
Understanding and Mitigating Hardware Failures in Deep
Learning Training Accelerator Systems

Yi He
University of Chicago

Chciago, IL, USA
yiizy@uchicago.edu

Mike Hutton
Google

Sunnyvale, CA, USA
mdhutton@google.com

Steven Chan
Google

Sunnyvale, CA, USA
scchan@google.com

Robert de Gruijl
Google

Sunnyvale, CA, USA
rdegruijl@google.com

Rama Govindaraju
Google

Sunnyvale, CA, USA
govindaraju@google.com

Nishant Patil
Google

Sunnyvale, CA, USA
nishantpatil@google.com

Yanjing Li
University of Chicago

Chciago, IL, USA
yanjingl@uchicago.edu

ABSTRACT
Deep neural network (DNN) training workloads are increasingly
susceptible to hardware failures in datacenters. For example, Google
experienced “mysterious, difficult to identify problems" in their TPU
training systems due to hardware failures [7]. Although these par-
ticular problems were subsequently corrected through significant
efforts, they have raised the urgency of addressing the growing
challenges emerging from hardware failures impacting many DNN
training workloads.

In this paper, we present the first in-depth resilience study target-
ing DNN training workloads and hardware failures that occur in the
logic portion of deep learning (DL) accelerator systems. We devel-
oped a fault injection framework to accurately simulate the effects
of various hardware failures based on the design of an industrial
DL accelerator, and conducted > 2.9𝑀 experiments (> 490𝐾 node-
hours) using representative workloads. Based on our experiments,
we present (1) a comprehensive characterization of hardware fail-
ure effects, (2) the fundamental understanding on how hardware
failures propagate in training devices and interact with training
workloads, and (3) the necessary conditions that must be satisfied
for these failures to eventually cause unexpected training outcomes.

The insights obtained from our study enabled us to develop ultra-
light-weight software techniques to mitigate hardware failures.
Our techniques require 24-32 lines of code change, and introduce
0.003% − 0.025% performance overhead for various representative
workloads. Our observations and techniques are generally applica-
ble to mitigate various hardware failures in DL training accelerator
systems.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA.
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0095-8/23/06.
https://doi.org/10.1145/3579371.3589105

KEYWORDS
Deep learning accelerator systems, neural network training, re-
silience, reliability, hardware failures, silent data curroption

ACM Reference Format:
Yi He, Mike Hutton, Steven Chan, Robert de Gruijl, Rama Govindaraju,
Nishant Patil, and Yanjing Li. 2023. Understanding and Mitigating Hardware
Failures in Deep Learning Training Accelerator Systems. In Proceedings of
the 50th Annual International Symposium on Computer Architecture (ISCA
’23), June 17–21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3579371.3589105

1 INTRODUCTION
Hardware failures are a growing challenge in datacenters, as evi-
denced by the increasing number of hardware failures that have
recently been reported by Google, Facebook, and more [7, 19, 20, 39,
55, 77]. The hardware failure rate is high – a few cores per several
thousand server machines [20, 39]. Moreover, a wide variety of
hardware failures have been reported, including transient failures
such as soft errors and dynamic variations, and permanent failures
such as early life failures, manufacturing defects that escape testing,
and circuit aging/degradation [19, 20, 39, 55, 77].

As deep neural network (DNN) training workloads are becom-
ing more and more prevalent in datacenters [28, 32, 62], they are
increasingly susceptible to hardware failures. For example, through
significant efforts, Google recognized and corrected multiple in-
stances of hardware failures during the execution of DNN training
workloads on TPUs, with a failure rate similar to previously re-
ported numbers [20, 39]. These hardware failures resulted in not
only easy-to-detect unexpected outcomes such as NaN values that
corrupted the training process, but also “mysterious, difficult to
identify problems" [7]. Due to the widespread use of ECCs (Error
Correction Codes) in both on-chip and off-chip memories, these
hardware failures predominantly occurred in the logic portion of
these TPU systems. They mostly exhibited transient effects – some
could not be reproduced at all, while others could only be repro-
duced intermittently (e.g., when running the same workload 10

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3579371.3589105
https://doi.org/10.1145/3579371.3589105
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589105&domain=pdf&date_stamp=2023-06-17

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. He, et al.

times on a faulty machine, the unexpected outcome was only ob-
served 3 times), and were root-caused to manufacturing defects,
circuit degradation, voltage variations, environmental conditions,
and soft errors, among others.

We have learned several lessons from these reported experiences.
First, as many logic hardware failures that pose real threats have
been found in datacenter systems, they are not rare and cannot
be ignored. Second, contrary to the common belief that hardware
failures (especially those that exhibit transient effects) can largely
be tolerated by training algorithms, we now have the evidence that
suggests otherwise. Third, when an unexpected training outcome
occurs, it is critical to determine if the issue is caused by hardware
failures or software bugs. Otherwise, significant software engineer-
ing efforts would be wasted on debugging a problem engineers
incorrectly perceive to be in their software systems. Last but not
least, although there is rich resilience literature, in practice, no solu-
tion exists to efficiently handle unexpected DNN training outcomes
caused by hardware failures (see Sec. 6) – these issues have been
termed “bugs from hell" [7], and the industry has issued urgent
call-to-action to address them [7, 20, 39].

All of these lessons point to one important realization: there is
an urgent and crucial need to devise efficient and effective hard-
ware failure mitigation techniques for DNN training workloads. In
order to create new solutions, the critical first step is to thoroughly
understand the impacts of logic hardware failures on DNN training
workloads. However, there is no such prior study in the literature.

To bridge these important knowledge gaps, we present the first
study on hardware failures in DNN training systems. We focus
on logic hardware failures that exhibit transient effects, which
predominantly occur in datacenters today [7] – in the rest of the
paper, hardware failure is used to refer to this class of failures
unless specified otherwise. Moreover, we focus on deep learning
(DL) training accelerator systems, since they are widely used and
are currently undergoing rapid growth [26, 62]. Through in-depth
analysis, we now have a comprehensive characterization of the
hardware failure effects. We also fundamentally understand how
hardware failures propagate, as well as the necessary conditions for
these failures to eventually cause unexpected outcomes. These new
insights enabled us to develop efficient hardware failure mitigation
solutions that are readily deployable in practice.

The major contributions of this paper are:
(1) We present the first in-depth study on hardware failures in
DNN training accelerator systems, which is enabled by a new
fault injection framework that accurately models the behaviors
of hardware failures. Using this framework (open-sourced [1]), we
performed > 2.9𝑀 fault injection (FI) experiments (> 490𝐾 node-
hours) in a distributed DNN training environment.
(2) Based on the experiment results, we present a complete char-
acterization of the failure behaviors. In addition to known effects
(e.g., a failure generates INFs/NaNs [7, 77]), we identified four new,
intricate outcomes (Sec. 4.1), where failures resulted in abnormal
convergence trends that persist for a long time (thousands of train-
ing iterations or more), without visible anomalies. Instances of one
of the new outcomes (SlowDegrade, see Sec. 4.1) were later observed
(and corrected) in DL training accelerator systems in datacenters.
(3) Deeper analysis led to a finding that large absolute gradient
history values in optimizers, or large absolute moving variance

values in normalization layers, are the necessary conditions for
hardware failures to generate the new unexpected training out-
comes revealed by our experiments. Moreover, these conditions
always occur within two training iterations after hardware failures
occur.
(4) Based on the necessary conditions, we devised (a) a new hard-
ware failure detection technique that checks the absolute gradient
history values and the absolute moving variance values against
their respective bounds, where the bounds can be mathematically
derived based on the properties of a given DNN training workload,
coupled with (b) light-weight re-execution of the two most recent
training iterations, which is sufficient to recover the training work-
load from hardware failures. Evaluation on Google Cloud TPUs
shows that our detection and re-execution techniques together re-
quire 24 − 32 lines of code change and introduce 0.003% − 0.025%
performance impact for various DNN training workloads.

This paper is organized as follows. Background information is
provided in Sec. 2. Our fault injection experiments and results are
presented in Sec. 3 and Sec. 4.We present newmitigation techniques
in Sec. 5, and discuss related work in Sec.6.

2 BACKGROUND
DNN training workloads are typically executed in a distributed
manner using many training devices. For example, in synchronous
distributed training [95], every device stores a separate copy of a
given DNN model, and uses one mini-batch of the training data-set
to compute a training loss through a forward pass, followed by a
backward pass where the gradients of the trainable parameters (e.g.,
weights, biases, etc.) are computed with respect to a loss function
using an optimizer. After each iteration, the weight gradients gen-
erated by all training devices are averaged (e.g., by a central server).
The average gradients are then propagated back to all training
devices to start the next iteration.

Hardware failures can pose various effects on DNN training
workloads (some examples are shown in Fig. 1). Although it might
appear that DNN training is resilient to hardware failures, industry
reports have already shown that these failures are detrimental to
training and not rare, as discussed in Sec. 1.

Some failures may be masked by hardware logic, e.g., if faulty
values are AND’ed with 0’s. They may also be masked by various
operations performed during the training process, e.g., if a faulty
value is multiplied by a 0, or is set to 0 by the activation function.
Without the above masking effects, still the final training outcome
(training/test accuracy and training time) may not be affected signif-
icantly because the training process may be able to recover from the
effects of hardware failures. This presents an opportunity: if we can
pinpoint the hardware failures that are likely to cause unexpected
outcomes, we can devise optimized mitigation solutions.

3 METHODOLOGY AND FRAMEWORK
To study the resilience of DL training accelerator systems, we
performed statistical fault injection (FI) experiments, the most
widely-used approach for analyzing hardware failure behaviors
[15–17, 46, 48, 58, 72, 78].

Existing FI methods suffer from the following limitations. Fast
FI is typically achieved by injecting faults in software [48, 49, 93].

Understanding and Mitigating Hardware Failures in Deep Learning Training Accelerator Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Figure 1: Hardware failure examples in DNN training.

However, the accuracy of software FI is low [17, 35, 69]. To achieve
high accuracy, RTL-level FI needs to be performed; however, RTL
simulation time is prohibitively long, especially for the already time-
consuming DNN training workloads. For example, using Resnet18
with the Cifar10 data-set as the DNN training workload, it would
take 46𝐾 years with 8 threads to perform 1𝑀 RTL FI experiments to
achieve high statistical significance. Our methodology and frame-
work, discussed in this section, explain how we overcame these
challenges.

3.1 Accelerator Architecture for DNN Training
Detailed hardware information (e.g., RTL) is required to obtain
accurate FI results. Although there are no DL training accelerators
with open-source access, an inference accelerator can be adopted
for training because the designs of DNN training and inference
accelerators are similar. For example, TPU v4 (training) and v4i
(inference) share the same design [45], and the same is true for
Nvidia A100 (training) and A30 (inference) [63]. The training and
inference versions differ mainly in the number of cores.

In our study, we adopted NVDLA, Nvidia’s DL accelerator [64],
as our base architecture (to the best of our knowledge, NVDLA is
the only industrial DL accelerator with open-source RTL access).
However, the key findings from our work can be generalized to
other accelerator designs, because DL accelerators follow a similar
dataflow architecture [12, 41, 45, 75], and are expected to experience
similar hardware failure effects.

The major modules in NVDLA include (1) 512𝐾𝐵 on-chip buffers
to store layer inputs, weights, partial sums, and layer outputs, (2)
sequencing units that control the dataflow of inputs and weights, (3)
16 parallel compute units that performMAC (Multiply-ACcumulate)
operations, and (4) compute units for element-wise, activation, and
pooling operations.

To use NVDLA for training, on the hardware side, we augmented
the datapath so that bfloat16 and FP32 are used for MAC and
element-wise operations, respectively, which is a common precision
setting for training [60]. On the compilation side, we introduced
extra matrix transpose and rotation operations such that the order
of gradient computations, which is fixed by NVDLA’s dataflow
algorithm, matches that required by the training algorithm [91].

3.2 Fault Injection Framework
We achieve accurate and quick FI in our framework by (1) deriving
a set of software fault models through a systematic analysis of
NVDLA’s RTL, and (2) injecting software faults (i.e., instances of the

software fault models) using Tensorflow [25], where each software
fault accurately captures the behavior of a hardware failure. We
have open-sourced our framework [1].

3.2.1 Hardware Fault Model. Hardware failures are modeled us-
ing single-cycle, single-FF (flip-flop) bit-flips. This fault model is
widely used to study dynamic variations, unstable/marginal circuit
behaviors, and soft errors [10, 15–17, 30, 40, 44, 46, 61, 78, 83, 88].
The observations obtained using this model may also provide in-
sights for other failures that exhibit transient or intermittent effects.
For example, the SlowDegrade outcome (Sec. 4.1), which was first
revealed by our study, was later observed in real systems and root-
caused to hardware failures that can be reproduced intermittently.

3.2.2 Software Fault Models. Based on the hardware fault model,
we derived a set of software fault models, which can accurately
represent the effects of hardware faults.

A subset of the software fault models in our framework draw
similarities to those from our previous work called FIdelity [35],
which provides software fault models for DNN inference workloads
based on the same hardware fault model used in this study. These
similar fault models are the ones used to represent bit-flips in a
datapath FF (i.e., an FF in the accelerator’s datapath) or a local
control FF (i.e., an FF that controls exactly one datapath register)
[35], because the dataflow and compute operations are the same in
the forward/backward pass of training, and also during inference.
Therefore, given a single-cycle bit-flip in one of these FFs (following
the hardware fault model), the number of faulty elements in the
output tensor, their relative positions, and their faulty values are
derived in exactly the same way for all of the above operations.

The key difference between the new framework and FIdelity lies
in how bit-flips in global control FFs are modeled. Global control
FFs are FFs in the control logic that affect more than one datapath
registers. Thus, a bit-flip in a global control FF can result in many
faulty elements in the output tensor of the current DNN layer (see
Table 1 for some examples). For inference, it is highly likely that
the final prediction will be different from the fault-free prediction,
so FIdelity simply models bit-flips in global control FFs as such [35].
In contrast, for training, many faulty output elements in a single
DNN layer do not necessarily lead to unexpected training outcomes,
because the training process may still be able to recover from the
hardware failure effects. Therefore, accurate software fault models
for bit-flips in global control FFs are required for training.

To this end, we systematically studied the functionalities of all
global control FFs in NVDLA (41𝐾 in total, corresponding to 7, 531
unique control variables) to derive the corresponding software fault
models, as summarized in Table 1.

3.2.3 Validating the New Software Fault Models. We performed 40𝐾
RTL FI experiments, targeting global control FFs, for five layers ar-
bitrarily selected from five representative DNN models: GoogleNet
[84], Resnet [33], Transformer [87], Yolo [73], and LSTM [38]. For
each RTL experiment where the injected fault is not masked by
hardware (11𝐾 total), we confirmed that the faulty output elements
match those obtained by simulating the corresponding software
fault. Given this result, we can estimate with 99% confidence that
the accuracy of our software fault models is very high, with < 1 in
1𝑀 faults not modeled correctly.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. He, et al.

Table 1: Fault injection framework and methodology.
DL accelerator:

NVDLA [64], adopted for training
Software fault injection platform:

Tensorflow [25]
Hardware fault model:

a single-cycle bit-flip in a single FF
Definitions and terminologies:
Layer_Output: output neurons in forward pass, input gradients or weight gradients in backward pass.
Layer_Input_1: input feature map in forward pass and for weight gradient operations, output gradients for input gradient operations.
Layer_Input_2: weights in forward pass and for input gradient operations, output gradients for weight gradient operations.
𝑛: an integer ≥ 1 indicating how long the effect of a fault lasts in a given DNN layer. If the FF where the fault occurs has a feedback

loop. 𝑛 is randomly chosen between 1 and the max number of loop iterations. Otherwise, 𝑛 = 1.
Layer_Outputs computed in one cycle: they belong to 16 consecutive channels, computed by 16 MAC units in parallel.
Layer_Outputs computed in 𝑛 consecutive cycles: output elements across 𝑛 cycles grow in the width dimension.
Layer_Inputs_1/Layer_Inputs_2 required in one cycle: they belong to 64 consecutive channels.
Layer_Inputs_1/Layer_Inputs_2 required in 𝑛 consecutive cycles: input elements across 𝑛 cycles grow in the width dimension.

Software fault models for datapath FFs and local control FFs: same as FIdelity [35]
Accurate software fault models for global control FFs For which bit-flips? % FFs
1. Random faulty values that can span the entire data precision
dynamic range are set in all Layer_Outputs computed in one cycle,
for 𝑛 consecutive cycles.

A bit-flip in a configuration FF, or a valid signal for
Layer_Output turns from ’invalid’ to ’valid’, affecting all
16 MAC units.

0.24%

2. All Layer_Outputs computed in one cycle are set to 0, for 𝑛 con-
secutive cycles.

A valid signal for Layer_Output turns from ‘valid’ to
‘invalid’, affecting all 16 MAC units. 0.25%

3. One Layer_Output element is randomly chosen, and its value is
set to a random faulty value in each cycle. This effect lasts for 𝑛
consecutive cycles.

Same as group 1, but the bit-flips affect only one MAC
unit. 0.48%

4. All Layer_Outputs computed in one cycle are written to incorrect,
randomly chosen memory locations while maintaining their relative
positions, for 𝑛 consecutive cycles.

Bit-flips in FFs that control the memory addresses of
Layer_Outputs. 2.36%

5 / 6. All Layer_Inputs_1 / Layer_Inputs_2 required in one cycle
are read from incorrect, randomly chosen memory locations while
maintaining their relative positions, for 𝑛 consecutive cycles (from
DRAM) or one cycle (from on-chip buffers).

Bit-flips in FFs that represent the memory addresses of
Layer_Inputs_1 / Layer_Inputs_2. 1.31% /

0.96%

7 / 8. All Layer_Inputs_1 / Layer_Inputs_2 required in one cycle are
set to 0, for 𝑛 consecutive cycles (from DRAM) or one cycle (from
on-chip buffers).

A valid signal for Layer_Input_1 / Layer_Input_2 turns
from ‘invalid’ to ‘valid’. 0.09% /

0.22%
9 / 10. All Layer_Inputs_1 / Layer_Inputs_2 required in one cycle use
a random set of values from Layer_Input_1 / Layer_Input_2, while
maintaining their relative positions, for 𝑛 consecutive cycles (from
DRAM) and 1 cycle (from on-chip buffers).

A valid signal for Layer_Input_1 / Layer_Input_2 turns
from ‘valid’ to ‘invalid’. 0.16% /

0.12%

3.3 Experiment Setup
We implemented the software fault models derived for NVDLA
using Tensorflow APIs. The DNN models used in our study are
summarized in Table 2. In the fault-free runs, we trained each work-
load for 430 − 50𝐾 iterations, which corresponds to 40 − 80 epochs
with 8 training devices (similar to typical training procedures in the
literature [60]). For each workload, the final fault-free training/test
accuracy reaches > 95% of that reported in the corresponding paper
cited in Table 2.

We deployed our framework on Google Cloud TPUs, and con-
ducted > 2.9𝑀 (> 490𝐾 node hours) FI experiments. Each FI exper-
iment consists of the following steps: (1) randomly select an FF and
a cycle to indicate where and when a bit-flip is to be injected; (2)
use the corresponding software fault model to obtain the number
and the positions of all faulty output elements in the current DNN
layer; (3) obtain the faulty values of the faulty output elements
based on the software fault model; and, (4) propagate the effects of
the faulty output elements in the current DNN layer by continuing
to train the DNN until either an error message (e.g., one that reports

the occurrence of INFs/NaNs) is encountered, or until a predefined
number of training iterations are completed.

For each workload, the upper bound of the training iterations
used in our experiments is 2× the number of iterations in the fault-
free run (reported in Table 2). In each FI experiment, we captured
the convergence trend by recording the training loss and accuracy
values in every training iteration, as well as the test accuracy once
every 100 training iterations.

4 RESULTS
4.1 Characterization of Hardware Failure

Effects
We observed two distinct categories of training outcomes from our
FI experiments. In the first category, which accounts for 82.3% −
90.3% of all cases across the workloads, the injected faults did not
significantly affect the final training/test accuracy for the same
training time as the fault-free runs. In fact, the majority of them
(65.5% − 86.3% of all cases) yielded slightly higher training/test
accuracy compared to the fault-free cases, perhaps because the

Understanding and Mitigating Hardware Failures in Deep Learning Training Accelerator Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Table 2: DNN training workloads. Optimizer: Adam (except
for Resnet_SGD). Momentum value in batch normalization
(BatchNorm) layers: 0.9 (except for Resnet_LargeDecay).

DNN models Data-sets

Num.
iterations
/ epochs
(fault free)

Num.
experiments

Resnet [33]
(4 configurations∗)

Cifar10[47] 1960
/ 80

>900K
DenseNet [42] >400K
Efficientnet [85] >400K

NFNet [8] >100K

Yolov3 [73] VOC12[21] 430
/ 40 >200K

Multi-grid neural
memory [43] 25*25 maze 50000

/ N/A >400K

Transformer [87] WMT14
EN-DE [6] 50000

/ 40 >100K
∗ Four configuration of Resnet18: (1) Resnet, a BatchNorm layer follows
every convolution layer; (2) Resnet_NoBN, no BatchNorm layers; (3)
Resnet_SGD, same as Resnet, except that SGD (stochastic gradient
decent) is used as the optimizer; (4) Resnet_LargeDecay, same as Resnet,
except that the momentum value in BatchNorm layers is 0.99.

faults created noises that introduced certain regularization effects.
The rest of the cases in this category showed slight degradations
(mostly within 2%, up to 6%) in training/test accuracy for the same
training time compared to the fault-free runs. These cases by and
large correspond to those where faults were injected late in the
training process. For these cases, when we increased the training
time by 10% / 17% to allow the training algorithm to recover the
effects of the faults, the training/test accuracy differed by only less
than 2% / 0.5% from that of the corresponding fault-free runs.

The remaining 9.7% − 17.7% of the FI experiments, belonging
to the second category, all exhibit certain unexpected training out-
comes. We characterized these outcomes based on (1) convergence
trends (i.e., training/test accuracy values throughout the training
process), and (2) occurrences of visible anomalies, as shown in Table
3. In addition to the occurrences of INFs/NaNs which have been re-
ported by industry, we discovered four new unexpected outcomes:
(1) SlowDegrade, (2) SharpSlowDegrade, (3) SharpDegrade, and (4)
LowTestAccuracy. In Fig. 3, we report the percentage breakdown
of different training outcomes normalized to the total number of
experiments for each workload.

Based on the same statistics analysis methodology used in previ-
ous resilience studies [17, 54], we have achieved a 99% confidence
level that the percentage of each outcome reported in this section
is within a confidence interval of 0.1%. The probability of an unex-
pected outcome not exposed by our experiments is < 0.004% with a
99.5% confidence level. Moreover, after observing the SlowDegrade
outcome in our experiments, this outcome was later observed in
datacenters when training large DNN workloads using DL training
accelerator systems.

4.2 Detailed Analysis
A detailed characterization of the fault propagation paths and ef-
fects are summarized in Fig. 4. We have also derived the necessary
conditions for a fault to generate a latent unexpected outcome.

Table 3: Unexpected outcomes in DNN training workloads.

Symptoms Descriptions
Manifestation latency: immediate

INFs/NaNs

A fault in the forward pass: INFs/NaNs are observed in
the forward or backward pass of the current iteration.
A fault in the backward pass: INFs/NaNs are observed
in either the backward pass of the current iteration,
or the forward pass of the next iteration.

Low hardware
utilization

Hardware resources are not fully utilized, resulting
in sub-optimal performance, because a faulty control
FF incorrectly disables a subset of hardware modules.

Accelerator
hang

The accelerator fails to notify the host server that its
task is completed within a pre-specified timeframe,
because a fault causes some control logic to be stuck
in an infinite loop.

Manifestation latency: short-term

INFs/NaNs INFs/NaNs show up within a few training iterations
(2 in our experiments) after a fault occurs.

Manifestation latency: latent

SlowDegrade
(Fig. 2a)

Training accuracy slowly degrades for 10 − 100 itera-
tions, then stays at a low level. Training/test accuracy
may recover after 10𝐾 − 100𝑀 iterations.

SharpSlow
Degrade
(Fig. 2b)

Similar to SlowDegrade, except that an additional
sharp drop in training accuracy is observed at the
iteration when a fault occurs.

SharpDegrade
(Fig. 2c)

Training accuracy drops sharply at the iteration when
a fault occurs, and stays at a low level. Test accuracy
follows training accuracy.

LowTest
Accuracy
(Fig. 2d)

Training accuracy appears normal, but test accuracy
shows visible degradation after a fault occurs. Test
accuracy may recover after 10𝐾 − 100𝑀 iterations.

4.2.1 Analysis on the Immediate Outcomes. Immediate INFs/NaNs
are generated by faults in the following FFs: (1) the datapath FFs
that represent the high exponent bits, (2) a subset of control FFs
that configure the data precision (e.g., if a fault in one of these FFs
causes int16 MAC operations to be performed instead of bfloat16
operations, the results may overflow when they are converted to
FP32 to undergo element-wise operations), and (3) FFs that corre-
spond to valid/invalid signals (a fault in one of these FFs can result
in incorrect logic functions that generate arbitrary datapath values,
including INFs/NaNs).

The faults that can generate the other two immediate unexpected
outcomes (low hardware utilization and accelerator hang) cannot be
modeled using software-visible states. We observed these outcomes
in our RTL FI experiments (see Sec. 3.2.3), and included them in
Table 3 for completeness.

4.2.2 Analysis on the Short-Term INFs/NaNs Outcome. The fault
propagation paths leading to this outcome are shown in Fig. 4.
There are two major events along these paths. First, at the end of
iteration 𝑡 (i.e., the iteration when a fault occurs), weights with large
absolute values are generated as a result of the fault and propagate
to subsequent training iterations. Second, a history term combines
the effects of large absolute faulty weight values across at least two

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. He, et al.

(a) SlowDegrade (b) SharpSlowDegrade (c) SharpDegrade (d) LowTestAccuracy

Figure 2: Four new unexpected latent outcomes observed from our experiments.

Figure 3: Percentages of training outcomes, normalized to
the total number of experiments for each workload.

training iterations to generate a value that overflows after iteration
𝑡 + 1.

History terms are used in normalization layers that are widely
adopted in DNNs [4, 8]. For example, moving variance (𝑚𝑣𝑎𝑟) in
BatchNorm is such a history term, which combines the variance of
the layer’s inputs with the𝑚𝑣𝑎𝑟 obtained in the previous iteration,
weighted using a decay factor:𝑚𝑣𝑎𝑟 𝑎𝑡 𝑖𝑡𝑒𝑟 (𝑖+1) = 𝑑𝑒𝑐𝑎𝑦_𝑓 𝑎𝑐𝑡𝑜𝑟 ∗
𝑚𝑣𝑎𝑟 𝑎𝑡 𝑖𝑡𝑒𝑟 𝑖 + (1−𝑑𝑒𝑐𝑎𝑦_𝑓 𝑎𝑐𝑡𝑜𝑟) ∗ 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 . The inputs of
a BatchNorm layer are the outputs of the previous layer, which can
contain large absolute neuron values because of the faulty weight
values. The faulty BatchNorm layer inputs can result in a large
absolute𝑚𝑣𝑎𝑟 value, which may overflow after iteration 𝑡 + 1. For
clarity, we use 𝑚𝑣𝑎𝑟 to generally denote such a history term in
normalization layers.

Short-term INFs/NaNs are rare. First, if an optimizer that nor-
malizes gradients (e.g., Adam) is used, large absolute weight values
can only be generated if a fault occurs during the weight update
operation (i.e., the operation that adds gradients to current weight
values), which is extremely unlikely because this operation takes
a very small amount of time. This is why we observe this case for
Resnet_SGD only in our experiments, since SGD does not normalize
gradients.

Second, the absolute value of a faulty𝑚𝑣𝑎𝑟 across multiple it-
erations must lie in a specific range (2.9𝑒38 − 3.0𝑒38 from our ex-
periments, as shown in Table 4) so that it does not overflow at
iteration 𝑡 , but overflows at a later iteration. Moreover, the overflow
is expected to appear shortly after iteration 𝑡 +1 because (1) a decay
factor is applied to𝑚𝑣𝑎𝑟 , and (2) although quite slowly, the faulty
weights are updated towards the correct direction (decreasing their
absolute values) by the optimizer. Thus, it is not likely for INFs/-
NaNs to occur beyond a small number of iterations after a fault
occurs. Because of this decaying effect, the magnitude of𝑚𝑣𝑎𝑟 at
iteration 𝑡 + 1 must be very close to the max floating point value
that can be represented (e.g., the max value of FP32 in our study).
A large absolute𝑚𝑣𝑎𝑟 value therefore is a necessary condition for
this outcome.

4.2.3 Analysis on the SlowDegrade and SharpSlowDegrade Latent
Outcomes. The fault propagation paths that lead to these two out-
comes are depicted in Fig. 4. Both outcomes are observed only if the
optimizer uses gradient history values to normalize the gradients
derived in the current iteration, which is common in DL training
workloads (e.g., 134 such optimizers were developed out of a total
of 154 between 2015 and 2021 [79]). SharpSlowDegrade can only oc-
cur if normalization layers are not present (e.g., Resnet_NoBN and
NFNet) and if a fault occurs in the forward pass, while SlowDegrade
can only occur if a fault occurs in the backward pass. Moreover, the
convergence trends of these two outcomes exhibit three distinct
phases. We mathematically explain each phase in Fig. 5 using Adam
(Eq. 1) as an example.

Operations performed in Adam

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 , 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡

𝑢𝑡 = [

𝑚𝑡

1 − 𝛽𝑡1√︂
𝑣𝑡

1 − 𝛽𝑡2
+ 𝜖

, 𝑤𝑡 = 𝑤𝑡−1 − 𝑢𝑡

𝑔𝑡 : gradient values computed in iteration 𝑡 . 𝛽1, 𝛽2 : decay factors.
𝑚𝑡 : the history values of the gradients.

𝑣𝑡 : the history values of the square of the gradients.
𝑢𝑡 : the values used to update the weights. 𝑤𝑡 : weight values.

[: learning rate. 𝜖 : a small value for numerical stability.

(1)

Understanding and Mitigating Hardware Failures in Deep Learning Training Accelerator Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Figure 4: Characterization of fault propagation paths and effects.

Figure 5: Explanation of the three phases in the convergence
trends of SlowDegrade and SharpSlowDegrade. The math
symbols are defined in Eq. 1.

From Fig. 4, we see that a necessary condition for both outcomes
is that the absolute values of the faulty gradient history values of

the optimizer (𝑚𝑡 and 𝑣𝑡 in Eq. 1 for Adam) must be large enough
to influence training accuracy, but not large enough to cause imme-
diate or short-term INFs/NaNs (the range of faulty values obtained
from our experiments is shown in Table 4).

However, this is a necessary condition but not a sufficient con-
dition, because even if this condition is met, it is possible that the
final training/test accuracy would not be affected significantly. For
example, if only a few gradient history values are perturbed, it may
not be significant enough to perturb the overall convergence trend.
Moreover, training/test accuracy can start to improve again in Phase
3 (Fig. 5). However, for all of our experiments in which the con-
vergence trend is perturbed due to large absolute gradient history
values except for those training the Transformer workload, the final
training/test accuracy values are still low even after the numbers of
training iterations are doubled with respect to the corresponding
fault-free runs. The takeaway is that, although theoretically there
is a recovery phase, the final training outcome is largely dependent
on the interactions between the magnitudes of the faulty values,

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. He, et al.

the choice of hyperparameters (e.g., decay factors), and the training
dynamics. In practice, the recovery phase may never be reached, or
it may require millions of iterations to fully recover from the fault.
For example, the latter can happen with a decay factor of 0.9999
(used in real datacenter workloads) and a faulty absolute gradient
history value in the order of 1𝑒19 (observed from our experiments).

4.2.4 Analysis on the SharpDegrade Latent Outcome. The propa-
gation path that leads to the SharpDegrade outcome is mostly the
same as that for the short-term INFs/NaNs outcome, except that
faulty𝑚𝑣𝑎𝑟 ’s never overflow in the case of SharpDegrade. Instead,
their absolute values must be large enough (which are generated
by large absolute weight values due to a fault) for the training/test
accuracy to show sharp degradations – this is thus a necessary
condition for the SharpDegrade outcome. Afterwards, the absolute
values of the faulty weights continue to stay large as they are up-
dated very slowly by the optimizer, so the training/test accuracy
stay low for a long time.

4.2.5 Analysis on the LowTestAccuracy Latent Outcome. From Fig. 4,
we see that LowTestAccuracy can only occur in DNN workloads
that satisfy two conditions. First, a history term is used, which is
updated based on its values from previous iterations. Moreover, it
is only used to evaluate test accuracy but not training accuracy. An
example of such a history term is themoving variance in BatchNorm
layers (𝑚𝑣𝑎𝑟 as defined previously), which we will use to generally
denote such history terms for clarity. Second, the absolute value of
𝑚𝑣𝑎𝑟 must be very large, such that it can visibly degrade the test
accuracy (see Table 4 for the range observed in our experiments).
Thus, this is a necessary condition for the LowTestAccuracy outcome.

Similar to the SlowDegrade and SharpSlowDegrade cases, there
is typically a recovery phase for LowTestAccuracy, because a faulty
absolute𝑚𝑣𝑎𝑟 value will decay over time given the common use of
a decay factor (as explained in Sec. 4.2.2). However, whether the test
accuracy can be successfully recovered depends on various factors,
including the magnitudes of the faulty values, the decay factor, and
the training dynamics. In our experiments, LowTestAccuracy is
observed for the Resnet_LargeDecay workload, because the large
decay factor (0.99, vs. 0.9 in other workloads) corrects the faulty
𝑚𝑣𝑎𝑟 ’s too slowly.

Moreover, only faults that occur in the forward pass can lead
to LowTestAccuracy, because those in the backward pass can only
perturb𝑚𝑣𝑎𝑟 ’s in the forward pass of the next training iteration
through faulty weight values. However, in this case, large abso-
lute weight values will dominate the overall effect and create the
SharpDegrade outcome instead.

4.2.6 Summary. We summarize the necessary conditions for a
fault to generate each latent outcome (including short-term INFs/-
NaNs) in Table 4. The necessary conditions always occur within two
training iterations after a fault occurs. Note that, these necessary
conditions are not sufficient. In our experiments, we observed cases
in which the training process is able to recover from the effects
of faulty gradient history values in optimizers or faulty𝑚𝑣𝑎𝑟 ’s in
normalization layers, especially if the number of faulty values is
small.

In addition to the necessary conditions, we have obtained the
following three key observations from our analysis.

Table 4: Necessary conditions for short-term/latent unex-
pected outcomes. iter. 𝑡 is the iteration during which a fault
is injected.

.

Outcomes Necessary
conditions

When
conditions
observed

Ranges
observed in
experiments

SlowDegrade Large absolute
gradient history

values in optimizer

iter. 𝑡 3.6e9-1.1e19
Sharp

SlowDegrade iter. 𝑡 2.7e8-1.2e19

SharpDegrade Large absolute
𝑚𝑣𝑎𝑟 values in
normalization

layers

iter. 𝑡 + 1 6.5e16-1.2e38
LowTestAccuracy iter. 𝑡 7.3e17-7.1e37

Short-term
INFs/NaNs iter. 𝑡 + 1 2.9e38-3.0e38

Observation (1) Recovery effects of DNN training workloads. If the
perturbations in all software variables that are affected by a fault
are small, then the training process (provided that it is implemented
correctly) is highly likely to be able to recover from the effects of
the fault without posing high training time overheads. Even if the
perturbations are large, given a long enough training time (which
may not be practical), the training process may recover from the
effects of the fault, unless INFs/NaNs are generated.

Observation (2) Necessary conditions for latent unexpected out-
comes. For any hardware fault to cause a latent unexpected outcome,
the effects of the fault need to last across multiple training itera-
tions; otherwise, it is highly likely that the training process will
recover. This observation is reflected in the necessary conditions, as
both the𝑚𝑣𝑎𝑟 ’s in normalization layers and gradient history values
in optimizers can carry the effects of a fault from one iteration to
the next.

The effects of faulty weight/gradient values will also last across
multiple training iterations; however, they will propagate to the
𝑚𝑣𝑎𝑟 ’s and/or gradient history values, and subsumed in our nec-
essary conditions. On the other hand, faulty 𝑚𝑣𝑎𝑟 and gradient
history values do not always imply faulty weights/gradients.

We also analyzed the behaviors of the training loss value to
determine if it can serve as a necessary condition for the latent
unexpected training outcomes. For faults that occur in the forward
pass and subsequently generate the SharpSlowDegrade, SharpDe-
grade, and short-term INFs/NaNs outcomes, a sharp increase in the
training loss value is observed at the iterations during which the
faults first appear. However, for faults that occur in the backward
pass, even if they eventually lead to latent unexpected outcomes
(SlowDegrade or LowTestAccuracy), the training loss value appears
normal throughout the training process.

Observation (3) Interactions between DNN configurations and hard-
ware failures. Normalization layers in DNNs play an important role
in the resilience of DNN training workloads. On the one hand, the
occurrence of large absolute𝑚𝑣𝑎𝑟 ’s is a necessary condition for
various short-term and latent unexpected outcomes. On the other
hand, the presence of normalization layers makes it more likely
for a training workload to recover from the faults that occur in the
forward pass. As shown in Fig. 4, if large absolute output neurons
(large |𝑦 |) are generated in the forward pass, normalization layers
will normalize the magnitudes of these output neurons, effectively
alleviating the impacts of these faults.

Understanding and Mitigating Hardware Failures in Deep Learning Training Accelerator Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

The choice of optimizers and hyperparameters also play an im-
portant role. For example, the SlowDegrade and SharpSlowDegrade
outcomes can only be generated if the optimizer normalizes gradi-
ents using gradient history values, while the SharpDegrade outcome
can only occur if the optimizer does not.

4.3 Other Results and Discussions
4.3.1 Contributions to Unexpected Outcomes from Different FFs. In
NVDLA, global control FFs whose bit-flips belong to groups 1 and 3
defined in Table 1 and local control FFs are more likely to generate
large absolute𝑚𝑣𝑎𝑟 ’s and large absolute gradient history values.
Together they contribute to 55.7-68.5% of the total number of un-
expected outcomes across different workloads in our experiments,
even though these FFs only account for 9.8% of all FFs in the design.

For datapath FFs, bit-flips that correspond to the upper two
exponents bits (5.5% of all FFs) contribute to 31.9%-44.3% of all
unexpected outcomes across different workloads. These bit-flips
are more likely to generate large absolute values that cause overflow
or satisfy the necessary conditions reported in Table 4 than the
bit-flips in other datapath FFs.

4.3.2 Generalization to other hardware fault models. The necessary
conditions discussed in Table 4 were derived based on the single-
cycle single-FF bit-flip hardware fault model. However, based on
Observation (2), the same necessary conditions are applicable to
any single hardware failure, regardless of the fault model.

Furthermore, given the hardware failure rate reported by indus-
try, it is expected that at most one hardware failure would occur
during the training process of mid-sized DNNs (i.e., DNNs with
< 1𝐺𝐵 parameters), which account for the majority of all DNNs
deployed in datacenters today [45]. For larger DNNs, even though
multiple failures may occur during the training process, they are
expected to occur far enough apart such that their effects are largely
independent. Therefore, the same necessary conditions are also ap-
plicable to multiple hardware failures under the reported hardware
failure rate.

4.3.3 Discussions on the number of training devices. We used 8
training devices in our experiments. With more training devices,
our findings still apply. First, if a hardware failure occurs in a train-
ing device and generates an immediate unexpected outcome, the
outcome will show up in the local device without affecting other
devices, so the number of training devices is irrelevant. Second, the
necessary condition for short-term INFs/NaNs, SharpDegrade and
LowTestAccuracy is large absolute𝑚𝑣𝑎𝑟 values on a single training
device, which is not affected by the number of devices. Last but
not least, we consider the SlowDegrade and SharpSlowDegrade
outcomes, for which the necessary condition is large absolute gra-
dient history values. On the one hand, using more training devices
results in a shorter training time, which makes it less likely for a
workload to reach the recovery phase, or for the recovery phase to
fully recover the training/test accuracy. On the other hand, since
gradients are averaged among all training devices, absolute faulty
gradient values (due to a hardware failure) would be smaller if
more devices are used, making it less likely to meet the necessary
condition of these two outcomes. These opposing factors balance
out the sensitivity to the number of training devices.

4.3.4 Discussions on the sizes of DNNs and data-sets. How hard-
ware failures propagate and affect DNN training workloads, as
shown in Fig. 4, does not depend on the sizes of the DNN or the
training data-set. The only consideration is that the sizes may in-
fluence when the three phases in SlowDegrade/SharpSlowDegrade
and the recovery phase in LowTestAccuracy occur, and how long
the different phases last.

5 TECHNIQUES TO TACKLE HARDWARE
FAILURES IN DNN TRAINING SYSTEMS

In datacenters, when a potential issue is detected in a DL acceler-
ator, a standard procedure is to decommission the accelerator for
further investigation, revert all affected workloads to their previous
checkpoints, and execute these workloads in other healthy devices
[7]. Handling immediate and short-term NaNs/INFs is easy. How-
ever, for a latent unexpected outcome, its error detection latency,
i.e., the time between when a hardware failure occurs and when
the unexpected outcome is observed, can be very long – spanning
thousands to millions of training iterations. The long error detec-
tion latency makes it challenging to recover an affected workload.
For example, even though checkpointing is routinely used in DNN
training, it is not clear how one could determine which checkpoint
to revert to, not to mention that the available checkpoints may all
have been corrupted.

Therefore, a detection technique that guarantees a short error
detection latency is required. Although there exist a plethora of
resilience techniques in the literature, these techniques are inade-
quate because they incur high performance/energy costs even in
the absence of hardware failures (more details in Sec. 6). To this
end, we leverage the necessary conditions revealed by our study
to devise new, efficient techniques to mitigate hardware failures in
DL training accelerator systems.

5.1 Detection
Our technique detects all hardware failures that are likely to lead
to latent unexpected outcomes. The idea is to compare the gradient
history values against a bound (for workloads trained by optimizers
that use such history values), and also compare the𝑚𝑣𝑎𝑟 ’s against
a bound (for workloads with normalization layers). If any of these
values is out of bound, an error message is generated. Since the
necessary conditions occur within 2 training iterations after a fail-
ure occurs, the error detection latency of our technique is bounded.
Further, we proved that these bounds can be mathematically de-
rived based on the properties of a given DNN workload. As shown
in Algorithm 1, the absolute gradient history values in the absence
of hardware failures (and software bugs) are less than 20 ×

√︁
𝑛𝑙/𝑚2

with a probability larger than (1 − 3 × 10−89), where 𝑛𝑙 is the num-
ber of partial sums used to generate one gradient value, and 𝑚
is the batch size. Similarly, we derived a bound for the𝑚𝑣𝑎𝑟 ’s in
Algorithm 1.

Note that, a hardware failure detected by our technique does
not always lead to unexpected training outcomes. However, it is
still beneficial to decommission the accelerator for further anal-
ysis because it is highly likely (based on the probability shown
in Algorithm 1) that the accelerator has encountered a hardware
failure.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. He, et al.

Algorithm 1: Derive bounds for gradient history values in Adam and moving variance values in BatchNorm. The bounds apply for
various DNN layers including convolution, matrix multiplication, and fully-connected layers.

Without loss of generality, assume the following DNN properties
[23, 34]:

(1)The mean of the outputs (before activation) and inputs of every
DNN layer is 0, and the variance of all layers are approximately
the same.
(2)The input data-set is normalized to zero mean and unit variance.
(3)Softmax-cross-entropy is used as the loss function, and Adam is
used as the optimizer.
(4)The weight gradient values follow the Gaussian distribution.

I. Deriving the bound for absolute gradient history values in
Adam.

Step 1: Let 𝑎𝑖 and 𝑝𝑖 B the 𝑖𝑡ℎ inputs and outputs of the softmax
layer; 𝑦𝑖 B the 𝑖𝑡ℎ one-hot encoded training target, 1 ≤ 𝑖 ≤ 𝐼 ;
𝑚 B the number of mini-batches; 𝐿 B Softmax-cross-entropy =
−∑

𝑖 𝑦𝑖𝑙𝑜𝑔(𝑝𝑖)/𝑚. We bound 𝜕𝐿

𝜕𝑎𝑖
, the input gradients of the last

DNN layer ∀𝑖 .
𝑝𝑖 =

𝑒𝑎𝑖∑𝐼
𝑘=1 𝑒

𝑎𝑘
,

𝜕𝐿

𝜕𝑎𝑖
= (𝑝𝑖 − 𝑦𝑖)/𝑚.

∵ 𝑝𝑖 ∈ [0, 1], 𝑦𝑖 ∈ [0, 1], ∴ 𝜕𝐿

𝜕𝑎𝑖
∈ [− 1

𝑚
,
1
𝑚
].

Step 2: Let 𝑦𝑙
𝑖
B the 𝑖𝑡ℎ element of the output tensor of layer 𝑙 . We

bound 𝜕𝐿

𝜕𝑦𝑙
𝑖

∀𝑙 . Given Property 1, 𝜕𝐿
𝜕𝑎𝑖

∈ [− 1
𝑚
,
1
𝑚
] →

𝜕𝐿

𝜕𝑦𝑙
𝑖

∈ [− 1
𝑚
,
1
𝑚
] ∀𝑙 , since 𝑎𝑖 is the output of the last layer.

Step 3: Let𝑤𝑙
𝑖
B the 𝑖𝑡ℎ element of the weight tensor of layer 𝑙 ;

𝑥𝑙 B the transpose of layer 𝑙 ’s input tensor; 𝑛𝑙 B the number of
the partial sums used to compute one gradient. We bound 𝜕𝐿

𝜕𝑤𝑙
𝑖

,∀𝑙 .

𝜕𝐿

𝜕𝑤𝑙
= 𝑥𝑙

𝜕𝐿

𝜕𝑦𝑙
→ 𝑉𝑎𝑟 [𝜕𝐿

𝜕𝑤𝑙
] = 𝑉𝑎𝑟 [𝑥𝑙 × 𝜕𝐿

𝜕𝑦𝑙
].

Given Property 1, ∵ 𝜕𝐿

𝜕𝑦𝑙
𝑖

∈ [− 1
𝑚
,
1
𝑚
], ∀𝑙 ∴ In the worst case,

𝜕𝐿

𝜕𝑦𝑙
𝑖

=

− 1
𝑚

𝑥 ∈ 𝑥𝑙 , 𝑥 < 0
1
𝑚

𝑥 ∈ 𝑥𝑙 , 𝑥 ≥ 0
and 𝑉𝑎𝑟 [𝜕𝐿

𝜕𝑤𝑙
] ≤ 𝑛𝑙

𝑚2𝑉𝑎𝑟 [𝑥𝑙] .

Step 4: Based on the history value computation in Adam, shown
in Eq. 1, ∵ 𝛽 < 1, ∴ the bound for 𝜕𝐿

𝜕𝑤𝑙
𝑖

can also be used for𝑚𝑡 .

Given Properties 1, 2, and 4, 𝐸 [𝜕𝐿
𝜕𝑤𝑙

] = 0, and also given the bound

for 𝑉𝑎𝑟 [𝜕𝐿
𝜕𝑤𝑙

] shown in Step 3,𝑚𝑡 ∼ N(0, 𝑛𝑙
𝑚2),

∴ 𝑃𝑟𝑜𝑏 (|𝑚𝑡 | > 20 ×
√︂
𝑛𝑙

𝑚2) < 3 × 10−89.

II. Deriving the bound for absolute moving variance values
in BatchNorm.

Step 1: Let [B learning rate; 𝑔𝑡 B
𝜕𝐿

𝜕𝑤𝑙
in iteration 𝑡 ;𝑤𝑙 ′ B the

weight values of layer 𝑙 in iteration 𝑡 + 1; 𝑁𝑙 B the number of
partial sums used to compute one output neuron in layer 𝑙 .
∵ Property 1, 𝐸 [𝑤𝑙] = 0,𝑉𝑎𝑟 [𝑤𝑙] = 1

𝑁𝑙
. Since Adam is the

optimizer, let 𝑘 B
√︃
1 − 𝛽𝑡2/(1 − 𝛽

𝑡
1), then we have

𝑢𝑡 ∼ N(0, [2𝑘2) based on Eq. 1.
Step 2: ∵ 𝑢𝑡 and𝑤𝑙 are independent, ∴ 𝐸 [𝑤𝑙

′] = 0, and
𝑉𝑎𝑟 [𝑤𝑙 ′] ≤ 1

𝑁𝑙
+ [2𝑘2. ∵ 𝑉𝑎𝑟 [𝑦𝑙] = 𝑁𝑙 ∗𝑉𝑎𝑟 [𝑤𝑙

′] ∗𝑉𝑎𝑟 [𝑦𝑙−1],

∴
𝑉𝑎𝑟 [𝑦𝑙]
𝑉𝑎𝑟 [𝑦𝑙−1]

= 𝑁𝑙 ∗𝑉𝑎𝑟 [𝑤𝑙
′] ≤ 1 + 𝑁𝑙[2𝑘2.

∵ Properties 1 and 2, ∴ 𝑉𝑎𝑟 [𝑦𝑙] ≤ (1 + 𝑁𝑙[2𝑘2)𝑙 .
Step 3: Let𝑚𝑣𝑎𝑟𝑙,𝑡 B the moving variance of BatchNorm at layer
𝑙 and iteration 𝑡 ; 𝛽 B the decay factor.
𝑚𝑣𝑎𝑟𝑙,𝑡 = 𝛽 ×𝑚𝑣𝑎𝑟𝑙,𝑡−1 + (1 − 𝛽) ×𝑉𝑎𝑟 [𝑦𝑙]. ∵ 𝛽 < 1, ∴ the bound
for 𝑉𝑎𝑟 [𝑦𝑙] can be used to bound𝑚𝑣𝑎𝑟𝑙,𝑡 .
∴ 𝑚𝑣𝑎𝑟𝑙,𝑡 ≤ (1 + 𝑁𝑙[2𝑘2)𝑙 .

5.2 Recovery
We developed a light-weight recovery technique that re-executes
the two most recent iterations of a DNN training workload on
all training devices, which is sufficient to mitigate all immediate,
short-term, and latent unexpected outcomes when coupled with
our detection technique. The following changes to a DNN training
program are required to implement our re-execution technique:
(1) subtracting the gradients obtained in the last iteration from
the current weight values to obtain the weight values used in the
previous iteration; (2) reloading the mini-batch data-set used for
the previous iteration; and (3) recording the seeds used to initialize
random variables (if they are used) in the previous iteration, and
applying them during re-execution.

5.3 Implementation and Evaluation
We implemented the detection and re-execution techniques in Ten-
sorflow for the same set of workloads presented in Table 2, which
requires only 24 − 32 lines of code change to the different DNN
programs. The memory overhead is negligible since our detection
technique only requires two new variables to bound the gradient
history and𝑚𝑣𝑎𝑟 values, and our re-execution technique only re-
quires a few seeds to be stored (if seeds are used). We evaluated the
techniques on Google Cloud TPUs, using the cloud TPU profiler
[27] to obtain performance/power/memory overheads. For each
workload, the bounds-checking and re-execution operations were
both executed 10𝐾 times.

If no out-of-bound values are detected, the performance impact
is 0.003% − 0.025% on average (geomean) across different DNN
training workloads. If re-execution is invoked once, the average

Understanding and Mitigating Hardware Failures in Deep Learning Training Accelerator Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

(geomean) performance impact is 0.04% − 0.15%. Also, the profiler
reported a similar utilization of TPU resources between the modi-
fied and original programs for each workload, indicating that the
power/memory overheads of our techniques are negligible.

Compared to the checkpointing approach where a checkpoint is
saved at the end of each training epoch [60, 86], the performance/en-
ergy costs of our recovery technique are up to 500× lower (depend-
ing upon the number of iterations per epoch, which is typically
∼ 1, 000 iterations) assuming that 8 training devices are used.

6 RELATEDWORK
Resilience analysis on DNNworkloads. There is one study that targets
memory errors in DNN training workloads [93]. Memory errors in
datacenters are not a critical concern because ECCs are commonly
supported in both on-chip and off-chip memories. Moreover, errors
in memory behave differently from those in logic. For example, all
the latent unexpected outcomes revealed by our study are unique
to hardware failures in logic.

Many conclusions and findings from previous work on the re-
silience of inference workloads [2, 3, 9, 13, 24, 35, 48, 54, 59, 67,
68, 71, 80, 81, 90] cannot be extended to training workloads due
to the fundamental differences in their respective algorithms and
resilience requirements, as summarized in Table 5.

Table 5: Resilience properties of inference vs. training.

Inference Training (details in Sec. 4)

Normalization layers effec-
tively mask hardware failures
[48].

Normalization layers can exac-
erbate or reduce the impact of
hardware failures. See Obser-
vation (3) in Sec. 4.2.6.

Failures that occur in early lay-
ers are more likely to generate
visible anomalies [48, 49].

We observed this trend only
for the failures that lead to the
SlowDegrade outcome.

Hardware failures that occur
in certain output feature maps
or input data samples are more
likely to generate visible anom-
alies [54].

We did not observe such corre-
lations in training.

INFs/NaNs are not observed.
INFs/NaNs are a major class of
unexpected DNN training out-
comes.

Hardware Failure Mitigation Techniques. There exist a plethora of
resilience techniques across various system design layers [16], span-
ning algorithm [31, 94], compiler/software [18, 22, 51–53, 65, 66,
74, 76], architecture [18, 22, 29, 36, 50, 53, 56, 70, 82, 89], and cir-
cuit [5]. Selectively protecting FFs using circuit-level solutions (e.g.,
FF hardening) is a potential resilience solution, and our results
in Sec. 4.3.1 can guide which FFs to harden; however, it requires
hardware modifications, which may not be possible or desirable.
Existing compiler/software techniques and architecture techniques
were mostly developed for CPUs or GPUs, and they rely on specific
properties in CPU/GPU applications or architectures; therefore,
they do not lend themselves to be used in DL accelerators.

The authors in [54] focused on inference workloads, and pro-
posed selective duplication in the weight kernel level or the in-
ference task level. However, it is not clear how one would apply

the kernel-level technique to training, since weight values are not
static during training. Regarding the task-level technique, it is also
not clear how to determine the importance of each input sample
because that depends on the model and various training dynam-
ics. Without selective redundancy, detection through duplication
(or other redundancy-based techniques) incur high overheads. To
recover from a failure, the overhead will be even higher since addi-
tional operations need to be executed upon detection.

In the algorithm level, algorithm-based fault tolerance (ABFT)
techniques have been developed for DNN inference workloads
[31, 94]. We extended the idea in [94] to cover training workloads,
implemented it in Tensorflow for Resnet [33], Efficientnet [85] and
DenseNet [42], and obtained the performance/energy results for
these workloads using Google Cloud TPUs. This ABFT technique
requires non-trivial software modifications (463 − 485 lines of code
change), and incurs large (5% − 7%) performance/energy costs even
in the absence of hardware failures.

Another line of work proposed to bound the activation outputs
to improve the resilience of inference workloads [13, 14, 37, 48, 68].
This approach is inadequate for training because it can only detect a
small fraction (33.7% from our experiments) of all latent unexpected
outcomes.

Gradient clipping techniques in DNN training.Gradient clipping tech-
niques [11, 57, 92] were proposed to boost test accuracy or reduce
training time, without any resilience considerations. These tech-
niques cannot be used to mitigate all unexpected training outcomes
caused by hardware failures, because, as shown for the SlowDe-
grade, SharpDegrade, and LowTestAccuracy cases in Fig. 4, hard-
ware failures can perturb gradient history /𝑚𝑣𝑎𝑟 values without
affecting gradient values. Moreover, the bounds from previous work
were heuristically determined. In contrast, our bounds were derived
mathematically based on DNN properties to yield high detection
coverage for hardware failures that are likely to generate latent
unexpected outcomes.

7 CONCLUSIONS
Wepresent the first in-depth resilience study on hardware failures in
DL training accelerator systems. This study reveals the fundamental
understanding on how hardware failures propagate in DL training
devices and interact with DNN training workloads. We also present
efficient and light-weight solutions to mitigate these failures.

Our work serves as a solid foundation for future work, which
is essential because the impact of hardware failures is expected to
increase as DL systems continue to scale and the complexity of
DNNs continues to grow. We plan to extend our work to a broader
set of hardware failures, DNN training workloads, and DL training
systems such as GPUs and CPUs.

ACKNOWLEDGMENTS
We thank Rich Bonderson of Google, Michael Maire of the Univer-
sity of Chicago, and all anonymous reviewers for their assistance
and comments. This research was partially supported by a Google
Research Scholar Award. Computing resources for our experiments
were provided by the Google TPU Research Cloud.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. He, et al.

REFERENCES
[1] 2023. Fault injection framework. https://github.com/YLab-UChicago/

FIdelityTraining.git.
[2] Khalid Adam, Izzeldin I Mohd, and Younis Ibrahim. 2021. Analyzing the resilience

of convolutional neural networks implemented on gpus: Alexnet as a case study.
International journal of electrical and computer engineering systems 12, 2 (2021),
91–103.

[3] Khalid Adam, Izzeldin Ibrahim Mohamed, and Younis Ibrahim. 2021. A Se-
lective Mitigation Technique of Soft Errors for DNN Models Used in Health-
care Applications: DenseNet201 Case Study. IEEE Access 9 (2021), 65803–65823.
https://doi.org/10.1109/ACCESS.2021.3076716

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

[5] David Blaauw, Sudherssen Kalaiselvan, Kevin Lai, Wei-Hsiang Ma, Sanjay Pant,
Carlos Tokunaga, Shidhartha Das, and David Bull. 2008. Razor II: In situ error
detection and correction for PVT and SER tolerance. In 2008 IEEE International
Solid-State Circuits Conference-Digest of Technical Papers. IEEE, 400–622.

[6] Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp
Koehn, Johannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Aleš Tamchyna. 2014. Findings of
the 2014 Workshop on Statistical Machine Translation. In Proceedings of the
NinthWorkshop on Statistical Machine Translation. Association for Computational
Linguistics, Baltimore, Maryland, USA, 12–58. https://doi.org/10.3115/v1/W14-
3302

[7] Rich Bonderson. 2021. Training in Turmoil: Silent Data Corruption in Systems at
Scale. International Test Conference Silicon Lifecycle Management Workshop.
https://marcello.altervista.org/SLM.tttc-events.org/program.html#Keynote1

[8] Andrew Brock, Soham De, Samuel L. Smith, and Karen Simonyan. 2021. High-
Performance Large-Scale Image Recognition Without Normalization. CoRR
abs/2102.06171 (2021). arXiv:2102.06171 https://arxiv.org/abs/2102.06171

[9] N. Chandramoorthy et al. 2019. Resilient Low Voltage Accelerators for High
Energy Efficiency. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 147–158.

[10] Athanasios Chatzidimitriou, Pablo Bodmann, George Papadimitriou, Dimitris
Gizopoulos, and Paolo Rech. 2019. Demystifying Soft Error Assessment Strategies
on ARM CPUs: Microarchitectural Fault Injection vs. Neutron Beam Experiments.
In 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). 26–38. https://doi.org/10.1109/DSN.2019.00018

[11] Xiangyi Chen, Steven Z Wu, and Mingyi Hong. 2020. Understanding gradient
clipping in private SGD: A geometric perspective. Advances in Neural Information
Processing Systems 33 (2020), 13773–13782.

[12] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. 2020. A survey
of accelerator architectures for deep neural networks. Engineering 6, 3 (2020),
264–274.

[13] Zitao Chen, Guanpeng Li, and Karthik Pattabiraman. 2020. A Low-cost Fault
Corrector for Deep Neural Networks through Range Restriction. https://doi.org/
10.48550/ARXIV.2003.13874

[14] Zitao Chen, Guanpeng Li, and Karthik Pattabiraman. 2020. Ranger: Boosting
Error Resilience of Deep Neural Networks through Range Restriction. ArXiv
abs/2003.13874 (2020).

[15] Eric Cheng. 2018. Cross-layer resilience to tolerate hardware errors in digital
systems. Ph. D. Dissertation. Stanford University.

[16] Eric Cheng, Shahrzad Mirkhani, Lukasz G. Szafaryn, Chen-Yong Cher, Hyungmin
Cho, Kevin Skadron, Mircea R. Stan, Klas Lilja, Jacob A. Abraham, Pradip Bose,
and Subhasish Mitra. 2016. CLEAR: Cross-Layer Exploration for Architecting
Resilience - Combining Hardware and Software Techniques to Tolerate Soft
Errors in Processor Cores. In Proceedings of the 53rd Annual Design Automation
Conference (Austin, Texas) (DAC ’16). Association for Computing Machinery,
New York, NY, USA, Article 68, 6 pages. https://doi.org/10.1145/2897937.2897996

[17] H. Cho et al. 2013. Quantitative evaluation of soft error injection techniques
for robust system design. In Proceedings of the 50th Annual Design Automation
Conference. 1–10.

[18] J. Cong and K. Gururaj. 2011. Assuring application-level correctness against soft
errors. In Proceedings of the International Conference on Computer-Aided Design.
150–157.

[19] Harish Dattatraya Dixit, Laura Boyle, Gautham Vunnam, Sneha Pendharkar, Matt
Beadon, and Sriram Sankar. 2022. Detecting silent data corruptions in the wild.
https://doi.org/10.48550/ARXIV.2203.08989

[20] Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Mason, Tejasvi
Chakravarthy, Bharath Muthiah, and Sriram Sankar. 2021. Silent data corruptions
at scale. arXiv preprint arXiv:2102.11245 (2021).

[21] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. [n. d.]. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[22] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. 2010. Shoestring: probabilistic soft
error reliability on the cheap. ACM SIGARCH Computer Architecture News 38, 1
(2010), 385–396.

[23] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning
Research, Vol. 9), Yee Whye Teh and Mike Titterington (Eds.). PMLR, Chia Laguna
Resort, Sardinia, Italy, 249–256. https://proceedings.mlr.press/v9/glorot10a.html

[24] Brunno F. Goldstein, Victor C. Ferreira, Sudarshan Srinivasan, Dipankar Das,
Alexandre S. Nery, Sandip Kundu, and Felipe M. G. França. 2021. A Lightweight
Error-ResiliencyMechanism for DeepNeural Networks. In 2021 22nd International
Symposium on Quality Electronic Design (ISQED). 311–316. https://doi.org/10.
1109/ISQED51717.2021.9424287

[25] Google. 2019. Tensorflow. https://www.tensorflow.org.
[26] Google. 2021. Cloud TPU. https://cloud.google.com/tpu.
[27] Google. 2021. Profile your model with Cloud TPU tools. https://cloud.google.

com/tpu/docs/cloud-tpu-tools.
[28] Prabhat K Gupta. 2016. Accelerating datacenter workloads. In 26th International

Conference on Field Programmable Logic and Applications (FPL), Vol. 2017. 20.
[29] S. K. S. Hari, S. V. Adve, and H. Naeimi. 2012. Low-cost program-level detectors

for reducing silent data corruptions. In Proceedings of the International Conference
on Dependable Systems and Networks. 1–12.

[30] Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep Ramachan-
dran. 2012. Relyzer: Exploiting Application-level Fault Equivalence to Analyze
Application Resiliency to Transient Faults. In Proceedings of the Seventeenth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS XVII). 123–134.

[31] Siva Kumar Sastry Hari, Michael B. Sullivan, Timothy Tsai, and Stephen W. Keck-
ler. 2022. Making Convolutions Resilient Via Algorithm-Based Error Detection
Techniques. IEEE Transactions on Dependable and Secure Computing 19, 4 (2022),
2546–2558. https://doi.org/10.1109/TDSC.2021.3063083

[32] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and
Xiaodong Wang. 2018. Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). 620–629. https://doi.org/10.1109/HPCA.
2018.00059

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. arXiv:1512.03385 [cs.CV]

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep
into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
CoRR abs/1502.01852 (2015). arXiv:1502.01852 http://arxiv.org/abs/1502.01852

[35] Y. He, P. Balaprakash, and Y. Li. 2020. FIdelity: Efficient Resilience Analysis
Framework for Deep Learning Accelerators. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 270–281. https://doi.org/
10.1109/MICRO50266.2020.00033

[36] Yi He and Yanjing Li. 2019. Time-Slicing Soft Error Resilience in Microproces-
sors for Reliable and Energy-Efficient Execution. In 2019 IEEE International Test
Conference (ITC). 1–10. https://doi.org/10.1109/ITC44170.2019.9000180

[37] Le Ha Hoang, Muhammad Abdullah Hanif, and Muhammad Shafique. 2019.
FT-ClipAct: Resilience Analysis of Deep Neural Networks and Improving
their Fault Tolerance using Clipped Activation. CoRR abs/1912.00941 (2019).
arXiv:1912.00941 http://arxiv.org/abs/1912.00941

[38] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[39] Peter H Hochschild, Paul Turner, Jeffrey C Mogul, Rama Govindaraju,
Parthasarathy Ranganathan, David E Culler, and Amin Vahdat. 2021. Cores
that don’t count. In Proceedings of the Workshop on Hot Topics in Operating Sys-
tems. 9–16.

[40] Ted Hong, Yanjing Li, Sung-Boem Park, Diana Mui, David Lin, Ziyad Abdel
Kaleq, Nagib Hakim, Helia Naeimi, Donald S Gardner, and Subhasish Mitra. 2010.
QED: Quick error detection tests for effective post-silicon validation. In 2010 IEEE
International Test Conference. IEEE, 1–10.

[41] Yunxiang Hu, Yuhao Liu, and Zhuovuan Liu. 2022. A Survey on Convolutional
Neural Network Accelerators: GPU, FPGA and ASIC. In 2022 14th International
Conference on Computer Research and Development (ICCRD). 100–107. https:
//doi.org/10.1109/ICCRD54409.2022.9730377

[42] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
2018. Densely Connected Convolutional Networks. arXiv:1608.06993 [cs.CV]

[43] Tri Huynh, Michael Maire, and Matthew R. Walter. 2019. Multigrid Neural
Memory. CoRR abs/1906.05948 (2019). arXiv:1906.05948 http://arxiv.org/abs/
1906.05948

[44] Younis Ibrahim, Haibin Wang, Junyang Liu, Jinghe Wei, Li Chen, Paolo Rech,
Khalid Adam, and Gang Guo. 2020. Soft errors in DNN accelerators: A compre-
hensive review. Microelectronics Reliability 115 (2020), 113969.

[45] Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B
Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, et al. 2021.
Ten lessons from three generations shaped Google’s TPUv4i: Industrial product.
In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 1–14.

https://github.com/YLab-UChicago/FIdelityTraining.git
https://github.com/YLab-UChicago/FIdelityTraining.git
https://doi.org/10.1109/ACCESS.2021.3076716
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://marcello.altervista.org/SLM.tttc-events.org/program.html#Keynote1
https://arxiv.org/abs/2102.06171
https://arxiv.org/abs/2102.06171
https://doi.org/10.1109/DSN.2019.00018
https://doi.org/10.48550/ARXIV.2003.13874
https://doi.org/10.48550/ARXIV.2003.13874
https://doi.org/10.1145/2897937.2897996
https://doi.org/10.48550/ARXIV.2203.08989
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1109/ISQED51717.2021.9424287
https://doi.org/10.1109/ISQED51717.2021.9424287
https://www.tensorflow.org
https://cloud.google.com/tpu
https://cloud.google.com/tpu/docs/cloud-tpu-tools
https://cloud.google.com/tpu/docs/cloud-tpu-tools
https://doi.org/10.1109/TDSC.2021.3063083
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/HPCA.2018.00059
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
https://doi.org/10.1109/MICRO50266.2020.00033
https://doi.org/10.1109/MICRO50266.2020.00033
https://doi.org/10.1109/ITC44170.2019.9000180
https://arxiv.org/abs/1912.00941
http://arxiv.org/abs/1912.00941
https://doi.org/10.1109/ICCRD54409.2022.9730377
https://doi.org/10.1109/ICCRD54409.2022.9730377
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1906.05948
http://arxiv.org/abs/1906.05948
http://arxiv.org/abs/1906.05948

Understanding and Mitigating Hardware Failures in Deep Learning Training Accelerator Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

[46] M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez. 2017. MeRLiN: Exploit-
ing dynamic instruction behavior for fast and accurate microarchitecture level
reliability assessment. In 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA). 241–254. https://doi.org/10.1145/3079856.3080225

[47] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[48] Guanpeng Li et al. 2017. Understanding Error Propagation in Deep Learning
Neural Network (DNN) Accelerators and Applications. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’17). 8:1–8:12.

[49] G. Li et al. 2018. TensorFI: A Configurable Fault Injector for TensorFlow Applica-
tions. In 2018 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). 313–320.

[50] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou. 2008.
Understanding the propagation of hard errors to software and implications for
resilient system design. In Proceedings of the 13th international conference on
Architectural support for programming languages and operating systems - ASPLOS
XIII, Vol. 42. 265.

[51] D. Lin, T. Hong, Y. Li, E. S, S. Kumar, F. Fallah, N. Hakim, D. S. Gardner, and S.
Mitra. 2014. Effective Post-Silicon Validation of System-on-Chips Using Quick
Error Detection. IEEE Trans. Comput. Des. Integr. Circuits Syst. 33, 10 (2014),
1573–1590.

[52] M. N. Lovellette, K. S. Wood, D. L. Wood, J. H. Beall, P. P. Shirvani, N. Oh, and E. J.
McCluskey. 2002. Strategies for fault-tolerant, space-based computing: Lessons
learned from the ARGOS testbed. In IEEE Aerospace Conference Proceedings, Vol. 5.
2109–2119.

[53] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Michael B. Sullivan, Timothy
Tsai, and Stephen W. Keckler. 2018. Optimizing Software-Directed Instruction
Replication for GPU Error Detection. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis. 842–854. https://doi.
org/10.1109/SC.2018.00070

[54] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Christopher W. Fletcher,
Sarita V. Adve, Charbel Sakr, Naresh Shanbhag, PavloMolchanov, Michael B. Sulli-
van, Timothy Tsai, and StephenW. Keckler. 2021. Optimizing Selective Protection
for CNN Resilience. In 2021 IEEE 32nd International Symposium on Software Reli-
ability Engineering (ISSRE). 127–138. https://doi.org/10.1109/ISSRE52982.2021.
00025

[55] J Markoff. 2022. Tiny Chips, Big Headaches. https://arxiv.org/abs/2203.08989
[56] A. Meixner, M. E. Bauer, and D. Sorin. 2007. Argus: Low-Cost, Comprehensive Er-

ror Detection in Simple Cores. In 40th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 2007). 210–222.

[57] Aditya Krishna Menon, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
2019. Can gradient clipping mitigate label noise?. In International Conference on
Learning Representations.

[58] S. Mirkhani, S. Mitra, C. Cher, and J. Abraham. 2015. Efficient soft error vulnera-
bility estimation of complex designs. In 2015 Design, Automation Test in Europe
Conference Exhibition (DATE). 103–108. https://doi.org/10.7873/DATE.2015.0367

[59] Sparsh Mittal. 2020. A survey on modeling and improving reliability of DNN
algorithms and accelerators. Journal of Systems Architecture 104 (2020), 101689.
https://doi.org/10.1016/j.sysarc.2019.101689

[60] MLCommons. 2021. v1.0 Results. https://mlcommons.org/en/training-normal-
10/.

[61] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz. 2013.
Electromagnetic Fault Injection: Towards a Fault Model on a 32-bit Microcon-
troller. In 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography. 77–88.
https://doi.org/10.1109/FDTC.2013.9

[62] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srinivas Sridharan, Xiaodong
Wang, Whitney Zhao, Serhat Yilmaz, Changkyu Kim, Hector Yuen, Mustafa
Ozdal, Krishnakumar Nair, Isabel Gao, Bor-Yiing Su, Jiyan Yang, and Mikhail
Smelyanskiy. 2020. Deep Learning Training in Facebook Data Centers: Design of
Scale-up and Scale-out Systems. CoRR abs/2003.09518 (2020). arXiv:2003.09518
https://arxiv.org/abs/2003.09518

[63] Nvidia. 2021. Nvidia Ampere Architecture. https://www.nvidia.com/en-us/data-
center/ampere-architecture.

[64] NVIDIA Corporation. 2018. NVDLA Open Source Project. http://nvdla.org/
primer.html.

[65] N. Oh, P. P. Shirvani, and E. J. McCluskey. 2002. Control-flow checking by
software signatures. IEEE Trans. Reliab. 51, 1 (2002), 111–122.

[66] N. Oh, P. P. Shirvani, and E. J. McCluskey. 2002. Error Detection By Duplicated
Instructions in Spuper-Scalar Processor. IEEE Trans. Reliab. 51, 1 (2002), 63–75.

[67] Elbruz Ozen and Alex Orailoglu. 2020. Boosting Bit-Error Resilience of DNN
Accelerators Through Median Feature Selection. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 39, 11 (2020), 3250–3262. https:
//doi.org/10.1109/TCAD.2020.3012209

[68] Elbruz Ozen and Alex Orailoglu. 2020. Just Say Zero: Containing Critical Bit-Error
Propagation in Deep Neural Networks With Anomalous Feature Suppression.
In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD).
1–9.

[69] George Papadimitriou and Dimitris Gizopoulos. 2021. Demystifying the System
Vulnerability Stack: Transient Fault Effects Across the Layers. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA). 902–915.
https://doi.org/10.1109/ISCA52012.2021.00075

[70] P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee. 2007. Perturbation-
based Fault Screening. In IEEE 13th International Symposium on High Performance
Computer Architecture. 169–180.

[71] B. Reagen et al. 2016. Minerva: Enabling Low-Power, Highly-Accurate Deep Neu-
ral Network Accelerators. In 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA). 267–278. https://doi.org/10.1109/ISCA.2016.32

[72] B. Reagen et al. 2018. Ares: A framework for quantifying the resilience of deep
neural networks. In 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC). 1–6.

[73] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
arXiv:1804.02767 [cs.CV]

[74] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. 2004. SWIFT:
Software Implemented Fault Tolerance. In Proceedings of the international sympo-
sium on Code generation and optimization. 1–12.

[75] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi,
and Jeremy Kepner. 2021. AI Accelerator Survey and Trends. In 2021 IEEE High
Performance Extreme Computing Conference (HPEC). 1–9. https://doi.org/10.1109/
HPEC49654.2021.9622867

[76] S. K. Sahoo, M. L. Li, P. Ramachandran, S. V. Adve, V. S. Adve, and Y. Zhou. 2008.
Using likely program invariants to detect hardware errors. In Proceedings of the
International Conference on Dependable Systems and Networks. 70–79.

[77] Sriram Sankar, Rama Govindaraju, Arjan Van De Ven, Steven Hesley, and Sub-
hasish Mitra. 2021. Panel: Hardware Operation at Scale Reliability to Address
Silent Data Corruptions.

[78] S. K. Sastry Hari, S. V. Adve, H. Naeimi, and P. Ramachandran. 2013. Relyzer:
Application Resiliency Analyzer for Transient Faults. IEEE Micro 33, 3 (May
2013), 58–66. https://doi.org/10.1109/MM.2013.30

[79] Robin M Schmidt, Frank Schneider, and Philipp Hennig. 2021. Descending
through a crowded valley-benchmarking deep learning optimizers. In Interna-
tional Conference on Machine Learning. PMLR, 9367–9376.

[80] Christoph Schorn, Andre Guntoro, and Gerd Ascheid. 2018. Accurate neuron
resilience prediction for a flexible reliability management in neural network
accelerators. In 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 979–984. https://doi.org/10.23919/DATE.2018.8342151

[81] Christoph Schorn, Andre Guntoro, and Gerd Ascheid. 2019. An Efficient Bit-
Flip Resilience Optimization Method for Deep Neural Networks. In 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 1507–1512. https:
//doi.org/10.23919/DATE.2019.8714885

[82] M. Shafique, S. Rehman, P. V. Aceituno, and J. Henkel. 2013. Exploiting program-
level masking and error propagation for constrained reliability optimization. In
Proceedings of the 50th Annual Design Automation Conference on – DAC13.

[83] Eshan Singh, Clark Barrett, and SubhasishMitra. 2017. E-QED: electrical bug local-
ization during post-silicon validation enabled by quick error detection and formal
methods. In International Conference on Computer Aided Verification. Springer,
104–125.

[84] Christian Szegedy et al. 2015. Going Deeper With Convolutions. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[85] Mingxing Tan and Quoc V. Le. 2020. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. arXiv:1905.11946 [cs.LG]

[86] Tensorflow. 2021. Training checkpoints. https://www.tensorflow.org/guide/
checkpoint.

[87] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. arXiv:1706.03762 [cs.CL]

[88] Radha Venkatagiri, AbdulrahmanMahmoud, Siva Kumar Sastry Hari, and Sarita V.
Adve. 2016. Approxilyzer: Towards a systematic framework for instruction-level
approximate computing and its application to hardware resiliency. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–14.
https://doi.org/10.1109/MICRO.2016.7783745

[89] N. J. Wang and S. J. Patel. 2006. ReStore: Symptom-based soft error detection in
microprocessors. IEEE Trans. Dependable Secur. Comput. 3, 3 (2006), 188–201.

[90] P. N. Whatmough et al. 2017. 14.3 A 28nm SoC with a 1.2GHz 568nJ/prediction
sparse deep-neural-network engine with >0.1 timing error rate tolerance for IoT
applications. In 2017 IEEE International Solid-State Circuits Conference (ISSCC).
242–243.

[91] Wikipedia. 2022. Backpropagation. https://en.wikipedia.org/wiki/
Backpropagation.

[92] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. 2019. Why gradient
clipping accelerates training: A theoretical justification for adaptivity. https:
//doi.org/10.48550/ARXIV.1905.11881

[93] Zhao Zhang, Lei Huang, Ruizhu Huang, Weijia Xu, and Daniel S. Katz. 2019.
Quantifying the Impact of Memory Errors in Deep Learning. In 2019 IEEE Inter-
national Conference on Cluster Computing (CLUSTER). 1–12. https://doi.org/10.
1109/CLUSTER.2019.8890989

https://doi.org/10.1145/3079856.3080225
https://doi.org/10.1109/SC.2018.00070
https://doi.org/10.1109/SC.2018.00070
https://doi.org/10.1109/ISSRE52982.2021.00025
https://doi.org/10.1109/ISSRE52982.2021.00025
https://arxiv.org/abs/2203.08989
https://doi.org/10.7873/DATE.2015.0367
https://doi.org/10.1016/j.sysarc.2019.101689
https://mlcommons.org/en/training-normal-10/
https://mlcommons.org/en/training-normal-10/
https://doi.org/10.1109/FDTC.2013.9
https://arxiv.org/abs/2003.09518
https://arxiv.org/abs/2003.09518
https://www.nvidia.com/en-us/data-center/ampere-architecture
https://www.nvidia.com/en-us/data-center/ampere-architecture
http://nvdla.org/primer.html
http://nvdla.org/primer.html
https://doi.org/10.1109/TCAD.2020.3012209
https://doi.org/10.1109/TCAD.2020.3012209
https://doi.org/10.1109/ISCA52012.2021.00075
https://doi.org/10.1109/ISCA.2016.32
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109/HPEC49654.2021.9622867
https://doi.org/10.1109/HPEC49654.2021.9622867
https://doi.org/10.1109/MM.2013.30
https://doi.org/10.23919/DATE.2018.8342151
https://doi.org/10.23919/DATE.2019.8714885
https://doi.org/10.23919/DATE.2019.8714885
https://arxiv.org/abs/1905.11946
https://www.tensorflow.org/guide/checkpoint
https://www.tensorflow.org/guide/checkpoint
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/MICRO.2016.7783745
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Backpropagation
https://doi.org/10.48550/ARXIV.1905.11881
https://doi.org/10.48550/ARXIV.1905.11881
https://doi.org/10.1109/CLUSTER.2019.8890989
https://doi.org/10.1109/CLUSTER.2019.8890989

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. He, et al.

[94] Kai Zhao, Sheng Di, Sihuan Li, Xin Liang, Yujia Zhai, Jieyang Chen, Kaiming
Ouyang, Franck Cappello, and Zizhong Chen. 2021. Algorithm-Based Fault
Tolerance for Convolutional Neural Networks. IEEE Transactions on Parallel and
Distributed Systems (2021), 1–1. https://doi.org/10.1109/tpds.2020.3043449

[95] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. 2010. Parallelized
Stochastic Gradient Descent. In Advances in Neural Information Processing Sys-
tems, J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (Eds.),
Vol. 23. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2010/file/
abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf

https://doi.org/10.1109/tpds.2020.3043449
https://proceedings.neurips.cc/paper/2010/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf

Understanding and Mitigating Hardware Failures in Deep Learning Training Accelerator Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

A ARTIFACT APPENDIX
A.1 Abstract
We provide our fault injection framework used in our study and
the evaluation of our technique. The methodology to inject faults
and apply our technique to the DNN training program are similar
for all workloads. We will open-source the complete fault injection
framework for all DNN workloads.

In each fault injection experiment, we pick a random training
epoch, a random training step, a random layer (selected from both
layers in the forward pass and the backward pass), and a random
software fault model, and continue training the workload to observe
the outcome. In order to inject faults to the backward pass and also
correctly propagate the error effects, we manually implemented
the backward pass for each DNN workload, which can be found in
the fault_injection/models folder.

We have performed 2.9M fault injection experiments to obtain
statistical results. In this artifact evaluation, we provide three re-
producible examples of fault injections that correspond to three
outcomes (Masked, Immediate INFs/NaNs, and SlowDegrade) re-
ported in our paper. We also provide instructions for running more
fault injection experiments.

Our technique’s evaluation includes both detection and recovery.
To measure detection performance, we perform detection opera-
tions 10,000 times in each training step and calculate the geomean
of the overhead. For recovery performance, we re-execute the two
most recent training iterations once for every 10 training iterations
and calculate the geomean of the overhead.

A.2 Artifact check-list (meta-information)
• Model: Resnet18.
• Data set: Cifar10.
• Run-time environment: Google Cloud TPU VM.
• Hardware: Google Cloud TPU.
• Output: Training / test accuracy.
• Experiments: Experiments performed by our fault injection
framework.

• How much disk space required (approximately)?: 5GB.
• How much time is needed to prepare workflow (approxi-
mately)?: 10 minutes.

• How much time is needed to complete experiments (approxi-
mately)?: 20-30 minutes for all three examples of fault injec-
tion. 20-30 minutes for the evaluation of our technique.

• Publicly available?: Yes.
• Workflow framework used?: Tensorflow.
• Archived?: Yes.
• DOI: https://doi.org/10.5281/zenodo.7952090, and
https://doi.org/10.5281/zenodo.7952098.

A.3 Description
A.3.1 How to access. Our artifact can be accessed through this
link: https://doi.org/10.5281/zenodo.7952090.

A.3.2 Hardware dependencies. Our experiments are run on Google
Cloud TPUs (TPU versions v2-8 and v3-8).

A.3.3 Software dependencies. We require the following software
tools:

• Tensorflow 2.6.0
• Numpy 1.19.5

• Gdown 4.6.4

A.3.4 Data sets. We use the Cifar10 dataset in this AE.

A.3.5 Models. We use Resnet18 in this AE.

A.4 Installation
The step for creating cloud TPU VMs and download the check-
points.
(1) Step 1. Create Google Cloud TPU VM.
export PROJECT_ID=${PROJECT_ID}

gcloud alpha compute tpus tpu -vm create

${TPU_NAME} --zone=${TPU_LOCATION}

--accelerator -type=${TPU_TYPE}

--version=v2-alpha

PROJECT_ID: The Google cloud user ID.
TPU_NAME: A user-defined name.
TPU_LOCATION: The cloud region, e.g., us-central1-a.
TPU_TYPE: The type of the cloud TPU, e.g., v2-8.

(2) Step 2. SSH to the TPU VM.
gcloud alpha compute tpus tpu -vm ssh

${TPU_NAME} --zone=${TPU_LOCATION}

--project ${PROJECT_ID}

(3) Step 3. Check Numpy and Tensorflow versions.
import numpy

numpy.__version__

import tensorflow

tensorflow.__version__

Make sure that the version of numpy is 1.19.5, and the version of
tensorflow is 2.6.0. If the versions don’t match, please install the
correct versions.
(4) Step 4. Download files from this link:
https://doi.org/10.5281/zenodo.7952090.
(5) Step 5. Download checkpoints from Google Drive.
cd fault_injection

pip install gdown

gdown --folder

https :// drive.google.com/drive/folders/

1HVRFWY7NI5xr5qzR8yNeSKCRVnJNnqFf

?usp=sharing

The commands above download checkpoints to folder fault_injec
tion/ISCA_AE_CKPT. Please keep this folder name. If gdown cannot
be found, specify the full pathwhere gdown is installed, mostly likely
in ~/.local/bin.

A.5 Experiment workflow
A.5.1 Fault injection. The reproduce_injections.py file is the
top-level program to perform the entire workflow of a fault in-
jection experiment, which takes in one argument --file, which
specifies the injection configs, e.g., the target training epoch, target
training step, target layer, faulty values, etc. The configs of our
three examples are provided in the injections folder.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. He, et al.

For each injection, the program generates an output file named
replay_inj_TARGET_INJECTION.txt file under the fault_inject
ion directory, which records the training loss, training accuracy
for each training iteration, and test loss and test accuracy for each
epoch. For Example 1, the file will also record when INF/NaN values
are observed.

To execute each example, run:
i Example 1 (takes approximately 5 minutes).
cd fault_injection

python3 reproduce_injections.py --file

injections/inj_immediate_infs_nans.csv

ii Example 2 (takes approximately 10-15 minutes).
cd fault_injection

python3 reproduce_injections.py --file

injections/inj_masked.csv

iii Example 3 (takes approximately 10-15 minutes).
cd fault_injection

python3 reproduce_injections.py --file

injections/inj_slow_degrade.csv

A.5.2 Evaluation of our technique. To evaluate the overhead of
detection (takes approximately 15 minutes): we first execute the
detection.py script without the --check flag. This trains the
workload without detection. Once this step is complete, we ex-
ecute the detection.py script with the --check flag, enabling
detection and executing detection operations 10,000 times for ev-
ery training iteration. These two commands generate two files:
train_recorder_no_check.txt and train_recorder_check.
txt, which record the total elapsed time of the training process
without and with detection, respectively. Finally, we execute the
calc_overhead.py script to obtain the overhead.
cd technique/detection

python3 detection.py

python3 detection.py --check

python3 calc_overhead.py

We follow a similar methodology for recovery (takes approxi-
mately 15 minutes), and execute the replay.py script without and
with the --rerun flag. These two commands generate two files:
train_recorder_no_rerun.txt and train_recorder_rerun.
txt, which record the total elapsed time of the training process
without and with re-execution, respectively. Finally, we execute the
calc_overhead.py script to obtain the overhead.
cd technique/replay

python3 replay.py

python3 replay.py --rerun

python3 calc_overhead.py

A.6 Evaluation and expected results
A.6.1 Fault injection. Once each experiment is done, the output
file should contain the following information:
i Example 1. NaN values are reported in the same training itera-
tion (epoch 19, iteration 38) where the fault is injected.
A sample expected output file for this example can be found in
fault_injection/expected_results/replay_inj_immediate_
infs_nans.txt.
ii Example 2. After the fault is injected, both the training and test
accuracy keeps improving as the training process continues. The
final training accuracy is within 2% compared with the fault-free
run.
A sample expected output file for this example can be found in
fault_injection/expected_results/replay_inj_masked.txt.
A sample fault-free output file can be found in fault_injection/
expected_results/fault_free.txt.
iii Example 3. After the fault is injected, the training accuracy
degrades, then stays at a low level through. The final accuracy is
significantly lower than that of the error-free runs.
A sample expected output file for this example can be found in
fault_injection/expected_results/replay_inj_slow_degra
de.txt.

A.6.2 Evaluation of our technique. The command python calc_
overhead.py prints out the overheads for detection and recovery.
Please note that due to the varying throughputs of different ver-
sions of TPUs, the overhead may vary slightly. However, as re-
ported in our paper, we expect the overhead for detection to be less
than 0.025% and the overhead for recovery to be less than 0.15%.
For reference, we provide our train_recorder_xx.txt files under
the detection/expected_result and replay/expected_result
folders. These files report a detection overhead of 0.016%, and a
recovery overhead of 0.12%.

A.7 Experiment customization
To run other examples, one can modify the three example injec-
tion files under the injection folder and specify different training
epochs, training steps, target layers, and faulty values. Checkpoints
that belong to other epochs can be downloaded through:
gdown --folder

https :// drive.google.com/drive/folders/

1B4ptjedCX4e1PbzZWVe5Ydfe48BvSwzt?

usp=sharing

The evaluation process is similar to the examples provided.
To run other workloads, download additional files from

https://doi.org/10.5281/zenodo.7952098 and follow the
README. The entire workflow and evaluation procedure are the
same as the examples we provided.

	Abstract
	1 Introduction
	2 Background
	3 Methodology and Framework
	3.1 Accelerator Architecture for DNN Training
	3.2 Fault Injection Framework
	3.3 Experiment Setup

	4 Results
	4.1 Characterization of Hardware Failure Effects
	4.2 Detailed Analysis
	4.3 Other Results and Discussions

	5 Techniques to Tackle Hardware Failures in DNN Training Systems
	5.1 Detection
	5.2 Recovery
	5.3 Implementation and Evaluation

	6 Related Work
	7 Conclusions
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization

