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Abstract—Increasing quantum circuit fidelity requires an effi-
cient instruction set to avoid errors from decoherence. The choice
of a two-qubit (2Q) hardware basis gate depends on a quantum
modulator’s native Hamiltonian interactions and applied control
drives. In this paper, we propose a collaborative design approach
to select the best ratio of drive parameters that determine the best
basis gate for a particular modulator. This requires considering
the theoretical computing power of the gate along with the practical
speed limit of that gate, given the modulator drive parameters.
The practical speed limit arises from the couplers’ tolerance
for strong driving when one or more pumps is applied, for
which some combinations can result in higher overall speed
limits than others. Moreover, as this 2Q basis gate is typically
applied multiple times in succession, interleaved by 1Q gates
applied directly to the qubits, the speed of the 1Q gates can
become a limiting factor for the quantum circuit. We propose
a parallel-drive approach that drives the modulator and qubits
simultaneously, allowing a richer capability of the 2Q basis gate
and in some cases for this 1Q drive time to be absorbed entirely
into the 2Q operation. This allows increasingly short duration 2Q
gates while mitigating a significant source of overhead in some
quantum systems. On average, this approach can decrease circuit
duration by 17.84% and decrease infidelity for random 2Q gates
by 10.5% compared to the best basic 2Q gate,

√
iSWAP.

I. INTRODUCTION

Quantum Computers (QCs) leverage quantum superposition
and entanglement which, unlike classical computers, allows
the QC core computing element, or qubit, to conceptually
interact with all other qubits, simultaneously. This provides
the promise of solving problems that that are intractable for
classical computers. However, currently realized QCs are part
of the Noisy Intermediate-Scale Quantum (NISQ) era. NISQ
machines with more than a hundred qubits can be readily
created [1]; however, the qubit interactions remain limited
to small neighborhoods and these quantum operations—or
quantum gates—have limited fidelity. While these “noisy”
quantum operations continue to improve, even the best gates
typically do not exceed 99.9% fidelity [2]–[5].

Quantum interactions are realized through qubit-qubit cou-
pling. Coupling is possible when there is a physical connection
between the qubits and is governed by a modulator. These
modulators range from simple as capacitive couplings to more
elaborate nonlinear circuits [1], [6], [7]. The major source of
error in superconducting QC hardware, which is at the heart of
machines by IBM and Google, comes from qubit decoherence.
Thus, continued improvements in quantum gate capabilities
and speeds are required to increase feasible circuit depth.

A critical component to building better quantum circuits
is to identify the best basis gate that can be realized by
the modulator. The reason for selecting a single basis gate
is that calibrating gates is an expensive process. Otherwise,
one could just calibrate every single possible gate, or at least
each gate that is required for a particular quantum workload.
Also, gates must to be calibrated independently between each
pair of qubits as each pair will require different parameters
and frequencies to be addressed uniquely. Moreover, gate
calibrations are finicky processes that drift over time, requiring
periodic re-calibration [8]. Thus, a single gate calibration or
determining multiple gate parameters as a function of the
calibrated gate is necessary to make this process tractable [9].

However, the metric for determining the best basis gate may
not be clear. A standard metric for determining the quality of
a gate is to calculate its Haar score, which is its coverage
of all possible gates among two qubits as represented in a
3D space by the Weyl Chamber [10]. While this is a good
representation of the computational power of the gate, many
quantum algorithms tend to be reduced to the CNOT family of
gates to complete their computational work [11]. The remain-
der of the circuit typically requires the non-entangling SWAP
gate, primarily to move data on the machine’s interconnection
topology. Thus, a basis gate that best optimizes these two
operations of CNOT and SWAP is also a useful metric.

In this work, we consider parametrically driven interactions,
in which far off-resonant drives activate, usually non-rotating,
terms in the coupler to power an effective two-body interaction
between a pair of qubits [12]–[14]. The drive amplitude(s)
determine the gate speed, while also imprinting a phase on the
resultant qubit-qubit coupling. The most prominent examples
of these drives are: (1) photon exchange/swapping/conversion
between the modes, or conversion, and (2) pair-photon cre-
ation/annihilation, also called two-mode squeezing, which
produces gain in parametric amplifiers. These drives can be
applied in tandem in a single coupler [15].

One way to identify the set of basis gates enabled by this
process is to explore the parametrically driven coupler in the
form of its Hamiltonian expression and the drive parameters
that can be used to tune different 2Q basis gates. For instance,
it is relatively straightforward to show that a Hamiltonian
with gain and conversion terms that naturally implements the
iSWAP family of gates can also directly implement the CNOT
and B families of gates as well as other more exotic gates, all
by changing the ratio of gain and conversion (see Section II
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below). However, the pulse times to implement these gates is
a function of the drive capacity of the modulator.

All of these parametrically-driven gates depend on an actu-
ator/modulator that has an inherent speed limit. The source of
this speed limit is the physical limit of the drive capacity of the
device for which over-driving the modulator can result in drive
lines causing heating, instability in non-linear objects, “bright-
state”-ing, bifurcation, chaos, population leakage [16], among
others. Speed limits are a fundamental property of parametric
couplers, otherwise there would be no fundamental limit to
how often every gate can be made 10× faster. Understanding
the various physical mechanisms in determining these speed
limits with the goal to improve them is an ongoing research
effort both for parametrically driven qubit gates and the related
field of parametrically driven amplifiers [17]–[19].

To further complicate the selection of the basis gate, the
parametric drive terms, e.g., the gain and conversion terms,
both contribute towards the speed limit, but combine in a non-
linear way. Thus, finding the fastest basis gate can become an
optimization function of both the theoretical computing power
of the gate and the pulse time of that gate due to the physical
speed limit of that particular ratio of drive parameters.

When conducting decomposition of a quantum circuit, tra-
ditionally, a template such that the selected 2Q basis gate is
interspersed with 1Q gates (Fig. 1a). Conceptually, the 1Q
gates orients the trajectory in a particular direction, then the
2Q basis gate traverses the Weyl chamber to a new point. The
Weyl chamber is a 3D representation of the possible states
of a pair of qubits. Interestingly, to implement a CNOT or
SWAP functionality using

√
iSWAP the first leg in the Weyl

chamber is identical, shown as purple. As the point of interest
was not yet reached, the direction is re-oriented (1Q gates)
before drawing the next line. CNOT is reached in two steps,
but the process repeats for SWAP until the point is reached,
which happens on the third step. This process is akin to a car
driving on established roads. When on a road (path) the car
must follow the road, but there are intersections at fixed points
where the car can select new roads to follow.

In this paper we propose a collaboratively designed parallel-
drive technique that drives both the modulator and the qubits
directly. Intuitively, if the objective is the fastest path to the
destination, stopping to steer adds delay. Instead, by driving
both the qubits and the modulator simultaneously the straight
paths become curves in the Weyl chamber, which is akin to
turning while driving and breaking the restriction of driving
on the established road. This is shown by allowing CNOT
to be built from iSWAP without intermediate 1Q gates and
eliminating one set of interspersed 1Q gates in SWAP (Fig. 1b).
Moreover, parallel-drive allows the 2Q gate to increase in
Haar volume and in some cases can eliminate the need for
interspersed 1Q gates. More, it can expand the 2Q basis set
without needing to calibrate new gates individually (assuming
there is no cross talk between 1Q and 2Q gates), since there is
still only one 2Q basis gate from which the others are created.

Thus, selecting high speed limit gate families and using
increasingly short drive pulses while using parallel-drive to

(a) Traditional Trajectory (b) Parallel-Driven Trajectory

Fig. 1: Cartan Trajectories [20] for CNOT (blue) and SWAP
(red) using

√
iSWAP basis. The trajectories represent the total

accumulated unitary transformation over time, beginning at
Identity I and ending at the target gate UT . Black dots repre-
sent interleaved 1Q gates where orientation can be changed.

eliminate some 1Q gates can provide significant speed and
fidelity improvements to implemented quantum circuits. In this
paper, we make the following contributions:
• We characterize simultaneous application of two basic

parametric interactions to implement 2Q gates and artic-
ulate the various 2Q gate families that can be realized.

• We demonstrate that these modulators realize biased and
potentially non-linear speed limits for different parameter
drive ratios.

• We observe that partially pulsed gates, e.g.,
√
iSWAP, can

be more efficient than the full pulse gate, e.g., iSWAP.
However, when using smaller fractions of a gate, the
overhead of the 1Q gates becomes more appreciable.

• We present a parallel-drive methodology to improve the
agility of a basis gate by concurrently driving the modu-
lator and the participating qubits. We show that parallel-
drive can improve the computing capability of a basis
gate and provide the potential to remove interleaved 1Q
gates in repeated application of 2Q gates.

• Using these approaches we demonstrate an improved
equivalency for iSWAP and CNOT by using parallel-drive.

• We present a detailed study of using speed-limits and
parallel-drive to reduce circuit delay for important quan-
tum computing workloads.

In the next section we explore the basis gate design space
from a modulator by exploring parameters of the Hamiltonian.

II. HAMILTONIAN DESIGN SPACE

Fundamentally, quantum gates are unitary matrix operations,
or unitaries, that act on quantum states. In general, 1Q and
2Q gates form the building blocks of quantum circuits [11]. A
native quantum gate set, analogous to a classical computer’s
instruction set, defines which unitary operations are available
to use on a machine. The available gates depends on the engi-
neered Hamiltonian of the system, which is related to the uni-
tary, described by Schrödinger’s equation, U(t) = e−iĤt/h̄. In
superconducting QCs, parametric driving on a qubit-coupling
mechanism provides control over the Hamiltonian to activate
the desired unitary and corresponding gate.
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Fig. 2: Generic decomposition 2Q unitary ← 2Q basis gate.

Using Cartan’s KAK decomposition [21], [22], an arbi-
trary 2Q gate can be built from repeated applications of a
universal 2Q basis gate with interleaved 1Q gates (Fig. 2).
Simple techniques for gate decomposition use this interleaving
template and via an exact analytical solution [23], [24], or an
approximate numerical optimizer [25]–[27], find a solution to
the 1Q gates for a variable number of repetitions. We refer
to a basis template, as a quantum circuit that interleaves the
basis gate K times. To perform decomposition, the template
is instantiated with the sufficient size K.

Crucially, the proper selection of basis gate determines
the overall complexity of the transpiled quantum algorithm,
as different basis gates may require comparatively larger or
smaller K in decomposition. Moreover, each basis gate has
a latency depending on the system’s physical interactions.
For this reason, characterizing the set of candidate basis
gates requires reasoning about both their decomposition
efficiency, K[UB ], as well as their hardware latency, D[UB ].

As discussed in Section I, the set of possible 2Q gates is
represented geometrically by the Weyl Chamber [28]–[30],
where locally-equivalent 2Q gates, differing only by 1Q gates,
are mapped to the same coordinate. This comes from the
assumption that any locally equivalent gate for a particular
2Q gate has the same entangling power and decomposition
efficiency. For example, CZ and CX/CNOT can be considered
the same equivalent gates in this context. Also, the unitary
conjugates are reflected over the x-axis, which is like executing
the gate backwards, so essentially it is only necessary to plot
gates on the left side of the chamber. In this work, references
to a 2Q basis gate may refer generally to the set of locally
equivalent gates with matched computational power; however,
references to 2Q target gates include the additional 1Q costs
of local basis translation required for algorithm correctness.

To reason about decomposition, we plot a gate’s coverage
volume, which are regions that span all gates buildable by
a template. We also use the ∈ notation when referring to a
template, which means the 1Q gates are free variables while
the 2Q gates are fixed. The use of monodromy polytopes [10]
analytically creates the coverage sets, so we can reason about
spanning volumes of K gate applications, decide if a gate is
contained in a template, and output its weighted volume.

A. Flexible Realization of Gates with Parametric Couplings

While certain classes of gate interactions, such as cross-
resonance, rely on linear coupling modes between supercon-
ducting qubits [31], [32], there is increasingly widespread
use of parametric or tunable couplers among of groups of
two or more qubits, which can be transmons, flux qubits, or
high-Q cavities [14], [15], [20], [33], [34]. In these systems,

the coupler’s nonlinearity is driven with external flux and/or
microwave fields to create a wide array of potential gates.
Two well-known families of interactions used in parametric
amplification [35] are photon exchange and two-mode squeez-
ing/gain. Photon exchange is produced by driving the coupler
to provide the energy source/sink to exhange excitations
between the qubits. This can be realized, for instance, in a
third-order coupler driven at the qubits’ difference frequency.

Two-mode squeezing/gain is produced by driving to provide
the energy required for pair production/annihilation in the
qubits. In third-order coupling this requires driving at the
qubits’ sum frequency. Surprisingly, both approaches naturally
realize iSWAP gates among two-level or anharmonic qubits.
Further, couplings which link to states outside the computa-
tional basis that create state dependent phase accumulation
(e.g., difference driving between |11〉 and |20〉) could be used
to produce CZ gates, all in the same system.

These couplers can be driven to produce a wide variety of
2Q gates, especially those in the Weyl chambers’ floor, which
are just combinations of simultaneous gain and conversion
driving1. We can write such a combination Eq. 1,

Ĥ = gc(e
iφca†b+ e−iφcab†) + gg(e

iφgab+ e−iφga†b†), (1)

where gc, gg and φc, φg represent the pump-controlled am-
plitude and phase, respectively, such that gc, φc result from
difference/conversion driving and gg, φg are from sum/gain
driving. Each choice of control parameters yields a continuum
of gates. To illustrate the flexibility of jointly driving multiple
interactions simultaneously, the case with both couplings are
non-zero strength with both pump phases set to zero arrives
at the following unitary:

U(t) =


cos θg 0 0 −i sin θg
0 cos θc −i sin θc 0
0 −i sin θc cos θc 0

−i sin θg 0 0 cos θg

 (2)

such that θc = gct, θg = ggt, where t is the driving time.
By varying the interaction strengths gc and gg at a fixed

t = 1. The iSWAP gate in this language is given by setting
θc or θg to π

2 , yielding Eq. 3.

Ĥ =
π

2
(a†b+ ab†) or Ĥ =

π

2
(ab+ a†b†), (3)

while the CNOT gate can be realized by setting θc = θg =
π
2 ,

yielding Eq. 4.

Ĥ =
π

4
(a†b+ ab†) +

π

4
(ab+ a†b†). (4)

There is a continuous set of possible unitary operators that
can be naturally realized by this Hamiltonian. By visualizing
this in the Weyl Chamber (Fig. 3a) these two points of interest
appear at both ends of the yellow band, with the iSWAP at the
tip and CNOT along the baseline at the π

2 point. In fact, the

1Note, careful attention must be paid to the nonlinearity and encoding of the
qubit states being used. For instance, the same parametric interaction among
qubits realized as transmons produces different gates than high-Q cavities, for
which the latter produces Fock states.
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(c) Demonstration of limitation of gain and
conversion coefficients (gg and gc) when
both processes are turned on.

Fig. 3: Analysis of basis gate choice including, gate range and timing, gate usage by application, and impact of drive ratio.

theoretical power of this Hamiltonian covers the entire base
plane of the Weyl chamber with different points reachable in
different ratios of θg and θc and total angle θg + θc.

A vital question, then, is which combination of drives yields
the best gate? There are several important factors for selecting
this gate such as the decompositional efficiency of the gate and
the pulse time of the gate. There is evidence that fractional
pulse duration gates can be more efficient (e.g.,

√
iSWAP vs

iSWAP), further reducing pulse time. In the next section we
discuss methods to evaluate this decomposition efficiency.

B. Gate Score Methodology

In order to optimize the choice of control parameters, it is
first necessary to reason about the unitaries’ decomposition
efficiency. We compare two methodologies to quantify the
decomposition efficiency of a gate: uniform gate distribution
and algorithm-sampled distributions. While decomposition de-
termines the number of iterations required of a basis gate
to realize a target unitary UT , recall from Fig. 3a, different
realizable gates from the Hamiltonian require different pulse
times. To represent both aspects of a gate we define KUB

[UT ]
as the number of basis gates (UB) to build the target (UT ) and
DUB

[UT ] as the normalized duration to build a target using the
basis. The expectation E operator signifies the cost averaged
over the random Haar distribution.

The Haar measure [36], is used to construct a uniform
distribution of 2Q gates. Conceptually, it is a density function
inside the Weyl Chamber which weights the perfect entangler
interior region more heavily than the exterior I (identity) and
SWAP vertices. It is used to build a Haar score, a common
metric to quantify the decomposition power of a basis set. The
Haar score is the expected number of gates (K) to generate
Haar random 2Q gates. In other words, it is a volume-weighted
average over the basis template’s spanning regions to achieve
full Weyl Chamber coverage. This is demonstrated in Fig. 4,
by plotting the K-template spanning region for some popular
2Q gates. The iSWAP gate (Fig. 4a) can reach the bottom
plane in k = 2 and the entire volume in k = 3. The

√
iSWAP

gate (Fig. 4b) actually has better coverage at k = 2 with a
shorter pulse time. The popular CNOT (Fig. 4c) has similar
coverage behavior as iSWAP, which is reasonable as both are
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Fig. 4: Gate Coverage Sets. red: k = 1, green: k = 2, blue:
k = 3, orange: k = 4, purple: k = 5, cyan: k = 6

Clifford gates. The B gate (Fig. 4e) minimizes E[Haar] because
it spans the entirety of the region in k = 2 (green), whereas√
CNOT (Fig. 4d) does not completely span the chamber until

six steps (k = 6, yellow).
However, the E[Haar] score fails to capture that in practice,

gates are not uniformly distributed. Algorithms are written
primarily using CPhase gates, implemented by controlled
unitaries, analytically decomposed into 2Q CNOT gates. The
reason why CPhase gates are ubiquitous in algorithm design
may be explained by the Quantum Singular Value Trans-
form (QSVT), a key subroutine of Grover’s Search, Phase
Estimation, and Hamiltonian Simulation circuits [37]. The
QSVT subroutine encodes an operator A as a block inside
a larger unitary matrix, U . When A is a unitary matrix,
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then U becomes a controlled A operator, which naturally
decomposes into CPhase 2Q gates [11]. Even algorithms
which use different subroutines, such as Quantum Approxi-
mate Optimization Algorithm (QAOA), still rely on the CNOT
for their own reasons. In QAOA, the Hamiltonian cost function
maps to states that are diagonal in the computational basis,
such that the canonical expansion is into ZZ gates [38]. Simply,
creating new quantum algorithms is such a difficult task, most
known algorithms are variations of the same subroutine, which
happens to use controlled-gate operators [39].

Moreover, qubit connectivity topologies necessitate data
movement via SWAP gates. Due to the limited connection
topologies of NISQ superconducting QCs of square lattice and
heavy hex, SWAP gates are required to move data into qubits
in the same neighborhood. It has been shown that these gates
can dominate transpiled gate counts [40], [41].

The frequency of SWAP gates naturally depends on the
coupling topology. For simplicity, we consider a 4x4 square
lattice topology as the target coupling map. For a represen-
tative set of quantum benchmarks including QFT, QAOA,
Adder, Multiplier, GHZ, Hidden Linear Function, and VQE,
but excluding the special case of Quantum Volume, the
workloads were mapped to this topology using the Qiskit
v0.20.2 transpiler with -O3 (optimization level 3), inducing
the necessary SWAPs. The results are displayed in a “shot-
chart” that increases the size of the plotted gates relative to
its frequency in the workloads, as shown in Fig. 3b. From
this experiment, the most frequent targeted gates are SWAP
followed by CNOT, with iSWAP as a more distant third.
Interestingly, there is a significant usage of CNOT family gates,
which show up along the Weyl chamber baseline.

Thus, an alternative gate scoring function introduces
V (UB), which weights the decomposition cost of target, UT ,
using the basis gate duration, DUB

[UT ], by the frequency of
the target gate, for instance as shown in Fig. 3b. The best basis
gate would minimize this weighted cost as shown in Eq. 5.

V (UB) =
∑
UT

f(UT )DUB
[UT ] (5)

As gates must typically be calibrated prior to knowing the
circuits they will be programmed to implement, a simplified
distribution might only consider and weight the dominating
CNOT and SWAP gates, which, by extension, will generally be
true for any CPhase algorithm deployed to the device. We fit
the value λ as ratio of CNOT to the total of CNOT and SWAP
gates using our benchmark workloads as illustrated in Fig. 3b.

W (UB , λ) = λ ∗DUB
[CNOT] + (1− λ) ∗DUB

[SWAP] (6)

This ratio, λ = 731/(731 + 828) ≈ 0.47. Therefore, the
weighted function W (UB , 0.47) serves to optimize basis gate
selection over quantum workload circuits. We go on to refer
to this weighted distribution of gates as W (λ = .47).

Table I compares the decomposition cost of the six common
gates from Fig. 4 in terms of number of gates to realize
target gates of SWAP and CNOT, as well as Haar and our
empirical W distributions. The best performing gate for Haar

TABLE I: Decomposition Gate Counts (k). Each value is
determined by the spanning regions from Fig. 4

iSWAP
√
iSWAP CNOT

√
CNOT B

√
B

K[CNOT] 2 2 1 2 2 2
K[SWAP] 3 3 3 6 2 4
E[K[Haar]] 3 2.21 3 3.54 2 2.50
K[W (.47)] 2.53 2.53 2.06 4.12 2 3.06

is the B because it can span the Weyl chamber in k = 2,
however,

√
iSWAP and

√
B perform well with k = 2.21 and

k = 2.5, respectively. The W cost requires a gate that is good
at both CNOT and SWAP. While the K function is useful for
reasoning about theoretical computational capabilities, the D
function better compares the implementation of these gates as
it considers pulse times and their impact on the decomposition
cost, which we explore in the next section.

C. Speed-Limit Scaled Duration Costs

Although each of the discussed candidate basis gates and
many others are natively produced by conversion/gain Hamil-
tonians, different combinations of drives require different
duration pulse sequences. It follows from Eq. 1 and Eq. 2, that
to realize a specific gate with fixed θc and θg , the interaction
strengths gc,g are inversely proportional to time t. For this
reason, a unitary is realizable with the shortest duration when
the interaction strengths are as a strong as possible.

However, in a real physical system, the effective gc and
gg coefficients cannot be infinitely large due to physical
limitations, which can include factors such as fridge heating or
disrupting parametric coupling [42]. The maximum magnitude
is specific to the system being used. In general, it can be
described with a Speed Limit Function (SLF) which describes
the valid operating range for variable drive strengths. The SLF
represents the boundary of the regions where the parameters
obey the speed limit and coupling operates correctly versus
where the speed limit was exceeded and the unitary gate fails.

1) Characterizing Gate Speed Limits: To illustrate a con-
crete example of how the speed limit appears in a parametric
coupling system and inform our codesign study, we swept
the gg, gc drive strengths for a Superconducting Nonlinear
Asymmetric Inductive eLement (SNAIL) modulator [43]. The
gain-, and conversion-only experiments were first performed
individually between a qubit and the SNAIL coupler mode
to find the maximum gc when gg = 0 and vice versa. This
calibrates the relations between the drive amplitudes and the
g coefficients. Then, the pumps were detuned from the on-
resonance frequencies (so that the drive affects the SNAIL but
we perform no two-qubit gate) and applied simultaneously to
the SNAIL coupler at different amplitude combinations. The
result of this study is shown in Fig. 3c.

To monitor the speed limit, which manifests as a break point
of the SNAIL coupler, a second qubit that also couples to
the SNAIL mode is used. This second test qubit is prepared
in the ground state and measured immediately after the gain
and conversion pumps were turned off. Excitation of this
second monitoring qubit signals exceeding the speed limit, in
which the SNAIL coupler transitions to a (at present poorly
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understood) chaotic behavior and creates photons in both itself
and coupled modes, illustrated by the red region in the Fig. 3c.
The blue region indicates the monitoring qubit remained in the
ground state and represents our proxy for all the feasible gg
and gc combinations that can be used to construct 2Q gates.

As a result, the SLF of interest is illustrated as the boundary
between the blue coupling region and the red non-coupling
region, shown as the white line. A few characteristics of
interest from Fig. 3c: first, gc can be driven much harder than
gg and second, the SLF is non-linear.

To capture this experimental information for determining
the best basis gate, unitaries described by the values gc, gg
and time t, a gate can be visualized as a line from the origin
with the same gc to gg ratio that intersects with the SLF to
define gmaxc and gmaxg . The ratio of change in drive strength is
accompanied by inverse scaling of t to find tmin. This process
is described in Algorithm 1.

To demonstrate the impact of SLFs on basis gate selection
we consider two representative synthetic functions in addition
to the SNAIL modulator experimental data. The first synthetic
function is a linear combination akin to combining voltages,
gc+gg ≤ L resulting in an SLF of gg = L−gc. The second is
a squares of driving strengths function like combining power,
enumerated as g2

c + g2
g ≤ L with an SLF of gg =

√
L− g2

c .
To more easily compare these functions, we have normal-

ized the SLF to eliminate any dependencies on hardware
specific gate durations. For our synthetic functions, this means
selecting L = π/2. For the SNAIL characterized data we
uniformly scale such that the maximum x- or y-intercept
becomes π/2. In effect, the fastest iSWAP is normalized to
tmin = 1. Now, rather than reporting D[UB ] in units of time,
we use units proportional to 1 iSWAP duration, colloquially
referred to as a single pulse. In the next section we explore
how these SLFs impact decomposition.

2) Circuit Decomposition Costs: Integrating the SLF into
duration efficiency combines the theoretical and practical
aspects of gate counts to predict circuit latency. Speed-limited
duration of the same popular basis gates reported previously
are contained in Table II. Compared to the theoretical gate
counts where CNOT and B both outperformed

√
iSWAP, the

speed analysis explains why, in practice,
√
iSWAP becomes

Algorithm 1 Scale Gate Scores using Speed Limit Function
Input: SLF, UB(θc, θg),KUB

[UT ], D[1Q]
Find the largest gc and gg which produces the input U
β ← θg/θc
Find intersection of gg = βgc with SLF(gc) by solving{
gmaxg = βgmaxc

gmaxg = SLF(gmaxc )
Scaling time using updated strengths
tmin ← θc/g

max
c

Scale decomposition cost by duration
DUB

[UT ]← KUB
[UT ] ∗ tmin + (KUB

[UT ] + 1) ∗D[1Q]
return DUB

[UT ]

TABLE II: Decomposition Duration Efficiency. DBasis is the
normalized pulse duration for each candidate basis gate based
on the SLF. Then, each decomposition score is computed
using Table I and Algorithm 1 over different SLFs. Best value
reported in blue, worst value reported in red.

Basis iSWAP
√
iSWAP CNOT

√
CNOT B

√
B

Linear Speed Limit
DBasis 1.00 0.50 1.00 0.50 1.00 0.5

D[CNOT] 2.00 1.00 1.00 1.00 2.00 1.00
D[SWAP] 3.00 1.50 3.00 3.00 2.00 2.00
E[D[Haar] 3.00 1.05 3.00 1.77 2.00 1.25
D[W(.47)] 2.53 1.27 2.06 2.06 2.00 1.53

Squared Speed Limit
DBasis 1.00 0.50 0.71 0.35 0.79 0.40

D[CNOT] 2.00 1.00 0.71 0.71 1.58 0.79
D[SWAP] 3.00 1.50 2.12 2.12 1.58 1.58
E[D[Haar] 3.00 1.05 2.12 1.25 1.58 0.99
D[W(.47)] 2.53 1.27 1.46 1.46 1.58 1.21

SNAIL Characterized Speed Limit
DBasis 1.00 0.50 1.80 0.90 1.40 0.70

D[CNOT] 2.00 1.00 1.78 1.78 2.81 1.41
D[SWAP] 3.00 1.50 5.35 5.35 2.81 2.81
E[Haar] 3.00 1.11 5.35 3.17 2.81 1.76

D[W(.47)] 2.53 1.27 3.67 3.67 2.81 2.15

the more optimized basis gate, as
√
iSWAP has lowest con-

sistent pulse cost for Haar score (1.05–1.11) while
√
B has a

slightly lower pulse score (0.99) for the squared speed limit.
Moreover,

√
iSWAP also performs well for W (1.27) while√

B slightly improves on the squared speed limit (1.21).
To find the best basis gate for implementing these target

unitaries, the speed limit functions are plotted in Fig. 5. A gate
family is defined by the ratio between gc and gg terms. The
ratios for the CNOT (CX) gate family are shown as blue dotted
lines from the origin and the B gate family is a red dotted line
from the origin. The iSWAP gate family goes along the x-axis
(conversion) and y-axis (gain).

From the figure, the best gate to build a CNOT is directly
using a CNOT basis for the linear and squared SLFs. However,
on the characterized system, the CNOT is a slow gate, thus it
is actually faster to realize an iSWAP basis and convert into
CNOT gates. The W function for the squared speed limit is
between iSWAP and B on the gain side. For the linear and
squared functions the remainder of the gates are at iSWAP on
the gain side. For the SNAIL modulator all gates are pinned
at iSWAP on the conversion side. Recalling Table II, the basis
gate can be from the same gate family but depending on the
pulse length, can yield significantly different results.

We must keep in mind from decomposition rules (Fig. 2),
templates include interleaved 1Q gates. Our results indicate
that for negligible 1Q gate duration, the optimal basis gate
is much closer to Identity I, than for appreciable 1Q gates,
which tend to be much closer to

√
iSWAP, CNOT, and B. In

the next section we discuss the impact of basis gate selection
and fractional pulse lengths as impacted by 1Q gates.

D. Interleaving 1Q Gates

There is a common assumption to treat 1Q gates as negligi-
ble, as single qubit interactions are simpler to engineer and as

6



(a) 1Q=0% (b) 1Q=10% (c) 1Q=25% (d) 1Q=0% (e) 1Q=10% (f) 1Q=25%

Fig. 5: Best gates for Haar, CNOT, SWAP metrics for varying 1Q gate durations proportional to the length of the basis gate.
(a)–(c) represent a continuum of gates using the ratio between θc (x-axis) and θg (y-axis), thus the best gate for some metric
is where that line intersects with the defined SLF, scaling each gate to the speed limit. (d)–(f) plot gates in the bottom plane
of the Weyl chamber to represent the fractional pulse duration. Gates in the bottom left and right corners, near I, are smaller
fractions of a pulse versus gates closer to the center, which tends towards durations of a single full pulse.
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Fig. 6: The optimal Haar gate in the iSwap-family changes
as function of the 1Q gate times. This is because the num-
ber of gate applications increases for smaller cost 2Q basis
gates, which trades off with interleaved 1Q layers.

√
iSWAP

minimizes duration costs for appreciate 1Q gates.

such, less likely to be a significant source of error. Prior work
confirms that

√
iSWAP is the more efficient basis gate when

only considering 2Q gate costs [24], [41]. However, when
decoherence is the primary source of error, we find there is an
important trade off between faster basis gates and increased
K-template lengths (Fig. 6), thus the accumulated 1Q gate
count impacts total duration more for fractional basis gates.

In practice, 1Q gates can be quite fast, e.g. around 10% [44]
the duration of the basis gate (D[1Q] = .1). In other systems
with very fast 2Q gates, the 1Q gates are as much as twice
as slow as the full pulse 2Q gate [2], [4], depending on the
modulator. We treat all 1Q gates as having the same duration,
which can be made possible using virtual Z-gates [45].

When the 1Q gate duration is negligible we prefer to have
shorter gates with more repetitions. When the speed limit
function is convex, we get a better trade off using B or
CNOT gates. The best gates tend towards

√
iSWAP as we

observe gates are most efficient when either gc or gg is small.
Moreover, as shown in Fig. 5, when 1Q gate pulse times are
10% and 25% of a full pulse, respectively, the best basis gates
move CNOT to the red dotted line for the linear speed limit and
movethe W and SWAP to the B family for the squared speed
limit at 10% and 25%, respectively. The best Haar score moves

TABLE III: Decomposition duration efficiency. Each value is
computed using Eq. 7. (D[1Q] = 0.25, Linear SLF)

iSWAP
√
iSWAP CNOT

√
CNOT B

√
B

D[CNOT] 2.75 1.75 1.50 1.75 2.75 1.75
D[SWAP] 4.00 2.50 4.00 4.75 2.75 3.25
E[D[Haar] 4.00 1.91 4.00 2.91 2.75 2.13
D[W(.47)] 3.41 2.15 2.83 3.34 2.75 2.55

out to near, but not exactly to the iSWAP family.
When considering 1Q gates, the overall duration of a UB

decomposition can be expressed as in Eq. 7, which sums
both the 2Q and 1Q durations for K repetitions. To show the
impact on decomposition, Table III shows the decomposition
efficiency for the linear speed limit when 1Q gates are 25%
of the speed of a full pulse 2Q gate. Similar calculations for
other speed limits follow the same trends.

DUB
[UT ] = KUB

[UT ]t
min + (KUB

[UT ] + 1)D[1Q] (7)

The total circuit delay can be calculated as in described in
Eq. 8, where the pulse delay from Eq. 7 is summed for all
gates on the critical path of the full circuit.

DUB
[Circuit] =

∑
UT on Critical Path

DUB
[UT ] (8)

Fig. 6 shows that as the length of 1Q gates increases from
10% of a 2Q gate (red dotted line) to 25% (blue dotted line),
the increasingly small iSWAP gates reach a practical limit
at
√
iSWAP. This motivates revisiting transpiler optimization

targeting 1Q gates. The speed limit formulation indicates that
the smaller fractional basis gates are advantageous but only if
the increased 1Q gate cost can be mitigated.

Based on the results of this analysis, it is clear that for a
linear speed limit,

√
iSWAP is the most duration optimized ba-

sis gate. Furthermore, this methodology offers useful insights
for experimentalists when constructing their own basis gates,
given their own Hamiltonian design-space and 1Q gate speeds.
This is especially pertinent, demonstrated by our hardware
speed limit, when there is a strong preference to using one
kind of interaction. We also see that as the 1Q gate duration
is shorter, the best basis gate approaches Identity, but for
appreciable 1Q durations,

√
iSWAP continues to be optimal.
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In the next section, we introduce parallel-driven gates as a
means of improving the basis gate coverage volumes, and
consequently reducing duration costs.

III. PARALLEL 1Q DRIVE FOR BASIS OPTIMIZATION

In the previous section, the power of variable conver-
sion/gain drives was explored to show that a wide variety of
basis gates could be realized for different pulse lengths with
different optimal driving power ratios determined by the speed
limit. However, the same Hamiltonian can be extended if the
qubits participating in the 2Q gate are driven simultaneously.
In doing so, it is possible to do at least part of the “steering”
work of the interleaved 1Q layers during the 2Q gate operation
in parallel. This is possible because the drive to the modulator
that governs the 2Q interactions is distinct from the drive to
the qubits, which would implement the 1Q gates. An important
property of this parallel-drive methodology is that it is still
only necessary to calibrate a single 2Q gate.

A. Parallel-Driven Hamiltonian

Transmon Hamiltonians have been explored to optimize
pulses for creation of specific gates or algorithms [46]–[49]. In
our work, we modify the Conversion-Gain Hamiltonian by ap-
pending single-qubit X-gates with drive amplitudes ε1(t), ε2(t)
each described by D[2Q]/D[1Q] discrete time steps (Eq 9).
Essentially this creates parallel 1Q gates to occupy the duration
of the 2Q gate, each with a distinct amplitude.

Ĥ = gc(e
iφca†b+ e−iφcab†) + gg(e

iφgab+ e−iφga†b†)

+ ε1(t)(a+ a†) + ε2(t)(b+ b†) (9)

By allowing this extension there are two important outcomes
which reduce the overall circuit latency: (1) the basis gate
coverage region can be enriched and (2) 1Q gates and their
sequential delay may be able to be absorbed into the 2Q
gate operation, to improve overall circuit time. To consider
calibration, parallel-drive applies a frequency Kerr-shift on
the qubits, such that the parallel-driven gate would require
adjustment for a qubit frequency shift [14], [17]. Note, the
SNAIL is a third-order coupler and minimizes the fourth
order Hamiltonian term responsible for cross-Kerr interaction.
This frequency shift is proportional to the fourth-order term,
which will not sacrifice qubit fidelity for the SNAIL. More-
over, it should not impact overhead because existing calibra-
tion schemes (e.g., interleaved-randomized and cross-entropy
benchmarking) can fine-tune frequency drives of these non-
Clifford. Unfortunately, parallel-drive could create additional
crosstalk in the IBM cross-resonance gate, however the new
IBM initiative to build machines with parametric couplers may
also allow high-fidelity parallel-drive. Next, we examine the
impact of parallel-drive on Weyl chamber coverage.
B. Computing Parallel Drive Coverage Sets

To demonstrate the additional computing capabilities of
basis gates using parallel-driven 1Q gates, we first show the
increased set of primitive basis gates (K = 1) found by
sweeping the free variables of the Hamiltonian (Eq. 9), plotted

c1

0
/2 c2

0

/2

c 3

0

/2

0.2

0.4

0.6

0.8

1.0

Fig. 7: Gates natively produced by conversion and gain para-
metric driving with parallel 1Q gate drives (K = 1). The color
bar indicates the sum of the gc and gg , normalized to π/2.

in Fig. 7 (compared to Fig. 3a). The important outcome is
that the parallel-driven basis gates extend off the bottom plane
into the volume of the Weyl Chamber, which guarantees that
our basis templates with parallel-drive, K ′, will be able to
build some targets with fewer iterations than without, K0, e.g.,
K ′ ≤ K0. This translates to an advantage in Haar Score.

As the analytical volume coverage calculation of mon-
odromy polytopes cannot support 2Q gates with parallel-drive,
we developed a numerical procedure to estimate the expanded
regions. First the coverage region is seeded with randomized
parameters. Second, based on the loosely articulated region,
target points outside the region are identified to help clarify
the outer boundaries. Using an optimizer to these target points
a point at the outside edge of the region can be found. The
approach is described in Algorithm 2, which constructs a
polytope using the lrs [50] backend via the convex hulls
defined by a set of Weyl chamber coordinates. In order to
preserve convexity, we partition the coordinate list into left
and right sides of the Weyl chamber (c1 = π/2), with convex
hulls created separately. Finally, we specifically target exterior
points I,CNOT,iSWAP and SWAP as these gates are unlikely
to be reached via Haar uniform randomization.

To optimize the template to reach each exterior point, we
adapt the strategy from previous work [41], [51], and use the
Nelder-Mead optimization method [52] with a Makhlin invari-
ant functional [47], [53]. The free variables are phase (φc,g)
and 1Q drive amplitude (ε1(t), ε2(t)) bounded by (0, 2π), for
each K iterations of the template, as shown in Fig. 8a.

We consider four discrete 1Q drive time steps when building
the extended volumes. This corresponds D[1Q] = .25, for
a full pulse iSWAP, hence D[2Q] = 1. Previous work has
explored driving 1Q gates with many more time steps [46];
however, in our experimentation, four time steps provides suf-
ficiently similar coverage sets as compared to 250 time steps,
but in a more reasonable computing time. For example, Fig. 8b
plots the norm training loss of an iSWAP basis converging
to CNOT in 120 iterations, and Fig. 8c plots the updated
coordinate after each iteration. The final (yellow) coordinate
successfully converges to the target CNOT at (π/2, 0, 0). Note
that arbitrarily small error is possible with increased training
iterations and 1Q time steps.
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Fig. 8: (a) The decomposition template given to the Nelder-Mead optimizer. To bound the coverage regions we attempt to
converge to exterior Weyl chamber points. (b)–(c) K = 1 iSWAP is verified to contain CNOT by optimizing over ε1(t) and
ε2(t). (d) The resulting parallel-drive unitary evolution.

Algorithm 2 Method for Calculating Approximate Improved
Volumes from Parallel Drive

Basis Template ← gc, gg, T
k ← 0
while Coverage Volume not 100% do

k ← k + 1
Coordinate List ← []
Randomly Generate Coverage Points
for N iterations do

Template ← Random(φc, φg, ε1(t), ε2(t))
U ← Evaluate(Template)
(x,y,z) ← Convert U to Weyl coordinate
Coordinate List ← (x,y,z)

end for
Train for Exterior Coordinates
for target in (I,CNOT,SWAP,iSWAP) do

Save every coordinate along training path
Coordinate List ← Template.optimize(target)

end for
Coordinate List partitioned into left and right
Convex Hulls ← Coordinate List
Basis.Polytope[k]← Convex Hulls

end while
return Haar Volume(Basis.Polytopes)

C. Impact of Parallel Drive on Decomposition

The extended volumes for each of the six comparative basis
gates are reported in Fig. 9. The first major difference from
the traditional coverage sets (Fig. 4) is that the K = 1 in
red has increased from being only local to the basis gate
into a non-zero volume. Second, each K spanning region
is a superset of its original coverage volumes. Third, no
gate reaches 100% coverage in less template repetitions than
before, which highlights the inherent difficulty of optimizing
the SWAP gate, which is always the last gate to be reached.

Using the same procedure as before, the coverage volumes
can be used to find the K and D costs shown in Tables IV
and V, respectively. Note, internal 1Q gates are unnecessary if
the target gate is identical to multiple fractional copies of the
basis gate, e.g., iSWAP formed from two

√
iSWAPs. While,

this seems trivial for traditional circuits where a straight line
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Fig. 9: Parallel 1Q Drive Extended Gate Coverage Sets.
N=3000 random samples. red: k = 1, green: k = 2, blue:
k = 3, orange: k = 4, purple: k = 5, cyan: k = 6

in the Weyl chamber continues twice as far, when adding
parallel-drive, this property becomes more important as this
line becomes a volume in the Weyl chamber, providing more
opportunities to eliminate interleaved 1Q gates.

We use this property to build joint coverage sets between
iSWAP and

√
iSWAP which create decomposition rules using

either gate in the decomposition template. Interestingly, pre-
dominately

√
iSWAP sees a significant advantage from this

procedure, as K = 1 iSWAP partially covers the perfect
entangling region, which is heavily favored by the Haar distri-
bution. For instance, the K = 1 iSWAP volume contains the
point (π2 ,

π
4 ,

π
4 ), which renders the K = 2

√
iSWAP coverage

of the same point unnecessary, and eliminates the duration
from the 1Q gate in the decomposition. Both

√
CNOT and

√
B
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TABLE IV: Extended basis decomposition gate count cost
(K). Value is determined by the extended spanning regions
in Fig. 9

iSWAP
√
iSWAP CNOT

√
CNOT B

√
B

K[CNOT] 1 2 1 2 1 2
K[SWAP] 2 3 3 6 2 4
E[K[Haar]] 1.35 2.17 2.33 3.52 1.75 2.50
K[W(.47)] 1.53 2.53 2.06 3.65 1.53 3.06

TABLE V: Extended basis decomposition duration cost (D)
using Parallel-Drive, (D[1Q]=.25, Linear SLF). Fractional
basis scores are calculated using the joint spanning regions
between themselves and the full basis gate, selecting the lowest
cost template.

iSWAP
√
iSWAP CNOT

√
CNOT B

√
B

D[CNOT] 1.5 1.5 1.5 1.5 1.5 1.5
D[SWAP] 2.75 2.25 4 4 2.75 2.75
E[D[Haar]] 1.94 1.71 3.16 2.88 2.44 2.06
D[W(.47)] 2.16 1.90 2.83 2.83 2.16 2.16

obey the same rule, but with smaller overlapping volumes.
This makes the advantage present, but less significant. After
applying parallel-drive to improve the computing power of
each basis gate, we continue to find that

√
iSWAP is the

best candidate for a basis gate. Next, we will build explicit
decomposition rules into this basis, implement them into a
transpilation scheme and report improved simulated fidelities
on quantum algorithm benchmarks.

IV. PARALLEL DRIVE FOR ISWAP-FAMILY
Our work has shown the advantage in calibrating a basis

gate with the smallest fraction of total pulse time that does
not compromise fidelity. This can improve Haar score by
reducing unnecessary computational work done by longer
duration gates. However, to support calibration, we propose
to set the basis gate to approximately the same pulse duration
as a 1Q gate. In the case of the SNAIL modulator, this results
in an 4

√
iSWAP such that D[1Q] = 0.25 = D[2Q] Thus the

gate can be calibrated without the parallel-drive and again
with the parallel-drive to account for the constant frequency
shift. This approach minimizes the calibration overhead, as still
only a single gate must be calibrated. However, a

√
iSWAP

and iSWAP can be constructed by two and four 4
√
iSWAPs,

respectively. Short basis gates are useful for building gates near
Identity I, such as the small controlled-phase rotations that
appear in QFT; capable of combination to take long strides,
e.g., to SWAP; and can take advantage of parallel-drive to
boosts the computational power of gates.

A. Parallel Drive for Improving CNOT and SWAP

The methodology of creating coverage sets for parallel-
driven gates allows us to easily improve decomposition tem-
plates via inspection. The CNOT-family and SWAP decom-
position rules are given in Fig. 10 and Fig. 11. For all
other gates, the gate coverage set is used as a lookup table
for the required template size. Both the CNOT and SWAP
decompositions are shown in Fig. 1, where the parallel-drive is
responsible for the curve in the trajectory. In a full transpilation

CX(θ)

U

iSwap(θ, ε1(t), ε2(t))

U

∈

U U

Fig. 10: Decomposition template for CNOT into
√
iSWAP. A

suitable solution for the parallel-drives is ε1 = 3, ε2 = 0 for
all time steps.

SWAP

U

iSwap(ε1(t), ε2(t))

U
√
iSwap

U

∈

U U U

Fig. 11: Decomposition template for SWAP into
√
iSWAP. A

suitable solution for the parallel-drives is ε1 = π, ε2 = π for
all time steps. The interior set of 1Q gates is expected to be
unnecessary if derived more precisely.

Fig. 12: Illustrating the K = 2 coverage of n
√
iSWAP for

n ∈ {2, 4, 8} which can realize m
√
CNOT for m ∈ {1,2,4}.

scheme, the optimizer would be required to fit the exterior 1Q
gate parameters, but for the purpose of simulating duration-
dependent fidelity, the actual solution is unnecessary.

The Weyl chamber does not represent distances and pulse
costs uniformly and may mistakenly convey that a shorter,
direct trajectory from I to UT reduces the required 2Q basis
duration, e.g. building CNOT with parallel-driven

√
iSWAP.

However, there is a persistent requirement that 1 total iSWAP
pulse durations appear in the decomposition to be able to reach
CNOT, likewise 1.5 total iSWAP pulse duration is required to
reach SWAP. These inherent costs are more rigorously detailed
using quantum resource theories [54], and explain that 2Q
decomposition can only be further optimized by removing
the 1Q gate delays, but never a shorter 2Q time i.e., the
fundamental invariant related to “computing power.”

This inherent relationship between iSWAP and CNOT is de-
picted in Fig. 12, such that a fractional duration iSWAP always
contains the same fractional duration CNOT. For instance, K=2
with

√
iSWAP or K=1 with parallel-drive iSWAP both reach

CNOT. Of course,
√
iSWAP is still the more powerful basis

despite this relation to CNOT as it always contains additional
Weyl Chamber coverage. Both iSWAP and CNOT are special
perfect entanglers, and interestingly a non-entangling SWAP
gate can be used to convert back and forth between gates [55].
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B. Simulated Fidelity Improvements

We utilize a circuit fidelity model that captures the primary
source of error as decoherence in time following the methodol-
ogy of prior work [40], [41]. The fidelity of a final qubit state,
FQ, over a single path or wire in the circuit exponentially
decays as a function of the ratio of circuit duration time and
the qubit’s T1 (relaxation rate). Then the total circuit fidelity,
FT is given by the composite final qubit state, and thus is
exponential with number of qubits. For this reason, even small
improvements in circuit duration cascade into improved path
and total circuit fidelities.

FQ = e−D[Circuit]/T1 (10)

FT =

N∏
i=1

FQi
(11)

Our transpilation scheme uses the SLF normalized durations
D[UB ], which are converted back into units of time by mul-
tiplying by the iSWAP duration. To quantify these improve-
ments we choose D[iSWAP] = 100 ns and D[1Q] = 25 ns
with qubit lifetime T1 = 100 µs, which is consistent with
transmon qubits using a SNAIL modulator [14]. Using these
values, the improvements from the reduced duration decompo-
sitions over CNOT, SWAP, and Haar random targets are given
in Table VI. The baseline uses previously derived analytical√
iSWAP decomposition rules [24]. Note that although exte-

rior gates are used in the CNOT decomposition to make it
perfectly equivalent, quantum algorithms often have 1Q gates
before and after CNOT gates. Therefore, the circuit’s 1Q gates
and the decomposition substitution’s 1Q gates would naturally
combine for an even lower cost than represented here.

In our transpilation flow, we start by consolidating runs of
all unitary blocks into 2Q gates and inducing SWAPs on a
4× 4 square-lattice topology2. We then decompose each gate
into the

√
iSWAP basis with the pulse duration calculated by

the provided SLF. Decomposition uses predefined substitutions
for gates locally equivalent to CNOT-family and SWAP gates
(see Fig. 1b). If a rule is not known, we load the iSWAP and√
iSWAP extended coverage sets to construct a minimum size

K template. Finally, we consolidate consecutive 1Q gates and
report the remaining durations on each path.

Our decomposition improvements using parallel-drive led to
an average relative reduction in duration of 17.8% for the set of
quantum algorithm workloads, as determined by selecting the
best outcome from 10 transpiler runs, reported in Table VII.
The Quantum Volume results were further averaged through
additional runs due to the random nature of the algorithm.

The average relative reduction in duration is directly related
to our improvement method, while the relative path and total
fidelity improvements depend on the baseline duration, mock
gate durations, and qubit lifetime. Shallower circuits inherently
have higher fidelities, and thus, their improvement potential is
limited compared to deeper circuits with lower fidelities. For

2A CNOT followed by a SWAP on the same qubit pair is equivalent to an
iSWAP which appears with non-negligible frequency, see Fig. 3b at iSWAP.

TABLE VI: Improved gate infidelities, 1 − FQ (D[1Q]=.25,
Linear SLF)

UT Baseline Optimized % Improved
CNOT 0.0035 0.0030 14.3
SWAP 0.0050 0.0045 9.98
E[Haar] 0.0038 0.0034 10.5
W(.47) 0.0043 0.0038 11.62

TABLE VII: Transpilation Results (D[1Q]=.25, Linear SLF).
Baseline and Optimized columns report total circuit duration in
D[2Q]=1 normalized units. Duration, FQ, and FT columns are
reported as the relative % improvement between the baseline
and optimized durations.

Benchmark Baseline Optimized Duration FQ FT

QV 133.0 118.4 11.22 1.50 27.0
VQE L 25.75 21.5 16.50 0.43 7.04

GHZ 31.75 27.00 14.96 0.48 7.90
HLF 102.3 88.00 13.94 1.43 25.6
QFT 149.5 120.3 19.53 2.96 59.5

Adder 175.0 144.3 17.57 3.12 63.6
QAOA 197.8 147.8 25.25 5.12 122
VQE F 333.3 286.8 13.95 4.76 110

Multiplier 1065.25 770.76 27.64 34.2 11000

instance, the Quantum Volume improves from 0.875 to 0.889
in terms of path fidelities (a 1.5% improvement), which, due
to its exponential relationship in the number of qubits, results
in an increase from 0.119 to 0.151 (a 21% improvement)
in total fidelity. In contrast, the shortest VQE L algorithm
path fidelities baseline of 0.975 only improve to 0.979 (0.4%
improvement), leading to a total fidelity increase from 0.662 to
0.709 (6.6% improvement). Finally, our W(.47) metric predicts
an average 11.6% reduction in duration. Our experimentally
demonstrated 17.8% actually outperforms this case due to
additional improvements to CNOT where the decomposition
template’s exterior 1Q gates could be merged or eliminated.

V. CONCLUSION

In this paper, we formally characterized the optimal basis
gate for a parametric coupler under hardware speed limitations.
The results indicate that, despite the

√
iSWAP being close

to optimal prior to our analysis, it can still be improved by
utilizing parallel 1Q gates. This small improvement leads to
a notable enhancement in fidelity as the number of qubits
increases. Our co-design evaluated uniform Haar gates and
circuit-based gate sets, finding that for realistic cost functions
such as our experimentally-determined SNAIL-coupler data,
the
√
iSWAP gate performed the best in nearly all scenarios.

Initially, gate count scores favored the B gate, but after
considering the cost of direct generation through multiple
simultaneous parametric drives, the

√
iSWAP gate was the

most efficient. The introduction of parallel-drive and related
transpilation optimizations reduced the gate duration for most
basis gates and improved the pulse time for the

√
iSWAP

gate The iSWAP family was uniquely enhanced through
joint parallel-drive extended coverage sets, yielding significant
improvements in fidelity due to faster circuit execution.

In future work, we aim to expand our parallel-drive tran-
spilation flow to further enhance compilation strategies for

11



quantum algorithms and test them on various quantum sys-
tems with differing speed limit characterizations and dynam-
ics. More, detailed studies of improvement of parallel-drive
volume versus calibration complexity for different quantum
machine targets, including studying calibration complexity,
while expanding the flexibility to handle continuously variable
drive parameters, similarly to optimal-control theory methods
are important next steps.
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VII. SUPPLEMENTARY MATERIAL

The code used in this study is available at https://github.
com/Pitt-JonesLab/slam decomposition. This repository in-
cludes the scripts to create circuit templates for decompo-
sition, calculate parallel-driven expanded coverage sets, and
implement the transpiler.

REFERENCES

[1] J. Chow, O. Dial, and J. Gambetta, “Ibm quantum breaks the 100-
qubit processor barrier,” [Available Online] https:// research.ibm.com/
blog/127-qubit-quantum-process-or-eagle, 2021.

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[3] S. Li, A. D. Castellano, S. Wang, Y. Wu, M. Gong, Z. Yan, H. Rong,
H. Deng, C. Zha, C. Guo et al., “Realisation of high-fidelity nonadiabatic
cz gates with superconducting qubits,” npj Quantum Information, vol. 5,
no. 1, pp. 1–7, 2019.

[4] P. Zhao, P. Xu, D. Lan, J. Chu, X. Tan, H. Yu, and Y. Yu, “High-
contrast z z interaction using superconducting qubits with opposite-sign
anharmonicity,” Physical Review Letters, vol. 125, no. 20, p. 200503,
2020.

[5] I. N. Moskalenko, I. A. Simakov, N. N. Abramov, A. A. Grigorev,
D. O. Moskalev, A. A. Pishchimova, N. S. Smirnov, E. V. Zikiy,
I. A. Rodionov, and I. S. Besedin, “High fidelity two-qubit gates on
fluxoniums using a tunable coupler,” npj Quantum Information, vol. 8,
no. 1, pp. 1–10, 2022.
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