2203.15981v1 [cs.CR] 30 Mar 2022

arxXiv

Spy in the GPU-box: Covert and Side Channel
Attacks on Multi-GPU Systems

Sankha Baran Dutta
Pacific Northwest National Laboratory
Richland, WA, USA
sankha.b.dutta@pnnl.gov

Hoda Naghibijouybari
Department of Computer Science
Binghamton University
Binghamton, New York, USA

Arjun Gupta
Independent Contributor
arjun.gupta@gmail.com

hnaghibi @binghamton.edu

Nael Abu-Ghazaleh
CSE and ECE Departments
University of California, Riverside
Riverside, California, USA
nael @cs.ucr.edu

Abstract—The deep learning revolution has been enabled in
large part by GPUs, and more recently accelerators, which make
it possible to carry out computationally demanding training
and inference in acceptable times. As the size of machine
learning networks and workloads continues to increase, multi-
GPU machines have emerged as an important platform offered
on High Performance Computing and cloud data centers. As
these machines are shared between multiple users, it becomes
increasingly important to protect applications against potential
attacks. In this paper, we explore the vulnerability of Nvidia’s
DGX multi-GPU machines to covert and side channel attacks.
These machines consist of a number of discrete GPUs that are
interconnected through a combination of custom interconnect
(NVLink) and PCle connections. We reverse engineer the cache
hierarchy and show that it is possible for an attacker on one
GPU to cause contention on the L2 cache of another GPU. We
use this observation to first develop a covert channel attack across
two GPUs, achieving the best bandwidth of 3.95 MB/s. We also
develop a prime and probe attack on a remote GPU allowing an
attacker to recover the cache hit and miss behavior of another
workload. This basic capability can be used in any number of
side channel attacks: we demonstrate a proof of concept attack
that fingerprints the application running on the remote GPU,
with high accuracy. Our work establishes for the first time the
vulnerability of these machines to microarchitectural attacks, and
we hope that it guides future research to improve their security.

I. INTRODUCTION

GPUs have been an important computational platform en-
abling a variety of data intensive workloads such as deep
neural networks, scientific kernels, cryptocurrency mining and
many others. The size of these workloads continue to increase:
for example, training of large deep networks often requires
both computational and memory resources that far exceed
those of a single GPU. In response to these trends, Multi-GPU
platforms have emerged that offer tightly integrated GPUs,
enabling applications that span multiple-GPU with unified
memory accesses supported by fast communication fabric. For
example, the Nvidia DGX series [27] offers a number of server
class GPUs that are interconnected through a combination

Andres Marquez
Pacific Northwest National Laboratory
Richland, WA, USA
Andres.Marquez@pnnl.gov

Kevin Barker
Pacific Northwest National Laboratory
Richland, WA, USA
Kevin.Barker@pnnl.gov

of proprietary high bandwidth interconnect (NVLink) and
PCle. Other GPU manufacturers are also starting to offer
similar products; for example, AMD’s crossfire allows building
relatively inexpensive multi-GPU configurations [4]. It is likely
that such systems will continue to grow in terms of the perfor-
mance of the components (GPUs, interconnect and memory)
as well as in the number of GPUs that can be supported on
each machine.

In this paper, we explore whether multi-GPU machines are
vulnerable to both covert and side channel attacks. Given the
importance of workloads that run on these machines, it is
important to understand their security properties. On multi-
GPU machines multiple applications may concurrently execute
to more effectively use the available resources. Applications
generally belong to different mutually untrusting users. In our
threat model, an application either covertly communicates with
another (covert channel) or attempts to spy on them (side-
channel). Covert and side channel attacks have been demon-
strated on a variety of CPU microarchitectural structures [19],
[22], [31], [37]. More recently, attacks have been demonstrated
on GPUs as well [14], [15], [24]-[26].

Our work demonstrates for the first time that microarchitec-
tural covert and side channel attacks are also dangerous in the
context of multi-GPU systems. Specifically, we first reverse
engineer the caches on multi-GPU systems, and discover that
they are shared in a Non-Uniform Memory Access (NUMA)
configuration: the L2 cache on each GPU caches the data for
any memory pages mapped to that GPU’s physical memory
(even from a remote GPU). This observation enables us to
create contention on remote caches by allocating memory on
the target GPU, which is the essential ingredient enabling our
covert and side channels. Specifically, we develop the first
microarchitectural covert and side-channel attacks across
GPUs in a multi-GPU servers (an Nvidia DGX-1 server).
In the covert channel attack, a trojan process is located on one
GPU transferring secret information to a spy which is located

on another GPU. In our side channel attacks, the malicious
process can monitor the shared L2 cache from a remote GPU
and infer secrets about the victim process.

Cross-GPU attacks offer the attacker a number of ad-
vantages compared to prior attacks targeting GPUs. First,
they relieve the attacker from the issue of manipulating the
scheduler on a single-GPU to establish co-location of the
attacker kernels with the victim (e.g., on the same SM) [25].
In addition, these attacks also bypass isolation-based defenses
such as partitioning-based [36] defense mechanisms that can
be enabled for processes running within a single GPU. More-
over, previous side-channel attacks on a single GPU exploit
the aggregate measures of contention on GPUs [14], [15],
[20], [25], [35], [38]. The attacks that we develop in this
paper, are the first Prime+Probe based timing attacks on L2
cache on GPUs. Our attacks extract contention information
at the granularity of a single cache set, providing high-
resolution attacks with fine-grained access time measurements,
reducing the noise, and achieving high quality channels. The
attacks are conducted entirely from the user level without any
special access (e.g. huge pages or flush instruction). As a
result, we believe this attack model challenges assumptions
from prior GPU based attacks and significantly expands our
understanding of the threat model in Multi-GPU servers.

The attacks also require resolving a number of new chal-
lenges that are specific to this environment and the userspace
only nature of the attack. To develop an attack over the L2
cache we have to reverse engineer the cache architectural
details from user space. Usually system level assistance like
using huge pages [11] [19] and cache flush instructions
provides additional information during reverse engineering,
which are unavailable to us. We first reverse engineer the
sharing of the caches discovering that they are configured such
that each physical page gets cached at the GPU connected to
the memory where it is placed. Thus, a GPU can remotely
access the caches of other GPUs. We determine the timing
characteristics corresponding to access times under different
caching scenarios, and use them to develop eviction sets —
collections of memory addresses hashing to the same cache
set— both from local and remote GPUs. For the covert channel
attack, the next challenge is to align the different discovered
eviction sets such that the contention is created at the same
physical set from both processes. Without this alignment, the
two sides cannot know which eviction sets to use to cause
the contention necessary for the attack. We solve all of the
challenges above, enabling a high quality, high bandwidth,
prime-and-probe covert channel across GPUs, achieving a
bandwidth of 3.95 MBps, with a low error rate of 1.3%. Using
additional parallelism (e.g., involving additional GPUs) can
further improve bandwidth, but we did not explore this in this
paper.

We also explore developing side channel attacks. The attack
relies on recovering the memorygram [19] of the accesses on
the cache, and then inferring information about the victim from
the distribution of the cache hits and misses. Specifically, we
demonstrate an application/kernel fingerprinting attack where

the attacker tries to infer which application is running on a
remote GPU. This attack will be useful as a first step in any
other attack to determine where the victim kernels are running.
We also demonstrate a simple model extraction attacks which
recovers the number of neurons in a hidden layer of a machine
learning model [10], [25], [35].

In summary, the contributions of the paper are as follows:

o We reverse engineer the cache hierarchy and timing prop-
erties of the shared L2 cache in a multi-GPU environment
from the user level. The reverse engineering allows us to
understand the architectural details of the L2 cache in
multi-GPU environment in this modern Al boxes.

o We identify and overcome challenges that arises in build-
ing covert and side channel attacks in a multi-GPU
environment. These challenges include: finding conflict
sets for the different cache sets from each process and
then aligning the conflict sets across the two processes.

o We demonstrate the first cross GPU covert channel attack
on the shared L2 cache as the attack medium. With a
trojan process on one GPU and a spy process on another,
we construct a reliable high-bandwidth covert channel.

o We demonstrate side channel attacks where we construct
the memorygram of the accesses of a remote victim. We
use the memorygram in two attacks: (1) fingerprinting
applications on the victim GPU; and (2) identifying
the number of neurons in a hidden layer of a machine
learning model.

II. BACKGROUND AND THREAT MODEL

In this section, we overview the organization of the DGX-1
multi-GPU system from Nvidia which we use as the basis for
our attacks and evaluations. We also present the threat model,
defining the assumptions we make about the attacker access
and capabilities.

A. Multi-GPU Systems

The demand for high performance computing in deep learn-
ing is rapidly growing. As neural networks grow deeper and
training data sets become larger, the computational demands
to train substantially exceed the capacity of a single GPU,
for example requiring weeks to train a large DNN. Therefore,
Multi-GPU systems are introduced to provide high throughput
and high interconnect bandwidth to maximize neural network
training performance. Multi-GPU systems overcome the mem-
ory limitation of a single GPU and offer significant parallelism,
and interconnect and memory bandwidth. For example, in
2019, Nvidia used 1,472 V100 interconnected GPUs to bring
down the training of a BERT network to 53 minutes [1].
Other throughput bound applications could also scale their
performance using multiple GPUs.

We develop the attacks in this paper on a Nvidia’s Pascal-
based DGX-1 system [27]. Figure 1 shows the organization
and network topology of this system. DGX-1 box consists
of eight Tesla P100 GPUs. DGX-1 also includes two CPUs
(connected through QuickPath Interconnect (QPI)) for boot,
storage management, and application coordination. The PCle

PCle PCle < ->
Switches Switches

QPI

| 1 | —

Ly PCle

GPUO ¢===p Gpy1 < GPUS5 === Gpy4

pad —

NVLink

L—> GPU2 quummp GPU3 €— > GPU7 qummmp GPUG <«

Fig. 1: Nvidia DGX-1 topology

PCle
GigaThread Engine |
5 S
A ITE
= 3 28 Streaming Multiprocessors (SMs) i
g S >
<« S 2
5 A
= L3
A L2 Cache I
5 =
«>35 'g’ >
i 3 o
g |8 S| B
I z 28 Streaming Multiprocessors (SMs) S ld>
<« E A
= g
HUB |
NVLink NVLink NVLink NVLink

Fig. 2: Pascal P100 GPU Architecture

links between the GPUs and CPUs enable access to the
CPUs’ bulk DRAM memory to enable working set and dataset
streaming to and from the GPUs. The GPUs are connected in a
hybrid cube-mesh network topology, with using Nvidia’s pro-
prietary NVLink interconnect. NVLink is an energy-efficient,
high-bandwidth interconnect that enables Nvidia GPUs to
connect to peer GPUs or other devices within a node at a
bidirectional bandwidth of 160 GB/s per GPU: roughly five
times that of current PCle interconnections. The GPUs that
are connected by NVlink can access each others memories by
using Nvidia provided CUDA APIs.

GPUs in DGX-1 box are Nvidia’s Tesla P100 based on
Pascal architecture which is shown in Fig. 2. It consists
of 56 SMs with a total of 3584 single precision and 1792
double precision units. Each GPU comes with 16 GB of High
Bandwidth Memory (HBM2) stacked memory with 732 GB/s
of bandwidth. There is a private 64KB shared memory per SM
and a 4MB L2 cache shared across all SMs.

B. Threat Model

In this paper, we develop Prime+Probe based microarchi-
tectural covert and side channel attacks across multiple GPUs
on Nvidia’s modern GPU servers. Previous microarchitectural
attacks were demonstrated on CPU or on a single GPU.
However, in our multi-GPU threat model, our attacks span
multiple GPUs that are connected via NVLink-V1(as shown
in Figure 1). The trojan or the victim process is located on a
GPU (e.g. GPU 0) and the spy process is located in another
GPU (e.g. GPU 1). Note that if both are located on the same
GPU, then prior covert channel attacks on GPUs may be
used [25]; however, we explain later how there are a number
of advantages for conducting the attack remotely.

We assume an attacker with normal user access, capable of
launching applications on one or more of the GPUs at the same
time. The attacker does not have access to any specialized
system support or supervisor privileges. They use experiments
to reverse engineer the cache (one time, offline) and to find
conflict sets, groups of addresses that hash to the same physical
cache set, online as a preliminary step of the attack. This
step is necessary because caches are physically indexed, and
sometimes use index hashing, making it difficult to determine
the eventual set a virtual address will hash to.

The attacks are conducted on a DGX-1 box which consists
of Pascal based Tesla P100 GPUs programmed using CUDA
10.0. We expect that with some fine tuning the attacks can be
ported to other Multi-GPU systems. Although we focused on
prime-probe attacks exploiting difference in timing between
cache hits and misses, we expect that other sources of leakage
such as performance counter values can also be used in these
attacks [10], [25], [35].

III. REVERSE ENGINEERING CACHE ORGANIZATION

In multi-GPU system, a GPU can access the memory of a re-
mote GPU that is connected via NVLink. Our attacks are cache
based timing attacks. However, the cache hierarchy and its
properties is not well documented. For this reason, we reverse
engineer the cache hierarchy and its timing characteristics in
this section.

A. Caching organization and timing properties

In the first set of experiments, our goal is to understand
the overall cache hierarchy as well as the timing properties
of different access types (hits vs. misses, local and remote).
The DGX-1 offers a uniform address space, and virtual pages
can be allocated to physical pages that belongs in any of the
GPU HBM DRAM memory (i.e., a NUMA organization). The
Pascal GPUs have two levels of data cache, L1 and L2. A
programmer can bypass L1 data caching by using specific data
loading primitives (specifically, __Idcg()). However, L2 data
caching cannot be bypassed and all data and instructions get
cached in L2.

In traditional cache-based timing attacks, an attacker needs
to distinguish the cache hit and miss time for different cache
levels in order to identify data/cache sets being accessed by the
other process (either as part of a covert or side channel attack).

In the cross-GPU L2 based timing attack, the attacker needs to
understand where data gets cached, and the hit and miss timing
properties of both local and remote GPU’s caches. Since our
attack relies on creating contention between a remote GPU
and a local GPU, we developed a microbenchmark to probe
for these properties.

We allocate a buffer in the memory of one of the GPUs
and use accesses to it to derive both local and remote access
times. To find both the remote and local access time, we first
populate the L2 cache with the data from a buffer in DRAM
with the stride of 128 bytes which is the L2 cache line size
for our Pascal 100 GPU architecture. We use the __Ildcg()
load primitive to load the data which allows the data to get
cached in the L2 cache only and avoids L1 caching. Each
data access is followed by a dummy operation to make sure
the access is not optimized out by the compiler. The access
time is measured using the clock() function and is recorded
in a shared buffer to avoid any contention in the L2 cache
as the access path of the shared buffer is separate than the
main memory access path. This first cold access shows the
DRAM access time. We access the buffer again and measure
the access time which represents the L2 cache access time.

g 7 =2 (Trojan or Victim) Q (Spy)

GPUA GPUB
PCle NVLink NVLink PCle
SM|| |SM SM|| ... U .. |SM
B
SM | | SM SM | |SM
3 ol
L X L, AR
vy v] Yy v vy
\ a2 L2
A A A i * A
W v Vv v Y v v

‘ High BW Memory (HBM) | | High BW Memory (HBM) \

«€—>» Local Access Path
<—)» Remote Access Path

Fig. 3: Accessing a remote GPU’s memory through NVLink
To measure remote L2 hit and miss time, we allocate a

buffer on the remote GPU and we use cudaDeviceEnablePeer-
Access to access the remote GPU’s memory. Remote buffer
allocation and accessing it does not create any context on the
remote GPU, so our two processes have separate contexts that
are created on two different GPUs (local and remote).

The local and remote GPU L2 and DRAM access time
is shown in Fig 4 histogram. We have made 48 accesses in
each loop to measure both local and remote GPU. The X-axis
specifies the access delay of the data and the Y axis specifies
the number of bins in the histogram. As we can see on the
figure, there are four clusters of accesses with respect to the
timing, varying from just over 250 cycles to over 850 cycles.

When examining the accesses we discover that the fastest
accesses (green on the figure) occur to cached accesses to
memory pages from the GPU where the memory is allocated.
The next group of accesses correspond to local cache misses:
DRAM accesses to the local HBM. The next two clusters
correspond to cache hits on memory that is mapped to a remote
GPU, and cache misses to this remote memory respectively.
This experiment indicates that each L2 caches the data for the
memory pages mapped to its own memory. It also provides us
with timing thresholds to distinguish between cache hits and
misses, to both local and remote GPU caches. We repeated the
experiment by selecting different peer-to-peer GPUs connected
via NVLink (single-hop) and we have observed similar timing
cycle range. NVidia runtime API throws error if the GPUs are
not connected via NVLink.

mELocal GPU DRAM access cycles
OlLocal GPU L2 access cycles
CIRemote GPU DRAM access cycles
mRemote GPU L2 access cycles —

5 @ 8

Number per Bins

e

|

200 300 400 500 600 700 800 900
Local and Remote GPU access time

Fig. 4: Local and remote GPU access time

Thus, we understand the memory access pathways and
caching to be as shown in Figure 3. When DRAM pages
are allocated in the local GPU memory, the data access path
is straightforward: the first access is serviced from the local
HBM DRAM and subsequent accesses hit the L2 cache on the
same device. On the other hand, when the data is allocated on
one GPU and accessed from another, the request is routed
through the NVLink connection and the requested cache line
is also sent back through NVLink. Our experiment shows that
this data accessed on the remote GPU is cached on the remote
GPU, rather on the local L2 GPU. Of course, caching the data
locally, would introduce cache coherence issues since copies of
the same data could exist in multiple L2 caches. In summary,
our reverse engineering results demonstrate that an access
to the memory of a remote GPU through NVLink is cached
on the L2 cache of remote GPU, but not L2 cache of
local GPU. We use this shared remote L2 cache in GPU-to-
GPU communication to build microarchitectural covert and
side channel attacks.

B. Determining Cache Eviction Sets

To conduct a successful Prime+Probe attack, an attacker
needs to find a set of addresses that index into the same
cache set. The number of addresses in this set should at least
match the associativity of the cache, such that access to the set
replaces current entries in that cache set; such a set is called
an eviction set.

Although finding conflict sets is a standard component of
prime and probe attacks, deriving these sets in our context is

somewhat different. Many (but not all) CPU attacks benefit
from additional features such as huge pages which substan-
tially simplify the conflict set derivation. We also had to to
work with the GPU computational model which required care
to maintain synchronization. There are previous studies that
explore the L2 cache architecture in the recent GPU architec-
tures. In general, their assumptions are not compatible with our
scenario where the attacker is attempting to find the eviction
sets on the fly. Specifically, Mei et al. [23] explored different
levels of memory hierarchy in GPUs. However, we could
not use their attack directly because their reverse engineering
process requires storing of all the timer values in shared
memory which significantly limits the number of samples we
are able to take. Jia et al. [13] explored different memory levels
of Volta and Pascal based architectures. However, they did not
provide detailed information about the reverse engineering of
L2 architecture (and none for the multi-GPU scenario). Jain
et al. [12] provided detailed information about the L2 reverse
engineering as well as the architectural details. However, they
modified the driver virtual to physical address translation to
force consecutive allocation in the physical address space. Of
course, this property does not hold under our threat model
since modifying the driver requires privileged access.

We use a pointer chase experiment shown in Algorithm 1.
Conceptually, this is similar to traditional prime and probe
attacks, but customized to the GPU. Moreover, since our attack
is remote, we are able to substantially accelerate the attack
and reduce the noise. Specifically, all memory used to store
measurement values are on the attacker GPU, and therefore
they do not generate noise that interferes with the target/remote
victim cache. This enabled us to be more aggressive in
deriving the conflict sets.

The experiment proceeds as follows, a data buffer is al-
located and the target index targetldx is chosen in line 1
The target index is accessed in line 3 and the access time is
recorded in a time buffer sharedTimeBuff allocated in shared
memory in line 7. The target address access is followed by
accessing other addresses in a loop from line 9. The number
of addresses to be accessed is specified by numOfElements.
The value of numOfElements starts with value of one in the
first kernel launch.The access offset is set to 128 bytes which
is the cache line size. The number of accesses are increased
over subsequent kernel calls which signifies the number of
addresses traversed. The target address are accessed again at
the end of for loop. The second access time of the target
address is recorded in another location of the shared buffer.

After the end of each kernel call these two access times
are checked on the host side. The first access time of the
target address is the DRAM access time and if the target
address resides in the L2 cache then the second access time
would be equivalent to the cache access time. However, if
the access causes target address to be evicted, then it would
be equivalent to the DRAM access time. The target address
eviction in this case is caused by the accessing the last address
that got accessed.This eviction of the target address indicates
that the target address and the last address are in the same

cache set. Next, to find the rest of the addresses within the
same cache set, we remove that last address that caused the
eviction from the pointer chase in subsequent kernel calls
and continue with the process to find more addresses that
hash to the same set. Also, to find more eviction sets the
attacker needs to change the target address and repeats the
pointer chase process. To reduce the search space we adopted
some optimization methodologies by skipping some address
accesses. However, if an eviction is seen in the target address
then we revert back and check all those last skipped addresses
and determine which exact address causes the eviction of the
target address. This processes can be optimized by observing
the data belonging to a page is indexed consecutively in the
cache.

Algorithm 1: Eviction Set Determination Algorithm

basePtr = &mainBuffer[targetldx];
start = clock();

nxtldx =__ldcg(basePtr);
dummy+=nxtldx;

end = clock();

__(threadfence());
sharedTimeBuff[0] = (end-start);
dummy Operation

for i = 0; i < numOfFElements; i =1+ 1 do
10 otherPtr = &mainBuff[nxtIdx];
1 nxtldx = __ldcg(otherPtr);

12 dummy+=nxtldx;

13 __threadfence();

14 end

15 dummy Operation

16 start = clock();

17 nxtldx =__ldcg(basePtr);

18 dummy+=nxtldx;

19 end = clock();

20 __threadfence();

21 sharedTimeBuff[1] = (end-start);
22 dummy Operation

e 0 NN R W N -

We also observed that the derived eviction sets remain valid
over application runs as long as the memory allocation size
of the process remains unchanged. We also confirmed that the
address placement in the cache is independent of the GPU
which the kernel is launched on. These observations allow us
to simplify the attack to avoid deriving the conflict sets online
in every attack.

The cache line size is 128B and from our eviction set
determination experiment, we also learn the associativity of
the cache (16). We repeat the eviction set algorithm 1 with
those recorded addresses only. We observe that the target
address is evicted after every 16" address reliably. This implies
that there are 16 cache lines in the cache set. Also, the
eviction pattern shows that the replacement policy is LRU (or
pseudo-LRU) without randomization since the target address
are evicted consistently after 16" address. Table I summarizes

TABLE I: L2 cache architecture

Cache Attribute Values
L2 cache size 4MB

Number of Sets 2048

Cache line size 128B

Cache lines per set 16
Replacement Policy | LRU

L2 cache parameters and architecture derived from our reverse
engineering experiments.

—e—Local Eviction Set 1 Local Eviction Set 2 —+—Remote Eviction Set 1 Remote Eviction Set 2

900

800

M
8

Access Cycles
o =
g 8

H

a4 5 6 7 8 9 10 1 12 13 14 15 16
Number of Cache Lines Accessed in Eviction Sets

Fig. 5: Validating the eviction set determination

Figure 5 shows an experiment we conduct for eviction set
validation for two derived eviction sets on both the local
and remote GPUs. The X-axis is the number of cache lines
from the conflict set that have been accessed and the Y-axis
is the access time in cycles. We observed that there is an
eviction (increase in access time) after every 16 access. This
behavior confirms the LRU-based replacement policy with a
deterministic replacement for the eviction set access pattern.

Malicious Process
Eviction Set B

Eviction Set A G
o\ncmn e D g

0
1 1
2 2
ey "
T
1 & ;
2) Physical
. ‘\U Cache
16 Set X
L2 Cache

Fig. 6: Eviction set aliasing issue

The GPU L2 cache is physically indexed and the attacker
does not have the knowledge of data placement in the cache.
As a result, once we discover an eviction set, we are unsure
whether it indexes into a new cache set or a previously
discovered one. If we do not ensure that the eviction sets
correspond to unique physical sets, this aliasing will result in
noise during the attack (Figure 6). Specifically, there are two
eviction sets A and B determined by the malicious process
that happen to index to the same physical cache set X, due to
the lack of knowledge of the address placement. If there are

aliased cache sets within the same process, then during the
actual attack phase, the eviction sets would cause interference
due to self-eviction leading to the detection of a cache miss and
inferring a victim access even when there wasn’t one. Thus, it
is important to test each discovered new eviction set against
already discovered ones. If we notice misses when we combine
more than 16 addresses from the two sets, we conclude that
the two sets correspond to the same physical set and eliminate
the newly discovered eviction set from consideration.

At the conclusion of this process, each process has discov-
ered a collection of eviction sets ideally to cover the full cache.
The reverse engineering results also provide the attacker with
timing thresholds to distinguish between cache hits and misses,
both on the local GPU as well as the remote GPU. With this
information, we are ready to develop the end to end covert
channel attack in the next section.

IV. COVERT CHANNEL ATTACK AND CHALLENGES

Having established the caching organization and timing
characteristics, in this section, we develop a covert channel
attack across two GPUs. Previous GPU-based microarchitec-
tural attacks were demonstrated within a single GPU, and
the majority use aggregate measures of contention such as
performance counters. Besides establishing this new threat
model, the attack has advantages over single GPU attack: it
bypasses defenses focused on a single GPU, it reduces the
noise, and it avoids having to work around the scheduler to
co-locate the two kernels within the GPU so that they can
establish contention (e.g., on the same SM [24]). The attack
is conducted from user level and do not require any system
level features such huge pages or flush instructions that are
necessary for many attacks.

In this attack, the Trojan (the transmitter of the covert
channel) is located on a local GPU, GPU A, and Spy (the
receiver) is located on the remote GPU, GPU B, and accesses
the memory of the GPU1 to synchronize and receive infor-
mation (the opposite is also possible). These two processes
communicate covertly over the shared L2 cache of GPU A.
First, the spy primes a cache set. To communicate 17, the
trojan would access it’s own data, evicts the spy’s data, and fills
up the cache set and to communicate 70", the trojan process
does nothing. The spy process keeps probing the same cache
set and records the access time. A high access time indicates a
miss and interpreted as ”1” and a low access time indicates a
hit and interpreted as ”0”. Although the overall attack process
is similar to traditional Prime+Probe attacks, there are several
unique challenges that arise due to the platform. We describe
these challenges and our approach to overcome them next.

A. Aligning the cache sets

At the stage, the two processes have derived each eviction
sets covering the L2 cache. However, all they are able to
determine is that each set hashes to the same physical cache
set, but not to which set. To be able to communicate, the
processes have to use eviction set pairs, one in each process,
that hash to the same physical cache set. We develop a protocol

Local Trojan Process Remote Spy Process

Trojan Eviction Sets Spy EViiﬁon Sets

TE, " SEx SE; SE;
0 (]
1 1
2 2
16 \1'6
! L ‘ /
Y K N\
0
1 Physical
2 Cache
Set X
16
J
L2 Cache

Fig. 7: Eviction set alignment among multiple processes
Assume again that the trojan process is located on GPU

A and the spy process has been launched on GPU B and
they are connected via NVLink. Both processes allocated their
buffer on GPU A and share the L2 cache on that GPU. In this
scenario, the trojan is a local process and the spy is remote. In a
single run of the malicious applications, one trojan eviction set
is checked with another eviction set of the spy process. In Fig
7, we can see a local trojan process eviction set TE, launched
on GPU A and the remote spy process launched on GPU B
have three eviction sets SE5, SEg and SEc. The eviction set of
the local trojan process is checked against three eviction sets
of the spy process that could be located in the same physical
cache set X. The set matching experiment reveals that the
trojan eviction set TE, is not mapped to the spy eviction set
SEA and SEg shown by dotted arrows. But the trojan eviction
set TE, is mapped to the spy eviction set SEc.

The eviction set mapping kernel is shown in Algorithm 2.
Eviction set is accessed from line 5 - 13 and the number of
access is equivalent to the number of cache lines specified by
numOfCacheLines (which is 16 in our case). A single eviction
set is accessed for numMainLoop number of times in 1. The
actual access of the data takes place in line 8 and the first index
is specified in line 2 and gets initialized every time within the
outer loop. The access takes place in a pointer chase fashion
within the inner loop. The access cycles are measured and
kept in a register variable timerl which accumulates the single
access of the eviction set. Another register variable timer2
in line 14 accumulates the average access time of a single
access of the eviction set. Finally all the accesses over the outer
loop are averaged in line 17. The kernel algorithm is same for
both the trojan and spy processes. The only difference between
them is the number of outer loops that decides how many times
a cache set would be probed. The trojan process has a faster
access compared to the spy process as the memory is local
to the trojan process. So the value of numMainLoop is much
higher for the trojan process compared to the spy process. For
our work, we have selected a value of 400000 and 150000 for
the local trojan and remote spy process respectively. However,

these probing values can be reduced to optimize the execution
time of the set mapping process. The main target is to create
a visible contention in the L2 cache set and loop boundary
controls that contention.

Note that this particular challenge is required in the covert
channel only to communicate between two malicious pro-
cesses. For side channel, only finding the unique cache sets
satisfies the purpose.

Algorithm 2: Eviction set alignment across processes

1 for ¢ = 0; i < numMainLoop; i =1+ 1 do
idxTemp = startldx;

timerl = O;

dummyl = 0;

for i = 0; i < numOfCacheLines; i =1+ 1 do
dataPtr = &mainBuff[idxTemp];

start = clock();

idxTemp = __ldcg(dataPtr);

dummy 1+=idxTemp;

end = clock();

timer1+=(end-start);

__threadfence();

C-TN-CIENEN - N7 T - I S

-
N = o

end

timer2+=(timer1 /numOfCacheLines);
15 dummy operation

16 end

17 timeBuffMain = (timer2/(numMainLoop));

- -
s W

B. Putting it together: Covert channel attack

The trojan process (launched on GPU A) allocates the data
buffer on the same GPU in step 1 and the spy process gets
launched on another GPU (B), but allocates the buffer on the
remote GPU A, where the trojan process is launched. The
first access of both the trojan and the spy process get the data
from the off-chip GPU DRAM and get cached in the L2 cache.
The subsequent memory accesses will be serviced from the L.2
cache of GPU A.

The overall flow of the covert channel attack is shown in
Figure 8. The trojan (or sender) is located on GPU A and
the spy (receiver) is located on GPU B. Step 1 and 2 of the
attack represent the determination the eviction sets of both
processes. These are followed by the alignment step (Step
3 on the figure) to map the sets on each side to the same
physical cache sets, which now enables them to communicate
by creating or withholding contention on these sets.

From the previous step of cache set alignment, we have
been able to determine the cache sets that are mapped among
the malicious processes. This allows us to select the cache sets
that would be used during the covert channel communication
process. For each cache set we have allocated a thread block
that would be launched to a SM in the GPUs. Hence, when
the communication takes place over a single cache set, a
single thread block on both trojan and spy side would access
their own eviction set whose mapping was determined from

Q (Trojan) Q (spy)

GPU A GPUB
PCle NVLink NVLink PCle
H H
SM u SM SM U SM
B B
SM sm| |ism | ||SM
ATAY e o [e 1%_1 T 7
OV =l TR [M 7 AN
v YT T v ¥ Y v
L2 .|13|3 L2
»~
- 7 ¢ ¢
1 @ High BW Memory (HBM)

«—)p Local Access Path
(_) Remote Access Path

Fig. 8: Cross GPU covert channel attack

the set aligning step. We leveraged the GPU parallelism by
increasing the number of thread blocks. Each thread block,
in both trojan and spy, would access different eviction sets
that are already mapped to have a faster communication. The
trojan thread block consists of a single warp of threads (32
on our machines). All 32 threads in a thread block of the
trojan process are involved in probing the cache set. The 16
addresses referring to the 16 cache lines in the eviction set
are accessed through pointer chasing similar to the eviction
set determination technique. The spy process essentially also
has 32 threads that are active in the attack; however, we use
a significantly higher number of threads (1024) and use the
additional threads to help to efficiently save the recorded times
from the buffer in shared memory to global memory when
it fills. Storing the access cycles temporarily on the shared
buffer and then copying to the main buffer reduces memory
pressure as well as increasing the parallelism during the data
copy. To send a ”’1” the trojan process accesses the cache set,
replacing the data placed there by the spy, and does nothing to
send a ”0”. We have used controlling parameters that control
the priming of the cache set while sending a 17, and use
computationally heavy dummy instructions (e.g. trigonometric
instructions) to wait during transmitting ’0” to the spy process.
The spy process, however, continuously probes the cache set
to receive the data from the trojan process.

C. Covert Channel Evaluation

In this section, we evaluate the multi-GPU covert channel
attack. All experiment use CUDA 10.0 with Nvidia driver
version 410.79. For the covert channel evaluation, we send
a long message across the GPUs using L2 cache sets. We
send a message of side 1Mb across the covert channel. We
vary the number of cache sets we use in the attack. Fig. 10
shows a demonstration of the transmission of the first part
of a message. Specifically, the X-axis of the figure is the
time progression and the Y axis is the access cycles. The
message shows the first line in the text,(”Hello! How are you?
”) in the long message that have been transferred covertly.

The y-axis shows the timed access cycles measured from the
remote spy as it accesses the cache set. We observe that the
number of cycles is 630 while sending 0’ and 950 cycles
while communicating ’1’. To synchronize the communication,
as the trojan and the spy processes are located on different
GPUs, we tune parameters on the trojan side that controls the
cache access frequency to communicate the covert message
successfully to the spy side.

W »

N

Bandwidth (MB/s)
Error rate (%)

-

Number of Cache Sets

Fig. 9: Bandwidth and Error rate in covert channel

The bandwidth and the error rate are shown in Fig. 9. We
have measured the bandwidth and error rate as we increase
the number of sets used for communication on the x-axis
of the figure. The left y-axis of the figure is the bandwidth
corresponding to the blue line in the figure which is displayed
in MB/s. Similarly, the right y-axis shows the error rate
in percentage corresponding to the red line. We measured
the bandwidth and the error rate measured over 1000 runs
of sending the message from trojan to spy. The bandwidth
increases as the number of cache sets increases, since we
are able to communicate over multiple cache sets in parallel.
Howeyver, as the number of cache sets increases, the contention
increases among resources such as ports, introducing more
variability in the timing, and increasing the error rate increases
as well.The highest bandwidth is 3.95 MB/s when using
4 cache sets in parallel and with an average error rate
of 1.3% measured over 1000 runs. Adding additional sets
improves bandwidth but also results in a higher error rate.

V. SIDE CHANNEL ATTACK

We also demonstrate proof of concept side channel attacks.
The attack primarily uses a spy probe a remote cache and
recover a memorygram of the accesses to the cache, which is
a collection of cache hits and misses for the different cache sets
over time. Previously, memorygram have been used in cache
side channel attacks for website fingerprinting [32] on CPUs.
This access pattern correlates with the activity on the remote
GPU, allowing us to infer information about the applications
running on this GPU. The target of our side channel attack
is application fingerprinting on a target GPU in a DGX-1
box. Our side channel attack model is demonstrated in Fig. 3.
Specifically, the attacker is located on GPU B, and accesses
the eviction sets it pre-constructed in its own buffer that is
allocated on a remote GPU A. By having the eviction sets for
each L2 cache set and measuring the access time on each set,
the spy can remotely infer whether the local application has
accessed the set (replacing its own data) or not. The memory

Access Cycles

Shace

1§190920)
c
-
b

N o
S o
R

Fig. 10: Cross GPU covert message received by spy process

footprint of applications get recorded over a period of time
which reveal the access pattern of the applications on different
L2 cache sets. We have demonstrated side channel attack on
different genre of applications. Our first side channel attack is
on high performance applications and our second attack is on
deep learning applications.

A. Application Fingerprinting using a side channel attack

We demonstrate a side channel where we finger print the re-
mote HPC application based on the memorygram. Specifically,
we pre-train a deep learning network to identify applications
based on their memorygram. This attack can serve as a first
step of future attacks where we identify a target application,
and then infer information about it. This attack can be used
to identify and reverse engineer the scheduling of applications
on a multi-GPU system (simply by spying on all other GPUs
in a GPU-box), and identify a target GPUs that are running
a specific victim application, and even identify the kernels
running on each GPU.

In our proof of concept attack, we used six different
applications from NVidia toolkit [28] as our victim applica-
tions. Our application set include common HPC workloads
like vectoradd, histogram, blackscholes, matrix multiplication,
quasirandom and welshtransform.

Example memorygrams of victim applications are shown
in Fig. 11; note that these can be different in each run
because the conflict sets hash to arbitrary sets within the cache.
There is some structure, because the hashing preserves page
boundaries; that is, the addresses within a single page will
hash to consecutive sets in the physical cache. The X-axis of
each image is the execution timeline of the spy application
and the Y-axis is the cache set number. The yellow dots
represent a cache miss on the L2 each, indicating a likely
victim application’s access. The image shows the cache misses
that occurred on 256 sets of L2 cache. Each victim application
leaves a unique memory footprint.

We train an image classifier to identify the different appli-
cations based on input memorygram images (other approaches
are possible). Specifically, we run the attack many times
against the different applications to collect 1500 samples for
each application. We split the data into training and validation
sets of 150 samples each and isolate 1200 samples as the test
or control set. Since there is no class imbalance in the data set,

TABLE II: Average misses over all cache sets

Number of Neurons | Average Number of Misses
64 5653
128 6846
256 8744
512 10197

keeping a sufficiently large test set ensures that we evaluate
the generalization capabilities with good confidence.

The classifier achieved an overall accuracy of 99.91% on
the test set of 7200 samples spanning six classes. Black
Schole, Matrix Multiplication, Quasi Random Generator, and
Vector Addition were classified with perfect accuracy score of
100% while Histogram and Welsh Transform scored 99.75%
and 99.91% respectively. The confusion matrix depicting the
classification results is shown in Figure 12. We believe the
formulation can be readily extended to classify a larger number
of applications, and eventually extended to identify specific
kernels within an application. This will enable us to use this
attack as a first step to locate the kernels of a long running
application and then carry out side channel attacks targeting
them individually.

B. Side channel attack on Deep Learning Application

Machine learning training and inference is perhaps the
primary application envisioned for multi-GPU machines. We
demonstrate a preliminary side channel targeting extraction
of model information from a machine learning model as it
executes. Due to time limitations available for revisions, we
demonstrate only the principles of the attack and evidence that
it can be successful.

Our victim attack is a Multi-layer Perceptron (MLP) model
with 1 hidden layer built using pytorch [30]. The application
trains the MLP using the MNIST digit recognition data set [5].
We have use four different network configurations varying the
number of neurons in the hidden layers; the attack’s goal is to
identify this number of neurons. We monitored 1024 unique
L2 cache sets in the remote GPU. We chose this number to
balance sampling coverage and the speed of the attack (how
often we can sample each set). A histogram of the number
of misses for each of the monitored cache sets is shown in
Fig. 13. Visually, we can see that the intensity of misses
increases as the size of the hidden layer increases, reflecting
the additional computations during training.

Histogram

Vector Add

Cache Set
Cache Set

25000 50000 75000 100000 125000 150000 175000
Time Progression

25000 50000 75000 100000
Time Progres:

BlackScholes Matrix Multiplication

®
(7]
o
=
]
-1
(8]

Cache Set

25000 50000 75000 100000 125000 150000 175000

25000 50000 75000 100000 125000 150900 175000
i Time Progression

Time Progression

Quasirandom Generator Fast Walsh Transform

Cache Set
Cache Set

25000 50000 75000 100000 125000 150000 175000
Time Progression

25000 50000 75000 100000 125000 150000 175000

Time Progression

Fig. 11: Memorygram of 6 applications

— 1200
&
— 1000
]
I
800
=
= 600
]
400
S
200
=
0

BS HG MM oR WA WT

Fig. 12: Confusion Matrix. BS (Black Scholes), HG (His-
togram), MM (Matrix Multiplication), QR (Quasi Random),
VA (Vector Addition), WT (Walsh Transform)

Table II shows the average number of cache set misses; we
see separation which allows us to infer the configuration. Fig.
14a and Fig. 14b show the memorygram of the application
with 128 and 512 number of neurons. The memorygram data
is richer, showing the pattern of misses over time, and we
believe we can use a classifier on this data to infer more
detailed information about the model. For example, the model
was configured to run two epochs in Fig. 15 (two full
passes through the training set). The number of epochs is a
hyperparameter which we are able to infer visually in Fig. 15.

VI. NOISE MITIGATION

We developed our attacks in a quiet environment. However,
in real scenarios, there will potentially be other concurrent
applications running on GPUs, accessing L2 cache and as a
result, adding noise to the covert or side channel attacks.

10

Number of Misses Number of Misses Number of Misses

Number of Misses

64 Neurons

83yB3SSsBEoENRI RDRRREEBELERES
3833 ESRR3FEE3ARRRRAIIHEREEREE
S

Cache Sets

128 Neurons

925
946
967
988
1009

383585 BRSEUCIRRRERETHEE
Se

Cache Sets

256 Neurons

w 526

Cache Sets

512 Neurons

14000
12000
10000
8000
6000
4000
2000

Fig. 13: Cache misses per set

128 Neurons

1000

Cache Sets
o
3
3

IS
=
3

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
Time Progression 1e6

(a) Memorygram of MLP with 128 neurons

512 Neurons
1000

Cache Sets
o
3
3

»
S
S

0
0.0 0.2 0.4 0.6 0.8 1.0 12 14
Time Progression 1e6

(b) Memorygram of MLP with 512 neurons

Fig. 14: Memorygram of the MLP application

128 Neurons

1000

Cache Sets

0.8 1.0 2

= 14
Time Progression Epoch 2

Epoch 1 1e6

Fig. 15: Memorygram for a two-epoch experiment

For mitigating noise, we propose to leverage concur-
rency limitations of GPUs using similar approaches as prior
work [24] to force exclusive execution of spy or trojan on
GPUs. Based on leftover policy for GPU multiprogramming,
thread blocks of the first process are assigned to different
SMs and if there are leftover intra-SM resources for other
applications, they can get launched on the same SM concur-
rently. These resources include shared memory, register, and
maximum number of thread block per SM. For example, in
covert channel attacks, if we control the resource demand of
our trojan on GPU A and spy on GPU B to saturate the intra-
SM resources, no other concurrent application can be assigned
to those SMs on two GPUs during the covert communication.
Of course, this approach is more difficult for side channels,
but it is likely that we would be able to customize a kernel to
block out additional noise from the GPU with knowledge of
the resources needed by the target victim application.

The attack uses one thread block per SM. However, each
thread block can only allocate 32Kb of shared memory on
Pascal, which is half the size of the available shared memory
per SM. To consume the shared memory and block other
applications, we launch idle thread blocks to use the leftover
shared memory without interfering with the attack (they do
not access the global memory during the communication).
Therefore, we can ensure the exclusive execution of spy (or
trojan) on GPU reducing noise.

VII. POSSIBLE MITIGATIONS

Defenses against microarchitectural covert and side channel
attacks on CPUs and GPUs can potentially apply to cross-
GPU attacks with some adaptations. One solution is static
or dynamic partitioning of shared resources [6], [17], [18],
[34], [36]. For example, Nvidia designed Multi-Instance GPU
(MIG) Technology [29] in their new generations of discrete
GPUs (Ampere). In this design, a single GPU can be securely
partitioned into separate GPU instances for multiple users
with the isolated paths through the entire memory system; the
on-chip crossbar ports, L2 cache banks, memory controllers,
and DRAM address busses are all assigned uniquely to an
individual instance. However, MIG feature requires privileged
access and is not available in Pascal and Volta based DGX
machines, still leaving these boxes vulnerable to microarchi-
tectural attacks.

11

To minimize the performance overhead of these
partitioning-based defense mechanisms, they can only
be triggered when contention is detected on a shared resource
(similar to the proposed framework in [36]). In multi-GPU
systems, the detection of cross-GPU covert or side channel
attacks is possible by monitoring the traffic over NVLinks
and access patterns on L2 and memory (accessible through
hardware performance counters). In addition, some prior
works [16] propose to place the data along with the thread
block that accesses it in the same GPU to minimize the
remote traffic in multi-GPU systems, and as a result to
improve the performance. Although inherent GPU-to-GPU
communications can not be completely eliminated in multi-
GPU systems, making these cross-GPU data transfers more
coarse-grained in normal applications will significantly
increase the detection accuracy of high-bandwidth attacks,
leading to more efficient defenses.

VIII. RELATED WORK

With the increasing support of multiprogramming on GPUs
in recent years, several works have studied microarchitectural
covert and side channel attacks on a single GPU.

Naghibijouybari et al. [24] characterize contention and
construct covert channels on a variety of resources on GPUs,
including constant caches, different types of functional units,
and memory. Nayak et al. [26] develop a similar microarchi-
tectural covert channel on GPU’s shared last level translation
lookaside buffer(TLB) and Ahn et al. [3] implement covert
channel attacks on shared on-chip interconnect on GPUs. In
a completely different environment, Dutta et al. [7] developed
covert channel attacks between CPU and GPU through shared
LLC and ring bus in integrated CPU-GPU systems. [9] Con-
ducted a microarchitectural attack on the shared memory in
the intel based integrated CPU-GPU systems.

GPU side channel attacks can be categorized in two dif-
ferent threat models: (1) the spy launches the GPU kernel
and measures the leakage from the CPU (host) side by
exploiting memory coalescing [2], [14] or shared memory
bank conflicts [15] and their correlation with the execution
time of GPU kernel, or by collecting hardware performance
counters [33], Electromagnetic traces [8], [10] and power
consumption traces [21]. Most of these attacks have been
implemented to extract the encryption key. (2) the spy is co-
located on the GPU with the victim process and measures
the contention on the shared resources through hardware
performance counters. Through these side channel attacks, the
attacker can implement website fingerprinting, inter-keystroke
timing attack [25], workload fingerprinting [20], [38], or
Neural Network model extraction attacks [25], [35].

All of these attacks on discrete GPUs exploit the aggregate
measures of contention on GPUs. The attacks that we develop
in this paper, are the first Prime+Probe based timing attacks
on L2 cache on GPUs, which focus on a single set of
cache, providing high-resolution attacks by fine-grained access
time measurements. Our attacks also span multiple GPUs

in multi-GPU systems, bypassing possible partitioning based
mechanisms within a single GPU [29], [36].

IX. CONCLUDING REMARKS

In this paper, we demonstrate for the first time a microar-
chitectural attack on Multi-GPU systems. These systems are
emerging and increasingly important computational platforms,
critical to continuing to scale the performance of important
applications such as deep learning. They are already offered
as cloud instances offering opportunities for an attacker to
spy on a co-located victim. We reverse engineer the cache
organization and sharing on an Nvidia DGX-1 machine,
showing that remote caches can be shared when the attacker
allocated memory on the memory banks of the remote GPU.
We reverse engineer the timing properties of both local and
remote accesses, as well as the cache replacement policy. We
develop both covert channel and side channel prime-and-probe
based attacks across different GPUs. This attack expands our
understanding of the threat model faced by these systems. For
example, we show that defenses designed to protect GPUs
against covert and side channel attacks are not set up to prevent
these new attacks, which motivates new defenses that can
mitigate them.

12

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

“Nvidia achieves breakthroughs in language understanding to enable
real-time conversational ai,” 2019, accessed November, 2021 from
https:/nvidianews.nvidia.com/news/nvidia-achieves-breakthroughs-in-
language-understandingto-enable-real-time-conversational-ai.

J. Ahn, C. Jin, J. Kim, M. Rhu, Y. Fei, D. Kaeli, and J. Kim, “Trident:
A hybrid correlation-collision gpu cache timing attack for aes key
recovery,” in 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2021, pp. 332-344.

J. Ahn, J. Kim, H. Kasan, L. Delshadtehrani, W. Song, A. Joshi, and
J. Kim, “Network-on-chip microarchitecture-based covert channel in
gpus,” in MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 565-577. [Online].
Available: https://doi.org/10.1145/3466752.3480093

AMD, “Amd crossfire guide for direct3d® 11 applications,” 2017.

L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141-142, 2012.

L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev,
“Non-monopolizable caches: Low-complexity mitigation of cache side
channel attacks,” ACM Transactions on Architecture and Code Opti-
mization (TACO), vol. 8, no. 4, pp. 1-21, 2012.

S. B. Dutta, H. Naghibijouybari, N. Abu-Ghazaleh, A. Marquez, and
K. Barker, “Leaky buddies: Cross-component covert channels on inte-
grated cpu-gpu systems,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 2021, pp. 972-984.

Y. Gao, H. Zhang, W. Cheng, Y. Zhou, and Y. Cao, “Electro-magnetic
analysis of gpu-based aes implementation,” in Proceedings of the 55th
Annual Design Automation Conference, ser. DAC *18. New York, NY,
USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3195970.3196042

W. HE, W. Zhang, S. Sinha, and S. Das, “Igpu leak: An
information leakage vulnerability on intel integrated gpu,” in
2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE Press, 2020, 56-61. [Online]. Available:
https://doi.org/10.1109/ASP-DAC47756.2020.9045745

X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding,
C. Liu, T. Sherwood, and Y. Xie, “Deepsniffer: A dnn model extraction
framework based on learning architectural hints,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
385-399. [Online]. Available: https://doi.org/10.1145/3373376.3378460
G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$a: A shared cache attack
that works across cores and defies vim sandboxing—and its application to
aes,” in 2015 IEEE Symposium on Security and Privacy. 1EEE, 2015,
pp. 591-604.

S. Jain, I. Baek, S. Wang, and R. Rajkumar, “Fractional gpus: Software-
based compute and memory bandwidth reservation for gpus,” in 2019
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS). 1IEEE, 2019, pp. 29-41.

Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
nvidia volta gpu architecture via microbenchmarking,” arXiv preprint
arXiv:1804.06826, 2018.

Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery
timing attack on a gpu,” in IEEE International Symposium on
High Performance Computer Architecture, ser. HPCA'16. Barcelona
Spain: IEEE, March 2016, pp. 394—405. [Online]. Available: http:
/lieeexplore.ieee.org/document/7446081

Z. H. Jiang, Y. Fei, and D. Kaeli, “A novel side-channel timing attack
on gpus,” in Proceedings of the on Great Lakes Symposium on VLSI,
ser. VLSI’'17, 2017, pp. 167-172.

H. Kim, R. Hadidi, L. Nai, H. Kim, N. Jayasena, Y. Eckert, O. Kayiran,
and G. Loh, “Coda: Enabling co-location of computation and data for
multiple gpu systems,” ACM Trans. Archit. Code Optim., vol. 15, no. 3,
sep 2018. [Online]. Available: https://doi.org/10.1145/3232521

J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou, “Hardware-software
integrated approaches to defend against software cache-based side
channel attacks,” in Proceedings of the International Symposium on High
Performance Comp. Architecture (HPCA), February 2009.

F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. Lee,
“Catalyst: Defeating last-level cache side channel attacks in cloud

https://nvidianews.nvidia.com/news/nvidia-achieves-breakthroughs-in-language-understandingto-enable-real-time-conversational-ai
https://nvidianews.nvidia.com/news/nvidia-achieves-breakthroughs-in-language-understandingto-enable-real-time-conversational-ai
https://doi.org/10.1145/3466752.3480093
https://doi.org/10.1145/3195970.3196042
https://doi.org/10.1109/ASP-DAC47756.2020.9045745
https://doi.org/10.1145/3373376.3378460
http://ieeexplore.ieee.org/document/7446081
http://ieeexplore.ieee.org/document/7446081
https://doi.org/10.1145/3232521

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[38]

computing,” in Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA), 2016.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE symposium on security
and privacy. 1EEE, 2015, pp. 605-622.

S. Liu, Y. Wei, J. Chi, F. H. Shezan, and Y. Tian, “Side channel attacks in
computation offloading systems with gpu virtualization,” in 2019 IEEE
Security and Privacy Workshops (SPW), 2019, pp. 156-161.

C. Luo, Y. Fei, P. Luo, S. Mukherjee, and D. Kaeli, “Side-channel
power analysis of a gpu aes implementation,” in 33rd IEEE International
Conference on Computer Design, ser. ICCD’15, 2015.

C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: cross-
cores cache covert channel,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer,
2015, pp. 46-64.

X. Mei and X. Chu, “Dissecting gpu memory hierarchy through
microbenchmarking,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 1, pp. 72-86, 2016.

H. Naghibijouybari, K. N. Khasawneh, and N. Abu-Ghazaleh, “Con-
structing and characterizing covert channels on gpgpus,” in 2017 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2017, pp. 354-366.

H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: Gpu side channel attacks are practical,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS *18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 2139-2153. [Online].
Available: https://doi.org/10.1145/3243734.3243831

A. Nayak, P. B., V. Ganapathy, and A. Basu, “(mis)managed: A
novel tlb-based covert channel on gpus,” in Proceedings of the
2021 ACM Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 872-885. [Online]. Available:
https://doi.org/10.1145/3433210.3453077

Nvidia, “Nvidia dgx-1 system architecture white paper,” 2017.

Nvidia, “Nvidia cuda samples,” 2021, https://docs.nvidia.com/cuda/
cuda-samples/index.html.

P. Zou, A. Li, K. Barker, and R. Ge, “Fingerprinting anomalous
computation with rnn for gpu-accelerated hpc machines,” in 2019 IEEE

13

[29]

(30]

(31]

[32]

(33]

[34]

[35]

[36]

(37]

Nvidia, “Nvidia multi-instance gpu,” 2021, https://www.nvidia.com/en-
us/technologies/multi-instance- gpu/.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

G. Saileshwar, C. W. Fletcher, and M. Qureshi, “Streamline: a fast, flush-
less cache covert-channel attack by enabling asynchronous collusion,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
1077-1090.

A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust website fingerprinting through the cache occupancy
channel,” in 28th {USENIX} Security Symposium ({USENIX} Security
19), 2019, pp. 639-656.

X. Wang and W. Zhang, “An efficient profiling-based side-channel attack
on graphics processing units,” in National Cyber Summit (NCS) Research
Track, K.-K. R. Choo, T. H. Morris, and G. L. Peterson, Eds. Cham:
Springer International Publishing, 2020, pp. 126-139.

Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2007.

J. Wei, Y. Zhangy, Z. Zhou, Z. Liy, and M. Abdullah Al Faruque, “Leaky
dnn: Stealing deep-learning model secret with gpu context-switching
side-channel,” in Proceedings of IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2020.

Q. Xu, H. Naghibijouybari, S. Wang, N. Abu-Ghazaleh, and
M. Annavaram, “Gpuguard: Mitigating contention based side and
covert channel attacks on gpus,” in Proceedings of the ACM
International Conference on Supercomputing, ser. ICS ’19. New
York, NY, USA: ACM, 2019, pp. 497-509. [Online]. Available:
http://doi.acm.org/10.1145/3330345.3330389

Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise,
13 cache side-channel attack,” in 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014, pp. 719-732.

International Symposium on Workload Characterization (IISWC), 2019,
pp- 253-256.

https://doi.org/10.1145/3243734.3243831
https://doi.org/10.1145/3433210.3453077
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
http://doi.acm.org/10.1145/3330345.3330389

	I Introduction
	II Background and Threat Model
	II-A Multi-GPU Systems
	II-B Threat Model

	III Reverse Engineering Cache Organization
	III-A Caching organization and timing properties
	III-B Determining Cache Eviction Sets

	IV Covert Channel Attack and Challenges
	IV-A Aligning the cache sets
	IV-B Putting it together: Covert channel attack
	IV-C Covert Channel Evaluation

	V Side Channel Attack
	V-A Application Fingerprinting using a side channel attack
	V-B Side channel attack on Deep Learning Application

	VI Noise Mitigation
	VII Possible Mitigations
	VIII Related Work
	IX Concluding Remarks
	References

