Check for
Updates

ECSSD: Hardware/Data Layout Co-Designed
In-Storage-Computing Architecture for Extreme Classification

Siqi Li Fengbin Tu Liu Liu
siqi_li@ucsb.edu fengbintu@ust.hk liuliu@rpi.edu
University of California, Santa The Hong Kong University of Science Rensselaer Polytechnic Institute
Barbara and Technology Troy, New York, USA

Santa Barbara, California, USA

Jilan Lin
jilan@ucsb.edu
University of California, Santa
Barbara
Santa Barbara, California, USA

Yufei Ding
yufeiding@cs.ucsb.edu
University of California, Santa
Barbara
Santa Barbara, California, USA

ABSTRACT

With the rapid growth of classification scale in deep learning sys-
tems, the final classification layer becomes extreme classification
with a memory footprint exceeding the main memory capacity of
the CPU or GPU. The emerging in-storage-computing technique of-
fers an opportunity on account of the fact that SSD has enough stor-
age capacity for the parameters of extreme classification. However,
the limited performance of naive in-storage-computing schemes is
insufficient to support the heavy workload of extreme classification.

To this end, we propose ECSSD, the first hardware/data lay-
out co-designed in-storage-computing architecture for extreme
classification, based on the approximate screening algorithm. We
propose an alignment-free floating-point MAC circuit technique
to improve the computational ability under the limited area bud-
get of in-storage-computing schemes so that the computational
ability can match SSD’s high internal bandwidth. We present a het-
erogeneous data layout design for the 4/32-bit weight data in the
approximate screening algorithm to avoid data transfer interference
and further utilize the internal DRAM bandwidth of SSD. Moreover,
we propose a learning-based adaptive interleaving framework to
balance the access workload in each flash channel and improve
channel-level bandwidth utilization. Putting them together, our
ECSSD achieves 3.24-49.87x performance improvements compared
with state-of-the-art baselines.

This work is licensed under a Creative Commons Attribution International 4.0 License.

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0095-8/23/06.
https://doi.org/10.1145/3579371.3589093

Zheng Wang
zheng_wang@ucsb.edu
University of California, Santa
Barbara
Santa Barbara, California, USA

Hong Kong, China

Yangwook Kang
yangwook k@samsung.com
Samsung Semiconductor Inc.

San Jose, California, USA

Yuan Xie
yuanxie@gmail.com
DAMO Academy, Alibaba Group
Sunnyvale, California, USA

CCS CONCEPTS

« Computer systems organization — Neural networks; - Hard-
ware — Memory and dense storage.

KEYWORDS

In-storage-computing architecture, Extreme classification

ACM Reference Format:

Siqi Li, Fengbin Tu, Liu Liu, Jilan Lin, Zheng Wang, Yangwook Kang, Yufei
Ding, and Yuan Xie. 2023. ECSSD: Hardware/Data Layout Co-Designed In-
Storage-Computing Architecture for Extreme Classification. In Proceedings
of the 50th Annual International Symposium on Computer Architecture (ISCA
’23), June 17-21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3579371.3589093

1 INTRODUCTION

Classification workloads are essential in many applications, such as
image recognition [4, 8, 41], natural language processing [6, 13, 56],
and recommendation [34, 43, 51], where the classification layer
works as the final step to make predictions. As the size of clas-
sification categories keeps scaling up, the classification layer be-
comes larger and larger, leading to extreme classification prob-
lem which takes 30%-60% execution time overhead of the overall
applications[22]. The category size of recent classification work-
loads can even reach 100 million, causing the classifier’s parameters
to consume hundreds of GBs [21, 28, 37, 42, 54], which exceeds the
common main memory capacity in CPU or GPU systems [5, 24].
Thus, storage devices with much larger capacity are necessary to
store the increasing amount of classification parameters, such as
SSD [15, 33, 53]. However, the bandwidth from SSD to main mem-
ory is limited [16, 47, 50]. The CPU or GPU suffers from a long
delay to transfer such a huge amount of data from SSD storage.
As a result, the system performance is severely bound by the data


https://doi.org/10.1145/3579371.3589093
https://doi.org/10.1145/3579371.3589093
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589093&domain=pdf&date_stamp=2023-06-17

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

movement bottleneck if extreme classification is implemented in
conventional computing architectures.

Emerging in-storage-computing technologies [19, 20, 25, 44]
provide a promising solution to run the extreme classification effi-
ciently. First, the storage capacity of SSD can reach TB level, which
is sufficient to store all parameters in extreme classification. Besides,
the computation units inside the storage device [20, 44] can directly
utilize the much higher internal bandwidth, which both breaks
down the external bandwidth limitation of conventional I/O and
eliminates a large number of time-consuming data movements from
the storage system to the main memory and computation units.
But there exist challenges using in-storage-computing technology
to deal with extreme classification. On the one hand, the computa-
tions are often huge due to the enormous classification category
size, especially in full precision. On the other hand, the limited
area budget makes inserting extra computation units inside SSD
difficult. The mismatch between the limited compute resource and
the high internal bandwidth in SSD, if not appropriately addressed,
will inevitably lead to a waste of the internal bandwidth and a much
longer computation delay to finish extreme classification.

One potential solution is to explore new algorithmic methods to
eliminate computation redundancy. Using approximate screening
algorithm [22] has been verified as an efficient method to reduce
the computation amount without compromising accuracy. By ap-
proximate projection [22], we can first get a low-precision (e.g., in
4-bit) weight matrix for the huge classification layer. After first do-
ing vector-matrix multiplication between projected input features
and approximate weight matrix, we can compare the low-precision
results with thresholds and decide which full-precision weight vec-
tors will be used for further computation to get the final predictions.
In this way, we can reduce the amount of floating-point computa-
tions to 10%, which helps a lot to mitigate the computation burden
for in-storage-computing.

However, the remaining 10% floating-point computations in ex-
treme classification still exceed the limited computing resources
that could be added into SSD. Besides, the approximate screen-
ing algorithm also brings some new challenges to the targeted
in-storage-computing scenario. If the 4-bit low-precision data and
the 32-bit full-precision data used in the approximate screening
algorithm are homogeneously stored in flash, the data transfer in-
terference between these two data types could slow down the whole
transfer process. Moreover, the imbalanced workloads in each flash
channel caused by the discontinuous data access pattern of the algo-
rithm will lower the actual channel-level bandwidth utilization. As
shown in the roofline analysis in Fig. 1, the in-storage-computing
baseline, indicated as point A, is compute-bound due to the limited
computation capability of conventional floating-point MAC units.
If the computation ability under the limited area budget can be
promoted, the performance point will go higher to point B in Fig. 1.
Then the original compute-bound problem shifts into the memory-
bound scenario which is restricted by the data transfer interference
and flash channel workload imbalance. We can further unleash
the performance via improved utilization of internal bandwidth by
mitigating data transfer interference and imbalanced accesses on
flash channels, indicated as point C in Fig. 1.

Siqi Li, Fengbin Tu, Liu Liu, Jilan Lin, Zheng Wang, Yangwook Kang, Yufei Ding, and Yuan Xie

Elevated Performance Ceiling

°
c 1 Heterogeneous Data Layout
| + Adaptive Interleaving
‘ (Bandwidth Utilization up)
B ~
I Alignment-Free FP MAC
660 (Computation Ability up)
Al
L/ " Original Performance Ceiling
y/

Attainable Performance

— Our ECSSD
— In-Storage-Computing Baseline

Operation Density

N
\

Figure 1: Roofline model analysis of our design vs. in-storage-
computing baseline.

To summarize, we face three main challenges to imple-
ment the approximate-screening-based extreme classifica-
tion with in-storage-computing technology:

e Challenge 1: Under limited chip area for extra logic circuits
in SSD, the in-storage computing performance is limited and
can not match SSD’s high internal bandwidth, leading to
under-utilization of available internal bandwidth and long
processing latency.

Challenge 2: If the two types of 4-bit/32-bit data intro-
duced by approximate screening are stored homogeneously
in NAND-based flash, the data transfer interference between
the 4-bit and 32-bit data will slow down the whole process-
ing.

Challenge 3: The discontinuous access pattern of 32-bit
weight data in the approximate screening algorithm leads to
imbalanced workload on each flash channel in SSD, which
is detrimental to the channel-level bandwidth utilization.

To tackle the above challenges, we propose a hardware/data-
layout co-designed in-storage-computing architecture for extreme
classification, based on the approximate screening algorithm. Our
key insight is that instead of solving the problem purely at a single
stage, we exploit the improvements at all different levels from circuit
to architecture and to data layout in a synergistic manner. For the
first time, we analyze and present the area budget guideline of
additional logic circuits for in-storage-computing architectures. We
propose a novel alignment-free floating-point MAC circuit design to
significantly elevate the computational capability under the limited
area budget. To avoid the data transfer interference between 4-bit
and 32-bit data and fully utilize the internal bandwidth of SSD, we
further propose a heterogeneous data layout and architecture design
to decouple the two-type data storage, transfer, and computation.
What is more, we explore balancing the accesses of each flash
channel to enhance the actual channel bandwidth utilization for
the in-storage-computing architecture. We creatively propose a
learning-based adaptive interleaving framework to balance the
access workload of each channel to further increase the channel-
level bandwidth utilization and reduce total processing time.



ECSSD: Hardware/Data Layout Co-Designed In-Storage-Computing Architecture for Extreme Classification

Low-Precision Approximate Screening

L. e _
3 X K P =
K X Projected Weight

Low-precision L
Projected Feature

‘Threshold Filtering
oor—m

Full-Precision Classification

?X D| Original Weight XD
D
Feature T X

Figure 2: Approximate screening algorithm for extreme clas-
sification.

= ormr——m

2ld

Amount

Our contributions are as follows:

e We present the first in-storage-computing architecture for
extreme classification, which comprehensively incorporates
optimization across the circuit, architecture, and data layout
levels.

e For Challenge 1, we propose a novel alignment-free floating-
point MAC circuit technique that significantly enhances
the in-storage-computing performance under limited area
budget condition.

o For Challenge 2, we propose a heterogeneous data layout
and architecture design to avoid the data transfer interfer-
ence between 4-bit and 32-bit data and further utilize SSD’s
internal bandwidth.

e For Challenge 3, we present a learning-based adaptive inter-
leaving framework to balance each flash channel’s workload
in SSD and further elevate the flash channel level bandwidth
utilization.

e The evaluation results show our ECSSD achieves 3.24-49.87x
performance improvements compared with the state-of-the-
art baseline architectures.

We introduce the background in Section 2 and our motivation
in Section 3. Architecture design and learning-based adaptive in-
terleaving framework are discussed in Section 4 and 5. Evaluations
are shown in Section 6.

2 BACKGROUND

In this section, we introduce the fundamental background for fur-
ther discussion. We first introduce the approximate screening al-
gorithm for extreme classification. Then, we present the technical
background of the SSD organization.

2.1 Approximate Screening Algorithm

Dealing with the extreme classification [21, 37, 42] is becoming even
more and more challenging for large-scale scenarios. Approximate
computation [9, 23, 48, 49] is an efficient method to simplify the
computation complexity of machine learning applications with
acceptable accuracy drop. Recently approximation ideas are widely
used in both software algorithm [40, 55] and hardware circuit [10,
11, 23]. For the extreme classification problem, approximation has
also been proved as an efficient method [22].

In the extreme classification problem, it has been observed that
not all the computation is important, or necessary [22]. Only a

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

Embedded
Processor

8 Channels 9
E
NAND Flash 88
Flash Controller, DRAM g °
Data Buffer Controller B
SSD

Figure 3: Original SSD structure.

small part of the computation decides the final prediction results.
For example, the final prediction results are only generated from
the scope of top-k values with the highest probabilities [14]. So the
approximate screening algorithm [22] is proposed to greatly reduce
the amount of computation. First, a low-precision approximate
screening module with shrunk hidden dimension is introduced
to filter out the candidate full-precision weight vectors. Then the
candidate-only classification module only computes the candidate-
related classification under full precision to get the final predictions.

The approximate screening algorithm is shown in Fig. 2. There
are two modules with different precision in the approximate screen-
ing algorithm. The full-precision classification module consists of a
large 32-bit floating-point weight matrix with original high hidden
dimension D and classification output dimension L. The approxi-
mate screening module is constructed by a projected small weight
matrix with low shrunk hidden dimension K (D>K) and 4-bit integer
precision, which is projected from the original 32-bit large weight
matrix. For the inference process of the approximate screening
algorithm, first, projected input features are multiplied with the
projected low-precision weight matrix to get the approximate re-
sults. Then according to these approximate results, the importance
of each floating-point weight vector is estimated. By comparing
with the pre-trained threshold, the most important values of all the
L approximate results are selected to decide which floating-point
weight vectors are potential candidates. The selected candidate
floating-point weight vectors further do full-precision computa-
tion with original input features in order to get the final accurate
prediction results. With this low-precision approximate screening
algorithm, the whole processing time can be reduced significantly
with 10x speedup.

2.2 SSD Organization

Fig. 3 shows the internal structure of a common NAND flash based
solid state drive (SSD). As a commonly-used storage device, SSD usu-
ally consists of NAND flash memory, flash controllers, embedded
processor, data buffer, DRAM and a host interface controller 7, 19].
Nowadays, the capacity of SSD devices can easily reach TB level, or
tens of TBs level, which is much higher than the capacity of main
memory. And the huge capacity of SSD provided the most impor-
tant cornerstone for dealing the large-scale extreme classification
problem using the in-storage-computing scheme, specifically, the
in-SSD-computing scheme.

There are multiple flash channels in the SSD. Each channel has
one independent flash controller to control the data read/write of
this channel. Thus, different channels can work independently and
concurrently. Commonly, the hierarchical organization of NAND



ISCA ’23, June 17-21, 2023, Orlando, FL, USA

flash SSD is channel, package, die, plane, block and page. The typical
capacity of one page is 4kB. In SSD, the read and write operations
happen at the page level. Erase operation happens at the block level.

The I/O bandwidth of SSD commonly is at single digit level GB/s,
such as 4GB/s, which causes long storage access latency for huge
data amount. For PCle 3.0, the I/O bandwidth is only 1GB/s in each
lane, which confines the speed of data movement from SSD to the
host’s main memory. The internal bandwidth of SSD is usually
higher than its external I/O bandwidth. This is comprehensible that
inside SSD, there is internal dataflow for many SSD management
tasks. For each flash channel, it can reach 1GB/s internal bandwidth.
And more flash channels can bring higher internal channel level
bandwidth. For some high-end SSD products, they can have 16 flash
channels.

The embedded processor with its firmware is mainly responsible
for the flash translation layer, as known as FTL. The FTL implements
the management functions for the whole SSD such as flash wear
monitoring and garbage collection. It also executes logical to physi-
cal address mapping, which is necessary for data read/write. This
address mapping function provides a foundation for our proposed
data interleaving method, which is further discussed in Section 5.
The data buffer in SSD is used for temporally buffering the data
which is transferred between other main components in SSD such
as NAND flash, embedded processor and interface controllers. The
MB-level data buffer offers us a design opportunity that it can buffer
the data for our inserted accelerator so that extra buffer overhead
can be saved. The DRAM is used to store the SSD management
data. Especially, the logical-to-physical address mapping table is
maintained in DRAM. The capacity and the high bandwidth of
DRAM provide a chance for our heterogeneous data layout design
in Section 4.

3 MOTIVATION

In this section, we introduce the motivation for proposing our
ECSSD architecture. We first analyze the limitation of the approx-
imate screening algorithm for the in-storage-computing scheme.
Then, we present the hardware opportunity and limitation of the
in-storage-computing scheme.

3.1 Limitation of Approximate Screening
Algorithm

Although the approximate screening algorithm can help to reduce
the computation amount in extreme classification without accu-
racy drop, it brings new limitations to data access. Originally, all
the 32-bit weight vectors are needed to compute with input fea-
tures for the predictions. So the 32-bit weight data access pattern
can be sequential, which is friendly to memory or storage device
access. However, in the approximate screening algorithm, after low-
precision screening and filtering, only a few full-precision weight
vectors need to be fetched from storage for further computation.
Such discontinuous 32-bit data access pattern brings the limitation
to storage devices, especially the SSD: if all the 32-bit weight vectors
are still simply stored continuously in the NAND flash of the SSD,
then an imbalanced flash channel access pattern will be caused
by the approximate screening algorithm, leading to lower channel
level bandwidth utilization. Thus, to implement the approximate

Siqi Li, Fengbin Tu, Liu Liu, Jilan Lin, Zheng Wang, Yangwook Kang, Yufei Ding, and Yuan Xie

screening algorithm efficiently, the storage method of 32-bit weight
vectors needs to be carefully designed, which is further discussed
in Section 5.

3.2 Hardware Opportunity

The memory capacity needed for extreme classification parame-
ters is very huge, which can reach hundred-GB level. If the ex-
treme classification is implemented under conventional Von Neu-
mann architecture, such exhausting data movement from SSD to
main memory causes too long latency. Besides, state-of-the-art
in-memory-computing or near-memory-computing schemes are
also not suitable for dealing with extreme classification because
commonly the memory capacity of these schemes is not enough to
store the parameters of extreme classification.

The in-storage-computing scheme is a guaranteed method that:

e SSD’s high storage capacity is enough for all parameters of
extreme classification.

e Computing in SSD can directly avoid lengthy data move-
ment out of SSD which is limited by SSD’s low external I/O
bandwidth.

e Computing in SSD can save the resources in the host so
that the host can have enough ability to deal with other
workloads.

With these guaranteed characters, the in-storage-computing
scheme provides a hardware opportunity for extreme classification
problems.

3.3 Limitation of In-Storage-Computing Scheme

Although directly doing computation in SSD can both take advan-
tage of SSD’s high internal bandwidth and avoid the huge amount
of data movement between SSD and host’s main memory, there
exists limitation of the naive in-storage-computing scheme: the
internal space of SSD is limited and the area budget for additional
inserted computing resource is also limited. We do a comprehensive
research on state-of-the-art industry storage solutions [3, 26] and
academic in-storage-computing works [19, 20, 25, 44, 52] to find the
acceptable and reasonable chip area budget for extra accelerator
or computing logic inserted in SSD. However, since in-storage-
computing field is still under development and far from maturity,
until now there is no work that has explicitly clarified the area bud-
get limitation for extra accelerator in SSD. It can be anticipated that
the problem of area budget for the extra logic circuit in SSD will
be more and more important as in-storage-computing accelerators
become more and more complex.

To fill this gap, for the first time, we propose an area budget
guideline for adding extra logic circuit into SSD to accelerate a
specific application with lightweight and acceptable overhead. The
area budget guideline is that: under the same manufacturing tech-
nology, the area of the additional logic circuit should not be larger
than the area of the single embedded processor of the original SSD
controller. There are two main reasons for choosing the area of
the embedded processor as the standard of lightweight extra chip
area budget. First, the embedded processor is always a necessary
and major component for both industry solutions and academic
architectures. Second, the embedded processor in the original SSD



ECSSD: Hardware/Data Layout Co-Designed In-Storage-Computing Architecture for Extreme Classification

architecture is a complicated logic that handles multiple SSD man-
agement tasks. Comparatively, the extra lightweight logic circuit
just works as an accelerator for single specific application. For ex-
ample, the ARM Cortex R5 [2] fabricated in 28nm technology is
a common embedded processor used in many SSD products [26].
Under 28nm technology, 0.21mm? [2], the area of a single Cor-
tex R5 processor, could be the area budget limitation standard for
lightweight accelerator insertion.

With the restriction of area budget, the scale of the inserted
logic circuit is limited, thus the computational ability that can be
added into SSD is restricted. In order to implement the approximate
screening algorithm in SSD and match the inserted computational
ability to the high internal bandwidth of an 8-channel SSD, which
is a common configuration for medium-end SSDs, at least 0.24mm?
area would be needed only for the naive floating-point MAC circuit
under 28nm technology. Further considering the chip area needed
for other components such as control logic and INT4 MAC circuit,
the total area must far exceed the 0.21mm? budget restriction. Thus,
with the naive floating-point circuit technique, the computational
ability under the limited area budget is not enough to match SSD’s
high internal bandwidth. Such mismatch leads to a waste of SSD’s
internal bandwidth resource and makes the in-storage-computing
scheme for extreme classification to be a compute-bound problem,
even with the help of approximate screening algorithm to reduce
the computation amount. To fully utilize the internal bandwidth
of SSD, improving the computational ability on limited area is
necessary. Our computational ability improvement technique is
discussed in Section 4.

4 ARCHITECTURE AND CIRCUIT DESIGN

In this section, we present the ECSSD architecture design. We first
show the overall architecture, followed by the proposed alignment-
free floating-point MAC circuit technique and heterogeneous data
layout design. Then, we present the software integration and the
whole workflow of the ECSSD.

4.1 Overall Architecture

To address the extreme classification problem, we propose a novel
in-storage-computing architecture ECSSD. Fig. 4 shows the overall
architecture of our ECSSD. Different from conventional SSD ar-
chitecture in Fig. 3, we add customized accelerator near the data
buffer in SSD. The INT4 MAC circuit and the comparator in the
inserted accelerator are responsible for low-precision approximate
screening and candidate filtering. The FP32 MAC circuit with our
proposed alignment-free technique is responsible for full-precision
candidate-only classification. The scheduler module controls the
whole accelerator and coordinates with the FTL of ECSSD. The
ECSSD architecture can work in two modes: SSD mode and accel-
erator mode. Simple changes are made to the original firmware of
the embedded processor to support the FTL for both modes.

SSD Mode. In SSD mode, the working principle is very similar to
the conventional SSD product. In this mode, the inserted accelerator
is disabled and ignored. When receiving load/store commands from
host, the ECSSD gets the logical address of the data and translates
the logical address into the physical address in ECSSD. Then accord-
ing to the physical address, the data is fetched from/programmed

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

Embedded
8 channels Processor

NAND Flash
Flash Controller| DRAM
Data Buffer Controller

ECSSD

Host

19]|03U0D
910d

SV ZEdd
S0l juswIuBlY

Accelerator

Figure 4: ECSSD architecture overview.

into the NAND flash. The embedded processor, working as FTL,
controls the logical to physical address mapping, garbage collection
and wear leveling. The DRAM works as a cache to store the L2P
address translation table and other management information.

Accelerator Mode. In accelerator mode, the inserted accelerator
is enabled and the ECSSD only works for accelerating the extreme
classification application. The ECSSD only receives 4-bit/32-bit
weight data and corresponding input features from host. The 4-
bit/32-bit weight data is stored heterogeneously in ECSSD. The
4-bit weight data is only stored in DRAM and 32-bit weight data is
only stored in NAND flash. The heterogeneous data layout design
will be further discussed in Section 4.3. The original data buffer in
SSD now works for the inserted accelerator to buffer the 4-bit/32-bit
weight/input/result data and needed physical addresses for 32-bit
candidate weight vector filtering. When inference starts, the acceler-
ator’s INT4 MAC circuit and alignment-free FP32 MAC circuit work
together to finish the extreme classification with the approximate
screening algorithm. The INT4 MAC circuit computes the results of
the low-precision approximate screener. The comparator filters out
the key candidates for further full-precision computation, accord-
ing to the comparison results between pre-trained threshold and
low-precision screening results. Then the candidate 32-bit weight
vectors are fetched from NAND flash channels to do candidate-only
classification in the alignment-free FP32 MAC circuit and finally
get accurate prediction results. The proposed alignment-free FP32
MAC circuit will be discussed in detail in Section 4.2.

4.2 Alignment-free floating-point MAC Circuit

We have discussed in Section 3 that the area budget for the addi-
tional inserted logic circuit in SSD is limited and the maximum
total area of inserted logic should be smaller than 0.21mm? under
28nm technology. Thus, optimizing the floating-point MAC circuit
for ECSSD is necessary for two reasons. First, since the circuit of
32-bit floating-point MAC is much more complex than the circuit
of 4-bit integer MAC, the area concern is laid on the floating-point
MAC circuit. Second, if we obey the chip area budget requirement
and directly implement naive floating-point MAC circuit into SSD,
then the floating-point computational ability cannot match SSD’s
high internal bandwidth and the performance of the whole ECSSD
is compute-bound.

By analyzing the area breakdown of the naive floating-point
MAC circuit, we find that the proportion of alignment-related com-
ponents, such as exponent comparators and mantissa shifters, is



ISCA ’23, June 17-21, 2023, Orlando, FL, USA

(a) Naive FP MAC Circuit

|
Original MAN. Compensation |
Space 30b

N Jy S Ob 23b

in Host | SignExponent  Mantissa i sign Mantissa :
mmm | [B] sb ﬁ_ e VAN | [1b ST
| | | |
| ISh Exp. -m_ EnocEe——— N — S |
| [ . . | .

| : : L : |
| ‘m Enax-En g MAN. ] [s. VAN |
| Normal FP32 Data Format Right Shift CFP32 Data Format |

Siqi Li, Fengbin Tu, Liu Liu, Jilan Lin, Zheng Wang, Yangwook Kang, Yufei Ding, and Yuan Xie

Pre-alignment Process in Host |

Weight MAX EXP.

!

Input MAX EXP.

(b) Our Proposed Alignment-free MAC Circuit

Figure 5: Naive FP MAC circuit VS. our proposed alignment-free FP MAC circuit

37.7%, which takes up significant overhead. Therefore, it is nec-
essary to do optimization aimed at the alignment-related compo-
nents to save chip area. Fig. 5(a) shows the details of the naive
floating-point MAC circuit, which contains many area-consuming
alignment-related components, especially mantissa shifters. For
the floating-point accumulation part, it is actually an adder tree
containing many separate floating-point adders. When the adder
is dealing with two floating-point addends, it first compares the
exponent parts of the two addends using an exponent compara-
tor and gets the exponent difference. Then the mantissa is shifted
for alignment by the mantissa shifter, according to the exponent
difference. After the alignment process, the mantissa adder imple-
ments mantissa addition for the two addends. Finally, the exponent
part and mantissa part of the result are normalized to satisfy the
standard of floating-point number presentation.

From the whole computation process of the naive floating-point
MAC circuit, we can see that there are too many alignment pro-
cesses that lower the circuit area efficiency. Inspired by the state-
of-the-art pre-alignment floating-point MAC circuit technique [18],
we creatively propose our alignment-free methodology for the in-
storage-computing scenario.

Our alignment-free floating-point MAC circuit in ECSSD associ-
ated with the pre-alignment process executed in host is shown in
Fig. 5(b). First, the maximum exponent part E,4x of each floating-
point input feature vector is found. Then the mantissa parts of each
floating-point data in the input vector are right-shifted according
to the corresponding shifting offset (Ep;qx-E). After shifting, all the
floating-point values share the vector-wise maximum exponent
Enax as their common exponent part. In this way, vector-wise
alignment is achieved. There are two reasons that we implement

the pre-alignment process in host. First, the floating-point input
features of extreme classification are actually the intermediate com-
putation results of previous model layers, which are executed in
host. Second, although the alignment process is a severe challenge
for ECSSD’s inserted accelerator, it is trivial and easy for the pow-
erful GPU, CPU, or FPGA host. We evaluate the vector-wise pre-
alignment operation on an NVIDIA RTX 3090 GPU. For a typical
1x1024 floating-point feature vector, it only takes 0.005ms to finish
the whole pre-alignment operation.

However, there may be a new concern that such pre-alignment
will cause some information lost. Due to the right shifting, the
least significant bits of original mantissa parts are dropped, which
possibly does harm to classification accuracy. If compensation bits
are directly added to keep the least significant bits, it will cause extra
heavy data storage and transfer burden as all the floating-point data
is much longer than before. To solve this problem, we present a
new compensation floating-point data format Compensation FP32
(CFP32), shown in Fig. 5(b). In CFP32, instead of using the original
8-bit space in FP32 data format to store the repeated shared vector-
wise maximum exponent value Ep,4x, we keep the 8-bit space as the
compensation bits for the 1-bit hidden one and the least significant
bits that exceeds the original 23-bit mantissa scope in FP32. And
the common 8-bit exponent value is stored separately and shared
by all the floating-point data in the same vector. In this way, the
computation accuracy can be guaranteed without extra heavy data
storage or transfer overhead. The floating-point weight data is also
offline pre-aligned into CFP32 data format before storing into flash.

We analyze the data distribution of real model and input feature
parameters. Due to the value locality of deep learning models, with



ECSSD: Hardware/Data Layout Co-Designed In-Storage-Computing Architecture for Extreme Classification

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

Table 1: ECSSD APIL.

Type API Description

ECSSD_enable/disable() | ECSSD working mode choice: SSD mode/accelerator mode

Preparation | Pre_align()

Pre-align the floating-point input/weight data into CFP32 format in host

Weight_deploy()

Deploy the 4/32-bit weight data into ECSSD

INT4_input_send()

Send 4-bit input vector to ECSSD

Transmission | CFP32_input_send()

Send 32-bit input vector to ECSSD

Get_results()

Get the final classification results from ECSSD

INT4_screen()

Low-precision computation and filtering in ECSSD

Computation | CFP32_classify()

Full-precision computation in ECSSD

Filter_threshold()

Set the filtering threshold for low-precision screening

the 7-bit mantissa compensation, more than 95% of the floating-
point data has no bit information lost. Even for the minimum outlier,
the CFP32 still keeps most of its mantissa bits. We also experiment
on real extreme classification benchmarks listed in Section 6. The
results show that there is no classification accuracy drop, compared
with the original FP32 computation method.

Associated with the proposed pre-alignment process and the
CFP32 data format, the in-storage alignment-free FP MAC circuit
can directly use the shifted mantissa parts of the weight and in-
put data to implement MAC operation. In this way, original area-
consuming alignment-related components are eliminated, shown
in Fig. 5(b). Even though the precision of the mantissa multiplier
increases from 24 bits to 31 bits, causing a little more area consump-
tion than the original mantissa multiplier, the overall area saving
achieved by the alignment-free FP MAC circuit is still significant.
Detailed evaluation is shown in Section 6.4. We test on the LSTM-
W33K benchmark listed in Section 6. Originally, a computational
ability of 34.8GFLOPS is needed to consume the floating-point data
transferred from flash channels without any delay. However, the
naive FP32 MAC circuit can only achieve 29.2GFLOPS performance
under the limited area budget. With our technique, we can achieve
50GFLOPS performance under the same area budget. In conclu-
sion, under the same area budget limitation, with the help of our
alignment-free FP MAC technique, the floating-point computational
ability is significantly improved and able to match SSD’s high inter-
nal channel level bandwidth, which overcomes the compute-bound
problem. The performance of ECSSD now turns into a memory-
bound problem, instead of a compute-bound scenario, shown as
point A moving to point B in Fig. 1.

4.3 Heterogeneous Data Layout Design

Considering the whole data transfer process, even with the help of
the approximate screening algorithm that can reduce the amount of
floating-point data transfer significantly, the transfer workload of
32-bit floating-point candidate weight vectors is still much heavier
than the transfer workload of 4-bit integer screener weight vectors.
Besides, if we store the two kinds of weight data homogeneously
that both 4-bit and 32-bit weight data are stored in the NAND flash
channels, there will be data transfer interference when both 4-bit
weight data and 32-bit weight data need to be transferred from
the NAND flash to corresponding computing logic simultaneously.
Such data transfer interference further slows down the 32-bit data
movement and attenuates the system performance.

To eliminate the data transfer interference and accelerate the
whole data transfer process, we propose the heterogeneous data
layout design that 4-bit integer weight vectors are stored in DRAM
and 32-bit floating-point weight vectors are stored in NAND flash
channels. So that all the channel level bandwidth can be used for the
heavy transfer workload of 32-bit floating-point weight data and
extra DRAM bandwidth can be utilized for 4-bit integer weight data.
And now these two kinds of data can be transferred to the accelera-
tor simultaneously without data transfer interference. Besides, the
SSD’s internal bandwidth resource is further utilized.

4.4 Software Integration

We design a software library to coordinate the execution between
the host and the ECSSD and take full advantage of the in-storage-
computing accelerator. The major Python-style APIs for ECSSD
are listed as Table 1, which could be integrated with existing ma-
chine learning frameworks flexibly. There are mainly three types
of APIs that focus on working preparation, data transmission, and
in-storage computation.

Preparation-related APIs are applied to select the working mode
of ECSSD, pre-align the floating-point weight and input data, and
deploy the 4-bit and 32-bit weight data into ECSSD. Transmission-
related APIs work for input data sending and classification result
gathering. Computation-related APIs are responsible for the dual-
precision in-storage computation.

4.5 Workflow

To support the above proposed techniques, we design the work-
flow of the ECSSD. The ECSSD_enable/disable API is used to
decide the working mode of ECSSD. For the SSD mode, as the
inserted accelerator is ignored, the workflow is just similar to a
conventional SSD product. For the accelerator mode, the workflow
is much different. In the data preparation period of accelerator
mode, the preparation-type APIs are utilized to deploy 4-bit weight
data into ECSSD’s DRAM from host. All the offline pre-aligned
32-bit floating-point weight data is deployed into the NAND flash
channels, according to the proposed learning-based interleaving
framework, discussed in Section 5. The L2P address mappings and
index correspondence between 4-bit and 32-bit weight vectors are
kept in DRAM. After all the 4-bit/32-bit weight data is loaded into
ECSSD, the data preparation finishes and inference starts.

During inference, the transmission-type and computation-type
APIs are applied. Both approximate screener and candidate-only



ISCA ’23, June 17-21, 2023, Orlando, FL, USA

Flash NAND Flash NAND Flash NAND Flash NAND
#2 7 #:

Actual Access Pattern
# 8

Very Busy

|
|
|
1
e = _ : ==————= Medium Busy
: £ | o= Not Busy
= E |
|

! I DD ===7 32-bit Weight Matrix
| S
— === Unj;
== ! Inte,’;'fo"n
—_— ! Embedded e"""ng
! Processor
| _8 channels

DRAM
Controller

uog
d

Data Buffer 4-bit Weight Matrix

W
] MAC

Accelerator,

Iz
e

7

nz
3>
b=z
EXC]
[<)
Sx
EX
sa
3
/ /

/ 1| ssiomt

/

/ / aB

/

B DRAM
. (TITITETT)

m

O

[

(%)

o
Svinzeas

Figure 6: Uniform interleaving method. All the 32-bit weight
vectors are uniformly stored into 8 flash channels.

classification are implemented tile-by-tile. Each time, a batch of
4-bit input vectors is loaded into the data buffer from the host and
computed with one tile of 4-bit weight data, which is fetched from
DRAM together with the index and physical address information of
corresponding 32-bit weight vectors. The low-precision results then
are filtered according to the threshold set by the Filter_threshold
API to generate the candidates for later full-precision classification.
Then the physical addresses of candidate 32-bit weight vectors are
passed to flash controllers from the data buffer. Corresponding
candidate 32-bit weight vectors are fetched from flash channels and
loaded into the data buffer. At the same time, the corresponding
batch of pre-aligned 32-bit floating-point input features is loaded
into the data buffer from host. Finally, the alignment-free FP MAC
circuit in the accelerator finishes the candidate-only classification
and sends the final results back to the host. For both 4-bit and 32-bit
processes, the data buffer works in a ping-pong manner to overlap
the buffer read and write in order to reduce the whole execution
time. The processing of the INT4 MAC circuit and alignment-free
FP32 MAC circuit can be overlapped, which means that when the
FP32 MAC circuit is computing with the first weight tile, the INT4
MAC circuit is computing with the second weight tile. In this way,
the whole dual-module processing is continuous, and the total
processing time can be reduced significantly.

5 LEARNING-BASED ADAPTIVE
INTERLEAVING FRAMEWORK

In this section, we first analyze the limitations of two data storing
methods including sequential storing and uniform interleaving.
Then, we present the learning-based adaptive interleaving frame-
work for the imbalanced data access issue.

5.1 Sequential Storing

Naturally, it is the most straightforward way to sequentially divide
and store the whole 32-bit weight matrix into all the flash channels.
However, the whole computation is a tile-by-tile process. Mostly,
the candidate 32-bit weight vectors in adjacent tiles are stored in
the same flash channel. Thereby, only one flash channel is accessed
each time and other channels are idle, wasting the channel level
bandwidth resource.

Siqi Li, Fengbin Tu, Liu Liu, Jilan Lin, Zheng Wang, Yangwook Kang, Yufei Ding, and Yuan Xie

o Predicted Hot Degree
Very Hot

I
I
I
I
v - - : E=———o— Medium Hot
I
I

77777777777777777777777777777777 —====—  32bit Weight Matrix

EEEEEE T = ,n::’lamive
eav;
Ving

—_— Embedded
! Processor

|_8 channels

|
I

| \E

I 5

i NAND Flash

1 Flash [{i]cController| Data Buffor DRAM
|

|

| Controller
|
|

uoo

/\ Predict According to
l 4-bit Vector-wise Sum

of Absolute Values
4-bit Weight Matrix

20
10d

> INT:
MAC

{Comparator]
ECSSD = Accelerator] R

33

e

/ I
J 7| selox
/ / ol

r

J

[z |

Figure 7: Learning-based interleaving method. For a nearly
balanced channel access pattern, all the 32-bit weight vectors
are interleaved according to the predicted hot degrees.

5.2 Uniform Interleaving

To make all the 8 flash channels working in parallel and fully utilize
the channel level bandwidth, uniform interleaving is a possible
solution which is shown in Fig. 6. It means uniformly interleaving
all the 32-bit weight vectors into 8 channels. For example, interleave
No.1 ~ No.8 32-bit weight vectors into No.1 ~ No. 8 flash channels,
and then interleave No.9 ~ No.16 32-bit weight vectors into No.1 ~
No.8 flash channels, and so on. Compared with sequential storing,
now the 8 flash channels can work in parallel for data access and the
total channel level bandwidth utilization is improved. However, the
flash channel access pattern under the uniform interleaving method
is not balanced as the results of candidate filtering are discrete. In
most cases, there are some channels containing more candidate 32-
bit weight vectors than others, causing the imbalanced data access
workload. The access time of some channels is much longer than
others, which is evaluated in Section 6.6. For one specific weight
tile, the final data access time is decided by the busiest flash channel.
Such an imbalanced data access pattern in uniform interleaving
method results in that the total channel level bandwidth utilization
is still far away from ideal.

5.3 Learning-based Adaptive Interleaving

As the final solution, we propose the learning-based adaptive in-
terleaving framework that utilizes the information of projected
4-bit weight vectors to predict the hot degree of corresponding
32-bit weight vectors and balance the data access workload of each
flash channel in ECSSD. The learning-based adaptive interleaving
method is shown in Fig. 7. For a specific 32-bit weight vector, the
hot degree reveals the possibility of being selected as a candidate
for further full-precision computation. For example, very hot means
that the specific 32-bit weight vector is very possible to be selected
as a candidate. According to the sum of the absolute value of each
element in each 4-bit weight vector, corresponding 32-bit weight
vectors are divided into 3 grades: very hot, medium hot and not
hot. The larger the sum of absolute value is, the more possible that
the corresponding 32-bit vector will be selected as a candidate. Af-
ter that, the hot degrees of weight vectors are further fine-tuned
according to the frequency of being filtered as a candidate on the
training dataset. With the goal of making the workload in each flash
channel nearly the same, all the weight vectors are interleaved into



ECSSD: Hardware/Data Layout Co-Designed In-Storage-Computing Architecture for Extreme Classification

Table 2: ECSSD Configurations

ECSSD

Flash Capacity 4TB Flash Channels 8

DRAM Capacity 16GB Page Size 4KB
Accelerator 1 Data buffer 4MB

Flash Protocol NVDDR3 | Interface PCle 3.0 x4

Accelerator

Technology 28nm Voltage Supply 0.9V
Frequency 400MHz | Index Buffer 4KB

Weight Buffer(INT4) | 128KB
Input Buffer(INT4) 4KB
Weight Buffer(FP32) | 400KB
FP32 MAC 64
Comparator 1

Output Buffer(INT4) | 2KB
Input Buffer(FP32) 100KB
Output Buffer(FP32) | 1KB
INT4 MAC 256
Scheduler 1

the 8 flash channels in the light of fine-tuned hot degrees. Originally,
the firmware of the embedded processor allocates a specific range
of logical addresses to each flash channel. The framework only
needs to assign a logical address from the specified logical address
range to the specific 32-bit weight vector. Then the FTL supported
by the embedded processor can directly help to interleave these
32-bit vectors into designated channels as the framework indicates.
Finally, the flash channel access pattern is almost balanced and the
total data access time is reduced significantly.

6 EVALUATION

In this section, We first introduce our evaluation methodology.
Then, we evaluate the area and power consumption of the EC-
SSD accelerator. After that, we show the end-to-end performance
improvement. We further evaluate our three main contributions in-
cluding alignment-free MAC circuit, heterogeneous data layout and
learning-based adaptive interleaving. Finally, we compare our EC-
SSD with other state-of-the-art architectures on large-scale bench-
marks.

6.1 Methodology

Software Implementation. We use PyTorch framework [36] to
implement the approximate screening algorithm. According to the
sensitivity study in [22], we set the projection scale of hidden di-
mension as 0.25 and the precision of the screener to be 4-bit integer
to have a good-quality classification.

Hardware Implementation. We implement the inserted accel-
erator of ECSSD in RTL and synthesize with Design Compiler under
28nm technology to get the area and power evaluation results. We
build a simulator that can interface with MQSim [46] to evaluate
the performance of the ECSSD system. We also simulate a simple
host to coordinate with ECSSD.

ECSSD Configurations. The configuration of ECSSD is shown
as Table 2. Here we adopt a medium-end SSD configuration for
our ECSSD. With 8 flash channels and a page size of 4KB, the total
capacity of ECSSD is 4TB. The bandwidth of each flash channel is
set as 1GB/s and the bandwidth of the DRAM is 12.8GB/s. The peak
performance of the INT4 MAC circuit/alignment-free FP32 MAC
circuit is 200GOPS/50GFLOPS respectively.

Benchmarks. We implement different models and datasets
on different applications such as language processing [29], neu-
ral machine translation [45] and recommendation [27], similar to

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

Table 3: Benchmark models and datasets.

Model Dataset Category Size Abbr.

GNMT WMT16 32,317 GNMT-E32K
LSTM Wikitext-2 33,278 LSTM-W33K
Transformer | Wikitext-103 267,744 Transformer-W268K
XMLCNN | Amazon-670k 670,091 XMLCNN-A670K
XMLCNN S10M 10,000,000 XMLCNN-S10M
XMLCNN S50M 50,000,000 XMLCNN-S50M
XMLCNN S100M 100,000,000 XMLCNN-S100M

ENMC [22]. We also synthesize 3 larger datasets with 10M, 50M
and 100M category sizes to evaluate the performance of ECSSD.
The benchmark details are in Table 3. For LSTM-W33K, the original
hidden size is 1500. For Transformer-W268K and XMLCNN-670,
the original hidden size is 512. For all the other benchmarks, the
original hidden size is 1024. Take the XMLCNN-S100 benchmark
as an example, the hidden size of the 4/32-bit weight matrices are
256/1024 respectively. Thus, the sizes of its 4/32-bit weight matrices
are 12.8GB/400GB respectively.

6.2 Evaluation for Area and Power
Consumption

Table 4 shows the breakdown area and power evaluation of the
accelerator in ECSSD. The total area of inserted logic is 0.18mm?,
which satisfies the area budget limitation discussed in Section 3.3.
The total power is 52.93mW, which is comparable to state-of-the-
art in-storage-computing architectures such as GenStore [25]. Con-
cretely, the alignment-free FP32 MAC circuit takes 75.7% of the total
area and 63.9% of the total power. The INT4 MAC circuit and the
threshold comparator take 24% of the total area and 36% of the total
power. We also evaluate that, to achieve the same performance, the
naive FP32 MAC circuit needs 0.24mm? area and 51.8mW power.

Table 4: Area and Power Estimation.

Area (mm?)|Power (mW)
INT4 MAC 0.044 19.04
Scheduler 0.0002 0.004

Area (mm?) |Power (mW)
FP32 MAC 0.139 33.87
Comparator| 0.0004 0.016

‘ Total Area 0.1836mm?; Total Power 52.93mW ‘

6.3 Evaluation for End-to-end Performance
Improvement

In this part, we demonstrate the increment of each proposed tech-
nique step by step. The average results on all the benchmarks are
shown in Fig. 8. The starting baseline, on the left side of Fig. 8, is
equipped with naive FP MAC circuit, sequential storing method
together with homogeneous data layout that both 4-bit and 32-bit
weight data are stored in NAND flash. We can observe that, as
only one channel is accessed each time, the channel bandwidth
utilization for floating-point data transfer is lower than 10%. With
the help of the uniform interleaving method, all the 8 channels
can work in parallel, and the channel bandwidth utilization raises
to 44.31%, leading to a 4.06x total speedup. Then with the help
of the alignment-free FP Mac circuit technique, the floating-point
computing time can be hidden by the memory access time. Fur-
thermore, with the help of heterogeneous data layout design, the



ISCA ’23, June 17-21, 2023, Orlando, FL, USA

-
o
3
B

== INT4 Memory Access Time

== FP32 Memory Access Time
FP32 Computing Time

—Channel idth Utili:

75%

50%

Processing Time

25%

' B

With Uniform  With Alignment- With With Learning-
free FP MAC Heterogeneous  based Adaptive
Data Layout Interleaving

Channel Bandwidth Utilization for FP

Sequential
Storing Interleaving

Figure 8: Breakdown analysis for each proposed technique
in ECSSD.

4-bit data transfer and 32-bit data transfer are separated, which
leads to the channel level bandwidth utilization raising to 67.6% for
floating-point data transfer. Finally, with the help of the proposed
learning-based adaptive interleaving technique, the channel level
bandwidth utilization for floating-point data transfer raises to 94.7%.
Compared with the starting baseline equipped with the sequential
storing method, it finally achieves 10.5x speedup.

6.4 Evaluation for Alignment-free FP MAC
Circuit
We implement the naive FP MAC circuit and our proposed alignment-
free FP MAC circuit that are discussed in Section 4.2 with RTL code
synthesized using Design Compiler. We also implement SK Hynix’s
optimized FP MAC circuit [18] for comparison. Their FP MAC cir-
cuit’s key idea is that the mantissa parts of all the FP products are
aligned after the FP multiplication, before FP addition. In this way,
the number of area-consuming shifter components in FP adders
can be reduced by half to save area.

2.0 16
16 12

12 8

o H

<08 s
04 0.4
0.0 0.0

Naive FP MAC  SK Hynix FP  Our Alignment-
MAC

Naive FP MAC  SK Hynix FP  Our Alignment-
free FP MAC MAC

free FP MAC
(a) Area Comparison (b) Power Comparison
Figure 9: Area and power comparison of naive, SK Hynix’s
and our alignment-free floating-point MAC circuit.

The normalized area and power comparison results of these
three FP MAC circuit techniques are shown in Fig. 9. To achieve
the computational performance that can match SSD’s high inter-
nal bandwidth, the naive FP MAC circuit and SK Hynix’s FP MAC
circuit respectively need 1.73x and 1.38x more area than our pro-
posed alignment-free FP MAC circuit. Besides, the naive FP MAC
circuit and SK Hynix’s FP MAC circuit need 1.53x and 1.19x more
power than ours. The obvious area and power benefits owe to our
alignment-free FP MAC technique that can not only eliminate all
the area-consuming alignment-related components such as man-
tissa shifters and exponent comparators in the FP adders but also
simplify the FP multiplier into INT mantissa multiplier.

Siqi Li, Fengbin Tu, Liu Liu, Jilan Lin, Zheng Wang, Yangwook Kang, Yufei Ding, and Yuan Xie

= Homogeneous Data Layout
u Heterogeneous Data Layout

E 2.0
16
£1.2
®
c
©0.8
=
S04
a
0.0

5% 10% 15% 20%
Candidate Ratio

Figure 10: Data transfer time comparison of homogeneous
data layout design and heterogeneous data layout design.

6.5 Evaluation for Heterogeneous Data Layout

The purpose of this experiment is to evaluate the performance
improvement contributed by heterogeneous data layout design. For
the baseline homogeneous data layout, both 32-bit weight data and
4-bit weight data are stored in NAND flash. We use the Transformer-
W268K benchmark with different candidate ratio settings: 5%, 10%,
15% and 20% to implement the experiment. The speedup results are
shown in Fig. 10. When the candidate ratio is 5%, the heterogeneous
design can achieve 1.73x speedup over the homogeneous one. On
average, our heterogeneous data layout design can achieve 1.43x
speedup than the homogeneous baseline, under these 4 practical
candidate ratio settings.

The speedup of heterogeneous design comes from the fact that
in the heterogeneous scenario, the data transfer processes of 4-bit
weight data and 32-bit weight data are completely separated. All
the channel level bandwidth is utilized for the 32-bit weight data
transfer and extra DRAM bandwidth is utilized to transfer 4-bit
weight data. In this way, SSD’s internal bandwidth is further utilized
and the data transfer interference between 4-bit and 32-bit weight
data is avoided.

6.6 Evaluation for Learning-based Adaptive
Interleaving

Fig. 11 shows the data access pattern comparison between the
uniform interleaving method and the learning-based adaptive in-
terleaving method. Here we test these two methods on one specific
32-bit weight data tile in GNMT-E32K benchmark with 10% can-
didate ratio. The result shows that our learning-based adaptive
interleaving method can achieve a more balanced data access pat-
tern, which means more balanced workload in each NAND flash
channel.

Fig. 12 shows the performance comparison of the three differ-
ent storing strategies mentioned in Section 5 on four benchmarks.
On average, our proposed learning-based adaptive interleaving
method can achieve 1.43x performance improvement over the uni-
form interleaving method and 7.57x performance improvement
over the sequential storing method. The significant improvement
comes from the fact that our learning-based interleaving method
can achieve better channel level parallelism than the sequential
storing method, in which only one channel is accessed each time.
Besides, the more balanced channel access pattern of learning-based
interleaving efficiently improves the channel bandwidth utilization,
leading to performance improvement over uniform interleaving.



ECSSD: Hardware/Data Layout Co-Designed In-Storage-Computing Architecture for Extreme Classification

10

20%

15%

10%

5%

Flash Channel Access Rat

0%

Learning-based Adaptive Interleaving

Uniform Interleaving

Figure 11: Flash channel access patterns of uniform inter-
leaving method and learning-based interleaving method.

| = Sequential Storing = Uniform Interleaving = Learning-based Adaptive Interleaving |

8

Performance
N Ao

o

GNMT-E32K LSTM-W33K Transformer-W267K ~ XMLCNN-A670K
Figure 12: Performance comparison of sequential storing,
uniform interleaving and learning-based adaptive interleav-

ing method.

6.7 Comparison with Other Architectures

Baselines. GenStore [25] is a famous in-storage-computing archi-
tecture for private information retrieval. It leverages the accelera-
tors inserted into SSD to accelerate query processing. Especially,
there is a proprietary accelerator for each channel. Thus, for an
8-channel SSD, there are totally 8 channel-level accelerators and
each of them works independently without inter-channel commu-
nication. SmartSSD platform [17, 38, 39] is a computational storage
system with programmable acceleration ability that integrates Xil-
inx’s FPGA near Samsung’s SSD. The FPGA is connected to the
SSD through a 3GB/s PCle switch.

We comprehensively compare our ECSSD with 8 baselines includ-
ing CPU-based baselines, GenStore-like baselines and SmartSSD-
based baselines. Condisering Samsung and Xilinx would further
equip their following SmartSSD products with higher bandwidth,
here we also build simulation baselines SmartSSD-H-N and SmartSSD-
H-AP with higher 6GB/s bandwidth between FPGA and SSD for
bandwidth sensitivity study. For a fair comparison, we construct our
ECSSD and the two Genstore-like baselines with almost the same
area for computing logic under 28nm technology. The construction
details of all the baselines are indicated below.

CPU-N & CPU-AP. The CPU baselines are based on the Intel
Xeon Silver 4110 CPU. The CPU-N is a naive baseline without the
approximate screening algorithm. The CPU-AP is equipped with
the approximate screening algorithm.

GenStore-N & GenStore-AP. The GenStore-AP/GenStore-N is
an in-storage-computing baseline with/without the approximate
screening algorithm. For both GenStore-N and GenStore-AP, sepa-
rated naive channel-level FP32 accelerators are equipped for each
flash channel and all the data is stored in the 8 flash channels
uniformly. GenStore-AP has an extra SSD-level INT4 accelerator.

SmartSSD-N & SmartSSD-H-N. The SmartSSD-N and SmartSSD-
H-N are naive near-storage-computing baselines without the ap-
proximate screening algorithm. For both of them, the computational

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

" uCPU-N ® SmartSSD-N GenStore-N mSmartSSD-H-N = CPU-AP
% SmartSSD-AP = GenStore-AP = SmartSSD-H-AP_ = ECSSD
g 40
S
£t 30
o
a
° 20
c
?
2 10
°
5o .
XMLCNN-S10M XMLCNN-S50M XMLCNN-S100M Geomean

Figure 13: End-to-end performance comparison with other
architectures.

resource on the equipped FPGA is configured as a naive FP32 ac-
celerator.

SmartSSD-AP & SmartSSD-H-AP. For both SmartSSD-AP and
SmartSSD-H-AP, the approximate screening algorithm is equipped
and the computational resource on FPGA is configured as an INT4
accelerator and a naive FP32 accelerator.

Comparison Results and Analysis. As shown in Fig. 13, we
run three large-scale extreme classification benchmarks for the
nine architectures. On average, our ECSSD achieves 49.87x, 37.83x,
24.51x, 19.11x, 8.22x, 6.28%, 4.05x and 3.24x performance improve-
ment over CPU-N, SmartSSD-N, GenStore-N, SmartSSD-H-N, CPU-
AP, SmartSSD-AP, GenStore-AP and SmartSSD-H-AP respectively.

Compared with our in-storage-computing ECSSD, the perfor-
mance of CPU-N and CPU-AP is severely bounded by the low SSD
1/0 bandwidth, suffering a huge amount of lengthy data movement
from SSD storage to main memory and later to the caches and
computing units in CPU cores.

Compared with SmartSSD-N, SmartSSD-H-N and GenStore-N,
the benefits of our ECSSD mainly come from three points. First,
the three baselines do not adopt the approximate screening algo-
rithm to reduce the amount of floating-point computation. Second,
the performance of the naive FP MAC circuit in GenStore-N is
lower than the performance of the alignment-free MAC circuit
in our ECSSD. Third, although the computational performance in
SmartSSD-N is powerful enough, the bandwidth between its SSD
and FPGA restricts the overall performance.

Compared with SmartSSD-AP, SmartSSD-H-AP and GenStore-
AP, the benefits of our ECSSD are attributed to multiple facts. First,
the uniform interleaving method of the GenStore-AP causes the
imbalanced channel access pattern in SSD, which lowers the chan-
nel bandwidth utilization and slows down the total data transfer
speed. Second, the random floating-point data access in SmartSSD-
AP/SmartSSD-H-AP also slows down the overall performance. With
higher bandwidth in SmartSSD-H-AP, the slow data transfer issue
in SmartSSD-AP is alleviated, showing the powerful potential of
future upgraded SmartSSD products. Third, the homogeneous data
layout in the three baselines causes data transfer interference be-
tween 4-bit and 32-bit weight data, causing longer processing time.

7 DISCUSSION
7.1 Scalability

Scaling up. In this subparagraph, we mainly discuss the scalabil-
ity of the DRAM capacity in a single ECSSD. To avoid transfer
interference between 4-bit and 32-bit data, ECSSD’s DRAM is uti-
lized to hold the 4-bit weight matrix. We comprehensively study



ISCA ’23, June 17-21, 2023, Orlando, FL, USA

the size of popular extreme classification layers [21, 37, 42] and
design the DRAM with 16GB capacity so that the DRAM can hold
the 12.8GB 4-bit weight matrix of the large 100-million-category
scenario. Here we also analyze the scenarios with 8GB or 32GB
DRAM capacity. For the 8GB DRAM capacity scenario, the max-
imum scale of the extreme classification that can be deployed in
a single ECSSD would be severely bound to 50-million categories,
limiting the usability of ECSSD for popular extreme classification
problems. For the 32GB DRAM capacity scenario, the maximum
scale of the deployed extreme classification in a single ECSSD could
be 200-million categories. However, the larger DRAM would cause
at least 40% increase in power consumption, which is not a triv-
ial cost for ECSSD. Overall, 16GB DRAM capacity in ECSSD is a
sweet-point design choice that balances both hardware cost and
maximum classification scale supported.

Scaling out. As the scale of extreme classification problem keeps
growing in the real world, we also propose a scale-out method that
we would partition the larger classification layer into multiple
ECSSDs and do the execution in parallel. For example, when the
category size goes up to 500 million, the 4/32-bit weight matrix
would be 64GB/2TB respectively, which far exceeds the capacity
of the server main memory. With our scale-out ECSSD system,
the huge classification layer will be partitioned into 5 ECSSDs for
parallel execution so that in each ECSSD the DRAM is still enough
to hold the 4-bit weight data. In this way, we only need to extend
the number of cost-efficient ECSSDs in one server system instead
of adding more expensive server systems.

7.2 Comparison with GPU

GPUs are widely used to accelerate compute-intensive NN tasks.
However, for the data-intensive extreme classification problem,
even if we use a high-end NVIDIA RTX 3090 GPU [35], its 24GB
embedded memory is far from enough to hold all the parameters
of the huge classification layer. Its performance has to suffer the
lengthy data movement from the storage, similar to the CPU. Even
one single RTX 3090 consumes 32x higher power than our ECSSD
scheme. If we want to completely eliminate the slow data movement
from storage, multiple GPUs with the model partition method are
needed to hold all the model parameters and execute in parallel.
However, even for the popular 100-million-category classification
problem, at least 18 RTX 3090 GPUs are needed, causing at least
573x higher power consumption than our ECSSD scheme. Only if
both the performance requirements and cost budget are extremely
high, it is suitable to adopt the multiple-GPU scheme for extreme
classification. Otherwise, our ECSSD scheme is a better choice with
much higher power efficiency.

7.3 Comparison with Near-DRAM-Computing
ENMC

ENMC [22] is a near-DRAM-computing accelerator that adopts
approximate screening algorithm to implement extreme classifica-
tion application. The ENMC accelerator circuit is placed at each
rank of the DRAM to utilize the high rank-level bandwidth. Con-
sisting of totally 64 DRAM ranks, the ENMC is a huge and ex-
pensive 512GB near-DRAM-computing system with 800 GFLOPS
peak performance. Due to the intrinsic differences between flash

Siqi Li, Fengbin Tu, Liu Liu, Jilan Lin, Zheng Wang, Yangwook Kang, Yufei Ding, and Yuan Xie

media and DRAM media, ENMC can achieve higher peak perfor-
mance than our single ECSSD. However, our ECSSD can achieve
much better energy efficiency and cost efficiency than ENMC.
Behind ENMC’s high peak performance and high DRAM capac-
ity, ENMC at least costs 154x larger 28nm fabricated chip area,
19.1x higher power and 10x more expensive memory infrastruc-
ture than our ECSSD[1, 30-32]. In detail, our ECSSD achieves
0.018GFLOPS/dollar and 4.55GFLOPS/W while ENMC only achieves
0.002GFLOPS/dollar and 3.805GFLOPS/W. With 8.87x higher cost
efficiency and 1.19x higher energy efficiency, our ECSSD is more
suitable for power-limited or money-limited scenarios. Besides,
when the scale and footprint of the extreme classification keep
growing, it is hard to continue extending ENMC’s huge 512GB
DRAM capacity to hold more parameters and its end-to-end perfor-
mance would be severely degraded by the lengthy data movement
from storage to ENMC. However, our ECSSD scheme can still be
scaled out efficiently without performance degradation, which has
been discussed in the scaling out part of Section 7.1.

8 RELATED WORK

In-Storage-Computing Systems. As the memory footprint of
many data-intensive applications keeps growing, emerging in-storage
computing becomes a suitable solution due to SSD’s high capacity
and high internal bandwidth.[19, 20, 25, 44, 52]. Our ECSSD is the
first in-storage-computing system for the extreme classification
problem which explores deeper on data access patterns, channel
level bandwidth utilization, and how to improve the computational
ability under limited internal overhead budget.

Flash-centric accelerator. Behemoth[12] is an NLP training
accelerator that tightly couples its novel flash memory system with
powerful computational cores. To achieve the 840TFLOPS high
peak performance, Behemoth builds 524288 computational units
with high hardware cost and modifies the original SSD architec-
ture heavily for higher bandwidth, such as much more parallel
flash channels than common SSD and simplified hardware-based
memory controller instead of the original FTL in SSD. Compared
with Behemoth, we adopt different design philosophies: we design
our ECSSD based on the conventional SSD architecture with as
lightweight modifications as possible. Essentially, Behemoth and
ECSSD are suitable for different usage scenarios. ECSSD mainly
targets cost-limited and power-limited scenarios. And Behemoth
is good for scenarios with high cost budgets and extremely high
performance requirements.

9 CONCLUSION

In this work, we employ a hardware/data layout co-design approach
to propose the in-storage-computing architecture ECSSD that ad-
dresses the extreme classification problem. We believe that ECSSD
can motivate more innovations and thinkings for improving the
computational ability and internal bandwidth utilization of future
in-storage-computing systems.

ACKNOWLEDGMENTS

We thank our shepherd and all the reviewers for the constructive
comments. This work was supported in part by Samsung Semicon-
ductor, Inc.



ECSSD: Hardware/Data Layout Co-Designed In-Storage-Computing Architecture for Extreme Classification

REFERENCES

(1]

—
—

[12]

[13]

[14

[15]

[16]

[17]

(18

[19

[20

[21]

Amazon. 2022. Price of typical 512GB DDR4 DRAM memory. https://www.
amazon.com/512GB-8x64GB- 288-Pin-Reduced-Memory/dp/B07X22FZ]]

ARM. 2011. ARM R5 Processor. https://developer.arm.com/Processors/Cortex-R5
ARM. 2022. ARM SSD Controller Solutions. https://www.arm.com/solutions/
storage

Rahul Chauhan, Kamal Kumar Ghanshala, and R.C Joshi. 2018. Convolutional
Neural Network (CNN) for Image Detection and Recognition. In 2018 First Inter-
national Conference on Secure Cyber Computing and Communication (ICSCCC).
278-282. https://doi.org/10.1109/ICSCCC.2018.8703316

Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny
Krashinsky. 2021. NVIDIA A100 Tensor Core GPU: Performance and Innovation.
IEEE Micro 41, 2 (2021), 29-35. https://doi.org/10.1109/MM.2021.3061394
Alexis Conneau, Holger Schwenk, Loic Barrault, and Yann Lecun. 2016. Very
deep convolutional networks for natural language processing. arXiv preprint
arXiv:1606.01781 2, 1 (2016).

Michael Cornwell. 2012. Anatomy of a solid-state drive. Commun. ACM 55, 12
(2012), 59-63.

Wu Hao, Rongfang Bie, Junqi Guo, Xin Meng, and Shenling Wang. 2018. Opti-
mized CNN Based Image Recognition Through Target Region Selection. Optik
156 (2018), 772-777. https://doi.org/10.1016/j.ijleo.2017.11.153

Ali Ibrahim, Mario Osta, Mohamad Alameh, Moustafa Saleh, Hussein Chible, and
Maurizio Valle. 2018. Approximate computing methods for embedded machine
learning. In 2018 25th IEEE International Conference on Electronics, Circuits and
Systems (ICECS). IEEE, 845-848.

Mohsen Imani, Ricardo Garcia, Saransh Gupta, and Tajana Rosing. 2018. Rmac:
Runtime configurable floating point multiplier for approximate computing. In
Proceedings of the International Symposium on Low Power Electronics and Design.
1-6.

Mingu Kang, Sujan K Gonugondla, and Naresh R Shanbhag. 2020. Deep in-
memory architectures in SRAM: An analog approach to approximate computing.
Proc. IEEE 108, 12 (2020), 2251-2275.

Shine Kim, Yunho Jin, Gina Sohn, Jonghyun Bae, Tae Jun Ham, and Jae W. Lee.
2021. Behemoth: A Flash-centric Training Accelerator for Extreme-scale DNNs.
In 19th USENIX Conference on File and Storage Technologies (FAST 21). USENIX
Association, 371-385. https://www.usenix.org/conference/fast21/presentation/
kim

Akshay Kulkarni and Adarsha Shivananda. 2021. Deep Learning for NLP. Apress,
Berkeley, CA, 213-262. https://doi.org/10.1007/978-1-4842-7351-7_6

Maksim Lapin, Matthias Hein, and Bernt Schiele. 2017. Analysis and optimiza-
tion of loss functions for multiclass, top-k, and multilabel classification. IEEE
transactions on pattern analysis and machine intelligence 40, 7 (2017), 1533-1554.
Hyeon Gyu Lee, Juwon Lee, Minwook Kim, Donghwa Shin, Sungjin Lee, Bryan S.
Kim, Eunji Lee, and Sang Lyul Min. 2021. SpartanSSD: a Reliable SSD under
Capacitance Constraints. In 2021 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED). 1-6. https://doi.org/10.1109/ISLPED52811.
2021.9502476

Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoorthy, Xi-
aodong Zhao, and Yang Seok Ki. 2020. SmartSSD: FPGA Accelerated Near-Storage
Data Analytics on SSD. IEEE Computer Architecture Letters 19, 2 (2020), 110-113.
https://doi.org/10.1109/LCA.2020.3009347

Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoorthy, Xi-
aodong Zhao, and Yang Seok Ki. 2020. SmartSSD: FPGA Accelerated Near-Storage
Data Analytics on SSD. IEEE Computer Architecture Letters 19, 2 (2020), 110-113.
https://doi.org/10.1109/LCA.2020.3009347

Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joonhong Park, Gimoon Hong,
Dongyoon Ka, Kyudong Hwang, Jeongje Park, Kyeongpil Kang, Jungyeon Kim,
Junyeol Jeon, Nahsung Kim, Yongkee Kwon, Kornijcuk Vladimir, Woojae Shin,
Jongsoon Won, Minkyu Lee, Hyunha Joo, Haerang Choi, Jaewook Lee, Donguc
Ko, Younggun Jun, Keewon Cho, Ilwoong Kim, Choungki Song, Chunseok Jeong,
Daehan Kwon, Jieun Jang, Il Park, Junhyun Chun, and Joohwan Cho. 2022. A
lynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting
1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning
Applications. In 2022 IEEE International Solid- State Circuits Conference (ISSCC),
Vol. 65. 1-3. https://doi.org/10.1109/ISSCC42614.2022.9731711

Yunjae Lee, Jinha Chung, and Minsoo Rhu. 2022. SmartSAGE: Training Large-
Scale Graph Neural Networks Using in-Storage Processing Architectures. In
Proceedings of the 49th Annual International Symposium on Computer Architecture
(New York, New York) (ISCA °22). Association for Computing Machinery, New
York, NY, USA, 932-945. https://doi.org/10.1145/3470496.3527391

Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu, Trinabh
Gupta, Yufei Ding, and Yuan Xie. 2022. INSPIRE: In-Storage Private Information
Retrieval via Protocol and Architecture Co-Design. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (New York, New York)
(ISCA °22). Association for Computing Machinery, New York, NY, USA, 102-115.

https://doi.org/10.1145/3470496.3527433
Jingzhou Liu, Wei Cheng Chang, Yuexin Wu, and Yiming Yang. 2017. Deep

learning for extreme multi-label text classification. In SIGIR 2017 - Proceedings

[22

[23

[24

[25]

Iy
S

[27

[28

[29

[30

w
—

[32

[33

(34]

(35]

[36]

[37

&
&,

[39

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. Association for Computing Machinery, Inc, New York, NY,
USA, 115-124. https://doi.org/10.1145/3077136.3080834

Liu Liu, Jilan Lin, Zheng Qu, Yufei Ding, and Yuan Xie. 2021. ENMC: Extreme
Near-Memory Classification via Approximate Screening. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (Virtual Event,
Greece) (MICRO ’21). Association for Computing Machinery, New York, NY, USA,
1309-1322. https://doi.org/10.1145/3466752.3480090

Liu Liu, Zheng Qu, Lei Deng, Fengbin Tu, Shuangchen Li, Xing Hu, Zhenyu
Gu, Yufei Ding, and Yuan Xie. 2020. DUET: Boosting Deep Neural Network
Efficiency on Dual-Module Architecture. In 2020 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). 738-750. https://doi.org/10.
1109/MICR0O50266.2020.00066

Sihang Liu, Aasheesh Kolli, Jinglei Ren, and Samira Khan. 2018. Crash Consistency
in Encrypted Non-volatile Main Memory Systems. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 310-323. https:
//doi.org/10.1109/HPCA.2018.00035

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Ol-
gun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almad-
houn Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser,
and Onur Mutlu. 2022. GenStore: A High-Performance in-Storage Processing Sys-
tem for Genome Sequence Analysis. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (Lausanne, Switzerland) (ASPLOS 2022). Association for Computing Ma-
chinery, New York, NY, USA, 635-654. https://doi.org/10.1145/3503222.3507702
MARVELL. 2022. MARVELL SSD Controller Solutions. https://www.arm.com/
solutions/storage

Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics:
understanding rating dimensions with review text. In Proceedings of the 7th ACM
conference on Recommender systems. 165-172.

Tharun Kumar Reddy Medini, Qixuan Huang, Yigiu Wang, Vijai Mohan, and
Anshumali Shrivastava. 2019. Extreme classification in log memory using count-
min sketch: A case study of amazon search with 50m products. Advances in
Neural Information Processing Systems 32 (2019).

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2017. Regularizing
and optimizing LSTM language models. arXiv preprint arXiv:1708.02182 (2017).
MicroCenter. 2023. Inland Platinum 4TB SSD. https://www.microcenter.com/
product/627020/inland- platinum- 4tb-ssd-m2-2280-nvme-pcie-gen-30x4-3d-
nand-internal-solid- state-drive,-pcie-express-31-and-nvme- 13- compatible, -
ultimate-gaming-solutio

Micron. 2023. How Much Power Does Memory Use? https://www.crucial.com/
support/articles-faq-memory/how-much-power-does-memory-use

MUSE. 2023. 28nm chip fabrication cost. https://www.musesemi.com/shared-
block-tapeout-pricing

Kenji Nakashima, Joichiro Kon, and Saneyasu Yamaguchi. 2018. I/O Performance
Improvement of Secure Big Data Analyses with Application Support on SSD
Cache. In Proceedings of the 12th International Conference on Ubiquitous Infor-
mation Management and Communication (Langkawi, Malaysia) (IMCOM ’18).
Association for Computing Machinery, New York, NY, USA, Article 90, 7 pages.
https://doi.org/10.1145/3164541.3164560

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean
Whu, Alisson G Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii,
Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,
Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong,
and Misha Smelyanskiy. 2019. Deep learning recommendation model for person-
alization and recommendation systems. arXiv preprint arXiv:1906.00091 (2019).
NVIDIA. 2022. GeForce RTX 3090 Family. https://www.nvidia.com/en-us/
geforce/graphics-cards/30-series/rtx-3090-3090ti/

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems 32 (2019).

Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik
Varma. 2018. Parabel: Partitioned label trees for extreme classification with
application to dynamic search advertising. In Proceedings of the 2018 World Wide
Web Conference. 993-1002.

Sahand Salamat, Armin Haj Aboutalebi, Behnam Khaleghi, Joo Hwan Lee,
Yang Seok Ki, and Tajana Rosing. 2021. NASCENT: Near-Storage Acceler-
ation of Database Sort on SmartSSD. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (Virtual Event, USA) (FPGA
’21). Association for Computing Machinery, New York, NY, USA, 262-272.
https://doi.org/10.1145/3431920.3439298

Sahand Salamat, Hui Zhang, Yang Seok Ki, and Tajana Rosing. 2022. NASCENT2:
Generic Near-Storage Sort Accelerator for Data Analytics on SmartSSD. ACM
Trans. Reconfigurable Technol. Syst. 15, 2, Article 16 (jan 2022), 29 pages. https:


https://www.amazon.com/512GB-8x64GB-288-Pin-Reduced-Memory/dp/B07X22FZJJ
https://www.amazon.com/512GB-8x64GB-288-Pin-Reduced-Memory/dp/B07X22FZJJ
https://developer.arm.com/Processors/Cortex-R5
https://www.arm.com/solutions/storage
https://www.arm.com/solutions/storage
https://doi.org/10.1109/ICSCCC.2018.8703316
https://doi.org/10.1109/MM.2021.3061394
https://doi.org/10.1016/j.ijleo.2017.11.153
https://www.usenix.org/conference/fast21/presentation/kim
https://www.usenix.org/conference/fast21/presentation/kim
https://doi.org/10.1007/978-1-4842-7351-7_6
https://doi.org/10.1109/ISLPED52811.2021.9502476
https://doi.org/10.1109/ISLPED52811.2021.9502476
https://doi.org/10.1109/LCA.2020.3009347
https://doi.org/10.1109/LCA.2020.3009347
https://doi.org/10.1109/ISSCC42614.2022.9731711
https://doi.org/10.1145/3470496.3527391
https://doi.org/10.1145/3470496.3527433
https://doi.org/10.1145/3077136.3080834
https://doi.org/10.1145/3466752.3480090
https://doi.org/10.1109/MICRO50266.2020.00066
https://doi.org/10.1109/MICRO50266.2020.00066
https://doi.org/10.1109/HPCA.2018.00035
https://doi.org/10.1109/HPCA.2018.00035
https://doi.org/10.1145/3503222.3507702
https://www.arm.com/solutions/storage
https://www.arm.com/solutions/storage
https://www.microcenter.com/product/627020/inland-platinum-4tb-ssd-m2-2280-nvme-pcie-gen-30x4-3d-nand-internal-solid-state-drive,-pcie-express-31-and-nvme-13-compatible,-ultimate-gaming-solutio
https://www.microcenter.com/product/627020/inland-platinum-4tb-ssd-m2-2280-nvme-pcie-gen-30x4-3d-nand-internal-solid-state-drive,-pcie-express-31-and-nvme-13-compatible,-ultimate-gaming-solutio
https://www.microcenter.com/product/627020/inland-platinum-4tb-ssd-m2-2280-nvme-pcie-gen-30x4-3d-nand-internal-solid-state-drive,-pcie-express-31-and-nvme-13-compatible,-ultimate-gaming-solutio
https://www.microcenter.com/product/627020/inland-platinum-4tb-ssd-m2-2280-nvme-pcie-gen-30x4-3d-nand-internal-solid-state-drive,-pcie-express-31-and-nvme-13-compatible,-ultimate-gaming-solutio
https://www.crucial.com/support/articles-faq-memory/how-much-power-does-memory-use
https://www.crucial.com/support/articles-faq-memory/how-much-power-does-memory-use
https://www.musesemi.com/shared-block-tapeout-pricing
https://www.musesemi.com/shared-block-tapeout-pricing
https://doi.org/10.1145/3164541.3164560
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://doi.org/10.1145/3431920.3439298
https://doi.org/10.1145/3472769
https://doi.org/10.1145/3472769

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

//doi.org/10.1145/3472769

Sanchari Sen and Anand Raghunathan. 2018. Approximate Computing for Long
Short Term Memory (LSTM) Neural Networks. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37, 11 (2018), 2266-2276. https:
//doi.org/10.1109/TCAD.2018.2858362

Lidan Shang, Qiushi Yang, Jianing Wang, Shubin Li, and Weimin Lei. 2018. De-
tection of rail surface defects based on CNN image recognition and classification.
In 2018 20th International Conference on Advanced Communication Technology
(ICACT). 45-51. https://doi.org/10.23919/ICACT.2018.8323642

Kyuhong Shim, Minjae Lee, Iksoo Choi, Yoonho Boo, and Wonyong Sung. 2017.
SVD-softmax: Fast softmax approximation on large vocabulary neural networks.
In Neural Information Processing Systems (NeurIPS). 5464-5474.

Yong-Goo Shin, Yoon-Jae Yeo, Min-Cheol Sagong, Seo-Won Ji, and Sung-Jea Ko.
2019. Deep fashion recommendation system with style feature decomposition.
In 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin).
IEEE, 301-305.

Xuan Sun, Hu Wan, Qiao Li, Chia-Lin Yang, Tei-Wei Kuo, and Chun Jason Xue.
2022. RM-SSD: In-Storage Computing for Large-Scale Recommendation Inference.
In 2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). 1056-1070. https://doi.org/10.1109/HPCA53966.2022.00081

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. Advances in neural information processing systems 27
(2014).

Arash Tavakkol, Juan Gémez-Luna, Mohammad Sadrosadati, Saugata Ghose,
and Onur Mutlu. 2018. MQSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices. In 16th USENIX Conference on File and Storage
Technologies (FAST 18). 49-66.

Devesh Tiwari, Sudharshan S. Vazhkudai, Youngjae Kim, Xiaosong Ma, Si-
mona Boboila, and Peter J. Desnoyers. 2012. Reducing Data Movement Costs
Using Energy-Efficient, Active Computation on SSD. In 2012 Workshop on
Power-Aware Computing and Systems (HotPower 12). USENIX Association, Holly-
wood, CA. https://www.usenix.org/conference/hotpower12/workshop-program/
presentation/Tiwari

Swagath Venkataramani, Xiao Sun, Naigang Wang, Chia-Yu Chen, Jungwook
Choi, Mingu Kang, Ankur Agarwal, Jinwook Oh, Shubham Jain, Tina Babinsky,
Nianzheng Cao, Thomas Fox, Bruce Fleischer, George Gristede, Michael Guillorn,
Howard Haynie, Hiroshi Inoue, Kazuaki Ishizaki, Michael Klaiber, Shih-Hsien
Lo, Gary Maier, Silvia Mueller, Michael Scheuermann, Eri Ogawa, Marcel Schaal,
Mauricio Serrano, Joel Silberman, Christos Vezyrtzis, Wei Wang, Fanchieh Yee,
Jintao Zhang, Matthew Ziegler, Ching Zhou, Moriyoshi Ohara, Pong-Fei Lu,
Brian Curran, Sunil Shukla, Vijayalakshmi Srinivasan, Leland Chang, and Kailash

Siqi Li, Fengbin Tu, Liu Liu, Jilan Lin, Zheng Wang, Yangwook Kang, Yufei Ding, and Yuan Xie

Gopalakrishnan. 2020. Efficient AI System Design With Cross-Layer Approximate
Computing. Proc. IEEE 108, 12 (2020), 2232-2250. https://doi.org/10.1109/JPROC.
2020.3029453

Dewei Wang, Chuan-Tung Lin, Gregory K. Chen, Phil Knag, Ram K. Krish-
namurthy, and Mingoo Seok. 2022. DIMC: 2219TOPS/W 2569F2/b Digital In-
Memory Computing Macro in 28nm Based on Approximate Arithmetic Hardware.
In 2022 IEEE International Solid- State Circuits Conference (ISSCC), Vol. 65. 266-268.
https://doi.org/10.1109/ISSCC42614.2022.9731659

Jianguo Wang, Dongchul Park, Yang-Suk Kee, Yannis Papakonstantinou, and
Steven Swanson. 2016. SSD In-Storage Computing for List Intersection. In
Proceedings of the 12th International Workshop on Data Management on New
Hardware (San Francisco, California) (DaMoN ’16). Association for Computing
Machinery, New York, NY, USA, Article 4, 7 pages. https://doi.org/10.1145/
2933349.2933353

Peng Wen, Weihua Yuan, Qianqian Qin, Sheng Sang, and Zhijun Zhang. 2021.
Neural attention model for recommendation based on factorization machines.
Applied Intelligence 51, 4 (2021), 1829-1844.

Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu,
David Brooks, and Gu-Yeon Wei. 2021. RecSSD: Near Data Processing for Solid
State Drive Based Recommendation Inference. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (Virtual, USA) (ASPLOS 2021). Association for Computing Ma-
chinery, New York, NY, USA, 717-729. https://doi.org/10.1145/3445814.3446763
Kan Wu, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Rathijit Sen, and
Kwanghyun Park. 2019. Exploiting Intel Optane SSD for Microsoft SQL Server.
In Proceedings of the 15th International Workshop on Data Management on New
Hardware (Amsterdam, Netherlands) (DaMoN’19). Association for Computing
Machinery, New York, NY, USA, Article 15, 3 pages. https://doi.org/10.1145/
3329785.3329916

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974-983.

Hamoud Younes, Ali Ibrahim, Mostafa Rizk, and Maurizio Valle. 2019. Algorithmic
level approximate computing for machine learning classifiers. In 2019 26th IEEE
International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 113—
114.

Hang Zhuang, Chao Wang, Changlong Li, Qingfeng Wang, and Xuehai Zhou.
2017. Natural language processing service based on stroke-level convolutional
networks for Chinese text classification. In 2017 IEEE international conference on
web services (ICWS). IEEE, 404-411.


https://doi.org/10.1145/3472769
https://doi.org/10.1109/TCAD.2018.2858362
https://doi.org/10.1109/TCAD.2018.2858362
https://doi.org/10.23919/ICACT.2018.8323642
https://doi.org/10.1109/HPCA53966.2022.00081
https://www.usenix.org/conference/hotpower12/workshop-program/presentation/Tiwari
https://www.usenix.org/conference/hotpower12/workshop-program/presentation/Tiwari
https://doi.org/10.1109/JPROC.2020.3029453
https://doi.org/10.1109/JPROC.2020.3029453
https://doi.org/10.1109/ISSCC42614.2022.9731659
https://doi.org/10.1145/2933349.2933353
https://doi.org/10.1145/2933349.2933353
https://doi.org/10.1145/3445814.3446763
https://doi.org/10.1145/3329785.3329916
https://doi.org/10.1145/3329785.3329916

	Abstract
	1 Introduction
	2 Background
	2.1 Approximate Screening Algorithm
	2.2 SSD Organization

	3 Motivation
	3.1 Limitation of Approximate Screening Algorithm
	3.2 Hardware Opportunity
	3.3 Limitation of In-Storage-Computing Scheme

	4 Architecture and circuit design
	4.1 Overall Architecture
	4.2 Alignment-free floating-point MAC Circuit 
	4.3 Heterogeneous Data Layout Design
	4.4 Software Integration
	4.5 Workflow

	5 Learning-based adaptive interleaving framework
	5.1 Sequential Storing
	5.2 Uniform Interleaving
	5.3 Learning-based Adaptive Interleaving

	6 Evaluation
	6.1 Methodology
	6.2 Evaluation for Area and Power Consumption
	6.3 Evaluation for End-to-end Performance Improvement
	6.4 Evaluation for Alignment-free FP MAC Circuit
	6.5 Evaluation for Heterogeneous Data Layout
	6.6 Evaluation for Learning-based Adaptive Interleaving
	6.7 Comparison with Other Architectures

	7 Discussion
	7.1 Scalability
	7.2 Comparison with GPU
	7.3 Comparison with Near-DRAM-Computing ENMC

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

