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As collaborative technologies evolve from supportive tools to interactive teammates, there is a growing need
to understand how trust and team processes develop in human-agent teams. To contribute effectively, these
systems must be able to support human teammates in a task without disrupting the delicate interpersonal states
and team processes that govern successful collaboration. In order to break down the complexity of monitoring
multiple actors in human-agent collaborations, there is a need to identify interpretable, generalizable measures
that can monitor the emergence of interpersonal and team-level processes that underlie effective teaming. We
address this gap by using functional Near-Infrared Spectroscopy to concurrently measure brain activity of
two individuals in a human-human-agent team during a complex, ecologically valid collaborative task, with
a goal of identifying quantitative markers of cognition- and affect-based trust alongside team processes of
coordination, strategy formulation, and affect management. Two multidimensional extensions of recurrence
quantification analysis, a nonlinear method based in dynamical systems theory, are presented to quantify inter-
personal coupling and team-level regularity as reflected in the hemodynamics of three cortical regions across
multiple time-scales. Mixed-effects regressions reveal that neural recurrence between individuals uniquely
reflects changes in self-reported trust, while team-level neural regularity inversely predicts self-reported team
processes. Additionally, we show that recurrence metrics capture temporal dynamics of affect-based trust con-
sistent with existing theory, showcasing the interpretability and specificity of these metrics for disentangling
complex team states and processes. This paper presents a novel, interpretable, and computationally efficient
model-free method capable of differentiating between latent trust and team processes a complex, naturalistic
task setting. We discuss the potential applications of this technique for continuous monitoring of team states,
providing clear targets for the future development of adaptive human-agent teaming systems.
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1 INTRODUCTION
It need not be restated that computer-supported collaborations are all but necessary in the modern
world— be it the workplace, classroom, lab, or other dynamic environments. These technologies
are shifting roles from simply aiding human-human collaboration to joining as uniquely skilled
members of human-agent teams (HATs). The evolution of HATs in military, business, medical, and
educational domains is requiring intelligent systems to adapt from facilitators into full-fledged
teammates [12, 66]. However, human teams are complex, evolving dynamical systems that must
coordinate expectations, share information, and maintain interpersonal relations [23, 29, 53]. Col-
laboration allows a team to outperform the sum of its parts on a given task, but a team may also be
subject to process loss by which the degradation of cooperative processes results in underperfor-
mance [42]. Thus, a goal of computer-supported work is to mitigate process loss by monitoring
and supporting effective processes such as coordination, affect co-regulation, and trust. This mit-
igation and support work best when unobtrusive to the humans’ teaming processes. Successful
HAT systems will leverage the computational power and sensory capabilities of computer agents
to monitor and adapt to emerging team dynamics, encouraging human operators to effectively
coordinate and maintain cohesion with each other while offloading tasks onto the agent when
appropriate to increase team efficiency and task performance.

Few empirical studies have attempted to map these theoretical processes onto ecologically valid
human-agent collaborations with more than one human [27]. Studies restricted to only one human
team member fail to generalize to the complexities of real-world group settings in which HAT
systems aremost needed. Due to the difficulty of objectivelymeasuring team processes in naturalistic
settings, most efforts are also hindered by rigid task settings that reduce participants’ potential
decisions and strategies to approach the task. Moreover, machine learning and neural network
approaches, though powerful classification and prediction tools, are often difficult to interpret. As
such, these studies are largely unable to draw clear conclusions from their results, highlighting the
need for more robust, ecologically valid, and generalizable studies. Ideally, intelligent HAT systems
will provide insight into the emergence and behavior of latent states over time. To accomplish this,
we must explore interpretable computational techniques grounded in existing theory that capture
the complexities of multiparty interaction.

We address this challenge by using functional Near-Infrared Spectroscopy (fNIRS) to concurrently
measure brain activity of two individuals in a human-human-agent team during a complex, open-
ended collaborative task. We explore methods to measure latent trust and team states as an
important step toward integrated HAT systems that support cooperative work by monitoring
and adapting to shifting dynamics. A novel method of quantifying neurophysiological coupling
between individuals and regularity within a team is presented to monitor interpersonal trust and
collaborative team processes. Specifically, multi-dimensional recurrence quantification analysis
(MdRQA) and multidimensional cross-recurrence quantification analysis (MdCRQA) applied to
neurophysiological sensor data are shown to hold great potential for the continuous and unintrusive
extraction of team states. These techniques are computationally tractable, readily interpretable,
and impose no assumptions or training requirements on the data.
The ability to separate and individually measure interpersonal trust alongside team states is

crucial to adaptive systems, allowing these collaborative technologies to monitor and directly
respond to lapses in any individual processes via supportive interventions. Figure 1 outlines how
these methods can function in a robust adaptive human-human-agent collaboration system: during
a HAT collaboration, neurophysiological sensor recordings extract multidimensional time series
from each participant, which are continuously fed into interpersonal (MdCRQA) and team-level
(MdRQA) analyses, subsequently translating the data into markers of emergent states like trust,
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coordination, and co-regulation. Information about these states is then sent to the assistive agent,
which can appropriately modify its behavior or shed tasks onto either participant to increase or
otherwise modulate trust and collaborative team processes.

Fig. 1. Relevant states are simultaneously extracted from neurophysiological sensor data via (a) multidimen-
sional cross-recurrence quantification analysis, identifying interpersonal trust, and (b) multidimensional
recurrence quantification analysis, identifying team processes.

The overarching goal of this research is to break down the complexity of monitoring multiple
actors in a human-agent collaboration. There is a clear need to identify single measures that
can monitor the emergence of interpersonal and system-level processes that underly effective
collaboration. To address this goal, we designed a study to test our ability to disentangle the
interpersonal and team-level processes using recurrence metrics based solely on fNIRS data. This
study makes three main contributions to the CSCW domain:
(1) We identify metrics that can independently monitor changes in interpersonal trust and

team-level collaborative processes in an ecologically valid context.
(2) We show how these methods uncover dynamics consistent with existing theory, allowing

us to draw conclusions about the temporal development of trust and team states during
collaboration.

(3) Our results suggest that the diagnosticity of recurrence methods is robust to noise and
changes in task context, addressing a major gap in existing human-agent teaming research.

We believe this is one of the first efforts to successfully pick these apart fine processes in a
complex, naturalistic task setting— all from one sensor suite with minimal preprocessing and
model-free analyses.

1.1 Background and Related Work
In this section, we summarize literature at the intersections of social/teaming science, human-
computer interaction, complex systems theory, and neuroergonomics to provide a foundation for
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the present study. We first introduce trust and team dynamics to identify target variables that
underly successful teaming. Then, we discuss the ecological validity of neurophysiological sensors
for measuring these variables. Finally, we present theory behind recurrence quantification analysis
as a tool for modeling human-agent teams as complex systems.

1.1.1 Trust and team processes. Trust is a particularly hot topic in the human-agent teaming
domain (see [27, 35, 46, 48, 64] for reviews). It is a driving force of decision making in both human-
human and human-agent teams [16, 39, 46, 60, 83], and has been proposed as a key factor in
computer-supported cooperative work [40, 75]. Thimbleby, et al. [75] argue that the success of
computer-supported work and everyday interactions hinges on appropriate, or calibrated, trust.
Trust, generally defined as a willingness to accept vulnerability based on positive expectations
of others [68], is properly calibrated when the trustor’s expectations appropriately match the
capabilities of the trustee. For example, trust calibration drives individuals to offload tasks onto
a teammate when the teammate is capable of properly handling the task (increased trust), and
to take over tasks other teammates are not fit to handle (decreased trust). This promotes team
performance by ensuring each individual is capable of their task. This formulation of trust extends
to human-human teams, human-agent teams, and hybrid teams of multiple humans and/or multiple
agents [27, 46, 48, 63].

Much of the literature on trust in teams follows a seminal framework proposed by McAllister [56],
which characterizes twomain dimensions of trust especially relevant to interpersonal collaborations:
cognition-based trust and affect-based trust. Cognition-based trust, or cognitive trust, is grounded
in one’s perceived ability or competency. In team collaborations, cognition-based trust is found to
promote cooperation among individuals, stemming from the belief that the trustee will be successful
in a given task [39, 41, 54]. Studies on the effects of cognitive trust in teams found that competency
increased cognition-based trust, which in turn increased individuals’ effort and, subsequently, team
performance. Affect-based, or affective trust, on the other hand, is fostered from the perceived
motives behind the trustee’s actions toward the trustor. Affective trust is increased by displays of
personal concern and assistance, especially when performed outside of an individual’s role and
without expectation of reward [32, 56]. Affect-based trust is slower to form than cognition-based
trust, but is more robust to conflict and time [83]. Affective trust encourages individuals contribute
to a team and increases communication during collaboration [13, 70]. In a review of trust in virtual
teams, Hacker et al. [32] found that cognition- and affect-based trust together improve knowledge
sharing and promote coordination and cohesion, highlighting the role of both types of trust in
interpersonal teaming dynamics. Notably, they also identify that much literature is hindered by
viewing trust and team processes as static, rather than dynamic constructs.

We ground the present work in a dynamic, cyclical teams framework of hybrid human-human-
agent teams [10], wherein individuals are influenced by current events, past events, and developing
interpersonal and team-level processes [28, 44, 50]. These team processes, denoted as either transi-
tion processes, action processes, or interpersonal processes, determine the success of cooperative
teams [50, 52, 53]. Transition processes, such as strategy formulation, are characterized by reflection
on past occurrences or preparation for an upcoming task; action processes, such as coordination,
describe the actions of team members working toward a goal; and interpersonal processes, such as
affect management, consist of social and emotional behaviors that foster relationships between
individuals. As teammates interact in a collaborative setting, cognitive and affective trust (inter-
personal states) develop as system-level and interpersonal processes emerge, forming a dynamic
feedback loop where current states (e.g., levels of trust and/or coordination) govern subsequent
interaction [6, 19]. Several reviews identify these states as important to performance outcomes,
explicitly mentioning trust as a key factor [6, 28, 36].
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In a recent study of trust in human-human-agent teams [21], we found that lowering the agent’s
level of communication reduced participants’ reported trust in their agent and human teammates
alike, as well our measure of team processes (adapted from [53]). We proposed that human-human-
agent teams do exhibit similar characteristics as human-only teams in complex tasks, as a lapse
in communication from one member disrupted individuals’ overall sense of team cohesion. A
similar study of team cognition in hybrid human-agent triads [71] concluded that human-human-
agent teams exhibit similar qualities of iterative mental model formation as human teams. They
also distinguish that while communication improved team cognition regardless of composition,
goal-oriented communication was significantly more beneficial in human-agent teams. These
findings inform the present study’s aim to extend the investigation of team dynamics traditionally
constrained to human-human teams into the domain of human-agent teams. Indeed, teams of
any size and composition can be modeled as complex dynamical systems, with varying states of
interpersonal trust and team-level processes emerging over time. Beyond the existing literature,
there is a need for empirical methods to consistently measure latent variables like trust. This
reflects a main gap in the effort to interface intelligent systems with complex human interactions.
Theory and initial findings in [10] detail the effects of agent transparency and reliability on trust,
providing a cyclical framework to describe how interpersonal and team-level processes develop
in a human-agent interaction. Expanding on this existing groundwork, we link patterns of brain
activity to changes in interpersonal trust and team processes while accounting for the effects of
agent behavior.

1.1.2 Neuroergonomics and neurophysiological sensors. One of the main hurdles of monitoring trust
and team states during collaborations is the inherent reliance on periodic surveys and behavioral
measures of latent constructs. While this is a necessary characteristic of experimental paradigms,
further applied development of supportive human-agent teaming systems in realistic settings
requires continuous, nondisruptive monitoring. A promising yet challenging answer to this is
the application of modern neurophysiological sensors to continuously predict levels of trust and
other latent variables. The ability to monitor activity across several functionally unique regions
via a single sensor suite combined with the brain’s role in governing human cognition, affect, and
behavior makes a captivating case for the use of neurophysiological measures in investigating
individual and team-level internal states.
While fMRI remains the standard for precise functional measurements of brain activity, it is

not feasible for real-time measurement in a realistic teaming setting due to the cost and physical
restrictions of the scanner. Less invasive technologies have become an attractive alternative as
their lightweight sensors, usually consisting of a head cap with probes, allow studies in a much
wider variety of environments. In particular, functional near-infrared spectroscopy (fNIRS) holds
great potential for measuring social, cognitive, and affective states in ecologically valid scenarios.
In a recent review, Curtin & Ayaz identify fNIRS as one of the most promising technologies for ap-
plications of continuous brain monitoring, highlighting the technology’s ecological advantages and
suitability for applied neuroergonomics [17]. fNIRS uses infrared light to measure hemodynamic
responses that occur in the brain following neuronal activation— specifically, Δoxyhemoglobin
(HbO) and Δdeoxyhemoglobin (HbR)— and thus boasts higher spatial resolution than electroen-
cephalography (EEG) and temporal resolution comparable to fMRI. Furthermore, fNIRS devices
are easily configurable, do not require any gel or special preparation, and can function wirelessly
allowing for virtually no movement restriction while in use.

Since fNIRS remains in its nascent stage when compared EEG and fMRI, few studies have used the
device to measure complex social constructs, such as trust and suspicion, in the brain. Thus, we turn
to the body of literature on fMRI as a roadmap for identifying regions of interest (ROIs) to measure
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[8, 20, 24, 45]. Brain regions including the frontopolar area (FPA), medial prefrontal cortex (MPFC),
dorsolateral prefrontal cortex (DLPFC), and the bilateral temporoparietal junction (TPJ) have often
been linked to trust, decision making, and interpersonal reasoning [1, 24, 25, 34, 49, 61, 65, 69, 82].
Dorsal MPFC (DMPFC) in particular has been linked to reasoning and making social judgements
about others (vs. oneself) during decision-making [58], a process crucial to evaluating one’s intent
when deciding to trust. DLPFC has often been implicated in executive processes, such as task
supervision and affect regulation, which underlie teaming processes [11, 57]. Taken together, these
prior studies identify three key regions of interest and encourage the viability of real-time team
monitoring via fNIRS.
Recent studies have attempted to classify trust in automated agents via neurophysiological

signals [2, 31, 81]. However, many such efforts use rigid task environments and complex machine
learning techniques that are poorly interpretable and prone to overfitting, thus failing to generalize
to ecologically valid scenarios. In our most recent study [21], we found DMPFC, DLPFC, and FPA
sensitive to changes in trust after manipulating agent transparency and reliability in teams of two
humans and one agent in a naturalistic task setting. Through their findings and limitations, these
studies encourage the potential of neurophysiological sensors for collaborative technologies and
provide a clear direction to improve upon previous efforts.

1.1.3 Recurrence quantification analysis: teams as dynamical systems. Extending the groundwork
laid by the studies above, we take a neuroergonomics approach to model teaming dynamics as
reflected by patterns of brain activity. However, applying these rich data streams to real teaming
scenarios requires sound methods to appropriately model and capture the complex team-level
dynamics at play. Following the framework of dynamic team collaborations mentioned in section
1.1.1, we draw from dynamical systems theory to quantify interpersonal and team processes during
human interactions [30]. Complex systems like teams exhibit nonlinear shifts in states that can
be captured best with nonlinear analyses [18, 51]. Such patterns are typical to cooperative work,
where teams exhibit qualitatively distinct behaviors, for example, as they move from discussing
possible strategies, to executing a select strategy, to evaluating its effects. The inherent messiness of
human behavior often challenges the assumptions required of traditional linear techniques, which
are often limited to measuring dyadic synchrony [3, 26, 55, 62]. In line with this perspective, we
utilize an analytical method from nonlinear dynamical systems theory called recurrence quantifica-
tion analysis (RQA) to quantify team-level and interpersonal patterns which emerge during the
collaboration [84].
Specifically, RQA captures points during which states are revisited, giving insight to the tem-

poral and structural organization of a dynamical system (such as a human-agent team). Though
traditionally used to quantify recurrent patterns within one signal (simple RQA) [9, 47, 76, 84] or
alignment between two signals (cross-RQA, or CRQA) [14, 33, 67], newer methods of recurrence
quantification can examine multidimensional data to measure coordination and co-evolution of
multi-person systems during interactions [14, 18, 73]. For example, recent work has quantified
team-level recurrence across physiological and behavioral signals, including eye tracking, speech
rate, galvanic skin response, and body movement, during collaborative problem solving and found
it predictive of team processes and performance [3, 22, 77, 78].

Many prior applications of recurrence analysis in the CSCW domain have used eye-tracking as a
primary signal to capture constructs like shared attention, shared understanding, and interpersonal
synchrony [3, 26, 37, 38, 78]. Using a pair programming task, [38] found higher gaze cross-recurrence
consistent with increased shared understanding within a team. Demonstrating the interpretability
of recurrence analyses coupled with eye tracking data, CRQA was able to quantify instances
of attention coupling during the task. Similarly, [78] found that gaze coupling linked to shared
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knowledge during a collaborative problem solving task. Using multidimensional RQA (MdRQA),
they also showed team-level regularity to be predictive of successful negotiation and coordination.
Indeed, studies of interpersonal CRQA are able to link recurrence to increased synchrony and
coordination, while system-level patterns captured by MdRQA are often sensitive to changes in
team performance and collaborative processes [3, 22, 78]. Nevertheless, MdRQA and CRQA are
both uniquely tuned to capture different dynamics of human interaction.

Though research applying recurrence quantification to brain data is limited, prior work taking a
complex systems approach to fMRI analysis has shown that univariate RQA performs similarly
to traditional statistical analyses in identifying patterns of activation (namely, general linear
models and independent component analysis) without requiring any a priori assumptions or model
specifications beyond a single fixed parameter [9, 47]. Thus, we focus our current effort on MdRQA
and a multidimensional extension of CRQA, examining their individual specificity for measuring
trust and team processes from neurophysiological activity.

1.2 Current Approach and Hypotheses
Two multidimensional extensions to RQA exist— multidimensional-RQA (MdRQA) and multidi-
mensional cross-RQA (MdCRQA). MdRQA quantifies the level to which multiple signals exhibit
collective regularity, or repeated states with a system, though the individual signals may not be
in alignment with each other. For example, one repeated state in a system of two individuals’
brain signals might include high activation in one person’s DLPFC & FPA and simultaneously low
activation in the other person’s DLPFC & FPA (potentially signaling differences in task engagement),
whereas another state might include low DLPFC & FPA activity in both individuals. This is valuable
from a neuroergonomics perspective, as concurrent activity in different functional brain regions
provides a much richer picture than any one region alone.

The second multidimensional modification of RQA, multidimensional cross-recurrence quantifi-
cation analysis (MdCRQA), quantifies the co-occurrence of states between two multidimensional
systems. This differs from MdRQA which examines states within a single multidimensional system;
Figure 1 depicts how these methods examine a team’s data differently. Using the above example,
MdCRQA might quantify how often both individuals displayed simultaneously high DLPFC & FPA
activation across all time lags.We hypothesize that [H1] applying MdCRQA to fNIRS data
will (a) predict cognitive and affective trust but (b) not team processes, while [H2] MdRQA
will (a) predict team processes but (b) not interpersonal trust. In testing these hypotheses, we
are investigating whether the difference between these two multidimensional recurrence analyses
allows us to tap into distinct, high-dimensional latent states.

Recurrence quantificationmethods are well suited to fNIRS data as they require no assumptions of
linearity or stationarity and are thus robust to noise. Additionally, the ability to quantify regularity
across multiple signals at once allows for multiple brain regions of interest (ROIs) and signals (HbO
& HbR) to be examined concurrently as they co-evolve without losing information. Furthermore,
by restricting comparisons to values that occur only within a specific time of each other, RQA
can easily be constrained to quantify recurrence across short, medium, and long time scales.
For example, at a 5 second lag each value is compared only to other values occurring within 5
seconds before or after it. These different scales allow us to comprehensively assess the evolution of
different team and interpersonal dynamics over time. In other words, we will be able to distinguish
states linked to short-term alignment from those that emerge from longer-term alignment. Given
previous theory of how cognitive and affective trust form differently over time, we predict that
recurrence across different time scales will promote the emergence of different states. Specifically,
we hypothesize that [H3] affect-based trust will stem from longer-term recurrence than
cognition-based trust, and [H4] team-level processes will strengthen with longer-term
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recurrence. By piecing apart these temporal dynamics, we aim to uniquely identify markers of
interpersonal and team-level states as targets for implementing continuous, real-time monitoring
of computer-supported teaming systems.

We test our hypotheses on data obtained from teams of two humans and one agent collaborating
virtually on an open-ended (i.e., no ‘optimal’ solution or strategy is easily attainable) geospatial
mapping task that requires knowledge sharing and agreement between both human and agent
teammates. The task context simulates a realistic collaboration scenario where individuals are able
to approach the problem and coordinate with each other however they choose, introducing a deal
of uncertainty. Results will thus indicate that recurrence methods may be readily generalizable
across changes in team and task contexts, a major hurdle to building adaptive systems that many
machine learning techniques fail to overcome. Furthermore, RQA boasts higher interpretability and
lower computational demand than machine learning and neural network approaches traditionally
used in HAT research. Results of these analyses can thus be used to draw greater theoretical
conclusions of how high-level interpersonal and team dynamics are reflected in the self-organization
and interdependencies between brain signals. Therefore, investigation of our hypotheses will
reveal whether neural recurrence analysis is a viable metric for both the technical and theoretical
advancement of adaptive systems in complex, real-world environments.

2 METHODS
2.1 Experiment
The dataset used in this paper was collected as part of an ongoing study [10, 21], detailed in this
section.

2.1.1 Participants. Participants were 30 students (average age 21, 53% male) from a large public
university in the United States. Students completed the task in teams of 2 participants and 1 agent,
for a total of 15 teams and data collection sessions. Participants were compensated $15/hr for their
time and additionally with a variable cash bonus based on task score. Recruitment and experimental
procedures were approved by the university’s Institutional Review Boards. Participants completed
informed consent forms upon arriving at the lab.

2.1.2 Task and testbed environment. The experimental task was hosted in the Computer-Human
Allocation of Resources Testbed (CHART), which allows collaboration between a human-agent team
through a crime mapping task. Teams of participants are tasked with using past spatiotemporal
crime data made publicly available via the Denver Police Department and allocate a limited number
of crime prevention resources throughout the city based on this historical crime data. The collective
goal of each human-agent team is to ‘prevent’ as many crimes as possible through resource
allocation.

The CHART interface consists of two displays: (right) an interactive crime map unique to each
user that allows for selection of past data and category(s) of crimes (e.g., traffic incidents, assault,
theft) to overlay on a map of Denver, and (left) a shared map which reflects where each participant
places their resources (represented as pins). Figure 2 shows a screenshot of both CHART displays.
The shared map reflects real-time changes as participants place their resources, which is done by
adding, moving, and deleting pins on the shared map. A sidebar on the right screen also reports the
team’s current cash bonus, as well as each individual’s contribution, based on their performance
on prior rounds.

Participants are able to place two different types of resources, differentiated by pin color, which
correspond to differing levels of crimes. ‘Surveillance/monitoring’ resources, represented by green
pins, are placed to prevent non-violent crimes. ‘First response’ resources, represented by red pins,
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Fig. 2. Screenshot of CHART interface. The right side monitor has each participant’s individual map for
searching crime data. The left side monitor is a shared map where participants place, move, or delete pins in
real time.

address violent crimes. Each participant is given access to the historical data corresponding to
different categories of crime and must share knowledge with the other participant to perform well.
Participants have an allotment of 6 green pins and 6 red pins (shared between the two) to place
during each round. The rest of the pins are placed by the ‘AI’ agent (detailed below) and can be
moved by either participant.

2.1.3 AI agent and manipulations. CHART allows for the use of a pre-programmed (wizard-of-oz-
style) ‘AI’ agent. In the current study, the agent places 6 green pins and 6 red pins in alternating
order during each round. Participants are informed that the agent is another team member and
its placement of pins contribute to their cumulative cash bonus. When the agent places a pin, a
text box message announces its placement and, depending on the experimental (transparency)
condition, provides a justification. Agent-placed pins can be moved by the participants, but not
deleted. Both reliability (high/low performance) and transparency (high/low communication) of
the agent teammate were manipulated in the current study. See [21] for more details on CHART
and the agent manipulations.

2.1.4 Experimental procedure. Following arrival to the lab, participants completed informed con-
sent forms and were then separated into different rooms with a desktop computer on which they
completed the collaborative task. They first completed a pre-survey and read a slideshow presenta-
tion of instructions on how to complete the task. Following review of the instructions, participants
independently completed a CHART training session consisting of two shortened 2-minute rounds,
during which the agent places only 2 pins, in order to learn how to use the CHART interface.
After the training sessions, the experimenter placed and calibrated a NIRx NIRSport2 head cap

on each participant. Following sensor fitting, participants communicated over a Zoom call on
their desktop computers. They were directed to click ‘I’m Ready’ on the testbed screen when they
were ready to begin, and they were left alone in their respective rooms. Following each round,
the individual’s and team’s total bonus earned was presented on the screen as well as a short
post-round survey completed in Qualtrics. Following this short survey, the next round began when
each participant selected “I’m Ready.” This procedure was repeated for a total of 8 rounds, after
which a final post-round survey was completed and the experimenters removed the sensors and
paid participants for their time plus bonus earned.
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2.2 Measures
2.2.1 Surveys. Self-report surveys, administered after each experimental round, were selected as
dependent measures of emergent individual and team states, including affect, trust, mental demand,
and team processes. Due to the length of the study, we chose only the items with the highest
factor loadings to be able to assess constructs of interest while minimizing time spent on surveys.
Behavioral measures were extracted after data collection by a script using CHART’s comprehensive
event logs. Timestamps were used to sync neurophysiological time series data with experimental
rounds and events. For more detail, see [10] and [21].
Cognition-based and affect-based trust were measured with the highest factor loading items

from the respective surveys by McAllister [56].
We assessed team processes under the framework proposed by Marks [50] using the top factor

loading items from each category of Mathieu’s team process survey for brevity. To cover the
three distinct types of processes, we selected the most relevant construct under each category:
strategy formulation (transition processes), coordination (action processes), and affect management
(interpersonal processes) [53]. We also include an aggregate measure of team processes calculated
as the mean across these items.

2.2.2 Neurophysiological recording. Data were recorded on 38 participants using 2 NirSport 16x16
machines (NIRx, Berlin, Germany) with a sampling rate of 5.0863 Hz. We selected optode locations
to maximize coverage of relevant cortical regions identified from previous literature in section 1.1.2
(FPA, DMPFC, and DLPFC) using fOLD Toolbox [59] for spatial registration of fNIRS channels onto
the anatomical regions of interest. Figure 3 depicts this montage of NIRS source-detector pairs.

2.3 Data Analysis
Each participant’s time series data were extracted as follows: band-pass filtered fNIRS data (between
0.01 – 0.2 Hz) from each round was averaged across channels in each ROI to obtain time series for
HbO and HbR of FPA, DPLFC, and DMPFC, for a total of six measures per participant. Data were
z-scored within each ROI/Hb signal across all participants to prevent differences in magnitude from
skewing Euclidean distance computation.

2.3.1 Recurrence quantification analysis methodology. To performmultidimensional cross-recurrence
quantification analysis (MdCRQA), we included HbO and HbR together to capture the neural dy-
namics of each individual more fully. To account for high-dimensional dynamics, state-space
reconstruction was performed by first estimating the appropriate delay and embedding parameters
using average mutual information and false nearest neighbors techniques as outlined in [79, 80].
Parameters were estimated for each dyad per round (16 dyads x 8 rounds), and the medians were
chosen as the final delay and embedding parameters to be applied to the entire dataset. The radius
parameter was estimated in a similar fashion using a grid search and performing MdCRQA on all
dyad/round units to obtain a median recurrence rate between 4.95% and 5.05%, following standard
procedures suggested in [80, 84]. Final parameters were: embedding dimension = 2, delay = 6, and
radius = 0.532.
MdCRQA was performed on all team/round units with the final parameter set held constant

to allow for comparison between observations. For each round, the 6-dimensional time series of
participant 1 and participant 2 were compared across all lags to construct a recurrence matrix.
Recurrence rates were then calculated as the percentage of recurrent points across three different
lags: 5 seconds, 90 seconds, and 180 seconds in both directions. At the 5 second lag, for example,
each value is compared pairwise with each other value occurring within 5 seconds before or after
it (a total 10-second window). Thus, 180-second lags represent the entire 6-minute block.
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Fig. 3. fNIRSMontage and ROIMappings. Each channel consists of a source-detector (S#-D#) pair, represented
by colored lines.

Multidimensional recurrence quantification analysis (MdRQA) analyses follow the same pro-
cedure, including state-space reconstruction and parameter estimation, except that participant
time series are merged to create a single data frame. Only participants’ HbO signal was used in
MdRQA to combat high dimensionality since including both HbO and HbR would result in 12
dimensions (state-space reconstruction further increases dimensionality), which can complicate
intuitions behind Euclidean distance computation and skew the radius parameter. Final parameters
for MdRQA were: embedding = 2, delay = 6, and radius = 0.407.

3 RESULTS
To investigate the main effects and predictive power of recurrence, we regress each trust and team
process measure on MdCRQA and MdRQA recurrence rates at 5, 90, and 180 second windows. We
fit linear mixed-effects models using the R package lme4 [5] to best capture our experimental design,
accounting for repeated measures (multiple rounds) and expected differences between teams as a
random effect. Each model included recurrence rate, transparency condition, reliability condition,
and round number as fixed effects, with each team as a random effect. The interaction between
recurrence rate and round number was also included in each model to account for the expected
drift in the fNIRS signal due to physiological effects of time [15, 72], which may affect recurrence
metrics. Additionally, observations with a total recurrence rate greater than 2.5 standard deviations
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away from the mean were excluded from analyses (6 observations discarded for a total n = 114) to
account for instances of poor signal quality (due to improper optode contact with the skull) that
result in inflated recurrence rates.

Final models took the following form: 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 + 𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑐𝑦 +𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 +
𝑟𝑜𝑢𝑛𝑑 + 𝑟𝑜𝑢𝑛𝑑 ∗ 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 + (1|𝑡𝑒𝑎𝑚). We chose to keep this formula the same across all
models to allow for comparison of effects and inference on the predictive potential of recurrence
metrics for interpersonal and team processes. Likewise, each response measure was z-scored across
all participants to obtain easily interpretable effect sizes (𝐵) in terms of standard deviations.

3.1 Multidimensional Cross-RecurrenceQuantification Analysis (MdCRQA)
First, we examined interpersonal neural coupling by running MdCRQA on brain data from both
participants of each dyad. Regressing each dependent measure on these predictors (with separate
models for each RR lag) obtained the results shown in Table 1 and Table 2.

Table 1. Effect sizes (𝐵) and p-values of mixed-effects models regressing trust on MdCRQA recurrence rate
(RR). Individual models were fit for each recurrence rate window length. For brevity, effect sizes and 𝑝 values
for covariates on the right side are summarized across lags. Bold values indicate 𝑝 ≤ 0.05.

Predictor RR 5s RR 90s RR 180s Transparency Reliability Round #

Metric 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝

Cognitive 0.10 0.02 0.18 < 0.01 0.18 0.01 -0.25 —
> 0.07 0.10 —

> 0.30 0.19 —
< 0.01trust -0.21 0.12 0.21

Affective 0.06 0.09 0.11 0.03 0.12 0.02 -0.22 — 0.04 — 0.05 —
> 0.40 0.19 —

< 0.01trust -0.18 0.09 0.07 0.21

Mixed-effects regression results in Table 1 indicate the followingmain effects ofmulti-dimensional
cross-recurrence rate on trust measures. Cognitive trust is significantly predicted by recurrence
rate at 5s (𝐵 = 0.10, 𝑝 = 0.02), 90s (𝐵 = 0.18, 𝑝 < 0.01), and 180 second (𝐵 = 0.18, 𝑝 = 0.01) windows,
supporting H1a. Recurrence rates at 90s (𝐵 = 0.11, 𝑝 = 0.03) and 180s (𝐵 = 0.12, 𝑝 = 0.02), but
not 5s (𝐵 = 0.06, 𝑝 = 0.09), had a significant effect on affect-based trust. The effect grows slightly
in magnitude as the window increases. This result is in line with H3, following previous theory
on trust development and suggesting that affect-based trust is indeed captured by interpersonal
recurrence at larger time scales.
Regarding covariates, low agent transparency linked to a decrease in affective trust (𝐵 = -0.22,

𝑝 = 0.04) significantly in the 180s lag model, and the trend (non-significant) is observed for all
models. The significant effects of round number show that reported trust increased with subsequent
rounds, reflecting the continued development of trust as teammates collaborate for longer periods
of time. An interaction between 90s recurrence rate and round number was observed (𝐵 = -0.02,
𝑝 = 0.04), signifying that the effect of recurrence rate on cognition-based trust decreased with
each subsequent round. This may be due to the increase in trust over time, and the inability of 90s
recurrence rate to account for this added variance.
In partial support of H1b, MdCRQA present significant effects on only one individual team

process: strategy formulation decreased with an increase in 5s recurrence rate (𝐵 = -0.07, 𝑝 = 0.04)
and 180s recurrence rate (𝐵 = -0.13, 𝑝 = 0.03). Our aggregate team processes measure was not
significantly linked to MdCRQA recurrence rate at any window length. The low agent transparency
condition corresponded to a significant decrease in all measures, consistent with prior findings
[21].
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Table 2. Effect sizes (𝐵) and p-values of mixed-effects models regressing team process measures on MdCRQA
recurrence rate (RR). Individual models were fit for each recurrence rate window length. For brevity, effect
sizes and 𝑝 values for covariates on the right side are summarized across lags. Bold values indicate 𝑝 ≤ 0.05.

Predictor RR 5s RR 90s RR 180s Transparency Reliability Round #

Metric 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝

Coordination 0.01 0.83 0.00 1.00 0.00 0.94 -0.39 —
< 0.01

0.09 —
> 0.30 0.04 —

> 0.20-0.38 0.10 0.06
Strategy -0.07 0.04 -0.09 0.09 -0.13 0.03 -0.38 —

< 0.01
0.07 —

> 0.40 -0.04 —
> 0.40formulation -0.37 0.09 0.00

Affect -0.07 0.08 -0.10 0.08 -0.12 0.06 -0.29 — 0.02 0.05 —
> 0.50 -0.05 —

> 0.40management -0.27 0.07 -0.01
Team -0.04 0.19 -0.05 0.33 -0.08 0.12 -0.39 —

< 0.01
0.07 —

> 0.40 0.02 —
> 0.30process (avg) -0.40 0.08 0.05

While no other covariates displayed significant effects, the interaction between recurrence rate
and round was significantly positive for strategy formulation in the 180s lag model (𝐵 = 0.02, 𝑝 =

0.04). Similar to the interaction effect on cognitive trust, this indicates that the effect of recurrence
rate became more positive (decreasing in magnitude) as round number increased. Lastly, we note
that affect management marginally decreases with recurrence rate at 180s (the marginal trend is
observed for all lags). This effect, though opposite in direction, could be due to its classification as
an interpersonal affective process, similar to affect-based trust.

3.2 Multidimensional RecurrenceQuantification Analysis (MdRQA)
The same modeling procedure was performed to regress trust and team process measures on
MdRQA recurrence rate. To allow for interpretable comparison between results, models included
the same set of covariates (transparency & reliability conditions, round number, and the interaction
between round and recurrence rate). Results are presented in Table 3 and Table 4.

Table 3. Effect sizes (𝐵) and p-values of mixed-effects models regressing trust on MdRQA recurrence rate
(RR). Individual models were fit for each recurrence rate window length. For brevity, effect sizes and 𝑝 values
for covariates on the right side are summarized across lags. Bold values indicate 𝑝 ≤ 0.05.

Predictor RR 5s RR 90s RR 180s Transparency Reliability Round #

Metric 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝

Cognitive 0.07 0.01 0.20 0.25 0.28 0.26 -0.20 —
> 0.10 0.11 —

> 0.30 0.16 — 0.02 —
trust -0.19 0.12 0.29 0.05

Affective 0.04 0.06 0.12 0.35 0.14 0.47 -0.17 > 0.09 0.06 —
> 0.40 0.20 —

< 0.01trust 0.08 0.26

MdRQA recurrence rate significantly increased cognition-based trust (𝐵 = 0.07, 𝑝 = 0.01) at 5s. A
marginal trend is also seen for affect-based trust at 5s. (𝐵 = 0.04, 𝑝 = 0.06). No other significant effects
of recurrence rate are seen for these measures, in partial support of H2b for larger window lengths.
As expected, both trust measures increased with round number. Again, we note the interesting
marginal effect on affect trust at 5s, similar to effects on affect management shown in Table 4. This
is analogous to marginal trends in MdCRQA models.
As predicted in H2a, the sum of team processes is significantly (inversely) proportional to

MdRQA recurrence rate at 5s (𝐵 = -0.05, 𝑝 = 0.02), 90s (𝐵 = -0.31, 𝑝 = 0.02), and 180s (𝐵 = -0.43,
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Table 4. Effect sizes (𝐵) and p-values of mixed-effects models regressing team process measures on MdRQA
recurrence rate (RR). Individual models were fit for each recurrence rate window length. For brevity, effect
sizes and 𝑝 values for covariates on the right side are summarized across lags. Bold values indicate 𝑝 ≤ 0.05.

Predictor RR 5s RR 90s RR 180s Transparency Reliability Round #

Metric 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝 𝐵 𝑝

Coordination -0.03 0.25 -0.30 0.03 -0.37 0.07 -0.37 < 0.01
0.10 —

> 0.25 -0.04 —
> 0.500.12 -0.03

Strategy -0.07 0.01 -0.29 0.04 -0.40 0.05 -0.37 —
< 0.01

0.11 —
> 0.20 -0.21 — 0.03 -

formulation -0.36 0.12 -0.05 0.40
Affect -0.06 0.02 -0.40 0.01 -0.63 0.01

-0.28 —
< 0.03

0.09 —
> 0.30 -0.16 — 0.05 -

management -0.26 0.11 -0.11 0.12
Team -0.05 0.02 -0.31 0.02 -0.43 0.02 -0.38 —

< 0.01
0.10 —

> 0.20 -0.12 —
> 0.16process (avg) -0.37 0.12 -0.03

𝑝 = 0.02), increasing in magnitude with recurrence window length. Interestingly, coordination
significantly decreases with recurrence rate only at 90s (𝐵 = -0.30, 𝑝 = 0.03). In further support
of H2a, MdRQA recurrence rate predicts more individual team process measures than MdCRQA.
Strategy formulation is predicted at every interval: 5s (𝐵 = -0.07, 𝑝 = 0.01), 90s (𝐵 = -0.29, 𝑝 = 0.04),
and 180s (𝐵 = -0.40, 𝑝 = 0.05). Likewise, significant negative effects are seen for affect management
at 5s (𝐵 = -0.06, 𝑝 = 0.02), 90s (𝐵 = -0.40, 𝑝 = 0.01), and 180s (𝐵 = -0.63, 𝑝 = 0.01).
Among these models, round number significantly affected strategy formulation (𝐵 = -0.21, 𝑝 =

0.03) at 5s and affect management (𝐵 = -0.14, 𝑝 = 0.05) at 180s. Finally, the same expected effects
of the transparency manipulation are seen across all measures. Interactions between recurrence
rate and round were observed for aggregated team processes (𝐵 = 0.01 – 0.07, 𝑝 < 0.02), strategy
formulation (𝐵 = 0.01 – 0.06, 𝑝 ≤ 0.04), and affect management (𝐵 = 0.01 – 0.10, 𝑝 ≤ 0.02) at all
windows. These interactions correspond to a decrease in the effect of recurrence rates for subsequent
rounds, likely also stemming from increased variance in these measures for later rounds.

4 DISCUSSION
Mixed-effects models revealed the main effects of recurrence rate across different time scales
on perceived (self-reported) trust and team processes. To explore the power of recurrence as a
marker of these latent states and processes, we discuss each individual construct and the effects of
recurrence, followed by applications and implications for future work.

4.1 Trust
We first examine cognition-based and affect-based trust. As predicted in H1a, cross-recurrence
positively predicts cognition-based trust across all lags with the strongest effect observed from a
90s recurrence window. MdRQA recurrence rate shows a significant effect on cognition-based trust
only at the 5s window, giving partial support to H2b. Given the foundations of cognition-based
trust, MdCRQA results suggest that similarity of neural activation between individuals signals an
increased perception of a teammate’s ability and competency in a task. This effect carries over to
affect-based trust, which is significantly predicted only by MdCRQA recurrence rate at 90s and
180s windows. Following H3, this finding—compared to the significant effect on cognitive trust
seen at the 5s window—supports previous theory that affective trust forms on a longer timescale
than cognitive trust. Consistency with established frameworks suggests that interpersonal neural
recurrence rate reflects the latent constructs we attempt to measure, supporting the potential use
of these analyses for trust monitoring. Indeed, the behavior of these predictive effects fits the
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dynamical systems model that underlies multidimensional recurrence analyses. By performing
state-space reconstruction on fNIRS data, we appear to successfully tap into these high-dimensional
processes. These results from both analyses support our theory that neural coupling between
individuals is a stronger marker of interpersonal trust than system-level regularity.

This set of findings highlights not only the predictive power of recurrence analysis of brain data,
but also the relatively high interpretability of these measures compared to traditional machine
learning and neural network approaches. Examining recurrence rates allows us to also draw
neuroergonomics conclusions about how similarities in functional brain activity is reflected in
self-reported cognitive processes. From these results, it appears that individuals’ perceptions of trust
are directly linked to and potentially influenced by the coupling of their cortical activation with that
of a teammate. In other words, participants felt consistently higher trust in their teammate when
they exhibit the same states of activity in the target cortical regions. Given its relative simplicity,
cross-recurrence, which at its core is performing Euclidean distance computation, holds exciting
potential for predicting cognitive and affective processes without sacrificing interpretability.

4.2 Team Processes
Using the same mixed-effects structure, we modeled the effects of recurrence, along with task-
relevant covariates, on team processes. Specifically, we focus on predicting coordination, strategy
formulation, and affect management to capture the distinct transition, action, and interpersonal
team process categories. Strategy formulation is negatively linked to MdCRQA at the 5s and 180s
lags, and to MdRQA recurrence rate at all windows. This result does not align with hypothesis
H1b, but it does highlight the 90-second lag as a potential differentiator between processes. While
we do not have a clear explanation for this trend on strategy formulation, we postulate that the
marginal effects of MdCRQA on affect management and MdRQA on affective trust are present due
to their overlap as affect-based interpersonal processes. Interestingly, coordination is predicted
only by MdRQA recurrence rate at 90s. This identifies a potential time-frame in which the process
of coordination develops and is reflected in neural activity. Overall, team-level regularity proves to
be a marker of averaged team processes. Though this aggregate measure lacks the specificity of
individual constructs, it appropriately summarizes the negative effect of systemic recurrence on
each process. Additionally, we see across each significant effect, and even in marginally significant
trends, that recurrence on a longer scale captures a stronger effect on team process measures. This
supports H4, in which we theorize that individuals’ perception of team dynamics are generally
more positive if their patterns of neurophysiological recurrence over greater periods of time.

These positive perceptions, however, are shown by consistently negative effect sizes to be reliant
on a decrease in a team’s regularity. The direction of these effect may seem counterintuitive at
first, as decreased regularity marks an increase in beneficial team-level processes. However, this is
consistent with similar research that found decreased regularity of physiological and behavioral
signals (throughMdRQA) signaled an increase in team performance and in key facets of collaborative
problem solving [3, 22]. We postulate that increased recurrence rate, or regularity, can result from
teams revisiting or remaining in the same states; by contrast, high irregularity stems from an
increase in novel states that may be key to adapting to a complex teaming task. Thus, team-level
recurrence measures demonstrate an affinity for characterizing collaboration quality in open-ended
task settings. Identifying these markers is a valuable step towards capturing team dynamics in
‘real-world’ collaborative scenarios where hybrid human-agent teams are already being employed.

4.3 Implications and Applications
Examining these effects by timescale reveals the 90-second recurrence window as the most infor-
mative measure to disentangle target constructs. Considering only this window, MdCRQA predicts
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only cognitive and affective trust (in the positive direction), and MdRQA exclusively predicts coor-
dination, strategy formulation, affect management, and averaged team processes (in the negative
direction). This results in maximum separability between interpersonal trust and team processes,
as was our research goal and prediction in H1 and H2. Identifying this optimal window is crucial
as it identifies clear markers of these different processes that can be concurrently monitored and
uniquely identified. The time window itself also suggests that these interpersonal and team-level
processes are best reflected in high-dimensional neural dynamics at 90 second lags. This holds
key implications to the neuroergonomics of computer-supported teaming, as it defines a potential
timescale in which dynamic team processes take shape during complex human-agent collaborations.
Toward the goal of adaptive systems, these effects are promising for monitoring collaboration

dynamics as they are able to separate between desired constructs. To generalize across individuals
and their ever-changing environments, systems that support collaboration must monitor and adapt
to these shifting contexts to maximize team performance. For example: at a 90-second window,
changes in MdCRQA and MdRQA recurrence rates can signal fluctuations in interpersonal trust or
in team processes, respectively. Considering the CHART task, continuous monitoring may detect
increased recurrence between individuals (MdCRQA) and increased regularity within the team
(MdRQA) across 90-second but not 5-second windows. Utilizing the specificity of these measures,
the system might interpret this as an increase in affect-based trust, but not cognition-based trust,
and a decrease in team processes. Taken together, these observations suggest the team maintains
positive perceptions of each other but is stalling in collaborative productivity. An adaptive system
might then shed specific tasks onto each teammate to encourage novel activity, as well as an
opportunity to develop cognitive trust between teammates that can demonstrate competency. Not
only will this direct the team to increase productivity, but it will also promote the emergence
of beneficial team processes that persist and evolve throughout the collaboration (see [10] for
cyclical human-agent teaming framework). Such systems would be well-suited for the context of
computer-supported cooperative work, adding a new layer of intelligence to computationally driven
supports. Additionally, our experiment identifies fNIRS as a promising modality for CSCW that
captures the nuances of human interaction from a single set of sensors. Regarding implementations,
the metrics we have identified would pair well with computational decision-making models that
learn to select optimal actions or interventions based on the current state of the system. A popular
example is the partially observable Markov decision process (POMDP) model, designed specifically
to infer the state of a system (the team) from empirical observations, account for high uncertainty,
and select the most beneficial action [4, 43, 74, 85].
Though our manipulations to agent behavior are not central to this paper, they add important

context for the results presented. In the models above, agent transparency significantly affected
nearly every dependent variable investigated. We note two implications of this: (1) our models
account for the effects of these conditions, highlighting that the effects of recurrence rates are
robust; (2) as seen in our previous work, changes in agent communication disrupt both interpersonal
and team-level processes, suggesting that hybrid human-agent teams exhibit similar dynamics as
human teams. By considering effects of the behavioral context of the agent(s), these results are
foundational to monitoring and preserving the dynamics of human-agent teams. In the example
above, an adaptive system could monitor and appropriately intervene in shifting team dynamics
while separately modulating the agent’s level of transparency to maintain calibrated trust in the
agent (see [7] for a review of agent transparency adaptations). Documenting and accounting for the
expected effects of either manipulation will allow for these concurrent adaptations across various
contexts, pushing toward advanced collaborative technologies suited to support interpersonal and
team dynamics while maximizing the efficiency of human-agent teaming.
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4.3.1 Qualitative discussion of recurrence plots. While recurrence rate was the only measure we ex-
tracted from recurrence quantification analyses, we note that MdCRQA and MdRQA provide several
other metrics for examining the structure of high-dimensional systems. In particular, the recurrence
plots from which recurrence rates are extracted are themselves a rich depiction of interpersonal
and system-level state configurations across time. Figure 4 visualizes the recurrence matrices for a
single team across two rounds, agent recommendations denoted in vertical and horizontal lines.
Lines are colored according to the team’s decision to accept or reject the recommendation.

Fig. 4. Recurrence plot visualizations for a single team across two rounds. Dark points indicate recurrence
between the x- and y-axis time series. Lines indicate moments when the agent makes a recommendation by
placing a resource pin on the shared map, and colors indicate whether that recommendation was accepted or
rejected by the team. (a & b) MdCRQA plot, where each axis denotes one participant’s time series. (c & d)
MdRQA plot, where both axes denote the team’s multidimensional time series (compared against itself).

The MdCRQA plot in Figure 4a shows a sparse structure with loosely vertical recurrent segments.
Vertical structures and the horizontal distance between them generally denote that participant 2
(y-axis) repeatedly visited the same state of neural activation that participant 1 (x-axis) exhibited at
semi-regular intervals. These intervals loosely align with the moments of agent action, which may
signal that participant 1 returned to this state to perform credibility assessments about the agent’s
recommendations. The plot in Figure 4b tells a different story, where much stronger coupling is
observed earlier in this round (denoted by thicker sections of recurrence) and little to no coupling
in the final minutes of the round. Similarly, more of the agent’s pin placements were rejected in the
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first half of the round than in the second. One potential explanation would be that the teammates
were more carefully assessing the agent’s recommendations in the first half of the round, and thus
had similar patterns of neural activation. Later in the round, they may have transitioned to placing
their own pins independently, with less regard for and more trust in the agent’s placements (indeed,
we anecdotally observed these behavioral trends in video logs of studies). We highlight this plot
specifically because it demonstrates how a 90 second recurrence window would capture these
shifting dynamics, noting high recurrence in the first segment, decreasing in each subsequent 90
second block.
Switching to a system-level perspective, Figure 4c similarly depicts a sparse structure while

Figure 4d shows a window of high recurrence followed by little to none later in the round. This
aligns with the interpretation of the MdCRQA plots above, as the early window of higher recurrence
coincides with more rejected agent pin placements than later windows. Again, the tight structure
signifies the team repeatedly revisiting the same state (which could arise from repeated judgements
of the agent’s placements). Examining Figure 4b and Figure 4d together implies that later in the
round, participants were exhibiting novel state configurations from each other and as a single
system. These observations are largely qualitative but can be extracted in a number of quantitative
metrics, such as the number of continuous vertical lines, the average length of vertical lines, the
average length of diagonal lines, and so forth. We postulate that these and similar metrics taken
from both sets of plots could identify unique states and configurations of teaming.

4.4 Conclusions, Limitations, and Future work
The results presented in this paper offer promising methods and parameters for future research
monitoring trust and team processes in cooperative human-agent tasks. Specifically, we identify
neural recurrence between individuals and neural regularity within a team across a 90-second lag
window as diagnostic measures of interpersonal trust and team states during human-human-agent
collaborations. From these highly interpretable metrics, we observed temporal behavior of cognitive
and affective trust in line with previous theory, as indicated by interpersonal neural coupling.
Applying these two powerful yet simple methods, MdCRQA and MdRQA, will help to reduce
complexity of monitoring multiple actors in ongoing collaborations by elegantly characterizing
team states and processes with minimal pre-processing, no data-intensive training, and no linearity
assumptions. To the authors’ knowledge, this is first demonstration of a model-free technique
applied to brain data successfully picking apart these individual processes during a naturalistic,
open-ended HAT task with more than one human.
We discuss six main limitations of this work to be addressed in future efforts. First, various

experimental limitations arise due to the length of the study. The current iteration of NIRx sensors
can cause discomfort over long periods due to the tightness of the head cap and pressure from
optode probes against the scalp. While piloting this study, we found two hours to be the maximum
amount of time participants could comfortably perform the task. It was therefore necessary to
balance time spent wearing the sensors and time spent on post-task surveys, so we used only the
top factor loading items to assess trust and team processes across 8 full rounds. We acknowledge
that abbreviating surveys can reduce interpretability, and that future work should utilize a more
robust and focused set of survey measures to disentangle observed effects. Second, the study
presented is an ongoing effort at a single public university, limiting sample size and demographic
representation. Next, we constrained our modeling efforts to uncover main effects while accounting
for our experimental design and allowing for comparison between models, and thus did not perform
a robust model selection procedure to obtain an ideal fit for each individual model. Fourth, our
measurements of neural recurrence is limited to three cortical areas and far from comprehensive.
We plan to further explore the functional implications of our results from a cognitive and affective

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 122. Publication date: April 2023.



Capturing the Dynamics of Trust and Team Processes in Human-Human-Agent Teams via Multidimensional Neural
Recurrence Analyses 122:19

neuroscience lens. Fifth, though we present a relatively open-ended task with few constraints on
participants, we are limited in making inferences about generalizability until these techniques can
be replicated on data from different tasks.
Lastly, we note the limits of our four proposed hypotheses in this study. The general goal of

this investigation is twofold: 1) to identify measures of brain activity that link to the relevant
constructs of trust and team processes as a step toward adaptive collaborative systems, and 2) to use
an interpretable analysis metric to characterize the neural and temporal dynamics of trust and team
processes in a human-agent team. We thus devised the present experiment to tackle both of these
aspects with one set of analyses. For this reason, we opted to use recurrence rate as our only metric
as it sufficiently summarizes a system’s regularity without sacrificing interpretability. Additionally,
it is simple to compute recurrence rate across an entire dataset or within a constrained window of
time, an important quality for its proposed use in real-time computation and adaptation. We note
this limitation as our hypotheses do not comprehensively address other recurrence models and
metrics, such as determinism and entropy. These additional metrics would add a new layer to the
interpretations of our experiment that warrants its own investigation focusing more specifically on
the high dimensional state-spaces and complexities of dynamical systems.
These limitations highlight uncertainties and exciting new targets for future work. Our results

identify compelling analyses and directions for future research seeking to empirically capture
the complexities of human interaction. With this foundation, we aim to improve the inferential
capability of adaptive systems by further refining these methods and eventually implementing
real-time adaptations. There is also a myriad of additional recurrence features (section 4.3.1) yet to
be investigated for monitoring team dynamics. The metrics identified in this paper may also be
valuable targets for ongoing machine learning and decision-making research efforts. Specifically,
we note that recurrence measures may be particularly useful as observations to be fed into a
POMDP-driven system. The powerful simplicity of nonlinear recurrence quantification analyses
combined with information-rich data from fNIRS sensors presents a unique potential to advance
the current state of adaptive collaborative technology for both human-human and human-agent
teaming.
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