As a result, the system avoids bringing the
cache block into the L1D in Unique state and prevents future
invalidations. If the cache block is already present in the
L1 cache in Unique state (i.e., with exclusive permissions),
it executes the AMO locally. The Unique Near static AMO
policy is also available in Arm’s Neoverse CPUs, although it
attains lower performance than All Near [35]. Section VI-B
validates that this is the case for the benchmarks evaluated in
this paper.

Between All Near and Unique Near, we consider three
policies: Present Near, Shared Far, and Dirty Near. Present
Near is similar to All Near as it performs all AMOs at the L1D
cache except for those blocks that are not present. If the cache
block is invalid, Present Near issues an atomic transaction to
execute the AMO far. The rationale behind this policy is that
there is some locality if the block is present, and it is worth
upgrading the privileges to perform the AMO near. Otherwise,
if the block is invalid, it may have been invalidated by the HN.
Thus the core may be competing with other cores to update
the block.

Shared Far executes AMOs near at the L1D cache for UC,
UD, and I states. As its name suggests, it issues far AMOs only
for shared states (SC and SD). This policy assumes that if the
core shares the block with other cores, they may use it in the
future. Therefore, executing the AMOs in the HN avoids future
invalidations as other sharers reread the data block. Moreover,
Shared Far fetches the targeted cache block if not present in
the L1D because it could have been evicted from L1 to L2,
and the best choice is to bring it back into the L1 cache.

Finally, Dirty Near executes near AMOs for UC, UD, and
SD states. If the block is in SD state, the L1 cache was the
last writer of the shared cache block. If the program has a
consumer-producer pattern, it may be the next writer in the
future and benefit from executing the AMO near.

Each of the introduced static policies presents advantages
in different scenarios. For example, policies favoring near
AMOs will perform better in applications with data locality.
Meanwhile, in highly contended scenarios, far AMOs can
increase AMO throughput execution. However, current sys-
tems rely on static policies, neglecting the need to adapt to
each situation. Therefore, mechanisms that enable dynamic
decisions based on system information can further improve
AMOs’ performance.

V. DYNAMO: DYNAMIC AMO PoLICY

Next, we propose DynAMO, an AMO policy guided by a
predictor that dynamically decides which policy to follow to
execute AMOs. DynAMO aims to improve the latency and
overall system throughput of AMOs while involving a small
area and power overhead. To simplify our predictor, we have
followed two main design principles: (i) the predictor only uses
locally gathered information, and (ii) it has reduced hardware
combinational and sequential logic.

DynAMO Predictor

N-Ways
» Metadata

Log_ic

L1D Cache

Cache K
Controller §
o]

|

0x2940AB8
0x4245AB8
0x44400B8
0x8020CDO

vAvveu vy

\

Fig. 5. DynAMO predictor structure overview.

Deciding whether an AMO should execute near or far
is done at the L1D cache. However, AMOs usually update
shared variables; therefore, core-local information can be
insufficient to make accurate predictions. Global information
about a cache block is only available at the HN, including
the list of sharers and the current owner of the cache block.
Forwarding this information to the private cache levels may
be expensive and inaccurate. However, the L1D cache receives
invalidation messages, which can partially replace the global
view of the HN for our predictor, reducing its implementation
cost. LID caches can know through these invalidations if
another core has requested a block for reading (downgrade to
Shared) or writing (invalidation). Therefore, we have placed
one DynAMO predictor at each L1D cache that uses these
events to select the best AMO policy.

Figure 5 shows DynAMOQO’s prediction mechanisms consist-
ing of a look-up table that stores the predictor metadata and
some logic that interprets the metadata to compute the predic-
tion. To keep the predictor up-to-date, the Cache Controller
registers the events in the L1D (AMOs, Snoops, Evictions,
or Access Hits). Note that notifying these events is not in the
critical path of L1D accesses. The cache controller queries the
predictor when the AMO cannot be directly executed in the
L1D (i.e., the cache block is not in Unique State) to decide
the best static AMO policy to apply to the AMO. The AMO
Metadata Table (AMT) is a set-associative look-up table with
a few entries per way that stores the metadata associated with
each cache block touched by an AMO. The AMT is indexed
with the least significant bits of the physical cache block
address and uses the most significant bits to check whether
the indexed entry corresponds with the indexing address.

A. DynAMO Design Insights

An AMO, like any other memory access, follows common
memory access patterns, such as recency-friendly, thrashing,
streaming, or mixed [44]. The most adopted cache replacement
policy is Least Recently Used (LRU), which mainly benefits
the recency-friendly access pattern. LRU keeps those cache
blocks likely to be reused in the cache. However, for mixed
access patterns, LRU may evict blocks frequently referenced
to insert other blocks used only once. Near AMOs, like LRU,
work well for recency-friendly patterns because, in case of a
miss, they fetch the cache block into the L1D cache, assuming
it will be reused in the future. However, for other access
patterns, near AMOs may evict frequently referenced cache
blocks of the working set from the L1D cache to fetch blocks

used only once. In those cases, issuing a far AMO avoids
polluting the L1D by executing the AMO at the HN.
Besides the mentioned access patterns, parallel applications
also exhibit different sharing patterns. Shared variables can be
updated by multiple cores, triggering the snooping mechanism
of the HN to forward the exclusivity rights from one core
to another or invalidating all the read-only copies shared
between multiple cores. To correctly understand the access
patterns of a cache block, it is necessary to consider the access
patterns of other cores. The most common sharing patterns
are consumer-producer, migratory, and false-sharing. For these
sharing patterns, MOESI-like cache coherence protocols may
be sub-optimal [11] because they invalidate copies of other
cores rather than updating them. Near AMOs behave like
regular write operations in a MOESI cache coherence protocol
so that they can suffer the same pathologies, such as cache
block ping-ponging. In these cases, far AMOs can avoid the
ping-pong effect by centralizing the updates at the HN.

B. Metric-Based DynAMO

The first DynAMO metric-based design predicts the place-
ment for the AMO based on cache block statistics. The
predictor counts the number of times the accessed cache block
has been used to complete a near AMO and the number of
times the directory has invalidated that same cache block.
The predictor computes a ratio with these two values; a
high ratio implies low contention on the cache block, i.e.,
more completed near AMOs than invalidations received. If
the ratio exceeds a threshold, metric-based DynAMO predicts
that future AMOs for that cache block should be executed
near. Otherwise, the predictor selects far AMO execution, thus
avoiding common invalidations and centralizing the execution
of AMOs for that cache block at the HN.

As explained in Section II-B, when the cache block is
already present in the L1D cache in unique state, forcing the
cache controller to perform a far AMO is more expensive than
just executing the AMO locally. Hence, when the cache block
is already in a unique state in the L1D, the AMO is always
executed near. The predictor only selects between near and far
execution for I, SC, and SD states. Since the prediction is made
without distinguishing the cache state, when a cache block is
predicted as near it behaves like All Near policy. When the
cache block is predicted as far it behaves like Unique Near
policy. We could make predictions for each one of the cache
states, but that would increase the number of counters and the
complexity of the predictor.

When a new entry is allocated in the AMT, the predictor
must perform the first prediction without past history infor-
mation. Based on the results obtained in Section VI-B, we
know that near AMOs perform well in most cases. So, the
first prediction is always a near AMO. The new AMT entry
is initialized so the near AMO counter equals one and the
invalidation counter equals zero. The main drawback of this
design is that counters increment monotonically, so at some
point, they can overflow. Moreover, in a short period of time,
one of the counters can increment its value drastically while

TABLE II
GEMS CONFIGURATION.

Processor

32 out-of-order cores
14 insts/cycle

8 insts/cycle

8 insts/cycle

316 entries

76 entries, 58 entries

Core count

Dispatch, issue width
Fetch, decode width
Commit width
Reorder buffer

Load and store queues

Cache Memory Hierarchy

Private L1 1&D caches
L1I prefetcher

L1D prefetcher
Private L2 cache
DynAMO

L2 prefetcher

Shared L3 cache

64 KiB/core, 4-way, 2 cycle data array access
Tagged

Stride 8 prefetcher

512 KiB/core, 8-way, 8 cycle access lat.

128 entries, 4-way

Best Offset Prefetcher

Exclusive, 32 slices of 1MiB, 8 ways,

10 cycles access lat.

Interconnect Architecture

MOESI-like AMBA 5 CHI specification
8 X 8 2D mesh
1 cycle route, 1 cycle link

Coherence protocol
Network topology
Router and link latency

Main Memory

HBM3, 32GB storage
8 channels, 64 GB/s per channel

Type
Channel

the other stays constant. This conditions future predictions:
although subsequent program phases may have different access
patterns, the counters will keep their high values inherited from
a previous phase. Thus, we adopt a simple solution: to shift
the counters one bit to the right every certain number of cycles
or before overflowing. This way, the counters have better
confidence levels in different program phases and overflows
are avoided.

C. Reuse-Pattern DynAMO

The second DynAMO design refines the previous metric-
based predictor. The idea is to capture the reuse pattern of
each cache block fetched by an AMO by tracking if any other
memory access has reused the block during its lifespan in
the L1D cache. The intuition behind this heuristic, DynAMO-
Reuse, is to keep bringing cache blocks that are likely to be
reused via near AMOs and avoid bringing cache blocks with
no reuse via far AMOs.

To learn the reuse pattern of a cache block, the AMT has
a reuse bit and a reuse confidence counter for each entry.
When DynAMO-Reuse predicts a near AMO and fetches a
cache block into the L1D cache, it resets the reuse bit. The
predictor sets the reuse bit if that same cache block receives
a subsequent hit by any other memory access. When the L1D
cache block is evicted or invalidated due to a snoop message,
DynAMO-Reuse increases the reuse confidence counter if the
reuse bit is set. Otherwise, it decreases the confidence counter.

The reuse confidence counter encodes the reuse behavior of
a cache block. A zero value means the cache block has lost
all the reuse confidence. This indicates that future references
to such cache blocks should be executed far in the HN, unless
the cache block is already in unigue state in the L1D cache.

On the other hand, a positive counter implies that the cache
block has reuse confidence. DynAMO-Reuse executes these
AMOs near in order to fetch the cache block into the L1D
and exploit the potential reuse, performing the AMO locally.

As we will see in Section VI, this version of the predictor,
named DynAMO-Reuse-UN, performs better than any other
static policy for some benchmarks. However, the decision to
apply far execution for I, SC, and SD cache states when the
reuse confidence counter arrives at zero is aggressive, and we
find that always choosing far AMO execution in this situation
can degrade the system’s performance in some applications.
Therefore, we have designed a variation of the predictor that
applies the Present Near policy for zero reuse confidence
cache blocks, which is more conservative. This version is
named DynAMO-Reuse-PN.

When a new entry is allocated in the AMT, DynAMO-Reuse
must perform an uninformed decision. This first decision of
the predictor is fundamental for AMO performance and it is
especially important for applications that exhibit a stream-
ing/thrashing access pattern, i.e., bring new cache blocks into
the L1D that will not be referenced again. Predicting near
as the first decision for these cache blocks would evict other
cache blocks that may be reused.

To avoid this issue, DynAMO-Reuse employs a heuristic
that tracks the amount of local reuse seen by all AMOs. By
counting the total number of cache blocks brought into the
LI1D cache by AMOs, and the total number of these blocks
that have been reused, a global view of the amount of cache
reuse can be obtained. This ratio determines the first decision:
if reuse is low, the newly allocated AMO in the AMT will
execute far, and near otherwise. We can identify and filter the
streaming/thrashing access patterns with this approach.

After the first decision is taken, the entry is allocated, setting
the confidence counter to its maximum value. Therefore, the
next decision for that memory address will be to execute
near. If the access pattern of AMOs executing on that address
has low reuse, the subsequent fetch and eviction/invalidation
actions will decrease the counter to zero. Then, the predictor
will start selecting far AMO execution for that cache block.

VI. EVALUATION
A. Methodology

Simulation Infrastructure: To evaluate the static policies and
DynAMO predictors we use the gem5 (v20.1.0.0) performance
simulator [48]. Gem5 includes cycle-approximate models of
various system components, including cores, cache hierarchy
with a detailed mesh-based network-on-chip, and memory
controllers. We simulate a multi-core system consisting of 32
Neoverse-N1-like out-of-order cores, as detailed in Table II.
We model HBM3 memory following the high bandwidth
trend in HPC systems [53]. We have extended the existing
CHI protocol implementation in gem5 [28] to support the
AMO transactions specified in the original AMBA 5 CHI
specification [9], enabling the simulation of a NoC capable
of executing near and far AMOs. The simulated system
resembles recent architectures such as the AWS Graviton 3,

TABLE III
BENCHMARK INPUTS & CHARACTERISTICS.

Name Code Input Sync. primitives AMO
employing AMOs Footprint

Barnes BAR 16k [65] POSIX mutex 84 KB
FMM FMM 16K [65] POSIX mutex 97 KB

2 Ocean_cp OCE 512x512 POSIX mutex 4 KB
% Radiosity RAD room [65] POSIX mutex 163 KB
% Raytrace RAY car [65] POSIX mutex 8 KB
Volrend VOL head [65] POSIX mutex 6 KB
Water-Ns WAT 3375 mol POSIX mutex, cas 65 KB
BFS BFS USA [22] Spinlock, 1dmin 52 MB
CC CC USA [22] Spinlock, 1dmin 182 MB

" Cluster CLU NY [22] Spinlock, stadd 15 MB
3 GMETIS GME FLA [22] Spinlock, cas 144 MB
é‘ KCORE KCOR USA [22] Spinlock, ldadd 91 MB
Page Rank PR FLA [22] Spinlock, cas 4 MB
SPT SPT USAW [22] Spinlock, cas 95 MB
SSSP SSSP USA [22] Spinlock, stmin 1 MB

: BC BC Kronecker [45] OpenMP 4 MB
o TC TC Kronecker [45] OpenMP 10 KB
Fluidanimate FLU simlarge [14] POSIX mutex, cas 8 MB
Histogram HIST 1IMG [17, 51] stadd 2 MB
Radix Sort RSOR 2 MB vector POSIX barrier, stadd 512 KB
SPMV SPMV JP & rmal0[19] stadd 3 MB

and runs Ubuntu 20.04 with Linux kernel 5.4.65. We used
MCcPAT 1.3 [46] with the enhancements Xi et al. [66] proposed
to estimate dynamic energy consumption. We perform this
estimation using a process technology node of 22nm, a supply
voltage of 0.8V, and the default clock gating scheme.
Workloads: We use an extensive set of well-known parallel
applications to cover all types of synchronization primitives
and direct atomic updates (e.g., ldadd or stadd):

o Splash-3 [56] is a classic parallel scientific benchmark
suite. It mainly uses POSIX primitives for synchroniza-
tion.

« Galois [39] is an optimized graph analytics framework
that contains classic graph analysis algorithms. It has
its own spinlock implementation and uses direct atomic
updates.

o GAP benchmark suite [12] is a popular graph algorithm
suite written in OpenMP.

o Fluidanimate is a benchmark from the PARSEC bench-
mark suite [14] that makes use of a fine-grained synchro-
nization.

« Histogram is based on the OpenCV [16] color histogram
program (version 2.4.11).

« SMPYV [67] is a sparse matrix-vector multiplication ker-
nel where matrices use the compressed sparse column
format.

« Parallel Radix Sort is a shared memory multithread
sorting algorithm that uses a shared array to sort a vector
of numbers, similar to the load-balanced parallel radix
sort [60].

Table III details for each evaluated benchmark: the acronym,
the input, the synchronization primitives and direct AMOs
used, as well as the memory footprint used by AMOs.

Next, we characterize the usage of AMOs on the evaluated
applications. Figure 6 shows the number of committed AMOs
per kilo-instruction (APKI) for each workload. Applications

— AtomicStores mm AtomicLoads

148

128.0
L M H
32.0
= 80
&
& 20
0.51
0.14
OW DO >SEXWOQLWOFDOOXT>CE
FoOoadIsS<cscolmomal0a0SoR
>o0oc = o £ » o » o o I
o] w S 17 g % g:) I
Fig. 6. AMOs per kilo-instruction (APKI) for each workload. We split

workloads into three sets: Low (L), Medium (M), and High (H) based on
their APKI. The ratio of AtomicLoads and AtomicStores is represented as
stacked bars.

with a higher APKI present more opportunities for DynAMO
to improve performance. Hence, to highlight the performance
improvement achieved by DynAMO, we define three sets of
workloads depending on their APKI: Low, Medium, and High
AMO intensity. The Low set contains applications that range
from O to 2 APKI. The Medium set contains those between 2
and 8 APKI, and the High set those with more than 8§ APKI.

B. Evaluation of Static AMO Policies

Figure 7 shows the relative speed-up of the different static
AMO policies (Section IV) normalized with respect to All
Near. The benefits of applying each of the static AMO
policies are application dependent. We can group static AMO
policies into two groups by their behavior. The first group
is composed of All Near, Present Near, and Shared Far
policies. In most cases, these three policies favor near AMOs,
bringing the cache block into the L1D. All Near performs
well in most cases because most applications present a reuse
access pattern. Overall, Present Near performs better than
All Near and Shared Far because it achieves high speed-
ups in SPMV, Radix Sort, and Histogram: 1.62x, 1.26x and
2.29x, respectively. On average, Present Near is the best static
policy and achieves speed-ups of 1.05x across all applications,
1.09x for Medium and High applications, and 1.19x for High
APKI applications. Shared Far achieves lower performance
than All Near because it predicts far AMOs for one of the
most frequent cache states (shared clean), which degrades the
performance of applications with reuse patterns. Shared Far
has, on average, slowdowns of 8.2% for all applications, 9, 9%
for Medium and High applications sets, and 11% for High
APKI benchmarks.

The second group is composed of Dirty Near and Unique
Near policies, which in most cases, issue far AMOs rather
than near AMOs. Both policies apply the same decisions on all
cache states except for SD. This cache state is very infrequent
compared to UD, SC, and I states, so their difference in perfor-
mance is minimal. Shared Far, Dirty Near, and Unique Near
suffer slowdowns in applications with reuse access patterns.
However, both policies outperform All Near and Present Near
for Volrend, SPMYV, Radix Sort, and Histogram benchmarks.
On average, Dirty Near has slowdowns of 2.5% for all appli-
cations, 2.7% on Medium and High applications, and a speed-
up of 1.06x for High APKI benchmarks. Meanwhile, Unique
Near has slightly better averages with a slowdown of 1.2%

=z All Near = Unique Near == Shared Far ma Dirty Near mm Present Near mm Best Static

aaeewayi

?,
0
0
i

Fig. 7. Execution speed-up of static AMO policies normalized with respect to All Near. Right most bars are the geomean of LMH, MH, and H application

sets.

for all applications, 0.6% for Medium and High applications,
and a speed-up of 1.10x for high APKI applications.

Static AMO policies that issue a far AMO when the cache
block is in Shared Clean state increment the execution time
for many benchmarks, e.g., Raytrace, Water-Ns, Barnes, BFS,
Fluidanimate, CC, PR, and Kcore. These benchmarks have sig-
nificant reuse patterns and frequently read the variable before
updating it with an AMO. Even though several benchmarks
suffer from lock contention, far AMOs perform poorly because
Pthread Mutex implementation does not perform well with far
AMOs, as explained in Section III-B3.

In contrast, for Radiosity, static policies that perform far
AMOs in SC state have a speed-up of 1.06x. Radiosity has
a shared task queue accessed by all threads to enqueue or
dequeue tasks. A single high-contended lock protects this
queue. The lock is read before acquisition to avoid performing
unnecessary AMOs. Therefore, lock and unlock operations are
done at the LLC for Shared Far, Dirty Near, and Unique
Near. When accessed through near AMOs, the lock ping-
pongs from one core L1D cache to another as exclusivity
requests are ordered by the directory. Hence, when the lock
is accessed through far AMOs, all lock and unlock operations
are forwarded to the LLC, removing the ping-pong effect.

SMPV, Radix Sort, and Histogram work well when em-
ploying far AMOs. The three benchmarks have a large AMO
footprint. A few addresses have reuse patterns, while the rest
are only accessed once. Thus, they exhibit a mixed access
pattern in which a small working set is highly reused and fits
in the private caches, and a more extensive working set is not
reused. Thus, if the largest working set is accessed through
near AMOs, it evicts those memory positions that are highly
reused.

Finally, the Best Static bar represents the performance we
can achieve by selecting the best static AMO policy for each
workload. Programmers could achieve this performance by
profiling the application and configuring the system to work
with a specific static AMO policy. This method achieves an
average 1.10x speed-up for all applications (LMH), 1.16x
for Medium and High (MH) applications sets, and 1.35x
for High (H) APKI applications. However, this approach is
limited because it requires profiling using the target platform.
In addition, some applications behave differently depending
on the input data used. Moreover, static policies apply the
same decision to all addresses without discerning the behav-
iors of different working sets. Therefore, achieving the best
performance for each benchmark would require a hardware

mechanism that dynamically selects the best placement to
execute a given AMO.

C. DynAMO Evaluation

Figure 8 shows the speed-ups obtained with both DynAMO
implementations. DynAMO-Metric is the design in which
predictions are driven by cache block statistics. DynAMO-
Reuse is the design that tracks the reuse pattern of each cache
block and uses this information to select the best AMO execu-
tion placement. Furthermore, DynAMO-Reuse uses previous
AMO executions to predict the first placement for a newly
referenced address. We have two flavours of the DynAMO-
Reuse predictor depending of which Static AMO policy they
apply to blocks with zero reuse confidence. DynAMO-Reuse-
UN applies Unique Near policy and DynAMO-Reuse-PN
applies Present Near policy. In addition, we plot the Best
Static bar as a comparison point. All results are normalized
with respect to All Near. Although DynAMO-Metric achieves
modest speed-ups on Volrend, FMM, and Gmetis, and, on
average, performs equally well as the All Near baseline.

DynAMO-Reuse-UN achieves speed-ups of 1.06x for all
parallel applications (LMH), 1.11x for MH intensity appli-
cations, and 1.25x speed-up for H intensity APKI applica-
tions. While DynAMO-Reuse-PN achieves 1.09x, 1.14x and
1.31x, respectively. Therefore, both DynAMO-Reuse predic-
tors perform better than Present Near, which was the best
individual static policy, and capture most of the performance
obtained by the Best Static bar. While Best Static is a good
upper bound comparison point. However, it is not an imple-
mentable baseline because it requires knowing in advance the
best policy for any given workload-input pair.

Both DynAMO-Reuse predictors capture the reuse patterns
of those variables that have locality and perform the AMO
near. Thus, all two achieve the same performance as All Near,
which is the best policy for these cases. However, since the
DynAMO-Reuse-UN predictor is prone to predict more far
AMOs, we observe a degradation in performance for Cluster,
Raytrace, FMM, SPT, CC and PR. The DynAMO-Reuse-PN
predictor is more conservative in these cases and predicts more
near AMOs, achieving a higher performance. Therefore, the
DynAMO-Reuse-PN predictor always performs equal or better
than the baseline (All Near).

There are several applications where variables have no lo-
cality and their allocation in the L1D cache creates a thrashing
behavior that harms the performance: Gmetis, SPMV, Radix
Sort and Histogram. In these cases, both predictors detect

= Best Static == DynAMO-Metric == DynAMO-Reuse-UN mm DynAMO-Reuse-PN ®

@ L Q

Q
S § 9
s T 3

Fig. 8. Execution speed-up of DynAMO predictors normalized to All Near. We add the best static bar with the best-performing static policy. Right most bars

are the geomean of LMH, MH, and H application sets.

== All Near == Unique Near == DynAMO

o =N W

Speed-up

JP rmai0 NASA BMP24
SPMV HIST

Fig. 9. Execution speed-up of Unique Near and DynAMO-Reuse-PN predic-
tor normalized to All Near for each input.

which cache blocks are not reused and perform the AMOs at
the HN. In particular, Barnes, Gmetis and Radix Sort have
multiple phases and various variables accessed by AMOs
with different locality patterns. Both predictors capture the
dynamic behaviour of such applications delivering a perfor-
mance unachievable to the best static AMO policies. However,
for SPMV and Histogram both predictors do not match the
performance of the best static policy (Unique Near). In these
two applications, some cache blocks have a re-reference period
short enough to be predicted as near AMOs, fetching the cache
block into the L1D.

Barnes and Radiosity are the only benchmarks where the
DynAMO-Reuse-UN predictor outperforms DynAMO-Reuse-
PN with a speed-up of 1.06x and 1.04 X, respectively. In both
benchmarks, the DynAMO-Reuse-UN predictor captures the
ping-pong effect of some locks and performs the lock and
unlock operations at the HN.

DynAMO-Reuse-PN provides the best overall performance
gains over the baseline (All Near policy) because it accurately
selects the most appropriate placement to execute the AMOs.
Furthermore, DynAMO-Reuse-PN nearly reaches the upper
bound performance of the Best Static policy without profiling
and programmer hints.

D. Input Sensitive Benchmarks

In Section VI-C, we have seen that choosing the best static
AMO policy achieves the highest performance. However, the
performance of static AMO policies is tightly related to the
access pattern of the application and these maybe dependent
of the input data-set. To illustrate the input sensitivity of
benchmarks, we have tested two different data-set inputs for
SPMV and HIST (see Figure 9). In the experiments, we
use All Near as our baseline, the best static policy obtained
from Figure 7 (Unique Near for both applications), and the
DynAMO-Reuse-PN. Unique Near outperforms All Near for
JP input in SPMV and NASA input in HIST, but performs
30% slower than All Near for rmal0 input in SPMV and

Geomean-LMH -A- Geomean-MH & Geomean-H

14
Siam-m_g _ Enties ig_m_m g JVOS!im-m-u
5 s Counter
31.2 ~<m
A Ay A=A =A==k =g A—A—A
&1 e~ 3
1.0

o \Q/‘b qf)@ 6\(?, \QQ’D‘ Qpbfb A k ® 0 ol Ao o) o

Fig. 10. Execution speed-up of DynAMO-Reuse-PN predictor normalized to
All Near. Left: Different entry counts with fixed 4-way associativity. Center:
Different associativity values for a 128-entry structure. Left: different counter
size for a 128-entry and 4-way structure.

40% slower for BMP24 input in HIST. Meanwhile, DynAMO-
Reuse-PN captures the different access patterns and adapts
better to each input.

E. Energy Efficiency

We have computed and analyzed the dynamic energy con-
sumed by All Near, Unique Near, and DynAMO-Reuse-
PN. Dynamic energy reductions correlate with performance
improvements, translating into reductions of 4, 6, and 12% for
Low, Medium, and High APKI application sets, respectively.
The dynamic energy consumed by the NoC mainly stems from
the number of sent messages and remains relatively constant
across policies for benchmarks in the Low and Medium
APKI sets. However, for High APKI benchmarks, the dynamic
energy spent in the NoC for DynAMO is noticeably higher
than All Near for SPMV and HIST, as the core executes most
AMOs remotely, increasing NoC traffic. Nevertheless, SPMV
and HIST achieve overall energy reductions of up to 40% due
to shorter execution times.

FE. Impact of AMT Sizing

Figure 10 presents the performance of DynAMO-Reuse-
PN for different configurations when changing the number of
entries, ways, and the size of the reuse counter, with respect
to the baseline (All Near). We evaluate different number of
entries fixing the ways to 4 and the size of the reuse counter
to 32 (left), we evaluate different ways fixing the number of
entries to 128 and the reuse counter to 32 (center), and we
evaluate the size of the reuse counter fixing the size of the
predictor to 128 entries and 4 ways (right). We find that a
modest 128-entry 4-way AMT with a reuse counter size of
32 (5 bits) is the best configuration for the predictor because
most applications have a small AMO footprint that experiences
L1D reuse. The performance of the predictor degrades for
high APKI applications when the sizing or the associativity

10

== Geomean-LMH == Geomean-MH == Geomean-H

1.4

213

B 12

3

A 1.1
1.0

NoC-1c NoC-3c Half-Lat Double-Lat
Fig. 11. Execution speed-up of DynAMO-Reuse-PN predictor normalized to
All Near on each different system: original (2 cycle hop latency), 1 and 3
cycle NoC hop latency, and halving and doubling the HBM latency.

Original

of the AMT table grows because the lifespan of entries is
overextended. Thus, reducing the accuracy of predictions. By
having a small number of entries, we reduce the lifespan of
entries, removing outdated entries from the predictor.

G. Hardware Cost

Each AMT entry requires 49 bits for the physical address
TAG, 5 bits for the reuse confidence counter and the reuse bit.
Totalling 55 bits per entry, but we consider 64 bits. For a 128-
entry AMT, the predictor needs a modest 1KB of storage per
core. In addition, we have used CACTI 6.5 to estimate the area
consumed by the predictor using a 22nm process and assuming
it has 2 read and 1 write ports. The total area estimation is
0.0196mm?2. As a reference, the simulated 64KB L1D cache
has an area estimation of 0.3020mm?2, i.e., 15x larger.

H. System Design Space Exploration

This section quantifies the performance of the DynAMO-
Reuse-PN predictor in systems with different architectures.
Figure 11 presents the geomean of each application set normal-
ized to All Near on each system. We have plotted the original
system for reference. The first two experiments reconfigure
the original NoC hop cost, which is one cycle for routing and
another for link traversal. We test an NoC with no routing cost
(NoC-1c), and one with a routing cost of 2 (NoC-3c). With one
cycle hop cost the predictor reduces its speed-up due to a lower
penalty of cache block ping-ponging. However, for the 3 cycle
hop cost the DynAMO predictor increases the performance
gains for high APKI benchmarks. The last two experiments
test a system with half (Half-Lat) and double (Double-Lat)
HBM latency cost. DynAMO performance is unaffected by
main memory latency.

VII. RELATED WORK

Academic literature has profusely explored hardware and
software techniques to reduce the cost of synchronization
instructions and atomic updates to shared data.

Most proposals focus on using dedicated hardware (acceler-
ators, networks, new instructions) to speed-up synchronization
primitives [1, 6, 25, 41, 47, 55, 61, 62, 69]. However, these
proposals incur large area overheads. Many proposals also
focus on speeding-up Barriers [2, 4, 13, 37, 52, 57, 59].
Fujitsu’s A64FX processors [27] include specific instructions
for barriers. Other techniques try to reduce the producer-
to-consumer latency of AMOs or other write operations by
forwarding data [3, 6, 24, 50, 68]. Recent research works have
turned towards exploiting the capabilities of RMW updates

11

TABLE IV
CHARACTERISTICS OF SYNCHRONIZATION ALTERNATIVES.

Solution Transparent Performance Cost

Far AMO

Custom Instructions [47, 61]
Accelerators [6, 41, 55]
Custom Networks [1, 25]
Parallel Reductions [23, 67]
Core to Core [40, 61]

NS ENRNEN
SN ERENENENENPY
LlaxX XA

DynAMO

instead of using locks [23, 67]. However, these approaches
require support for Floating Operations in the cache hierarchy.

Academia and industry have proposed a plethora of alterna-
tives to near and far AMOs, introducing new synchronization
instructions [3, 6, 47, 55, 61, 62]. However, most ISAs are
reticent to include instructions. The encoding space is a scarce
resource in fixed-width ISA, and increasing the length of
instructions increases the complexity of instruction fetch and
decode. Moreover, these new instructions require changes in
the software stack.

New paradigms with richer semantics may ease the pro-
grammability and provide better performance. Transactional
Memory (TM) promises good parallel performance and easy-
to-write parallel code [32]. Multi-Address atomic operations
(MAD) [29] aim to enhance fine-grained synchronization per-
formance. Task scheduling optimizes task execution through
hardware support [40].

Table IV summarizes state-of-the-art proposals and qual-
itatively compares them in terms of (i) transparency, i.e.,
modifications at the application or software stack level re-
quired, (ii) performance, i.e., whether they achieve compet-
itive performance improvements, and (iii) cost, i.e., whether
implementation costs are large or not. Compared to prior
work, DynAMO is the only proposal that is transparent to the
programming interface, has a small cost associated with it,
and achieves competitive performance by improving the best
individual static AMO policy.

VIII. CONCLUSIONS

The open AMBA 5 CHI specification is being adopted
by multiple hardware vendors for multi-core SoC designs. In
this paper, we analyze and evaluate systems that support the
execution of near and far AMOs as specified by AMBA 5
CHI. We show that currently available static policies (All near
and Unique Near) fail to deliver the best performance over a
wide range of workloads.

Therefore, we propose and evaluate three additional static
polices and find that: (i) performance of static policies is highly
application dependent; and (ii) the best static policy, which we
term Present Near, is not one of the implemented policies by
hardware vendors that support both near and far AMOs.

We then propose DynAMO, a simple predictor that dynam-
ically decides the best location to execute the AMOs (near or
far). DynAMO identifies the different locality patterns to take
informed decisions, improving AMO latencies and increasing
overall throughput. Our best DynAMO implementation is able

to outperform the best static policy (Present Near), and it
nearly matches per-workload Best Static without requiring any
profiling or programmer input. DynAMO provides geometric
mean speed-ups of 1.09x across all workloads and 1.31x on
AMO-intensive applications with respect to a baseline that
executes all AMOs near.

This research was supported by the Spanish Ministry of
Science and Innovation (MCIN) through contracts [PID2019-
107255GB-C21], [TED2021-132634A-100], and [PID2019-
105660RB-C21]; the Generalitat of Catalunya through contract
[2021-SGR-00763]; the Government of Aragon [T5820R];
the Arm-BSC Center of Excellence, and the European
Processor Initiative (EPI) which is part of the European
Union’s Horizon 2020 research and innovation program un-
der grant agreement No. 826647. V. Soria-Pardos has been
supported through an FPU fellowship [FPU20-02132]; A.
Armejach is a Serra Hunter Fellow and has been par-
tially supported by the Grant [IJCI-2017-33945] funded by
MCIN/AEI/10.13039/501100011033; M. Moreté through a
Ramén y Cajal fellowship [RYC-2016-21104].

REFERENCES

[1] S. Abadal, A. Cabellos-Aparicio, E. Alarcon, and J. Torrellas, “WiSync:
An Architecture for Fast Synchronization through On-Chip Wireless
Communication,” SIGARCH Comput. Archit. News, vol. 44, no. 2, p.
3-17, mar 2016.

J. L. Abellan, J. Ferniandez, and M. E. Acacio, “A G-Line-Based
Network for Fast and Efficient Barrier Synchronization in Many-Core
CMPs,” in 2010 39th International Conference on Parallel Processing,
2010, pp. 267-276.

J. L. Abelldn, J. Fernandez, and M. E. Acacio, “GLocks: Efficient
Support for Highly-Contended Locks in Many-Core CMPs,” in 2011
IEEE International Parallel Distributed Processing Symposium, 2011,
pp. 893-905.

J. L. Abellan, J. Fernandez, and M. E. Acacio, “Efficient Hardware
Barrier Synchronization in Many-Core CMPs,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 8, pp. 1453-1466, 2012.
A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz,
J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung, “The MIT
Alewife Machine: Architecture and Performance,” SIGARCH Comput.
Archit. News, vol. 23, no. 2, p. 2—-13, may 1995.

B. E. S. Akgul and V. J. Mooney III, “The System-on-a-Chip Lock
Cache,” Design Automation for Embedded Systems, vol. 7, no. 1, pp.
139-174, 2002.

Amazon Web Services, “New — Amazon EC2 C7g Instances,
Powered by AWS Graviton3 Processors,” https://aws.amazon.com/
blogs/aws/new-amazon-ec2-c7g-instances-powered-by-aws-graviton3-
processors/, 2021, [Online; accessed 30-July-2022].

Arm holdings, “Arm Neoverse N2 Core Technical Reference Manual,”
https://developer.arm.com/documentation/102099/0001/The-Neoverse-
N2--core, 2020, [Online; accessed 2-December-2021].

Arm Holdings, “AMBA 5 CHI Architecture Specification,” https:
//developer.arm.com/architectures/system-architectures/amba/amba-5,
2021, [Online; accessed 30-July-2022].

A. Asgharzadeh, J. M. Cebrian, A. Perais, S. Kaxiras, and A. Ros, “Free

[3]

[4]

[5]

[7]

[8]

[10]

atomics: Hardware atomic operations without fences,” in Proceedings of

the 49th Annual International Symposium on Computer Architecture, ser.
ISCA ’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 14-26.

N. Barrow-Williams, C. Fensch, and S. Moore, “A communication
characterisation of splash-2 and parsec,” in 2009 IEEE International
Symposium on Workload Characterization (IISWC), 2009, pp. 86-97.
S. Beamer, K. Asanovié, and D. Patterson, “The GAP Benchmark Suite,”
2015.

[11]

[12]

12

[13]

[14]

[15]

[16]

(17]

[18]
[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

C. J. Beckmann and C. D. Polychronopoulos, “Fast Barrier Synchro-
nization Hardware,” in Proceedings of the 1990 ACM/IEEE Conference
on Supercomputing, ser. Supercomputing *90. Washington, DC, USA:
IEEE Computer Society Press, 1990, p. 180-189.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 72-81.

G. Bonshor, “AMD Releases Milan-x CPUs With 3D V-
Cache: EPYC 7003 Up to 64 Cores and 768 MB L3 Cache,”
https://www.anandtech.com/show/17323/amd-releases-milan-x-cpus-
with-3d-vcache-epyc-7003, 2021, [Online; accessed 30-July-2022].

G. Bradski and A. Kaehler, Learning OpenCV: Computervision with the
OpenCV library. O’Reilly, 2008.

J. Burkardt, “PNG Files Florida state University,” https://people.sc.fsu.
edu/~jburkardt/data/png/bmp_24.png, 2021, [Online; accessed 30-July-
2022].

T. C. S. Committee, “std::Atomic Library,” https://en.cppreference.com/
w/cpp/header/atomic, 2023, [Online; accessed 12-April-2023].

T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.

A. de Dios, B. Sahelices, P. Ibafiez, V. Vifals, and J. M. Llaberia,
“Speeding-Up Synchronizations in DSM Multiprocessors,” in Euro-Par
2006 Parallel Processing, W. E. Nagel, W. V. Walter, and W. Lehner,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 473—
484.

R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, and
A. LeBlanc, “Design of ion-implanted MOSFET’s with very small
physical dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5,
pp- 256-268, 1974.

DIMACS, “The Ninth DIMACS challange on shortest paths,” http:
/Iwww.dis.uniromal.it/challenge9/., 2006, [Online; accessed 30-July-
2022].

V. Dimi¢, M. Moretd, M. Casas, J. Ciesko, and M. Valero, “RICH:
Implementing Reductions in the Cache Hierarchy,” in Proceedings of
the 34th ACM International Conference on Supercomputing, ser. ICS
’20. New York, NY, USA: Association for Computing Machinery,
2020.

Z. Fang, L. Zhang, J. B. Carter, A. Ibrahim, and M. A. Parker, “Active
memory operations,” in Proceedings of the 21st Annual International
Conference on Supercomputing, ser. ICS '07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 232-241. [Online].
Available: https://doi.org/10.1145/1274971.1275004

A. Franques, A. Kokolis, S. Abadal, V. Fernando, S. Misailovic, and
J. Torrellas, “WiDir: A Wireless-Enabled Directory Cache Coherence
Protocol,” in 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2021, pp. 304-317.

A. Frumusanu, “The Ampere Altra Max Review: Pushing it to 128
Cores per Socket,” https://www.anandtech.com/show/16979/the-ampere-
altra-max-review-pushing-it-to- 128-cores-per-socket, 2021, [Online;
accessed 30-July-2022].

Fujitsu, “Fujitsu =~ A64FX Datasheet,” https://www.fujitsu.com/
downloads/SUPER/a64fx/a64fx_datasheet_en.pdf, 2021, [Online;
accessed 30-July-2022].

gem5 and Arm Holdings, “gem5 chi protocol,” https://www.gem5.
org/documentation/general_docs/ruby/CHI/, 2021, [Online; accessed 30-
July-2022].

E. J. Gémez-Hernandez, J. M. Cebrian, R. Titos-Gil, S. Kaxiras, and
A. Ros, “Efficient, Distributed, and Non-Speculative Multi-Address
Atomic Operations,” in MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ser. MICRO ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 337-349.
J. R. Goodman, M. K. Vernon, and P. J. Woest, “Efficient synchroniza-
tion primitives for large-scale cache-coherent multiprocessors,” in Pro-
ceedings of the Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS III.
New York, NY, USA: Association for Computing Machinery, 1989, p.
64-75.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph,
and M. Snir, “The NYU Ultracomputer—Designing a MIMD, Shared-
Memory Parallel Machine,” in 25 Years of the International Symposia
on Computer Architecture (Selected Papers), ser. ISCA ’98. New

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

York, NY, USA: Association for Computing Machinery, 1998, p.
239-254. [Online]. Available: https://doi.org/10.1145/285930.285983
M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures,” in Proceedings of the 20th
Annual International Symposium on Computer Architecture, ser. ISCA
’93. New York, NY, USA: Association for Computing Machinery,
1993, p. 289-300.

H. Hoffmann, D. Wentzlaff, and A. Agarwal, “Remote Store Program-
ming,” in High Performance Embedded Architectures and Compilers.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 3-17.

A. Holdings, “Armv8 Architecture Reference Manual for A-profile archi-
tecture,” https://developer.arm.com/documentation/ddi0487/ha/?lang=en,
2022, [Online; accessed 30-July-2022].

A. Holdings, “Do near or far atomics give the best performance on
neoverse systems?”” https://developer.arm.com/documentation/ka004706/
latest/, 2022, [Online; accessed 30-July-2022].

HPC Wire, “AWS Graviton2-Powered EC2 Instances Now Available,”
https://www.hpcwire.com/2020/06/12/aws-graviton2-powered-ec2-
instances/, 2020, [Online; accessed 2-December-2021].

S. W. Keckler, W. J. Dally, D. Maskit, N. P. Carter, A. Chang, and
W. S. Lee, “Exploiting fine-grain thread level parallelism on the mit
multi-alu processor,” in Proceedings of the 25th Annual International
Symposium on Computer Architecture, ser. ISCA ’98. USA: IEEE
Computer Society, 1998, p. 306-317.

R. Kessler and J. Schwarzmeier, “Cray T3D: a new dimension for Cray
Research,” in Digest of Papers. Compcon Spring, 1993, pp. 176-182.
M. Kulkarni, M. Burtscher, C. Cascaval, and K. Pingali, “Lonestar:
A suite of parallel irregular programs,” in 2009 IEEE International
Symposium on Performance Analysis of Systems and Software, 2009,
pp. 65-76.

S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural support
for fine-grained parallelism on chip multiprocessors,” in Proceedings of
the 34th Annual International Symposium on Computer Architecture, ser.
ISCA ’07. New York, NY, USA: Association for Computing Machinery,
2007, p. 162-173.

A. Kurth, S. Riedel, F. Zaruba, T. Hoefler, and L. Benini, “ATUNs:
Modular and Scalable Support for Atomic Operations in a Shared
Memory Multiprocessor,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1-6.

J. Laudon and D. Lenoski, “The SGI Origin: A CcNUMA Highly
Scalable Server,” in Proceedings of the 24th Annual International
Symposium on Computer Architecture, ser. ISCA ’97. New York, NY,
USA: Association for Computing Machinery, 1997, p. 241-251.

H. Q. Le, J. A. Van Norstrand, B. W. Thompto, J. E. Moreira, D. Q.
Nguyen, D. Hrusecky, M. J. Genden, and M. Kroener, “IBM POWER9
processor core,” IBM Journal of Research and Development, vol. 62,
no. 4/5, pp. 2:1-2:12, 2018.

D. Lee, J. Choi, J.-H. Kim, S. Noh, S. L. Min, Y. Cho, and C. S.
Kim, “Lrfu: a spectrum of policies that subsumes the least recently used
and least frequently used policies,” IEEE Transactions on Computers,
vol. 50, no. 12, pp. 1352-1361, 2001.

J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Realistic,
Mathematically Tractable Graph Generation and Evolution, Using Kro-
necker Multiplication,” in Knowledge Discovery in Databases: PKDD
2005, A. M. Jorge, L. Torgo, P. Brazdil, R. Camacho, and J. Gama, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 133-145.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in 2009
42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2009, pp. 469—-480.

C. Liang and M. Prvulovic, “MiSAR: Minimalistic Synchronization
Accelerator with Resource Overflow Management,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 414-426.

J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj,
G. Black, G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, C. Escuin, M. Fariborz,
A. Farmahini-Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope,
T. Grass, A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria, A. Harris,
T. Hayes, A. Herrera, M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang,
R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh, Y. Ko-

13

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

dama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli, M. Moreto,
T. Miick, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris, L. E. Ol-
son, M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke, M. Samani,
A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair, T. Ta, R. Thakur,
G. Travaglini, M. Upton, N. Vaish, 1. Vougioukas, W. Wang, Z. Wang,
N. Wehn, C. Weis, D. A. Wood, H. Yoon, and E. F. Zulian, “The gem5
Simulator: Version 20.0+,” 2020.

G. Moore, “Cramming More Components Onto Integrated Circuits,”
Proceedings of the IEEE, vol. 86, no. 1, pp. 82-85, 1998.

M. Musleh and V. S. Pai, “Automatic Sharing Classification and Timely
Push for Cache-Coherent Systems,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC "15. New York, NY, USA: Association for Computing
Machinery, 2015.

NASA, “NASA Video and Image Library,” https://images.nasa.gov/,
2021, [Online; accessed 30-July-2022].

J. Oh, M. Prvulovic, and A. Zajic, “TLSync: Support for multiple
fast barriers using on-chip transmission lines,” in 2011 38th Annual
International Symposium on Computer Architecture (ISCA), 2011, pp.
105-115.

M.-J. Park, H. S. Cho, T.-S. Yun, S. Byeon, Y. J. Koo, S. Yoon, D. U.
Lee, S. Choi, J. Park, J. Lee, K. Cho, J. Moon, B.-K. Yoon, Y.-J. Park,
S.-m. Oh, C. K. Lee, T.-K. Kim, S.-H. Lee, H.-W. Kim, Y. Ju, S.-K.
Lim, S. G. Baek, K. Y. Lee, S. H. Lee, W. S. We, S. Kim, Y. Choi,
S.-H. Lee, S. M. Yang, G. Lee, [.-K. Kim, Y. Jeon, J.-H. Park, J. C. Yun,
C. Park, S.-Y. Kim, S. Kim, D.-Y. Lee, S.-H. Oh, T. Hwang, J. Shin,
Y. Lee, H. Kim, J. Lee, Y. Hur, S. Lee, J. Jang, J. Chun, and J. Cho, “A
192-Gb 12-High 896-GB/s HBM3 DRAM with a TSV Auto-Calibration
Scheme and Machine-Learning-Based Layout Optimization,” in 2022
IEEE International Solid- State Circuits Conference (ISSCC), vol. 65,
2022, pp. 444-446.

G. Project, “GCC __atomic Builtins,” https://gcc.gnu.org/onlinedocs/
gee/_005f_005fatomic-Builtins.html, 2023, [Online; accessed 12-April-
2023].

J. T. Robinson, “A Fast General-Purpose Hardware Synchronization
Mechanism,” SIGMOD Rec., vol. 14, no. 4, p. 122-130, may 1985.

C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A
properly synchronized benchmark suite for contemporary research,”
in 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2016, pp. 101-111.

J. Sampson, R. Gonzalez, J.-f. Collard, N. P. Jouppi, M. Schlansker,
and B. Calder, “Exploiting fine-grained data parallelism with chip
multiprocessors and fast barriers,” in 2006 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’06), 2006, pp.
235-246.

S. L. Scott, “Synchronization and communication in the t3e multi-
processor,” in Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS VII. New York, NY, USA: Association for
Computing Machinery, 1996, p. 26-36.

S. Shang and K. Hwang, “Distributed hardwired barrier synchronization
for scalable multiprocessor clusters,” IEEE Transactions on Parallel and
Distributed Systems, vol. 6, no. 6, pp. 591-605, 1995.

A. Sohn and Y. Kodama, “Load balanced parallel radix sort,” in
Proceedings of the 12th International Conference on Supercomputing,
ser. ICS ’98. New York, NY, USA: Association for Computing
Machinery, 1998, p. 305-312. [Online]. Available: https://doi.org/10.
1145/277830.277903

X. Tang, J. Zhai, X. Qian, and W. Chen, “PLock: A Fast Lock for
Architectures with Explicit Inter-Core Message Passing,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
765-778.

E. Vallejo, R. Beivide, A. Cristal, T. Harris, F. Vallejo, O. Unsal, and
M. Valero, “Architectural Support for Fair Reader-Writer Locking,” in
2010 43rd Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2010, pp. 275-286.

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C. Miao, J. F. Brown III, and A. Agarwal, “On-Chip
Interconnection Architecture of the Tile Processor,” IEEE Micro, vol. 27,
no. 5, pp. 15-31, 2007.

C. M. Wittenbrink, E. K., and A. Prabhu, “Fermi GF100 GPU Archi-
tecture,” IEEE Micro, vol. 31, no. 2, pp. 50-59, 2011.

[65]

[66]

[67]

[68]

[69]

S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-
2 programs: characterization and methodological considerations,” in
Proceedings 22nd Annual International Symposium on Computer Ar-
chitecture, 1995, pp. 24-36.

S. L. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks, “Quantifying
sources of error in mepat and potential impacts on architectural studies,”
in 2015 IEEE 2Ist International Symposium on High Performance
Computer Architecture (HPCA), 2015, pp. 577-589.

G. Zhang, W. Horn, and D. Sanchez, “Exploiting Commutativity to Re-
duce the Cost of Updates to Shared Data in Cache-Coherent Systems,” in
Proceedings of the 48th International Symposium on Microarchitecture,
ser. MICRO-48. New York, NY, USA: Association for Computing
Machinery, 2015, p. 13-25.

L. Zhang, Z. Fang, and J. Carter, “Highly efficient synchronization
based on active memory operations,” in /8th International Parallel and
Distributed Processing Symposium, 2004. Proceedings., 2004, pp. 58—.
W. Zhu, V. C. Sreedhar, Z. Hu, and G. R. Gao, “Synchronization State
Buffer: Supporting Efficient Fine-Grain Synchronization on Many-Core
Architectures,” SIGARCH Comput. Archit. News, vol. 35, no. 2, p.
35-45, jun 2007.

14

