
A Survey on Automated Driving System Testing: Landscapes
and Trends
SHUNCHENGTANG, ZHENYAZHANG, YI ZHANG, JIXIANGZHOU, YANGUO, SHUANG
LIU, SHENGJIAN GUO, YAN-FU LI, LEI MA, YINXING XUE, and YANG LIU

Automated Driving Systems (ADS) have made great achievements in recent years thanks to the efforts from both
academia and industry. A typical ADS is composed ofmultiplemodules, including sensing, perception, planning,
and control, which brings together the latest advances in different domains. Despite these achievements, safety
assurance of ADS is of great significance, since unsafe behavior of ADS can bring catastrophic consequences.
Testing has been recognized as an important system validation approach that aims to expose unsafe system
behavior; however, in the context of ADS, it is extremely challenging to devise effective testing techniques,
due to the high complexity and multidisciplinarity of the systems. There has been great much literature
that focuses on the testing of ADS, and a number of surveys have also emerged to summarize the technical
advances. Most of the surveys focus on the system-level testing performed within software simulators, and
they thereby ignore the distinct features of different modules. In this paper, we provide a comprehensive
survey on the existing ADS testing literature, which takes into account both module-level and system-level
testing. Specifically, we make the following contributions: (1) we survey the module-level testing techniques
for ADS and highlight the technical differences affected by the features of different modules; (2) we also survey
the system-level testing techniques, with focuses on the empirical studies that summarize the issues occurring
in system development or deployment, the problems due to the collaborations between different modules, and
the gap between ADS testing in simulators and the real world; (3) we identify the challenges and opportunities
in ADS testing, which pave the path to the future research in this field.
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1 INTRODUCTION
With the aim of bringing convenient driving experience, increasing driving safety and reducing
traffic congestion, automated driving systems (ADS, a.k.a. self-driving cars) have attracted significant
attention from both academia and industry. According to the statistics from a recent report [1],
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2 S. Tang et al.

the autonomous car market was valued for more than 22 billion dollars in 2021. However, the
state-of-the-practice ADS are still vulnerable to numerous safety and security threats, due to either
complicated external environments or deliberate attacks from various sources. These threats may
lead to system failure, which could bring catastrophic consequences and unacceptable losses [2].
Despite the rapid progress that has been made so far, safety assurance of ADS is still a major
challenge to their full-scale industrialization. Some recent news, e.g., the report of Tesla’s fatal
accident [3], further highlights the importance of research in the safety assurance of automated
driving.

In general, an ADS is composed of several modules for the functionalities of sensing, perception,
planning and control. The sensing module collects and preprocesses the environmental data using
a number of intelligent sensors, such as camera, radar, and LiDAR. The perception module extracts
information from the sensors to understand the environmental conditions, including road conditions,
obstacles, and traffic signs. Based on the output of the perception module, the planning module
generates the optimal driving trajectories which are expected to be followed by the ADS. Lastly,
the control module sends the lateral and longitudinal control signals to drive the ADS along the
planned trajectories. In particular, some ADS adopt a special end-to-end design that integrates the
perception, planning and control functionalities in a single module. These modules collaborate with
each other and jointly decide the behavior of the ADS [4]; the abnormal function of any module
can lead to system failures, which severely threatens the safety and security of the ADS.

Testing has been an effective approach to exposing potential problems and ensuring the safety of
systems. However, the testing of ADS is known to be extremely challenging, due to the complexity
and multidisciplinarity of those systems. In recent years, there have been a surge of studies that
focus on ADS testing. These published papers span over mainstream venues in various domains,
such as transportation venues (e.g., ITSC, IV), software engineering venues (e.g., ICSE, ASE),
artificial intelligence venues (e.g., CVPR, AAAI), and security venues (e.g., CCS, USENIX Security),
which tackle the challenges in ADS testing from various perspectives (see the detailed statistics and
analysis in §3.2). Numerous testing approaches have been proposed for solving different problems,
and numerous bugs and vulnerabilities have been reported to facilitate the system reengineering
that repairs the existing problems and ensures the system safety.

To better understand the landscape of ADS testing, there have been a number of surveys [5–9]
that summarize the recent advances in this field. Grigorescu et al. [5] investigate the deep learning
techniques for different modules of ADS and discuss the safety risks of these techniques. Rosique
et al. [6] analyze the characteristics of the common sensors used for perception, as well as the
performance of different simulators for the simulation of perception systems. Zhang et al. [7]
present a literature review on the techniques for identification of critical scenarios, in which they
point out the necessity of combining different scenario identification methods for safety assurance
of ADS. Zhong et al. [8] review the works about scenario-based testing in high-fidelity simulators,
and discuss the gap between the virtual environment and the real-world environment. Jahangirova
et al. [9] propose a set of driving quality metrics and oracles for ADS testing, and demonstrate the
effectiveness of combining the 26 best metrics as the functional oracles.

Most of the existing surveys view the ADS under study as a whole and investigate the method-
ologies of ADS testing from the perspective of the system level. In that case, as a typical problem
setting, ADS testing consists in generating critical scenarios that can lead to system failures, such
as collisions with obstacles. In addition, because of the high cost of testing ADS in the real world,
most of the studies in these surveys adopt software simulators as the testing environments. While
these surveys are useful, they are not sufficient to show the comprehensive landscape of ADS
testing. Indeed, since ADS are complex and composed of multiple modules that differ from each
other in technical design, their testing should capture the features of different modules and address
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the challenges in different domains. Moreover, at the system level, the testing should concern the
problems arising from the collaborations between different modules, and highlight the gap between
simulation-based testing and real-world testing.

Contributions. To bridge this gap, we conduct a survey on ADS testing that focuses on both
module-level testing and system-level testing. Specifically, at the module level, we reveal the
distinction of the testing techniques for different modules due to their different features; at the
system level, we focus on the challenges introduced by the cooperation between different modules
and also discuss the different levels of realism of the testing environments. In particular, we answer
the following research questions in this survey:
• RQ1:What are the techniques adopted for testing different modules of an ADS?
• RQ2:What are the techniques adopted for system-level testing of ADS?
• RQ3:What are the challenges and opportunities in the field of ADS testing?

In order to answer these questions, we make the following contributions in this paper:
• To answer RQ1, we survey the testing techniques for the different modules of ADS, and in partic-
ular, we highlight the technical differences in these testing techniques due to the characteristics
of different modules;

• To answer RQ2, we survey the system-level testing techniques, with a focus on the following:
– First, we review the existing empirical studies on the issues/bugs in public reports and reposi-
tories. These studies reveal the system issues occurring in their development or deployment,
and show a bird’s-eye view on the potential system problems without running them;

– Second, we study the existing investigations on the safety problems at the system level, when
different modules collaborate and interact with each other during the running of the systems;

– Third, we focus on the gap between simulation-based testing and real-world testing, which is
an emerging topic of great importance, in order to understand the quality of testing.

• To answer RQ3, we identify the challenges and potential research opportunities for ADS testing,
based on our survey results.
To the best of our knowledge, our work is the first one that unveils the intrinsic differences

and challenges in ADS testing w.r.t. different modules; meanwhile, we give a specific emphasis on
the comparison between the currently popular simulation-based testing and real-world testing.
Moreover, our analysis and discussion on the challenges and opportunities exhibit the landscapes,
and stimulate future research in this important field.

Paper organization. The rest of the paper is organized as follows: §2 overviews the background of
the ADS; §3 describes the survey methodology, including the detailed scope, collection process, and
collection results. The main results of this survey are in §4, §5 and §6. In §4, we survey the literature
of empirical study on ADS testing; in §5, we survey the literature of techniques on module-level
ADS testing and answer RQ1; in §6, we survey the literature of techniques on system-level ADS
testing and answer RQ2. We then show the statistics and analysis of the works in §7. We summarize
the challenges and potential research directions in §8 and answer RQ3. Lastly, we conclude this
survey in §9.

2 PRELIMINARIES
Nowadays, autonomous systems have been deployed in various application domains, such as
transportation, robotics, and healthcare, and they have made huge differences to our daily lives. In
this work, we pay particular attention to automated driving systems (ADS), i.e., self-driving cars, as
a typical example to exemplify the concerns in the quality aspects of those systems. In this section,
we first provide an overview of the categorization of ADS according to the levels of automation,
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4 S. Tang et al.

Table 1. Automation Levels and Definitions by SAE

Level Name Description Example

0 No Driving Automation Drivers perform all of the DDT LDW
1 Driver Assistance The system performs part of the DDT: either

steering or acceleration/deceleration
ALC or ACC

2 Partial Driving Automation The system performs part of the DDT: steer-
ing and acceleration/deceleration

ALC and ACC

3 Conditional Driving Au-
tomation

Drivers or fallback-ready users need to be
receptive to ADS-issued requests

Traffic jam chauffeur

4 High Driving Automation The system performs all of the DDT and
DDT fallback within a specified ODD

Local driverless taxis

5 Full Driving Automation The system performs all of the DDT and
DDT fallback without ODD limitation

Full autonomous vehi-
cles

from L0 to L5; then we show the general architecture of ADS; lastly, we showcase four open-source
ADS and one simulation platform.

2.1 Overview of Automated Driving Systems
According to the complexity and variety of the ADS, the society of automotive engineers (SAE)
proposed the taxonomy and definitions of driving automation systems, known as SAE J30161, which
has become a classification standard in recent years. This standard categorizes driving automation
systems into six levels, ranging from no driving automation (Level 0) to full driving automation
(Level 5). These levels are usually referred to as L0 to L5.

The definitions of the systems from L0 to L5 are as follows: (1) L0 systems only perform warnings
and momentary interventions, such as Lane Departure Warning (LDW ) and Automated Emergency
Braking (AEB), and the drivers need to perform all of the dynamic driving tasks (DDT ); (2) L1 systems
support steering or acceleration/deceleration for drivers; example features include Automated
Lane Centering (ALC) and Adaptive Cruise Control (ACC); (3) L2 systems perform steering and
acceleration/deceleration at the same time, and a typical L2 system should support both ALC and
ACC; (4) L3 systems can execute responses to driving conditions within Operational Design Domain
(ODD), which is an operational restriction imposed to the ADS at the design stage, but these systems
require fallback-ready people to handle system failures; an example is a traffic jam chauffeur; (5) L4
systems can further support the system fallback, and an example is a local driverless taxi; (6) L5
systems can handle all driving conditions. These are shown in Table 1.
A system in L0 to L2 is also known as an advanced driver assistance system (ADAS), since it is

only in charge of a part of the DDT, such as lateral control or longitudinal control, and the safety of
the whole vehicle still relies on drivers. In contrast, a system in L3-L5 performs all of the DDT and
drivers are not expected to interfere during the driving process, so it realizes the real automated
driving.

Note that there exist other identified synonyms of Automated Driving, e.g., autonomous driving,
self-driving, but in this paper, we follow the relevant terminology from SAE J3016, in which the
term “ADS” refers to Automated Driving System. In literature [8], an ADAS is usually referred to as
a system that belongs to L0-L2, while an ADS is referred to as a system that belongs to L3-L5. In

1https://www.sae.org/standards/content/j3016_202104/

ACM Forthcoming, Vol. 1, No. 1, Article . Publication date: January 2023.

https://www.sae.org/standards/content/j3016_202104/


A Survey on Automated Driving System Testing: Landscapes and Trends 5
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Fig. 1. The typical architecture of an ADS

this survey, since many testing techniques are independent of the automation levels of the systems
under test, we sometimes mix the use of the terms and, by ADS, we refer to the systems over all of
the levels of driving automation.

2.2 Architecture of ADS
A common ADS is composed of four functional modules, namely, the sensing module, the perception
module, the planning module and the control module, as shown in Fig. 1. In the sensing module,
intelligent sensors (e.g., camera, radar and LiDAR) are used to collect the driving context from
the physical world. The perception module extracts useful environmental information from the
sensor data, and sends it to the planning module for motion planning. Based on the information,
the planning module generates the optimal driving trajectory. Lastly, the control module outputs
the control commands to drive the vehicle along the trajectory. Moreover, some modern ADS adopt
a special design named end-to-end module. In the remainder of this section, we elaborate on the
functionalities of these modules in the typical architecture of an ADS.

Sensing module. By adopting various physical sensors, the sensing module takes charge of
collecting and preprocessing driving environmental information from the physical world. The
common sensors used by an ADS include Global Positioning Systems (GPS), inertial measurement
units (IMU ), cameras, radio detection and ranging (radar), and light detection and ranging (LiDAR).
Specifically, GPS provides the absolute position data (e.g., latitude, longitude and heading angle)
while IMU provides the temporal data (e.g., acceleration and angular velocity). The combination of
these two sensors can provide more accurate real-time positioning of the autonomous vehicles.
Cameras are used to record and capture visual information on the driving road for the perception
module, and radar is used to detect obstacles by radio waves. Nowadays, LiDAR has become an
indispensable component in many leading ADS (e.g., Apollo and Autoware), since it can collect
3D point cloud data and process it with higher measurement accuracy. In comparison with camera
sensors that are sensitive to light conditions (e.g., shadows and bright sunlight), LiDAR sensors are
more robust under these environments, and the generated 3D point cloud can be further utilized to
build 3D models that better characterize the surrounding objects.

Perception module. With the help of deep learning techniques, the perception module processes
sensor data (e.g., pictures and 3D point cloud) from the sensing module to accomplish a series of
perception tasks, such as localization, detection, and prediction.
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6 S. Tang et al.

• Localization provides the real-time location of the ADS during the driving process. Furthermore,
localization is mostly implemented by fusing the data from GPS, IMU and LiDAR. Specifically,
the 3D point cloud data of LiDAR are used to match the features stored in a High-Definition (HD)
Map, in order to determine the most likely location.

• Detection includes lane detection, traffic light detection, and object detection. The data of camera
are often used for lane detection and traffic light detection, while the data of camera, radar
and LiDAR are often fused by several algorithms (e.g., extended Kalman filters [10]) for object
detection. These detection tasks are mostly implemented by using deep neuron networks (DNNs),
such as faster RCNN [11] and Yolov3 [12].

The prediction task also benefits from the perception module and is mainly used for trajectory
planning. We leave the introduction of this task below in the planning module.

Planning module. By using DNNs and planning algorithms, the planning module takes percep-
tion data as input and makes decisions for the control module to control the vehicle. It has two
submodules, namely, the prediction submodule and the planning submodule.
• The prediction submodule estimates the future trajectories of the moving objects (e.g., vehicles
and pedestrians) detected by the perception module. For a given moving object, the possibility of
its path is often evaluated by machine learning (ML) algorithms, e.g., LSTM, RNN.

• The planning submodule generates the optimal driving trajectory for ego vehicle based on the
prediction results. Specifically, this module is responsible for three tasks, namely, route planning,
behavior planning and motion planning.
– Route planning selects the optimal path for the vehicle by using path algorithms, such as
Dijkstra and A*;

– Behavior planning makes decisions for the actions taken by the ADS, such as lane changing
and car following, based on the system requirements and traffic rules;

– Motion planning generates velocity and steering angle plans which are locally optimal, by
considering several factors, including safety, efficiency, and comfort.

Control module. Based on the trajectories planned by the planning module, the control module
finally takes charge of the longitudinal and lateral control of the vehicle. By using control algorithms
(e.g., proportional integral derivative (PID) control [13] and model predictive control (MPC) [14]),
this module generates appropriate control commands (e.g., steering and braking) and sends them
to the related hardware, i.e., the electronic control unit (ECU ), via the protocol of controller area
network (CAN ) bus. Note that, this module is critical for several functionalities provided by the
ADS, including ACC, AEB, and Lane Keeping Assistance (LKA).

End-to-end module. As shown in Fig. 1, besides the common modules mentioned above, there
exists another end-to-end design that combines the perception, planning, and control processes in
one module. To be specific, this module mainly consists of special deep learning models, which are
trained by labeled data that maps information from sensors directly to the corresponding control
commands. Consequently, these models could output the control commands based on the current
driving environment.

2.3 Open-Source Systems and Tool Stacks
In this section, we introduce four open-source ADS, namely, Apollo, Autoware, OpenPilot and
Pylot, and one simulation platform called BeamNG [15]. The first three ADS have been widely
adopted for commercial usage in practice [16–18] and the last ADS is from academia.

Apollo. Apollo has been a popular open-source ADS developed by Baidu since 2017; as of Dec.
2021, it has been updated to version 7.0.0. The hardware platform of Apollo includes camera,
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Fig. 2. Overview of the paper collection methodology

LiDAR, millimeter wave radar, and Human-Machine Interface (HMI ) device, and currently the
communications over different components are managed by CyberRT [19]. The functionalities of
Apollo include cruising, urban obstacle avoidance, and lane changing.

Autoware.Autoware is another open-source L4 ADS developed by the research group of Nagoya
University in 2015. Though it is mainly applicable to urban roads, it also suits highways and other
road conditions. By using the sensors introduced in §2.2, it supports a series of functionalities
including connected navigation, traffic light recognition, and object tracking. Unlike Apollo which
uses CyberRT, Autoware adopts ROS [20] for communications over different components.

OpenPilot. OpenPilot is a popular open-source L2 ADAS developed by Comma.ai and it has
been updated to version 0.8.12 as of Dec. 2021. OpenPilot supports common L2 features, such as
ACC, ALC, and Forward Collision Warning (FCW ). Unlike other L2 ADAS, OpenPilot has a high
degree of portability—it can be compatible with more than 120 types of vehicle models by using
related hardware set (e.g., Car Harness [21] and Comma Two [22]).

Pylot. Pylot [23] is a modular and open-source autonomous driving platform developed by
UC Berkeley in 2021. For achieving the trade-off between latency and accuracy, it is built on a
deterministic dataflow system called ERDOS [24]. Pylot also has other built-in features such as
modularity, portability, and debuggability, which allow researchers to implement or test ADS
functions with higher efficiency.

BeamNG. BeamNG [25] is a popular image-generating simulation platform, which has been widely
used in the Search-Based Software Testing competition (SBST ) [26]. Specifically, it is based on a
physically-accurate engine that can support customized vehicle models and realistic damage. For
example, different components of a vehicle can have different degrees of deformation after a
collision. In addition, BeamNG also contains a driving agent called BeamNG.AI [27], which could
take over one or more vehicles and drive in several different modes.

3 PAPER COLLECTION METHODOLOGY AND RESULT
In this section, we introduce our paper collection methodology in §3.1 and present the statistics
and analysis of the results in §3.2.

ACM Forthcoming, Vol. 1, No. 1, Article . Publication date: January 2023.



8 S. Tang et al.

3.1 Paper Collection Methodology
This section introduces themethodology adopted in our paper collection process, which is illustrated
in Fig. 2. The overall process consists of five main steps, namely, database search, abstract analysis,
full-text analysis, backward & forward snowballing, and data extraction. The intermediate results of
each step during the process are reported in our supplementary website2 and are also available in
Zenodo [28]. We now describe the details of each step, as follows:

3.1.1 Database Search. This step aims to find the potentially relevant papers by searching in
electronic databases. Specifically, we select DBLP3 as our database, which is a popular bibliography
database containing a comprehensive list of research venues in computer science. Moreover, our
search targets the titles of the papers, since the title often conveys the theme of a paper. We optimize
the search string in an iterative manner, in order to collect as many related papers as possible. The
final search string used during our search process is shown as follows:'

&

$

%

((“automated vehicle” OR “automated driving” OR “autonomous car” OR “autonomous vehicle” OR
“autonomous driving” OR “self-driving” OR “driver assistance system” OR “intelligent system” OR
“intelligent vehicle” OR “intelligent agent”)
AND
(“test” OR “attack” OR “validation” OR “evaluation” OR “quality assurance” OR “quality assessment”
OR “oracle” OR “mutation” OR “fuzzing”))

The first group of terms (above “AND”) represents the identified synonyms of automated driving,
which contains the terms such as “autonomous driving” and “self-driving”; the second group of
terms (below “AND”) contains the common phases in the process of quality assessment of software
systems (e.g., “test” and “validation”), along with popular testing approaches (e.g., “mutation” and
“fuzzing”) and a keyword “oracle”, which is a significant concept in software testing. The terms in
each group are connected with OR operator, while the two groups are connected with AND operator,
which means that a relevant paper should cover the characteristics of both groups. Overall, the
application of the above search string on DBLP retrieves 1185 papers. After removing 144 duplicates,
the final number of papers we collected is 1041.

3.1.2 Abstract Analysis. To determine whether each primary candidate paper is relevant to ADS
testing, we perform a manual analysis on the abstracts of 1041 papers obtained from database
search in §3.1.1. This process is conducted by two assessors, i.e., the first two authors, following
the inclusion and exclusion criteria formulated as follows:
• Inclusion Criteria:
IC1 papers that propose a method for testing the modules of ADS or the whole system;
IC2 papers that introduce metrics as test oracles or adequacy criteria for testing the modules of

ADS or the whole system;
IC3 papers published between January 2015 and June 2022.

• Exclusion Criteria:
EC1 preprint papers or non-peer-reviewed papers;
EC2 early results or preliminary studies;
EC3 papers that do not target ADS;
EC4 survey papers or summary papers;
EC5 papers that do not focus on assessing quality aspects of ADS or its components;

2https://sites.google.com/view/ads-testing-survey
3https://dblp.org/
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EC6 papers that focus on other quality aspects such as Human-Machine Interface (HMI), cyber
security, and adversarial defense.

Specifically, for IC2, test oracle refers to the metrics that measure whether an ADS or its
components misbehave, and test adequacy refers to the criteria that judge whether a test suite
has been sufficient for testing; for EC3, papers related to other intelligent systems, e.g., unmanned
aerial vehicle (UAV ), are excluded since we mainly focus on automated driving systems; for EC4,
such relevant papers are discussed in §1 for a comparison with our survey; for EC5, papers that do
not report novel techniques or metrics for ADS testing are excluded, e.g., the papers that focus on
the engineering implementation of testbeds; for EC6, only the studies that assess quality aspects,
e.g., safety and security of the ADS or its modules, are considered.
As a result of manual analysis of the abstracts, the two assessors fully agree on the inclusion

of 101 papers, and have divergent opinions on 54 papers, i.e., those included by one assessor but
excluded by the other. To cover more relevant studies, in this step, papers included by either one
assessor or both assessors are all added into a tentative inclusion set, which contains 155 papers.

3.1.3 Full-text Analysis. In this step, we download the papers in the tentative inclusion set and
conduct a full-text analysis. For those papers included by both assessors, we further analyze the
introduction, conclusion, or other parts to determine whether a certain paper proposes an approach
or a metric for ADS testing. If the assessors’ decisions conflict, the two assessors will first review
the inclusion and exclusion criteria defined in §3.1.2, and have a discussion. In cases where the
conflict still exists, a senior researcher will join the discussion and resolve the dispute. After an
agreement on removing 54 irrelevant papers, the number of the inclusion set is 101.

3.1.4 Backward & Forward Snowballing. In order to reduce the risk of missing relevant papers,
we perform both backward snowballing and forward snowballing [29] on the 101 papers in the
inclusion set, and the process is assigned to the two assessors. In backward snowballing, they check
the reference list in the existing studies to obtain candidate papers, while in forward snowballing,
they use Google Scholar4 to access the papers that cite the existing studies. For those candidate
papers produced by snowballing, the two assessors apply the inclusion criteria and exclusion
criteria defined in §3.1.2, and conduct both Abstract Analysis in §3.1.2 and Full-text Analysis in §3.1.3
to identify the relevant papers that could be added into the inclusion set. As a result of performing
snowballing for one iteration, we identify 57 new papers that are relevant to ADS testing. Hence,
the number of papers in the inclusion set after snowballing is 158. To avoid missing relevant papers
that may not be obtained through our collection process, we also ask for feedback from domain
experts and collect 23 papers as a result. Finally, we collect 181 papers for data extraction.

3.1.5 Data Extraction. In this step, all the resulting 181 papers are thoroughly read by the authors.
Specifically, the authors need to identify the testing target (ADSmodule or system) and the proposed
method or metrics for ADS testing. The identified information is then extracted into a data extraction
form. Since the data extraction process requires careful reading of each paper, this task is conducted
by three authors as the assessors to share the overall workload. Each assessor is assigned more
than 50 papers, and to ensure accuracy, the extracted information from the three assessors is all
reviewed in parallel by another author. All conflicting decisions are resolved in the discussion at
this stage.

3.2 Paper Collection Results
In this section, we analyze the collected papers from three perspectives, namely, the publication
venues, the targeted system modules, and the publication years. We show the distribution of the
4https://scholar.google.com/
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(a) Distribution of the publication venues (b) Distribution of the testing targets

(c) The number of the publications in each year

Fig. 3. The statistical information of the publications in ADS testing

publication venues of all the papers in Fig. 3a and the distribution of the targeted modules/system
in Fig. 3b. Moreover, we present the number of papers published in different years in Fig. 3c.

Publication venues. In Fig. 3a, we can see that, (i) many of the papers, up to 38%, are published
in transportation venues such as International Conference on Intelligent Transportation Systems
(ITSC) and IEEE Intelligent Vehicles (IV ); (ii) 25% of the papers are published in software engineering
venues such as International Conference on Software Engineering (ICSE) and International Conference
on Automated Software Engineering (ASE); (iii) the adversarial attack methods for vulnerability
detection of ADS are related to the security of the systems, and hence 10% are published in the
security venues, such as USENIX Security Symposium and IEEE Symposium on Security and Privacy
(S&P); (iv) since the ADS and artificial intelligence are closely related, 7% of the papers are published
in artificial intelligence venues such as Computer Vision and Pattern Recognition Conference (CVPR)
and AAAI Conference on Artificial Intelligence (AAAI ).

Target modules. In Fig. 3b, we can see that, obviously, the papers on system-level testing dominate
the largest percentage, up to 54%. These papers involve testing techniques that span over both
simulation-based testing and mixed-reality testing. Moreover, the number of the papers concerning
with the perception module is the second largest, up to 22%. The perception module takes charge
of object detection and image semantic segmentation using deep learning, which is important but
vulnerable to safety and security threats, and thus becomes a popular research direction. Compared
to the perception module, there are fewer papers concerning other modules, such as the planning
module or the control module.
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Publication year. In Fig. 3c, we can see that the number of the papers related to ADS testing
shows a general ascending trend, from 2015 to 2021. This trend indicates that the safety and security
of ADS are attracting more and more research attention from researchers. The reason for fewer
relevant papers in 2022 is that only partial papers had been published by the time we collected the
papers.

4 LITERATURE OF EMPIRICAL STUDY ON ADS TESTING
In this section, we provide an overview of the papers that perform empirical study in the field of
ADS testing. By the term of empirical study, we mean that, instead of executing the systems in a
simulated or real-world environment, these studies perform empirical analysis based on existing
databases, such as project repositories and public crash reports. In general, empirical study is an
essential step before the experimental ADS testing, since it provides experiences and insights in
the distribution of potential safety risks.

We classify these studies into three categories, namely, system study, bug/issue study and public
report study. System study, shown in §4.1, mainly analyzes the architectures of ADS and is thus
beneficial for understanding the system behavior before running it. Bug/issue study, shown in §4.2,
focuses on collecting and analyzing the bugs and issues of ADS, which are usually raised by users,
developers, and researchers and published in project repositories. Public report study, shown in §4.3,
refers to the analysis on those real-world disengagements and crashes reported in various databases
(e.g., the crash reports released by California Department of Motor Vehicles (CADMV ) [30]). These
reports target at real-world system failures, and they provide important references for understanding
system reliability in the real world.

4.1 System Study
Because of the high complexity of the system architectures of ADS, it is necessary to have a
comprehensive understanding of the systems before performing their evaluation. The system
studies, e.g., on Apollo [31], build the logical architectures that disclose the connections over
different modules in ADS. As a result, these lines of work can bring insights into the potential
vulnerabilities and suggest useful metrics for system testing.

Peng et al. [31] investigate the collaboration between the code and the DNN models in Apollo;
specifically, they study which roles are played by the code and the underlying DNN models,
respectively. They find that the 28 DNN models used in Apollo interact with each other in diverse
ways, e.g., the output of one DNN can be used as the input of another DNN, and the outputs of
multiple DNNs can be combined as the input of another DNN. Moreover, the code also plays an
important role in the system workflow, e.g., it can be used for filtering out invalid output of DNNs,
and it can complement the imperfect outcome of DNNs.

4.2 Bug/Issue Study
For those open-source ADS, issues and bugs reported in their public repositories (e.g., GitHub)
reflect real problems encountered by users and developers during the development and deployment.
Therefore, systematic analysis on these issues [32, 33] can provide insights into the root causes of
system failures. In this section, we review two studies [34, 35] in the field of ADS testing.
Garcia et al. [34] present a comprehensive study of bugs in two ADS, namely Apollo and

Autoware. Specifically, they collect bugs from the commits across the Apollo and Autoware
repositories in GitHub and perform a manual analysis on these bugs and commits. As a result, they
obtain 13 root causes (e.g., algorithm, data, memory) for system crashes, 20 symptoms (e.g., speed
and velocity control, vehicle trajectory) and 18 bug-related components (e.g., perception, planning,
control), based on their analysis of 499 bugs in the two ADS.
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Tang et al. [35] perform a study on issue analysis for OpenPilot. They collect 235 bugs from 1293
pull requests and 694 issues of the OpenPilot project in GitHub and Discord5. These bugs are then
classified into 5 categories, including (DNN) model bugs, plan/control bugs, car bugs, hardware
bugs, and UI bugs. Among these different types of bugs, they find that the car bugs related to the
interface with different car models dominate 31.48%, and plan/control bugs related to the control of
car behaviors account for 25.95%.

4.3 Public Report Study
The following works all perform analysis on public reports, i.e., CADMV [30], which is a database
involving disengagement and crash records on public roads. Specifically, a disengagement refers to
a failure that requires a human driver to take over control of the vehicle; a crash refers to a collision
with other traffic participants. These empirical studies investigate the relevant factors, such as the
causes, the correlations, and the impacts of these system failures, and they also shed light on future
system developments.

Analysis of disengagement reports. In the works [36–38], the authors analyze the disengage-
ments based on different metrics. Lv et al. [36] classify the disengagement events into two types,
namely active disengagement and passive disengagement, and investigate the root causes of each
group. Boggs et al. [37] apply the binary logistic regression [39] to categorize the cause of the
disengagements in more details. The results show that the planning discrepancy (e.g., improper
localization, motion planning) accounts for 41% of ADS disengagements. Khattak et al. [38] investi-
gate the relationship between disengagements and crashes, and find relevant factors that could
increase the likelihood of a disengagement without a crash.

Analysis of crash reports. The following works [40–46] analyze the crash reports and identify
the contributing factors. Leilabadi et al. [40] apply text analysis to the crash reports, and they find
that the crashes mostly occur when vehicles run in the automated mode, and the most frequent
ADS crash type is the rear-end collision. Favaro et al. [41] focus on the dynamics aspect and present
the speed distribution of those crash vehicles. Wang et al. [42] adopt regression and classification
tree (CART) to investigate the types and severity of these crashes. They find that the severity
increases significantly when an automated vehicle is responsible for the event. Das et al. [43] utilize
Bayesian latent class model to perform the analysis and identify six collision patterns. Aziz et al. [44]
investigate both crash data involving ADS and without ADS, and build a spatial-temporal mapping
of the contributing factors between them. Song et al. [45] conclude that the most representative
crash pattern is the “collision following ADS stop”, i.e., an automated vehicle stops suddenly and
gets hit by other vehicles on the road. Besides CADMV, the crash data in other databases such as
UK’s STATS19 [47] are also analyzed with statistical approaches [46, 48].

4.4 Discussion
Table 2 summarizes the collected papers that empirically study the issues in ADS testing. Several
existing system studies focus on Apollo, and there are also studies that cover other open-source
ADS, such asAutoware andOpenPilot. Moreover, there are many works [36–38, 40, 41, 43–46, 49]
that target the disengagement and crash reports for identifying the root causes or failure types, as
these investigations are critical to understanding the ADS safety performances in the real world.

5https://discord.com/
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Table 2. Summary of the papers for empirical study on ADS testing

Category Description Literature

System study Introducing the interaction between the code and the DNN models in Apollo [31]

Bug/issue study
Finding the root causes, symptoms, and bug-related components based on analysis on
bugs of Apollo and Autoware

[34]

Performing categorization and analysis on bugs of OpenPilot [35]

Public report study
The analysis and classification of the disengagements based on different perspectives
(e.g., modules)

[36–38]

The identification of the common crash types by different methods (e.g., text analysis) [40–46, 48]

�

�

�

�
Summary: Many empirical studies focus on studying the systems themselves, e.g., Apollo, to
understand the characteristics of the systems or bugs/issues from their public project repositories.
There are also many studies that analyze the public crash reports to understand the safety problems
of ADS in the real world.

5 LITERATURE OF TECHNIQUES ON MODULE-LEVEL ADS TESTING
In this section, we introduce the works on module-specific testing for ADS with the goal of
answering RQ1 in §1. These modules under test include the ones that have been introduced in §2.2,
namely, the sensing module (in §5.1), the perception module (in §5.2), the planning module (in §5.3),
the control module (in §5.4) and the end-to-end module (in §5.5).
We introduce these studies from three perspectives, namely, test methodology, test oracle and

test adequacy. Concretely, (i) test methodology introduces various methods or technical innovations
for testing; (ii) test oracle defines metrics that can be used to judge whether the module behaves
correctly; (iii) test adequacy proposes coverage criteria that tell if the test cases in a test suite are
sufficient. Note that, due to the different features of different modules, it can be the case that, for a
specific module, not all of the three perspectives are identified as important scientific topics, so we
may only introduce the related literature from only a part of the perspectives.

5.1 Sensing Module
The sensing module is the frontier module of an ADS and the performance of the physical sensors
(e.g., camera, radar, LiDAR) in this module is critical to the safety and security of the whole ADS.
Relevant studies on the test methodology of this module can be divided into physical testing (shown
in §5.1.1) and deliberate attack (shown in §5.1.2). Physical testing aims to test the performance of
the sensors under different physical conditions, while deliberate attack interferes with the input
signals of the sensors to diminish the sensing quality.

5.1.1 Physical Testing. Physical testing [50, 51] aims to assess the sensors’ capabilities of handling
specific tasks under different physical environments, such as harsh weather conditions. Kutila et
al. [50] perform a detection distance testing of LiDAR in the foggy and snowy conditions. The
results show that the maximum measurable distance by the LiDAR decreases by 20 − 40𝑚 under
harsh weather conditions. They also compare the detection capability of LiDAR with different
wavelengths in their follow-up work [51]. Concretely, they test the detection accuracy of LiDAR
at 905𝑛𝑚 and 1550𝑛𝑚 wavelengths in foggy and rainy weather, and the results indicate that the
LiDAR with a larger wavelength can detect the environment more accurately when the visibility is
low.
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Table 3. Summary of the papers for the sensing module testing

Methodology Description Literature Test Sensor

Physical testing
Testing the detection distance of LiDAR under different
weather conditions

[50, 51] LiDAR

Deliberate
attack

Jamming at-
tack

Using intense light to blind the sensors [52] LiDAR
Utilizing a laser and a jammer to interfere with the sensors [53] Camera and ultrasonic

sensors
Placing an opposite ultrasonic sensor [54] Ultrasonic sensors

Spoofing at-
tack

Modifying the raw data [55, 56] GPS
Utilizing a Software Defined Radio [57] Radar
Creating invisible objects with simple LEDs [58] Camera

5.1.2 Deliberate Attack. Unlike physical testing, deliberate attack refers to the intentional attacks
launched by human attackers. This type of attack on the sensors of ADS can be classified into
jamming attack and spoofing attack, which are introduced below.

Jamming attack. This is a basic type of attack on sensors by generating noises using specific tools
to interfere with the sensors and damage their normal functionalities. Shin et al. [52] propose a
blinding attack method against LiDAR by using intense light with the same wavelength as the
target sensor. Yan et al. [53] utilize a laser to cause irreversible damage to cameras and an ultrasonic
jammer to interfere with ultrasonic sensors. Another attack on ultrasonic sensors [54] works by
placing an ultrasonic sensor opposite to the target sensor.

Spoofing attack. Spoofing attack is performed by injecting fake data to deceive sensors. Meng et
al. [55] and Zeng et al. [56] spoof the GPS receivers to a wrong destination by modifying the raw
signals of these sensors. Komissarov et al. [57] utilize a Software Defined Radio to fool the mmWave
radar, e.g., they make it produce the wrong measurement of vehicle speed. Wang et al. [58] first
utilize the features of infrared lights to perform spoofing attack. Specifically, the proposed approach
could create invisible objects with simple LEDs to fool the camera sensors, and thus introduce
localization errors to the vehicles.

5.1.3 Discussion. Table 3 shows the summary of the papers for the sensing module testing. It can
be seen that the existing physical testing works [50, 51] mainly focus on testing LiDAR sensors
under different weather conditions, e.g., the foggy weather, the snowy weather. This is because the
LiDAR sensor has become a key component in ADS, and its robustness is of great significance to
the vehicle’s safety. Besides, we find more works that perform deliberate attack including jamming
attack [52–54] and spoofing attack [55–58] on other physical sensors. With the usage of specific
devices, e.g., lasers [53] and LEDs [58], these two types of attacks have been demonstrated to be
effective for finding abnormal behaviors of the target sensors.�
�

�
�

Summary: Physical testing focuses on testing sensors under different weather conditions. There
are more works performing deliberate attack on the sensing module, e.g., jamming attack and
spoofing attack, with the usage of specific hardware devices.

5.2 Perception Module
The perception module receives and processes sensor data; based on that, it perceives external
environments. The literature we collected includes the test methodologies (shown in §5.2.1), the
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test oracles (shown in §5.2.2), and the test adequacy criteria (shown in §5.2.3) for testing the DNN
models used in the perception module of ADS.

5.2.1 Testing Methodology. Adversarial attack is the major approach for testing the DNN models
used in the perception module, which attempts to generate adversarial examples to trigger wrong
inference results of perception. Based on the attacker’s knowledge about the target model, adversar-
ial attacks can be classified into white-box attacks, in which the attackers have access to the training
parameters of the target model, and black-box attacks, in which the attackers have limited or no
knowledge of the model. Based on the attackers’ desired outcomes, there exist targeted attacks, in
which the prediction that the model makes is limited to specific classes, and non-targeted attacks, in
which the model can predict an arbitrary wrong class [59]. In general, there are three basic methods
for performing adversarial attack, namely, by solving an optimization problem, by leveraging the
generative adversarial networks (GAN ) [60] and by poisoning the training data. In the following, we
introduce the literature that adopts these methods.

Optimization-based attack. We denote by 𝐹 a DNN model, which takes as input a picture 𝑥
and gives as output a label 𝑦. In general, an adversarial attack consists in solving the following
optimization problem:

min𝛿 𝑠.𝑡 . 𝐹 (𝑥 + 𝛿) = 𝑦∗, 𝑦∗ ≠ 𝑦𝑜 (1)

where 𝛿 is a perturbation added to the picture 𝑥 , and 𝑦∗ is a wrong label that is different from the
correct label 𝑦𝑜 . In other words, an adversarial attack involves finding the minimum perturbation
that leads a DNN model to the wrong inference result. In most cases, the collected literature on
adversarial attack follows this general framework; meanwhile, these papers also differ in their
applications and motivations.

The following works [61–67] focus on performing adversarial attacks on camera-based percep-
tion tasks (e.g., object detection, traffic sign recognition, and semantic segmentation). Chen et
al. [61] propose an attack method, called ShapeShifter, to generate perturbations against the object
detector Faster R-CNN [11]. To make the perturbations more robust, they adopt the Expectation over
Transformation technique [68] that adds random distortions iteratively, during the optimization
process for generating perturbations. Zhao et al. [62] propose two approaches for generating
adversarial perturbations: one is called hiding attacks that can make object detectors unable to
recognize objects; and the other is appearing attack that can lead the object detectors to make
incorrect recognition. Zhang et al. [63] propose an attack method for object detectors, which could
generate camouflage on 3D objects, i.e., vehicles, and make it undetectable by target models. Unlike
the classification loss adopted by most studies, Choi et al. [64] consider the object loss defined
as the detector’s confidence on the existence of objects in an area. The adversarial perturbations
generated by their approach could make the target object detector YOLOv4 [69] produce numerous
false positives, i.e., those objects that do not exist in the clean images are unexpectedly detected.
Xu et al. [65] perform an adversarial attack on the popular segmentation model DeepLab-V3+ [70].
The perturbations generated are quite small and can be stealthily projected to an unnoticed area
in the original image. Li et al. [66] propose the first black-box attack on traffic sign recognition
models, which could generate adversarial perturbations efficiently. Kumar et al. [67] present another
black-box attack method on traffic sign recognition models. Instead of maximizing the loss of the
correct class, they accelerate the convergence through minimizing the loss of the class which is
incorrectly predicted by target models.
In addition to attacking the camera-based object detectors, there are also works [71–79] that

focus on attacking the LiDAR-based 3D object detectors. Cao et al. [71] present a white-box attack
method on a LiDAR-based perception module by adding the spoofed points into the original 3D
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point clouds. In the later work [72], their generated adversarial perturbations could fool both
the camera and the LiDAR-based perception algorithms. Black-box attacks on the LiDAR-based
object detectors are performed in [73–76] and experimental results show that the target models are
highly sensitive to those adversarial 3D perturbations. Yang et al. [77] consider both white-box
and black-box scenarios and generate perturbations for roadside objects such that they can be
misidentified as vehicles by the perception module. Zhu et al. [78] generate perturbations for
roadside objects but they target LiDAR-based semantic segmentation tasks. Unlike existing works
that generate perturbations for 3D objects, Li et al. [79] add perturbations to the vehicle trajectories
and their method can result in a significant drop in the precision of the object detector, to nearly
zero.

While the adversarial attack framework in Eq. 1 is effective in fooling DNN models, it does not
consider the realism of the perturbed pictures. There is literature that considers the adversarial
attack problem under physical conditions. Eykholt et al. [80, 81] propose an attacking method,
called Robust Physical Perturbations (𝑅𝑃2), that induces road sign classifiers to produce wrong
classification results under real-world physical conditions, e.g., different viewpoint angles and
different distances to the signs. Experimental results show that the attacked classifier misclassifies
the traffic signs with a rate of 100% in the lab environment and 84.8% in the real world.

GAN-based attack. This type of attack [82] generates adversarial perturbations to fool a DNN
model by training a GAN [60]. A GAN consists of two neural network models, namely, a generator
𝐺 and a discriminator 𝐷 ; specifically, 𝐺 is used to generate perturbations and add them to an
input image, and 𝐷 is used to distinguish the generated image by 𝐺 and the original image. The
objective of training a generator 𝐺 is to make the perturbed image of 𝐺 indistinguishable by the
discriminator 𝐷 ; this can be implemented by optimizing a loss function 𝐿𝐺 . For fooling the target
DNN, another loss function 𝐿𝐷 is needed to stimulate the adversarial images produced by the GAN
to be misclassified. As a result, the final objective function is formalized as follows:

𝐿 = 𝛾 · 𝐿𝐺 + 𝐿𝐷

where 𝛾 is a parameter that controls the relative importance of 𝐿𝐺 and 𝐿𝐷 .
Liu et al. [83] propose a GAN-based attack framework called perceptual-sensitive GAN (PS-GAN ),

which generates adversarial patches with high visual fidelity. Experimental results show that
the adversarial patches can significantly reduce the classification accuracy of the target DNNs.
Xiong et al. [84] propose a multi-source attack method based on GAN, which generates adversarial
perturbations that can fool both camera-based and LiDAR-based perception models. Yu et al. [85]
utilize the cycle-consistent generative adversarial network (CycleGAN ) [86] to synthesize corner
cases for testing traffic sign detection models.

Trojan attack. This type of attack [87] is also called poisoning attack or backdoor attack. Specifically,
it works by injecting malicious samples with trigger patterns into the training data of the target
DNN models. Then the models can learn the malicious behaviors and make incorrect predictions
when the inputs contain such triggers. The following works [88, 89] are all based on this idea.

Jiang et al. [88] utilize particle swarm optimization [90] to perform this type of attack on traffic
sign recognition models. Experimental results show that the classification accuracy could drop
to 62% due to only 10% injected training data. Ding et al. [89] propose the Trojan attack for deep
generative models such as DeRaindrop Net [91], which is a GAN-based network for raindrops
removal. Experimental results show that the model could be triggered to misclassify the traffic
light or the value on the speed limit sign when it normally removes the raindrops.

5.2.2 Test Oracle. A test oracle defines a metric used to distinguish between the expected and
unexpected behavior of the system under test. Sometimes, an oracle is obviously identified; however,
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that is not always the case. In the perception testing, due to the huge input space (that involves all
the possible input images) of the DNNmodels, it is a great challenge to specify the oracles for all the
input images. We collect several types of test oracles that have been adopted for perception testing,
namely, ground-truth labeling [92, 93], metamorphic testing [94–99] and formal specifications [100,
101] to judge whether a bug exists in the perception module.

Ground-truth labeling. The general approach of testing a DNN in the perception module is
to match the inferred label by the DNN with the ground-truth label, given an image. Usually,
these ground-truth labels are obtained by manual labeling. For instance, the ground-truth labels
in [102, 103] are produced in this way. However, manual labeling is notoriously expensive and
laborious; to that end, automatically labeling methods are pursued by researchers. Zhou et al. [92]
propose an automatic labeling method to detect the road component in the camera sensor images.
Their method identifies the road component in the 3D point cloud captured by a LiDAR for the
same scene, and projects the identified area onto the corresponding image. The projected area
labels the road component in the camera sensor images, which can be used for the validation of
semantic segmentation models. Philipp et al. [93] propose another approach for automatically
generating dimension and classification references for object detection. The dimension references
are calculated by considering the occurred situations of each object and measuring the related
features, e.g., projection angle, based on a given HDmap. The classification references are generated
by a decision tree, which considers the features such as kinematic behavior and the interaction
with infrastructure elements of each object.

Metamorphic testing. Metamorphic testing [104] was introduced by Chen et al. to tackle the
problem when the test oracle is absent in traditional software testing. Consider the testing of a
program 𝑓 that implements the trigonometric function sin. Normally, for any input 𝑥 , given the
ground-truth value sin(𝑥) as the oracle for 𝑓 (𝑥), we can assess the correctness of 𝑓 by checking
if 𝑓 (𝑥) = sin(𝑥). However, assume that the ground-truth value sin(𝑥) is unknown. In this case,
testing 𝑓 by checking if 𝑓 (𝑥) = sin(𝑥) is not possible; instead, we can use the metamorphic testing
that tests the program based on a metamorphic relation. For instance, in this case, a metamorphic
relation can be built as 𝑓 (𝑥) = 𝑓 (𝜋 − 𝑥), due to the property sin(𝑥) = sin(𝜋 − 𝑥) held by sin.
Hence, the correctness of 𝑓 can be assessed by metamorphic testing, which consists in checking if
𝑓 (𝑥) = 𝑓 (𝜋 − 𝑥), for any input 𝑥 .
Metamorphic testing has been studied for testing the perception module of an ADS; various

metamorphic relations have been proposed, over images [94–98] and frames in a scenario [99].
• Metamorphic relations over images. Shao et al. [94] introduce a metamorphic relation in object
detection, that is, the detected object in the original images should also be detected in the
synthetic images. For testing traffic light recognition models, Bai et al. [95] propose another
metamorphic relation, which states that, when traffic lights change from one color to another, the
recognition results of the target models should change correspondingly. Zhou et al. [96] propose
a metamorphic relation for LiDAR-based object detection, that is, the noise points outside the
Region of Interest (ROI ) should not affect the detection of objects within the ROI. Woodlief et
al. [97, 98] check the model inconsistencies between original images and mutated images, e.g.,
the images of a vehicle with changed color.

• Metamorphic relations over frames in a scenario. Ramanagopal et al. [99] propose two metamorphic
relations, respectively for identifying temporal and stereo inconsistencies that exist in different
frames of a scenario. The temporal metamorphic relation says that an object detected in a previous
frame should also be detected in a later frame; the stereo metamorphic relation is defined in a
similar way, for regulating the spatial consistency of the objects in different frames of a scenario.
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Formal specifications. Recently, temporal logics-based formal specifications have been adopted
in the monitoring of the perception module of ADS. In general, temporal logics are a family of
formalism used to express temporal properties of systems, e.g., an event should always happen
during a system execution; flagship temporal logics include linear temporal logic (LTL) [105] and
metric temporal logic (MTL) [106]. Dokhanchi et al. [100] propose an adaptation of temporal logic to
express desired properties of perception; the new formalism is called Timed Quality Temporal Logic
(TQTL). Specifically, TQTL can be used to express temporal properties that should be held by the
perception module during object detection, e.g., “whenever a lead car is detected at a frame, it should
also be detected in the next frame”. Conceptually, the properties expressed by TQTL are similar
to the ones in [99]; however, by adopting such a formal specification to express these properties,
one can synthesize a monitor that automatically checks the satisfiability of the system execution.
TQTL is later extended to Spatio-Temporal Quality Logic (STQL) [101], which has enriched syntax
to express more refined properties over the bounding boxes used in object detection. The authors
also propose an online monitoring framework, named PerceMon, for monitoring the perception
module at runtime of the ADS.

5.2.3 Test Adequacy. Measuring the adequacy of the testing for DNN models in the perception
module is challenging, due to the complexity of DNNmodels. Compared to program execution, DNN
inference involves a completely different logical process, which is deemed to be non-interpretable.
In this domain, various metrics, analogous to the test adequacy criteria for programs, have been
proposed; some of the metrics are for general DNN testing, while some are dedicated to ADS testing.
Below, we introduce two typical lines of such adequacy criteria.

Structural coverage. Neuron coverage is proposed in [107], inspired by the structural coverage
used in traditional software testing. Pei et al. [107] analogize DNN inference to program execution,
and consider the neuron activation as a symbol that indicates whether a neuron is “covered”. Based
on this analogy, they define neuron coverage by what percentage of the neurons that are activated,
as the counterpart of structural coverage in DNN. Inspired by [107], a number of other neuron
coverage criteria are proposed. For instance, k-multisection neuron coverage [108] is the refined
version of neuron coverage that considers not only “activated” neurons but also “not activated”
neurons; surprise adequacy [109] pursues the novelty of an individual test case based on whether it
is out of the distribution of the training data.

Combinatorial coverage. Combinatorial testing [110] utilizes combinatorial coverage for test case
generation, which measures the coverage of the combinations of different system parameters. The
𝑡-way combination coverage is a typical criterion, which is defined by the number of the 𝑡-wise
combinations covered by the test suite, out of the total number of possible 𝑡-wise combinations.
For instance, consider a system that has 3 binary parameters 𝑎, 𝑏 and 𝑐 . Given a test suite 𝑇 =

{⟨0, 0, 1⟩, ⟨0, 1, 0⟩, ⟨1, 0, 0⟩, ⟨1, 1, 0⟩} that involves 4 test cases, the 2-way combination of𝑇 is computed
by 1

3 , which indicates that one combination 𝑎𝑏 is covered by 𝑇 (since 𝑇 involves all the possible
cases 00, 01, 10, 11 of 𝑎𝑏), over all the three possible combinations 𝑎𝑏, 𝑎𝑐, and 𝑏𝑐 .
Combinatorial coverage has been used to solve the adequacy problem in the testing of the

perception module. Gladisch et al. [111] characterize the scenarios by using multiple parameters
concerning different features, such as lane types and road types. They then apply combinatorial
coverage as a guidance to generate test cases that can reveal system failures and achieve high
coverage. Cheng et al. [112] propose 𝑘-projection coverage that aims to reduce the combinatorial
explosion during test case generation, by incorporating domain expertise. Xia et al. [113] utilize
the analytic hierarchy process to identify the key factors and then generate test cases for a lane
detection algorithm with combinatorial coverage guarantee.
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Table 4. Summary of the papers for the perception module testing: Part I

Methodology Description Literature Test Objective Environment

Optimization-
based attack

Replacing true traffic signs with generated
adversarial traffic signs

[61] Object detector: Faster-RCNN[11] Real world

Generating transferable adversarial traffic
signs and stickers

[62] Object detectors: Faster-RCNN[11] and
YOLOv3 [12]

Real world

Generating camouflage on 3D objects [63] Object detectors: Mask R-CNN [114] and
YOLOv3-SPP [12]

Simulation

Focusing on the objectness loss [64] Object detector: YOLOv4 [69] Digital
dataset

Adding perturbations to the unnoticed
area

[65] Segmentation models: ResNet-101 [115]
and MobileNet [116]

Digital
dataset

Performing black-box attacks on traffic
sign recognition models

[66, 67] Models from the Kaggle Competition [117] Digital
dataset

Adding spoofed points into the original
3D point clouds

[71] Perception module of Apollo Simulation

Generating adversarial images against
multi-sensor fusion based perception

[72] Perception module of Apollo Simulation

Performing the black-box attack by the
occlusion information

[73–76] Perception module of Apollo and LiDAR-
based object detectors [118–120]

Digital
dataset

Generating perturbations for roadside ob-
jects

[77, 78] LiDAR-based object detectors [118, 119,
121] and a segmentation model [122]

Real world

Adding perturbations to the trajectories of
vehicles

[79] Object detectors: PointRCNN [118] and
PointPillar++ [123]

Digital
dataset

Pasting generated adversarial stickers on
traffic signs

[80, 81] Classifiers: LISA-CNN [124], GTSRB-
CNN [125] and Inception-v3 [126]

Digital
dataset

GAN-based at-
tack

Generating adversarial patches with high
visual fidelity

[83] Classifiers: VGG16 [127], ResNet [115] and
VY [128]

Digital
dataset

Proposing a multi-source attack method [84] Semantic segmentation model: VAE-
GAN [129]

Digital
dataset

Synthesizing corner cases by utilizing Cy-
cleGANs

[85] Object detector: PatchGAN [130] Digital
dataset

Trojan attack

Utilizing particle swarm optimization [88] Classifier: LeNet-5 [131] Digital
dataset

Performing the Trojan attack for models
used for raindrops removal

[89] Claffifiers: DeRaindrop Net [91] and
RCAN [132]

Digital
dataset

5.2.4 Discussion. Table 4 summarizes the collected papers for testing the perception module. This
module includes a number of DNN models for understanding the environmental information. It is
important, since many crashes are caused due to the vulnerabilities of this module [34]. It can be
seen that a large number of papers perform adversarial attacks on this module. These methods
include three categories, namely, optimization-based attack, GAN-based attack, and Trojan attack.
The first two types of methods could generate adversarial examples to fool the DNN models, while
the third type of method targets the training process of the models. The DNN models take charge of
various tasks of perception, including object classification [80, 83], semantic segmentation [65, 78],
and camera-/LiDAR-based object detection [61–67, 71–77, 79]. Since the generated adversarial
perturbations may not be effective in a noisy physical environment [133], a number of methods
(e.g., Robust Physical Perturbations [80]) are proposed to overcome this challenge.

As mentioned in §5.2.2, it is also a great challenge to judge the correctness of the output of the
perception module. We collect three types of approaches, including ground-truth labeling [92, 93],
metamorphic testing [94–99], and formal specifications [100, 101] for tackling this problem. In
summary, the first approach focuses on automatically generating ground-truth labels for single
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Table 4. Summary of the papers for the perception module testing: Part II

Oracle Description Literature

Ground-truth labeling
Generating road label automatically by LiDAR [92]
- Generating dimension and classification references for object detection [93]

Metamorphic testing

The detected object in the original images should also be detected in the synthetic
images

[94]

The recognition results of target models should change when traffic lights change [95]
The detection of objects should be same with the affect of noise [96]
Check the model inconsistencies between the original images and the mutated images [97, 98]
The object detected in a previous frame should also be detected in a later frame [99]

Formal specifications
Adapting TQTL to express desired properties of perception [99, 100]
Adapting STQL to express more refined properties [101]

Adequacy Description Literature

Structural coverage

Neuron coverage: the percentage of the neurons that are activated [107]
K-multisection neuron coverage: considering activated neurons and not activated
neurons

[108]

Surprise adequacy: the novelty of a test case based on its range in the training data
distribution

[109]

Combinatorial coverage
Characterizing the scenarios by multiple parameters [111]
Incorporating domain expertise to reduce the combinatorial explosion [112]
Utilizing the analytic hierarchy process to identify the key factors [113]

images, while the other two methods tend to express the properties between continuous frames
and are thus suitable for evaluating the perception module at runtime.
Traditional coverage metrics, e.g., code coverage, are typically not suitable for estimating the

test adequacy of DNN-based models. Structural coverage metrics like neuron coverage [107] have
become a mainstream substitute. Recently, there is a different voice [134–136] saying that neuron
coverage and its extensions may lack effectiveness in guiding ML testing. In addition to neuron
coverage, combinatorial testing [111–113] is another approach for tackling the test adequacy
problem of the perception module.�

�

�

�

Summary: A large number of papers perform adversarial attacks on the perception module,
covering various perception tasks, e.g., camera-/LiDAR-based object detection and semantic seg-
mentation. Testing oracle problem of this module has been studied through different approaches,
e.g., metamorphic testing. Structural coverage metrics (e.g., neuron coverage) and combinatorial
testing techniques are widely adopted for the guarantee of testing adequacy.

5.3 Planning Module
The planning module takes the information from the perception module as input and produces a
suitable driving trajectory as a reference for the control module to make decisions. In the planning
module, we introduce the studies on test methodology (shown in §5.3.1), test oracle (shown in §5.3.2)
and test adequacy (shown in §5.3.3).

5.3.1 Test Methodology. Testing of the planning module consists in providing traffic scenarios
for an ADS, and checking if the planner module generates trajectories that satisfy properties such
as safety, comfort, and low cost. Note that, the path planning module is usually integrated into
the whole ADS, and highly coherent with other modules: the input of the module comes from the
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perception module, and the output trajectory is a reference for the control module, rather than the
actual one observable from the system. Therefore, testing the planning module independently is a
challenging task.

Due to the above reasons, there exist no large numbers of studies on the testing dedicated to the
planningmodule. The studies we collected are based either on dedicated path planning systems [137–
139], or on the assumption of the perfection of the perception and control modules [140]. In summary,
search-based testing is the major technique for testing of the planning module, and it is adopted in
most of the works [137–139, 141–145] for this module.

Search-based testing.According to [146], scenarios are defined on three abstraction levels, namely,
functional scenarios, logical scenarios, and concrete scenarios. A functional scenario has the highest
abstraction level and defines only the basic conditions and participants of a scenario; on top of
a functional scenario, a logical scenario is defined by a set of parameters and their ranges; with
the parameter values fixed in a logical scenario, a concrete scenario is generated. In the context
of scenario generation, search-based testing usually consists in searching in the parameter space
of a logical scenario for a concrete scenario, with specific objectives. Below are some examples of
applying search-based testing to generate concrete scenarios for the testing of the planning module.

The works [137–139, 141] use a dedicated path planning system from their industry collaborator,
which computes the trajectories of the ADS based on several constraints, e.g., safety and traffic
regulations. The aggressiveness of the path planning strategy is decided by a system parameter,
named weight. Laurent et al. [137] define a coverage criterion named weight coverage, which is used
to characterize the testing adequacy of the weight parameter. Later in [138], they propose two search-
based techniques, named single-weight approach and multi-weight approach, that automatically
generate testing scenarios guided by weight coverage. Specifically, the single-weight approach
searches for the scenarios that cover one specific weight of the path planner, while the multi-weight
approach generates scenarios that cover different weights simultaneously using the multi-objective
search. Arcaini et al. [139] consider searching for the driving patterns that are identified by the
features appearing in the planned trajectory, such as longitudinal/lateral acceleration and curvature.
The driving patterns that take place in a trajectory for a considerable duration are relevant to the
characteristics of the path planner, and thus facilitate engineers in system assessment. Since the
testing scenarios in their previous works contain numerous irrelevant elements and are thus hard
to debug, in their latest work [141], they target the simplification of testing scenarios—they remove
all the irrelevant traffic participants, but the failures can still be triggered.

Althoff et al. [142] propose the notion of drivable area for motion planning algorithms, which
represents a safe solution space in which the ADS can avoid collision. Then they adopt a search
method to generate scenarios that are highly critical in the sense that the drivable area is limited.
In their follow-up work [143], the authors consider the interference of other traffic participants
in the drivable area, in order to increase the complexity of the scenarios. In their experiment, the
evolutionary algorithms [147] are demonstrated to be advantageous in finding a local optimum
over these complex and diverse scenarios. Bak et al. [144] apply random exploring trees (RRT ) to
search for the adversarial agent perturbations, which indicate that the behaviors of other vehicles
are only modified slightly. Kahn et al. [145] generate occlusion scenarios for testing the behavior
planning module of an ADS. To be specific, they apply an occlusion-guided search method to inject
vehicles into the scenarios extracted from naturalistic data. Experimental results show that the
number of occlusion-caused collisions generated by their approach is 40 times higher than that
from the naturalistic data.
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5.3.2 Test Oracle. Assessing the correctness of the output of the planning module, i.e., a planned
trajectory, is a challenging problem, due to the lack of an oracle that represents the “correct”
trajectory. In this section, we introduce the studies [148, 149] that define different metrics as the
oracles to evaluate the correct functionality of the planning module.

Calò et al. [148, 149] define the notion of avoidable collisions, to distinguish them from unavoidable
collisions, in a dedicated path planner. By their definition, a collision is avoidable if it can be
avoided from happening in the same scenario by using a different system configuration of the ADS.
Compared to the unavoidable ones, the avoidable collisions are considered critical, since these
collisions require system reengineering to rectify the unsafe behavior.

5.3.3 Test Adequacy. As mentioned in §5.3.1, the inputs to the planning module involve both
external parameters that identify a scenario and internal parameters of the ADS. Because there are
infinitely many possible combinations of these parameters, generating test cases that are sufficiently
diverse remains a great challenge. In this section, we collect the studies [137, 140] that propose
coverage measurements on the space of the parameters. Namely, the weight coverage criterion [137]
refers to the coverage of the possible configurations of the path planner under test; the route
coverage criterion [140] is proposed to measure whether different features of a map have been
explored by the test suite.
Laurent et al. [137] propose a coverage criterion, named weight coverage, to test a dedicated

path planning system. In their path planner, there is a weight function that consists of six weight
parameters, which affect the path planning decisions from different aspects, such as safety and
comfort. In order to cover diverse planning decisions made by the system, the authors use the
weight coverage to guide the exploration of the weight parameter space. Thereby, they manage to
generate scenarios that cover more diverse combinations of the weight parameters.
Tang et al. [140] propose another coverage criterion called route coverage for testing the route

planning functionality of Apollo. Based on a Petri net abstracted from the map, they quantify
the route diversity based on the junction topology feature and route feature. The junction topology
feature describes the relative position and connection relationship of the roads at a junction, while
the route feature describes the action of Apollo to track a selected road. By mutating the test cases,
they achieve a high route coverage ratio and thus obtain a diverse test suite that covers various
features of the map.

5.3.4 Discussion. The summary of the collected papers for testing the planning module is shown in
Table 5. We find that search-based testing is a dominant technique that has been demonstrated to be
effective in revealing faults in the planning module [137–139, 141–145]. In addition, several metrics
are proposed for facilitating the testing on the planning module, e.g., avoidable collision [148]
for tackling the oracle problem, weight coverage [137] and route coverage [140] for evaluating the
sufficiency of the test suite. However, most of these metrics are dedicated to specific path planning
systems, and it needs to be further explored whether they could be generalized to the planning
modules of other systems.�
�

�
�

Summary: Search-based testing is an effective technique for revealing faults in the planning
module. Several metrics have been proposed for testing particular path planning systems, and it
needs further exploration on how to generalize these metrics to other systems.

5.4 Control Module
Based on the trajectories produced by the planning module, the control module takes charge of the
lateral and longitudinal control of the ADS. By using various control algorithms, such as model
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Table 5. Summary of the papers for the planning module testing

Methodology Description Literature Test Objective Environment

Search-based
testing

Searching for testing scenarios with weight cov-
erage guarantee

[137, 138]
A dedicated path planner

Simulation

Searching for the specific driving patterns [139, 141]
Searching for the scenarios in which the driv-
able area is limited

[142, 143] Motion planners Digital dataset

Applying RRT to search for adversarial agent
perturbations

[144] Five path planners, e.g., Frenet
Planner [150]

Simulation

Injecting vehicles into the scenarios extracted
from naturalistic data

[145] Strategic planners Digital dataset

Oracle Description Literature

Avoidable collisions A collision can be avoided from happening in the same scenario by using
a different system configuration of the ADS.

[148, 149]

Adequacy Description Literature

Weight coverage Based on a weight function consisting of weight parameters which affect
planning decisions

[137]

Route coverage Based on the junction topology feature and route feature [140]

predictive control (MPC) and proportional integral derivative (PID) control, it generates control signals,
e.g., acceleration, deceleration, and steering angle, to the CAN bus for the control of the whole
system. In this module, we introduce the works on the testing of the control module, from the
perspectives of test methodology (shown in §5.4.1) and test oracle (shown in §5.4.2).

5.4.1 Test Methodology. The control module takes charge of multiple functionalities, such as the
longitudinal control and the lateral control of the ADS. Hence, the testing of this module focuses
on detecting vulnerabilities in the control mechanisms.

Fault injection. Fault injection is a method that deliberately introduces faults into a system, in
order to assess the fault tolerance of the system. Uriagereka et al. [151] adopt this technique for
testing the fault tolerance ability of the control module of an ADS. Specifically, they inject faulty
GPS signals into the lateral control function of the ADS, which makes it produce wrong steering
commands. By calculating the fault tolerant time interval, which denotes the duration from the
activation of the fault to the occurrence of unsafe behavior, they find the lateral control system
can tolerate this type of fault for as long as 177𝑚𝑠 . Zhou et al. [152] inject faulty control signals
through CAN bus to cause collisions without being detected by ADS safety mechanisms, e.g.,
forward collision warning. They evaluate the method with OpenPilot and find that the lateral
control of the system is the typically vulnerable part with a high attack success rate.

Sampling.We refer to sampling as the statistical method that samples values from a probability
distribution. Wang et al. [153] sample the relevant parameters, e.g., speeds of the non-player
characters (NPCs) and the ego vehicle, for generating scenarios of different challenge levels. The
method is evaluated on the unprotected left-turn scenario and experimental results demonstrate the
robustness of the MPC controller. In their later work [154], game theory is applied to characterize
the interactive behaviors of NPCs in highway merging scenarios.

Falsification. Temporal logic-based falsification [155–161] is applied to ADS testing in [162, 163].
Originally, falsification refers to a technique for testing of the general cyber-physical systems,
guided by the quantitative semantics of temporal logic specifications, which indicates how far
is the system from being unsafe. Tuncali et al. [162] propose a falsification-based automatic test
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Table 6. Summary of the papers for the control module testing

Methodology Description Literature Test Objective Environment

Fault injection

Injecting faulty GPS signals [151] Lateral control module of an urban
vehicle

Simulation

Injecting faulty control signals through
the CAN bus

[152] The control module of OpenPilot Simulation

Sampling Sampling the relevant parameters for
generating different challenge level sce-
narios

[153, 154] MPC controller [14] Simulation

Falsification Utilizing temporal logic-based falsifica-
tion to search for critical scenarios

[162, 163] Collision avoidance controller Simulation

Oracle Description Literature

Optimization-based oracle model The model can generate an oracle area in a given scenario [164]

generation framework for testing collision avoidance controllers. They utilize a cost function,
i.e., the quantitative semantics of the temporal logic specification, as a guidance in searching for
the critical scenarios in which the relative speed of the two vehicles in the collision is minimal.
The obtained scenarios can be taken as the behavioral boundary that divides the safe and unsafe
behaviors. As a follow-up work, Tuncali et al. [163] utilize the Rapidly-exploring Random Trees (RRT )
algorithm for ADS falsification. They incorporate a new cost function that applies time-to-collision
to measure the seriousness of the collision. As a result, the newmethod achieves better effectiveness
in searching for safety-critical scenarios, thanks to the exploration brought by the RRT algorithm.

5.4.2 Test oracle. Like the planning module, the control module also faces the oracle problem in
its testing—indeed, it is usually not straightforward to determine whether a control decision is
“correct”. In [164], Djoudi et al. propose a framework to determine whether the control module
makes “the correct decision”. They design a model to generate an oracle area in the given scenario,
which is the closest safe position ahead of the vehicle. A control decision is then considered as “the
correct decision”, if it could drive the vehicle close to the oracle area.

5.4.3 Discussion. Table 6 summarizes the collected papers for the testing of the control module,
where the number of studies is not too large. Note that currently most of the control modules of
ADS adopt mature control techniques directly, such as PID [13] and MPC [14], which partially
explains why this module is not extensively studied. The collected studies adopt three major
techniques for testing the control module, including fault injection [151, 152], sampling [153, 154],
and falsification [162, 163]. To tackle the oracle problem in control module testing, the framework
proposed in [164] could generate an oracle area for judging whether the control decision is “correct”.
However, we do not find much work that handles the test adequacy problem for this module. In
general, since the control module deals with continuous dynamics, it is challenging and thus
requires further exploration to define adequacy criteria for test cases in the future.�

�

�

�

Summary: Since most of the control modules of the ADS adopt those mature control techniques,
e.g., MPC and PID, there are not many works studying the testing of the control module. Existing
techniques mainly include fault injection, sampling, and falsification. There are some works that
study the oracle problem of control modules. There is few work that studies the adequacy criteria
for testing control modules.

ACM Forthcoming, Vol. 1, No. 1, Article . Publication date: January 2023.



A Survey on Automated Driving System Testing: Landscapes and Trends 25

5.5 End-to-End Module
The end-to-end (e2e) module is a special design adopted by many modern ADS, which integrates the
functionalities of perception, planning and control in a single DNN-based model. The DNN model
is often developed by supervised learning, which is trained by using a training dataset consisting
of realistic driving data. Each element of the dataset is a pair ⟨𝐼 , 𝑐⟩, which maps the information
𝐼 at the end of the sensor to a label 𝑐 that indicates the desired control decision at the end of the
controller. After training, a model can infer control decisions based on the driving environment
at runtime in order to drive the ADS properly. For instance, in some modern ADS that perform
steering angle control, the end-to-end DNN model takes as input the sensing information including
road conditions and the status of other cars, and outputs a series of predicted steering angles
for controlling the ADS. In this section, we introduce the collected studies on the testing of the
end-to-end module from the perspectives of test methodology (shown in §5.5.1), test oracle (shown
in §5.5.2), and test adequacy (shown in §5.5.3).

5.5.1 Test Methodology. As mentioned before, an end-to-end DNN model integrates three func-
tionalities, namely perception, planning and control, in a single module. Among these three func-
tionalities, perception is the most vital part as it provides input information to other modules;
meanwhile, it is also the most vulnerable to external environments, as it essentially involves image
recognition tasks that rely on deep learning. Compared to a DNN just for perception, although
an end-to-end DNN does not directly output the perception information, the control decisions it
makes still depend on the perception information. Therefore, like the case in the perception module,
generating adversarial images or scenarios that fool the end-to-end DNN is still the major testing
methodology for testing the end-to-end modules.
We introduce three approaches, namely, search-based testing, optimization-based adversarial

attack, and GAN-based attack. The first approach has been introduced in §5.3.1; the last two
approaches have been introduced in §5.2.1.

Search-based testing. Search-based testing searches for a target test case in the input space, guided
by certain objectives. One commonly used objective is the coverage of the test suite—maximizing
the cumulative coverage of a test suite can expose more diverse behavior of the system, and thus
allow a better chance of detecting the target test case. In the context of DNN testing, neuron
coverage is proposed by Pei et al. [107] to analogize the structural coverage in traditional programs.
In their follow-up work, Tian et al. [165] propose a coverage-guided testing framework called
DeepTest for DNN testing. They propose various image operations, e.g., scaling, shearing, and
rotating, as the test input (image) mutation methods; then they generate test cases by applying
these operations to seed images, and keep only those mutants that enlarge the cumulative neuron
coverage of a test suite. Experiments are conducted on three end-to-end models, and the results
show the effectiveness of their method in test case generation.
In addition to coverage, the seriousness of the unsafe behavior is another factor that can be

used as the search objective, and this has been considered by Li et al. [166]. In their work, the
seriousness of the unsafe behavior of the end-to-end module is formulated as the deviation of the
actual steering angle made in the test scenario from the expected steering angle. The authors design
an objective function that takes into account both the coverage and the seriousness, such that they
can detect not only diverse but also serious unsafe test cases.

Optimization-based attack. The optimization-based adversarial attacking framework has been
introduced in §5.2.1. Zhou et al. [167] introduce a framework called DeepBillboard that can generate
adversarial perturbations which are added to billboard. The perturbations they generate can mislead
the steering angles in a series of frames captured by camera sensors during the driving process, in
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spite of the physical conditions, such as different distances and different angles to the billboard.
Later Pavlitskaya et al. [168] extendDeepBillboard with the projected gradient signmethod [169], and
experimental results show that the curved and rainy scenes are more vulnerable to these adversarial
attacks. In another line of work, adversarial black lines are utilized to attack the end-to-end driving
models [170, 171]. These black lines are easy to paint on the public road and can lead to a deviation
of an ADS from the original path.

GAN-based attack. GAN has been introduced in §5.2.1, and it has been considered as a major
approach for adversarial attacking. Kong et al. [172] propose a GAN-based approach called PhysGAN
which utilizes 3D tensors, i.e., a slice of video containing hundreds of frames, to generate adversarial
roadside signs that can continuously mislead the end-to-end driving models with high efficacy and
robustness. In another work, to generate realistic adversarial images, Zhang et al. [173] propose a
GAN-based approach called DeepRoad. They demonstrate that their generated adversarial images
are realistic under various weather conditions, and effective in detecting unsafe system behaviors.

5.5.2 Test Oracle. An oracle of the end-to-end module indicates which is the correct control
decision at each moment of a scenario. Although this can be done with the help of human drivers,
it is too expensive and prone to errors. Existing works propose various automatic methods to
solve the oracle problem of the end-to-end module, including metamorphic testing [165, 173, 174],
differential testing [107], and model-based oracle [175, 176].

Metamorphic testing. As introduced in §5.2.2, metamorphic testing is a viable way to solve the
oracle problem. In the testing of end-to-endmodels, there are a fewworks that leveragemetamorphic
relations to define the test oracles, e.g., DeepTest [165] and DeepRoad [173]. The metamorphic
relation introduced by DeepTest [165] is that, the steering angle should not change significantly for
the same scenes under different weather and lighting conditions. Similarly, DeepRoad [173] aims to
detect model consistency, which means, for a synthetic image and the original image, the difference
between two predicted steering angles is smaller than a threshold. Pan et al. [174] introduce a
metamorphic relation for testing end-to-end models in a foggy environment; the relation requires
that the density and direction of fog not affect the output steering angle of the target models.

Differential testing. Pei et al. [107] apply differential testing to generate scenarios which reveal
the inconsistencies between different DNN models. For the same scenario, they expect that the
DNNs under test should give the same inference result. The violation of this property is considered
as an unexpected behavior.

Model-based oracle. Stocco et al. [175] propose a so-called self-assessment oracle for the potential
risk prediction of ADS. The self-assessment oracle involves training a probabilistic model that
characterizes the distribution of the potential risks under various real scenarios. This model can be
used to monitor the real environment during the execution of the ADS and predict situations that
are probably not handled by the ADS. This novel idea is also studied by Hussain et al. [176].

5.5.3 Test Adequacy. Combinatorial coverage is also adopted in end-to-end module testing, e.g.,
the 2-way combinatorial testing based on image transformations [177]. In §5.2.3, we introduce
the structural coverage for DNN testing, which analogizes the structural coverage in traditional
program testing. Since the end-to-end module also relies on DNN models, these structural coverage
criteria are also used in the testing of the end-to-end module. Neuron coverage, which has been
introduced in §5.2.3, is used by its authors for a coverage-guided testing [165], as mentioned in §5.5.1.
The refined structural coverage criteria for DNNs, such as k-multisection neuron coverage (KMNC)
and neuron boundary coverage (NBC) [108, 166], which is also elaborated on in §5.5.1.
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Table 7. Summary of the papers for the end-to-end module testing

Methodology Description Literature Test Objective Environment

Search-based
testing

Generating transformed images with high neu-
ron coverage

[165] Three DNN models: Rambo [178],
Chauffeur [179] and Epoch [180]

Digital
dataset

Designing an objective function to search for
the diverse and serious unsafe test cases

[166] Three DNNmodels: Dave-1 [181], Dave-
3 [182] and Chauffeur

Digital
dataset

Optimization-
based attack

Replacing the original billboard with an adver-
sarial billboard

[167] Four DNN models: Dave-1, Dave-
2 [183], Dave-3 and Epoch

Digital
dataset

Extending attack methods in [167] to generate
adversarial patches

[168] An end-to-end driving model called
DriveNet [184]

Simulation

Generating adversarial black lines on the road [170, 171] Two end-to-end driving models in
Carla

Simulation

GAN-based at-
tack

Generating adversarial roadside sign [172] Three DNN models: Dave-2, Epoch and
Rambo

Digital
dataset

Generating realistic adversarial images [173] Three DNN models: Autumn [185],
Chauffeur and Rwightman [186]

Digital
dataset

Oracle Description Literature

Metamorphic testing
The steering angle should not change significantly under different conditions [165, 173]
The density and direction of fog should not affect the output steering angle of
the target models

[174]

Differential testing The DNNs under test should give the same inference result for the same scenario [107]
Model-based oracle Predicting the situation that the ADS is probably not able to handle [175, 176]

Adequacy Description Literature

Combinatorial coverage 2-way combinatorial testing based on image transformations [177]

5.5.4 Discussion. As with the perception module, the end-to-end module also contains many
DNN-based models; however, these models are not only used for perception, but also for the control
of the vehicles. Consequently, adversarial attack methods used in the perception module testing,
including optimization-based method [167, 168, 170, 171] and GAN-based method [172, 173], are
also adopted as the testing methodologies for this module. One observation is that, compared to
perception module testing that tests DNN models using single images, the work [167, 172] for
end-to-end module testing often use a series of images, i.e., the frames captured by cameras in a
system execution. Another major testing approach is the coverage-based testing [107, 165, 166, 173],
in which the testing is guided by coverage criteria proposed for measuring whether the system
behavior has been sufficiently explored.
Since it is hard to evaluate the correctness of the output steering angle for an input image,

metamorphic testing [165, 173, 174] and differential testing [107] are adopted for tackling this
problem. In addition, we find that other oracle techniques, e.g., model-based oracles [175, 176], can
be used to solve the oracle problem for this module.'

&

$

%

Summary: Many of the testing techniques used for testing the perception module can also be
used for testing the end-to-end module, such as adversarial attack. One notable difference from
the perception module is that, in the end-to-end module, these techniques are applied in a driving
context involving a series of continuously-changing images, rather than a single image. Besides
those metrics that have been used in the perception module, e.g., metamorphic testing, new
techniques, e.g., differential testing, are employed to solve the oracle problem. In terms of test
adequacy metrics, this module is very similar to the perception module.
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5.6 Answer to RQ1
In total, we survey over 80 papers that study the testing of different modules of ADS. Various
testing techniques have been proposed for testing different modules. Based on our survey, we can
draw the following conclusions: (1) for the sensing module, physical testing and deliberate attack
on the sensors could effectively find their abnormal behaviors; (2) for the perception module and
the end-to-end module, adversarial attack is the most widely-used approach, since the two modules
mainly rely on the use of DNN-based models; (3) for the planning module, though the relevant
studies are not so many, search-based testing has been extensively adopted; (4) for the control
module, main testing techniques include fault injection, sampling, and falsification.
Despite the numerous techniques dedicated to different modules, we also find some open chal-

lenges for the testing of these modules. For example, the neuron coverage in [107] may not be
effective for testing the perception module and the end-to-end module. More details about these
open challenges are also discussed in §8.

6 LITERATURE OF TECHNIQUES ON SYSTEM-LEVEL ADS TESTING
In this section, we introduce the research works on system-level ADS testing with the goal of
answering RQ2 in §1. Different from module-level testing, system-level testing focuses on the
failures that threaten the safety of the whole vehicle due to the collaborations between modules.
In §5, most of the testing works are done in simulated environments, implemented by various
software simulators. In this section, we introduce not only simulation-based testing in §6.1, but
also introduce the mixed-reality testing in §6.2 that introduces real hardware in the testing loop.

6.1 System-Level Testing with Simulators
We first introduce system-level testing conducted with the help of software simulators. Similar
to the module-level works, we also present these studies from three perspectives, namely, test
methodology (shown in §6.1.1), test oracle (shown in §6.1.2) and test adequacy (shown in §6.1.3).

6.1.1 Test Methodology. In the literature, we find various testing methods for the system-level
testing of ADS, including search-based testing, adaptive stress testing, sampling-based methods,
and adversarial attack. In this section, we introduce these testing methods.

Search-based testing. Search-based testing (or a similar concept named fuzzing6), is one of the
most widely-adopted methodologies in ADS testing. As introduced in §5.3.1, it consists in searching
in the parameter space for specific parameter values that achieve a testing objective. In this section,
we introduce the works [187–205] to illustrate the ideas.

Dreossi et al. [187] propose a compositional search-based testing framework, and apply it for the
testing of ADS with machine learning components (i.e., mostly perception). The basic idea in their
work is the cooperative use of the perception input space and the whole system input space: the
constraints on one space can reduce the search efforts in the other space. In this way, they improve
the efficiency of searching for counterexamples. Abdessalem et al. [188] propose a multi-objective
search algorithm for detecting errors caused by feature interaction. A feature interaction describes
the interaction between different ADS functionalities, e.g., an AEB command could be overridden
by an ACC command since the two functionalities both control the braking actuator. In practice,
search-based testing has also proved to be effective for industry-level ADS. Li et al. [196] propose
6Search-based testing and Fuzzing are similar concepts coming from different communities. The former emphasizes on the
testing methodology via search, which relies on well-defined fitness functions and applies search heuristics, e.g., evolutionary
algorithms, to find the target test cases. Fuzzing comes from the security community and its methodological essence lies at
its randomness. Similar to search-based testing, fuzzing also comes with an objective function as a guidance that helps it
achieve the target more efficiently.
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AV-Fuzzer used for testing of Apollo, and they show the effectiveness of this framework in finding
dangerous scenarios.
There is a line of work [190–192] that studies the relationship between test input and system

behavior. Riccio et al. [190] propose the notion of frontier of behaviors, which represents the
boundary of inputs where the system starts to behave abnormally. In their later work [191], they
firstly provide an interpretable feature map that explains the correlations between test inputs
and system behaviors, and leverage Illumination Search [206] to explore the feature space. This
approach is enhanced in their follow-up work [192] for finding those test inputs that contribute to
the exploration of the feature map.

Lane keeping system is an important target in ADS testing. When search-based testing is applied,
different road representations can affect the effectiveness of the approach. Castellano et al. [193]
compare six road representations for testing lane keeping systems, and found that curvatures and
orientation are essential factors which affect the behaviors of these systems. Gambi et al. [189]
propose a novel approach calledASFAULT to generate virtual roads for testing lane keeping systems.
Experiments on BeamNG.AI [27] and DeepDriving [207] demonstrate that the proposed approach
could generate effective testing roads that cause vehicles to deviate from the correct lane. Open-
source search-based tools, e.g., Frenetic [208], are also developed and the comparison of these tools
are reported in [26, 209].

There are other works that aim to improve the search efficiency by designing better search algo-
rithm. Abdessalem et al. [188, 210] combine multi-objective search with decision tree classification
for test generation of ADS. In their framework, the classification checks whether the scenario is a
critical one, and accelerates the search process. Goss et al. [194] apply Rapidly-exploring Random
Trees (RRT ) based on an Eagle Strategy to estimate the critical scenario boundaries. Zheng et al. [195]
propose a quantum genetic algorithm that allows lower population size. Luo et al. [199] study the
test case prioritization techniques and employ multi-objective search algorithms to find violations
with a higher probability of occurrence. Test case prioritization techniques are also utilized to
accelerate the regression testing of ADS [200, 201] and achieve remarkable results.

Search-based testing is usually based on system simulations; however, even with software simula-
tors, the simulations of ADS can still be expensive and slow. There is another line of work [202–205]
that trains surrogate models as the substitute for testing acceleration. Abdessalem et al. [202] train
a surrogate model that maps the scenario parameters to fitness functions, and use the surrogate to
detect the non-critical parameters for search space reduction. Gaussian Process is also leveraged for
training a surrogate model in [203]. To search for more collision scenarios, Beglerovic et al. [204]
train a surrogate model by utilizing the critical scenarios that already exist. For finding an optimal
surrogate model for ADS testing, Sun et al. [205] compare six types of surrogate models, e.g.,
Extreme Gradient Boosting (EGB) and Kriging (KRG) surrogates, in two logical scenarios.

Adaptive stress testing. Stress testing has been widely adopted in various domains of the industry,
which performs testing by providing test cases beyond the capability of the system under test.
Adaptive stress testing, literally, performs stress testing in an adaptive manner; namely, it prioritizes
the test cases and allocates different testing resources to them accordingly. Therefore, specifying the
policy of priority assignment is the key to adaptive stress testing. Koren et al. [211] apply adaptive
stress testing for ADS, and design a priority assignment policy based on the difference between
the expected behavior and the actual behavior. In a later work [212], they propose a new priority
assignment policy based on Responsibility-Sensitive Safety (RSS) [213], which defines the utopian
behavior of the cars by which no collision will happen in a scenario. The new policy is thus defined
according to the distance of the ADS behavior compared to the utopian cases in the RSS rules [212].
Baumann et al. [214] adopt reinforcement learning, namely, Q-learning [215], for exposing more
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critical scenarios in the overtaking scenario. Reinforcement learning is also combined with RSS
rules for generating edge cases in [216].

Sampling.One use case in ADS testing is to generate scenarios by sampling from a natural scenario
distribution, in order to make the generated scenario realistic. This has been studied in [217]. Nitsche
et al. [218] propose a sampling-based framework for validating ADS at road junctions. Specifically,
they first cluster the junction scenarios along with the representative variations from the real-world
accident data, and then these relevant parameters are sampled by the Latin Hybercube Sampling
(LHS) method and used to compose concrete scenarios for simulation testing.

Sampling is also used to help the identification of the failure features. Corso et al. [219] combine
signal temporal logic (STL) with sampling method to generate disturbance trajectories for testing.
Those trajectories are interpretable and easier for debugging due to the features of STL, i.e., the
description of logical relationships over time. In another work [220] of them, dynamic programming
is applied during the sampling process to discover more failure scenarios.

Batsch et al. [221] sample the simulation data in a traffic jam scenario with the CarMaker [222]
simulation platform. The obtained data sets are then used to train a Gaussian Process Classification
model, which could probabilistically estimate the boundary between safe scenarios and unsafe
scenarios. Schütt et al. [223] utilize Bayesian optimization and Gaussian process to identify the
relevant parameters of a logical scenario, i.e., they find the vehicle speed has no influence in one
vulnerable road user (VRU ) testing scenario. Birkemeyer et al. [224] leverage a Feature Model, i.e.,
features are organized as nodes in a tree structure, to represent a scenario space for sampling.
Experimental results show that the FM-based sampling method is suitable for scenario selection
for ADS testing.
Moreover, advanced sampling techniques can be applied to achieve specific goals; for example,

importance sampling [225] is a technique used to sample rare events. In normal occasions, unsafe
scenarios are indeed rare to happen, so detecting those scenarios is hard and costly. In that case,
importance sampling can be applied to accelerate the testing [226, 227]. Zhao et al. [228–234] work
extensively in this direction. The main aim of their work is to spend less simulations to detect more
system failures, under various scenarios. Specifically, in [228–230, 232, 233], they investigate the
cut-in/lane change scenarios; in [231] and [234], they focus on the car-following scenario and the
unprotected pedestrian crossing scenario, respectively.

Adversarial attack. Adversarial attack has been introduced in §5.2.1, in which it is used for testing
the perception module. Here, we introduce several works [235–238] that also attack the perception
module, but they assess the influence of the attack on the whole system. Sato et al. [235] generate
attack patches, as a camouflage for dirty roads, that mislead the lateral control functionality of the
victim ADS to deviate from the lane. Rubaiyat et al. [236] generate perturbations to camera-captured
images, based on a system-level safety risk analysis, to assess the reliability of OpenPilot under
real-world environmental conditions. Nassi et al. [237] leverage the print advertisement to perform
the attack, e.g., they embed an adversarial traffic sign on the back of other vehicles, and mislead
the system to wrong behaviors. Wang et al. [238] perform an attack that adds perturbations to the
trajectories of NPCs, and modifies the corresponding LiDAR sensor data.

6.1.2 Test Oracle. The oracles of the system-level testing of ADS are usually defined by safety
metrics, such as time-to-collision, which measures how far the ADS under test is from dangerous
situations. These metrics can be directly computed by monitoring the system behavior in the
simulator, or expressed as formal specifications, such as signal temporal logic (STL), which can
automatically monitor the system behavior and compute the metric values. Besides, metamorphic
relations are also used in some works for defining the oracle of ADS.
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Table 8. Commonly-used Safety Metrics

Category Name Description

Temporal

metrics

TTC [163] The time until two objects collide with the current speed and path

WTTC [241] The time of the collision in the most likely accident scenario

MprISM [242] Estimating the TTC with the consideration of game interaction between vehicles

THW [243] The time between two objects reaching the same location

TTR [243]
The remaining time until the start of the last driving maneuver that can avoid

collisions with all objects in the scenario

Non-Temporal

metrics

SD [196] The stopping distance of the vehicle at the maximum comfortable deceleration

LP [191] The distance between vehicle center and lane center

DRAC [244] The minimum deceleration rate required by a vehicle to avoid a crash

SARR [245] The number of steering angle reversals larger than a certain value

Safety metrics. In system-level testing, a suitable safety metric, or called criticality metric, can be
leveraged to findmore system violations. There have been studies [9, 239, 240] that comprehensively
investigate these safety metrics and here part of commonly-used metrics are listed in Table 8. These
safety metrics can be categorized into temporal metrics and non-temporal metrics. Temporal
metrics describe the temporal requirements to moving objects, and the most popular ones are
Time-to-Collision (TTC) [163] and its extensions, e.g.,Worst-Time-to-Collision (WTTC) [241], that
measure the closeness of the ego car to collision in the scenario. Weng et al. [242] propose the
Model Predictive Instantaneous Safety Metric (MPrISM), which considers the interaction between
moving vehicles. Another metrics include Time Headway (THW ) and Time-to-React (TTR) [243].
The former calculates the time of the ego vehicle to reach the position of the lead vehicle, and the
latter estimates the remaining time for a required reaction, e.g., a braking action.
Non-temporal metrics concern different aspects, such as distance, deceleration, and steering.

One distance metric called Stop Distance (SD) [196] calculates the distance for a vehicle to stop
with a maximum comfortable deceleration. Another distance metric is called Lateral Position
(LP) [191], which defines the distance between the center of the vehicle and the center of the
driving lane. Deceleration metrics, such as Deceleration Rate to Avoid a Crash (DRAC) [244], consider
the deceleration rate during emergency. Steering metrics, such as Steering Angle Reversal Rate
(SARR) [245], focus on the steering angle of a vehicle during the driving process.

There are works [197, 198] that propose to organize and utilize these safety metrics in an elegant
manner. Also, Li et al. [246] propose to design metrics that involve more factors such as the
relationship between scenarios, tasks, and functionalities of an ADS.

Formal specifications. As introduced in §5.2.2, formal specification uses temporal logic languages
to express the properties which the system should hold during the running; then by specification-
based monitoring, the satisfaction of the system behavior can be automatically decided. On the
system-level testing of ADS, signal temporal logic (STL), which can express the properties over
real-time continuous variables, is the proper selection of specification language. There are a few
works that adopt STL as the specification language [187, 247, 248], in which STL monitors are
synthesized to decide whether the behavior of the ADS satisfy the desired safety properties. Zhang
et al. [249] utilize formal specifications to represent driving rules and ADS behaviors to check the
consistency between them.

Metamorphic testing. Metamorphic testing has been discussed for the module-level testing
in §5.2.2 and §5.5.2. On the system-level testing, Han et al. [250] utilize metamorphic relations to
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distinguish between real failures and false alarms. The metamorphic relation regulates that the
behavior of the ADS should be similar in slightly different scenarios; otherwise, the collision in one
of such scenarios is considered avoidable, and thus a real failure.

6.1.3 Test Adequacy. In system-level testing, the adequacy of testing is embodied by the diversity
of the testing scenarios for the ADS. In this section, we introduce two lines of work that define
various metrics to characterize the diversity of scenarios.

Scenario coverage. There is a line of work that defines coverage for scenarios. The intuition is
that the testing is sufficient if all different types of scenarios are covered [251]. Tang et al. [252]
classify the scenarios based on the topological structure of the map. Kerber et al. [253] define a
distance measure over scenarios based on their spatiotemporal features, which enable scenario
clustering. Besides, the temporal, spatial, and causal information of the simulation data can be
further abstracted into situations for covering more test scenarios [254, 255].

Combinatorial coverage. Combinatorial coverage has been introduced in §5.2.3. Unlike the above
coverage criteria defined directly on the features of the scenarios, combinatorial coverage considers
the coverage of the combinations of different parameters that identify different scenarios. Tuncali
et al. [247, 248] propose to use covering array for scenario generation in ADS testing. Covering
array is a specific mechanism in software testing that guarantees the satisfaction of the 𝑡-way
combination coverage of the parameters. See §5.2.3 for more details about 𝑡-way combination
coverage. Guo et al. [256] propose the definition of scenario complexity and apply combinatorial
testing techniques to generate more complex testing scenarios. Shu et al. [257] adopt the three-way
combinatorial testing method on lane-changing scenarios, which ensures a high coverage of the
generated critical scenarios. Li et al. [258] utilize the ontology concept, i.e., formulations of entities
and their relationships, to describe the driving environment of an ADS. Then the constructed
ontologies are combined with combinatorial testing techniques for generating concrete scenarios
with coverage guarantee. Another work [259] proposes a scenario generation framework called
ComOpT, based on t-way combinatorial testing, and finds numerous system failures of Apollo.
Moreover, combinatorial testing is also used in [260] to tackle the regression testing problem of
ADS.

6.1.4 Discussion. As shown by Table 9, search-based testing [187–205] is the most widely-used
technique for testing the whole ADS, with different focuses, e.g., studying the relations between
test input and system behavior [190–192], testing lane keeping systems [26, 189, 193, 209] and
test case prioritization [199–201]. Although simulation-based testing aims to solve the high cost
problem of real-world testing, it may repeatedly simulate the same type of scenarios, which is also
a time-consuming process. Consequently, adaptive stress testing [211, 212, 214, 216] and sampling-
based techniques [217–219, 221, 223, 224, 228–230] are applied for accelerating the testing process.
As in the cases of the perception and end-to-end modules, adversarial attack [235–238] has also
been adopted for system-level testing, which aims to detect the vulnerabilities of the perception
that affect the safety of the whole system. Note that among these testing techniques, adaptive stress
testing has not been studied extensively, but it has a high potential for future ADS testing since it
is effective in various domains of the industry [269].

System-level testing usually relies on safety metrics, e.g., temporal and non-temporal metrics (as
shown in Table 8) and metamorphic relations [250], as the oracles that measure the occurrences of
safety violations during the testing process. For ensuring the adequacy of system-level testing, there
are two lines of work, namely, scenario coverage [252–254] and combinatorial testing [247, 248, 256–
260], which propose metrics to characterize the diversity of testing scenarios.
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Table 9. Summary of the papers for simulation-based system-level testing: Part I

Methodology Description Literature Test Objective Environment

Search-based
testing

Incorporating the perception input space and the whole
system input space to accelerate search

[187] AEB systems [261, 262] Simulation

Searching for unsafe feature interactions with decision trees [188, 210] Systems from IEE [263] Simulation
Generating virtual roads for testing lane keeping systems [189–193] Lane keeping system in

BeamNG [15]
Simulation

Searching for critical scenario boundaries [194, 195] Systems built based on
simulators

Simulation

Finding safety violations of an ADS in the dynamic envi-
ronment

[196] Apollo Simulation

Finding violations with a higher probability of occurrence [199–201] Systems such as
BeamNG.AI [27]

Simulation

Training surrogate models to accelerate testing [202–205] Systems like AEB sys-
tem

Simulation

Adaptive
stress testing

Assigning different priorities to the test cases [211, 212,
214, 216]

Systems like the
Intelligent Driver
Model [264]

Simulation

Sampling

Sampling junction scenarios [218] Collision avoidance sys-
tem

Simulation

Sampling the simulation data in a traffic jam scenario [221] System in CarMaker Simulation
Combining STL with the sampling method [219, 220] Intelligent Driver

Model
Simulation

Identifying the relevant parameters of a logical scenario [223] Intelligent Driver
Model

Simulation

Sampling scenario space represented by feature model [224] AEB system Simulation
Adopt Importance Sampling to sample rare events [226–234] Systems like the ACC

system [265]
Simulation

Adversarial
attack

Generating attack patches as a camouflage of dirty roads [235] OpenPilot Simulation
and real world

Generating adversarial perturbations under different
weather

[236] OpenPilot Simulation

Adding perturbations on the trajectories of NPCs [238] Driving models [266–
268]

Digital dataset

Overall, there exist moreworks in system-level testing than that inmodule-level testing.Moreover,
there are many other works that study the differences between simulation-based testing and real-
world testing. More details can be found in §6.3.�

�

�

�

Summary: There are a large number of studies that leverage different techniques, e.g., search-based
testing, adaptive stress testing, and sampling-based techniques, for testing the ADS at the system
level. Besides, numerous metrics have been proposed for different usages in the testing process, e.g.,
they are used to measure the occurrences of safety violations, and they are used to characterize the
diversity of testing scenarios.

6.2 Mixed-Reality Testing
Due to the expensiveness of the real-world testing of ADS, most approaches in §5 and in §6.1
test ADS in software simulators. Although modern simulators can be powerful and high-fidelity,
simulation-based testing is not sufficient to reveal all the problems of ADS, due to the gap between
simulators and the real world. As a trade-off, mixed-reality testing combines simulation-based
testing with real-world testing. In this section, we introduce several special testing schemes, which
replace certain parts of the components in the testing loop, with physical components. Specifically,
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Table 9. Summary of the papers for simulation-based system-level testing: Part II

Oracle Description Literature

Safety metrics
Temporal metrics and non-temporal metrics (more details in table 8). -
Providing a set of fitness function templates for different testing goals [197, 198]

Formal specifications
Adopting STL as the specification language to express the properties over real-time
continuous variables

[187, 247,
248]

Utilizing formal specifications to represent driving rules and ADS behaviors [249]
Metamorphic testing The behavior of the ADS should be similar in slightly different scenarios [250]

Adequacy Description Literature

Scenario coverage
Based on the topological structure of the map [252]
Based on spatiotemporal features [253]
Based on the temporal, spatial, and causal information of the simulation data [254, 255]

Combinatorial coverage
Applying t-way combinatorial testing techniques for scenario generation [247, 248, 256, 257,

259, 260]
Utilizing the ontology concept to describe the driving environment [258]
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Fig. 4. Illustration of the HiL, ViL, and SciL approaches

these schemes include hardware-in-the-loop (HiL), vehicle-in-the-loop (ViL), and Scenario-in-the-Loop
(SciL); their mechanisms are illustrated in Fig. 4.

6.2.1 Hardware-in-the-Loop. HiL testing usually introduces the real ECU hardware into the testing
loop, as shown in the green box in Fig. 4. There is a line of work [270–273] that adopts this testing
method. Chen et al. [270, 271] propose an HIL testing platform that could simulate multi-agent
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interaction on large-scaled scenarios with the usage of OpenStreetMap [274]. Brogle et al. [272]
build their HiL platform based on Carla and robot operating system (ROS), which achieves high
fidelity in vehicle dynamics and sensor data output. Gao et al. [273] design another HiL platform
for AEB testing and find that the performance of the AEB functions in HiL tests is close to that in
real road tests.

6.2.2 Vehicle-in-the-Loop. Different from HiL testing, ViL testing works by integrating a syn-
chronized virtual scenario into a real vehicle, as shown in the gray box in Fig. 4. The following
works [275–279] we collected are all based on this idea. Chen et al. [275] propose a ViL testing
platform which can reconstruct scenarios based on the corresponding HDmap. For simulating more
realistic scenarios, these works [276–278] integrate popular traffic simulators, such as SUMO [280]
and VISSIM [281], into the ViL testing loop. Stocco et al. [279] utilize the Donkey Car platform [282]
to build a 1:16 scale car which is controlled by end-to-end driving models. They test these driving
models in a closed-track environment and study the transferability of failures between simulation
and the real world.

6.2.3 Scenario-in-the-Loop. SciL testing narrows the gap between simulator and the real world by
integrating more real components like the pedestrian dummies into the loop, as shown in the blue
box in Fig. 4. Szalay et al. first propose the concept of SciL testing in [283] and they develop a SciL
testing platform based on SUMO and Unity [284] in a later work [285]. Horvath et al. [286] study
the SciL testing by comparing the implementation process of this method with that of ViL testing.
The authors find that the two testing methods have the same basis, but SciL testing is still at an
early stage.

6.3 Simulation-Based Testing vs. Real-World Testing
Regarding the efforts in simulation-based testing, a natural question arises that, how far is the
simulation-based testing still from the real-world testing. Moreover, Kalra et al. [287] find that the
ADS should be driven hundreds millions of miles to demonstrate their reliability. As an emerging
issue, this topic has attracted increasing research attention; here, we introduce the latest progress
from two perspectives, namely, the realism of test cases and the realism of simulators.

Realismof test cases.One question arises in the simulation-based testing that the virtual scenarios
generated by testing algorithms that lead to system failures may never happen in the real world.
Indeed, simulators give a high liberty to create traffic participants, of which, nevertheless, only a
subset can really happen.

There is a line of work that aims to bridge this gap and thus generate natural scenarios for ADS
testing. Nalic et al. [288] propose a co-simulation framework using two simulation tools CarMaker
(for vehicle dynamics) and VISSIM (for traffic simulation); their framework can generate scenarios
based on calibrated traffic models derived from real-world data. In their later work [289], stress
testing method, which has been introduced in §6.1.1, is applied for increasing the number of detected
critical scenarios under the co-simulation environment. Klischat et al. [290] utilize OpenStreetMap
to extract real-world road intersections, and combine with SUMO to generate realistic traffic
scenarios. Wen et al. [291] focus on triggering the events in a specific area near the ego vehicle,
and a CNN-based selector is utilized to choose those scenario agents which could achieve more
realistic results.
The following works [292–296] focus on reconstructing scenarios from public crash reports.

Mostadi et al. [295] utilize a distance metric, i.e., Manhattan distance, to align the virtual scenarios
to real-world scenarios. Computer vision algorithms, i.e., object detection and tracking, are adopted
in [292, 296] to extract the trajectories of the vehicles from the crash videos. Gambi et al. [189, 293,
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294] utilize natural language processing (NLP) techniques to extract the relevant information and
then calculate the abstract trajectories for recreating the crash. Experimental results show that the
method could accurately reconstruct the crashes in public reports, and the generated test cases are
able to expose faults in open-source ADS, i.e., DeepDriving [207].

There is also a line of work [297–300] that focuses on narrowing the reality gap in the training
process. By including components such as augmented data, small scale cars, and real-world tracks,
they could generate more realistic cases to train the perception model or reinforcement learning
algorithms for automated driving.

Realism of simulators. A comparative study on the assessment of testing in different levels of
simulation is performed by Antkiewicz et al. [301]. In their work, the authors study simulation-
based testing, mixed-reality testing, and real-world testing on two scenarios, i.e., car following
and surrogate actor pedestrian crossing. They propose various metrics, e.g., realism, costs, agility,
scalability, and controllability, and based on these metrics, they compare the different testing
schemes under evaluation. As their conclusion, they quantitatively show the performance difference
among the testing schemes: although real-world testing is better in terms of realism, it is more costly,
and less agile, scalable, and controllable, compared to simulation-based testing; the performance
of mixed-reality testing is in the middle of them. Testing ADS in different simulators is studied
by Borg et al. [302], in which they utilize search-based testing techniques to generate scenarios
in two simulators, i.e., PreScan [303] and Pro-SiVIC [304]. They find notable differences of the
test outputs, e.g., they detect different safety violations. Consequently, they recommend involving
multiple simulators for more robust simulation-based testing in the future.
Although simulation-based testing cannot achieve the same realism as real-world testing, to

what extent can the results of simulation-based testing benefit real-world testing? This question
is investigated in [305], where the authors perform simulation-based testing to identify critical
scenarios, and map them to a real-world environment. Their key insights involve that, 62.5% of
the unsafe scenarios detected by the simulators translate to real collisions; and 93.3% of the safe
scenarios with the simulators are also safe in the real world. Another question is whether the
simulator-generated dataset can substitute real-world dataset for DNN-based ADS testing, which
have been studied in [306, 307]. Moreover, they also compare offline testing, e.g., module-level
testing, and online testing, e.g., system-level testing, in terms of their pros and cons. Experiments
on DNN-based ADS show that: the average prediction error difference on two datasets is less than
0.1, which means the simulator-generated dataset can serve as an alternative to the real-world
dataset; online testing is more suitable than offline testing for DNN-based ADS testing, since online
testing could detect more errors, i.e., those errors caused by accumulation over time, than offline
testing. Reway et al. [308] evaluate the simulation-to-reality gap by testing an object detection
algorithm under three different environments, namely, a real proving ground and two simulation
software, considering four weather conditions. The gap is quantitatively calculated by considering
metrics such as precision and recall on each platform. One of their experimental results is that the
gap between real and simulation domains under nighttime and rainy conditions is larger than that
under daytime conditions.

6.4 Answer to RQ2
Overall, we have surveyed more than 90 papers dedicated to the system-level testing of the ADS.
We find that those module-level testing techniques, such as search-based testing, sampling, and
adversarial attack, are also widely adopted for finding failures arising from collaborations over
different modules at the system level. Besides, more metrics, which can be found in §6.1.2 and
§6.1.3, are proposed or utilized for facilitating the testing process. Another observation is that more
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Fig. 5. Threat model of ADS

than 30 papers focus on bridging the gap between the simulation and the real-world environments,
e.g., by introducing real components into the testing loop or by making a comparison between the
simulation-based testing and the real-world testing.

Similar to module-level testing, there still remain several open challenges for system-level testing
of the ADS. For example, since the system executions during testing are expensive and time-
consuming, it needs future exploration on how to accelerate the testing process. More discussions
about the challenges and future research directions can be found in §8.

7 STATISTICS AND ANALYSIS OF LITERATURE
In this section, based on the survey results in §4, §5 and §6, we perform a statistical analysis.
Specifically, we provide the threat model for general ADS in §7.1, and we collect popular datasets,
tool stacks, and programming languages for ADS testing in §7.2.

7.1 The Threat Model for General ADS
In this section, we construct a threat model in order to summarize the safety and security threats
that each module may confront, based on our survey results. To build the threat model, we first
summarize the threats discovered in the papers which we survey in the module-level testing in §5;
then, as a complement, we review the bugs shown in the empirical studies [34, 35] on open-source
ADS, to understand the concrete issues encountered in each module during system development.
Our threat model is shown in Fig. 5.

Threats to sensing. In this module, existing studies mainly concern about the hardware aspect, e.g.,
those physical sensors which are critical hardware used in an ADS for collecting the information
of the external environments. A common threat such as harsh weather conditions could reduce the
capabilities of the intelligent sensors. There are also many deliberate attack techniques, such as
jamming attack [52–54] and spoofing attack [55–58] (see details in §5.1.2) that target this module,
and could interfere with these sensors and harm their normal functionalities.

Threats to perception. The perception module is the most investigated and we collect 23 testing
techniques dedicated to this module. Common threat comes from adversarial examples that are
generated by adding perturbations to normal images, which can fool the deep learning models
in the perception module to make incorrect predictions, as shown by [61–65, 65–67, 71–80, 83].
Another type of threat is called Trojan attack [88, 89], in which malicious data are injected into the
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training data of the deep learning models. Moreover, in the case when the ADS requires an HD
map from the cloud service, Denial of service (DoS) [309] or fake HD map data [310] can interfere
with perception tasks such as localization.

Threats to planning. With the data produced by the perception module, the planning module
takes charge of several tasks, e.g., object trajectory prediction, path planning, and we collect 8 testing
techniques for this module. A common threat comes from the unwanted maneuvers of non-player
characters (NPCs) [137–139, 141–145], which can interfere with the prediction for moving objects
and thus lead to an unsafe trajectory plan. Moreover, improper localization from the perception
module can also threaten the accuracy of output trajectories.

Threats to control. This module mostly adopts those mature control techniques, e.g., MPC and
PID, and thus are relatively hard to attack. One threat comes from the injected faults [151, 152],
which could affect the longitudinal/lateral control of the vehicle. Another threat emerges when an
emergency situation is encountered, e.g., when an emergency braking is needed, and the control
module may fail to handle these cases. Moreover, the output signals are sent via the CAN bus to the
ECU for controlling the vehicle. Since this process involves a data transmission between software
and hardware, a potential threat is the interface mismatch [311], e.g., an inappropriate steering
angle rate, in practical usage.

7.2 Datasets and Tool Stacks for ADS Testing

Datasets. In the context of ADS, deep learning components handle safety-critical tasks, e.g.,
perception and end-to-end control, so it is necessary to validate their robustness under various
scenarios. This process typically relies on data from the real world, which is, however, hard to
obtain in general. Fortunately, there are a collection of publicly available datasets to solve the
problem, which involve large quantities of real-world pictures and videos recorded by onboard
sensors. For example, the KITTI dataset [313] contains over 10,000 images of traffic scenarios,
collected by a variety of sensors including high-resolution RGB/grayscale stereo cameras and a 3D
laser scanner.

In this section, we summarize the scenario-driven datasets for ADS testing in Table 10. The first
column shows the time when each dataset was released. The next three columns give the name,
brief description, and the size of each dataset, and the last column indicates the related works that
adopt these datasets. Note that the datasets for other machine learning testing tasks [337] that have
nothing to do with ADS testing are not listed here; in other words, all the datasets listed here are
dedicated to ADS testing.

As shown in Table 10, we collect 27 datasets released from 2004 to 2022, including popular ones
like the KITTI dataset [313] and emerging ones like the CrashD [336] dataset. One observation
is that these datasets span over various physical conditions, e.g., different times of the day [317],
different weather conditions [329, 332] and different traffic density [327]. They also span over
various application scenarios, such as urban street [316, 320, 322], highway [325, 326, 338], and
intersection [331]. In addition, we find that some of these datasets are specific to a certain task, e.g.,
pedestrian detection [319, 321], and traffic sign detection [125, 314, 315].
As the column of reference in Table 10 shows, several datasets such as the KITTI dataset [313]

and the Udacity dataset [317] are frequently used in ADS testing due to the diverse tasks they
support, such as object detection and semantic segmentation. However, we also find that a number
of datasets have not been widely used, due to their own limitations. For example, the rounD [333]
and openDD [334] can only be used for validating the behavior planning of ADS in the scenario of
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Table 10. Scenario driven datasets for ADS testing

Time Dataset Description Size Reference

2004 NGSIM [312] Vehicle trajectory data at four different locations - [143]
2012 KITTI [313] Driving scenes captured by a standard station wagon 12,919 images [58, 72, 73, 84, 99, 100,

167, 172, 247, 292,
292]

2013 GTSRB [125] Containing 43 classes of traffic signs in Germany 50,000+ images [66, 80, 83, 88]
2014 BelgiumTS [314] A large dataset with traffic sign annotations 10,000+ images [88]
2015 LISA [315] A traffic sign dataset containing US traffic signs 43,000+ images [80]
2016 Cityscapes [316] A diverse set of stereo video sequences recorded in street scenes 25,000 images [65, 92]
2016 Udacity [317] Video frames taken from urban road 410,530 images [107, 166, 167, 172–

174, 177, 306]
2016 SYNTHIA [318] Multiple categories of virtual city rendering pictures 220,000+ images -
2016 Stanford Drone[319] The movement and dynamics of pedestrians across the univer-

sity campus
69GB videos and im-
ages

-

2017 RobotCar [320] Various combinations of weather, traffic and pedestrians, as
well as long-term changes such as road engineering

- -

2017 CityPersons [321] A dataset with a large proportion of blocked pedestrians images 5,050 images -
2017 Mapillary Vistas [322] Street view of multiple cities under multiple seasons and

weather conditions
25,000 images -

2018 GTA5 [323] Synthetic images of urban traffic scenes collected using the
game engine

24,966 images [99]

2018 BDD100K [324] Various scene types and weather conditions at different times
of the day

100,000 videos -

2018 comma2k19 [325] Over 33 hours of commute in California’s 280 highway 33h videos [235]
2018 highD [326] Traffic conditions of six different locations obtained by drone 147h videos -
2018 ApolloScape [327] Images under different conditions and traffic density 146,997 images [94]
2019 ACFR [328] Vehicle traces at 5 Roundabouts 23,000 images -
2019 nuScenes [329] Images under different times of day and weather conditions 1,400,000 images -
2019 INTERACTION [330] A dataset collected under interactive driving scenes with se-

mantic maps
- -

2019 Waymo [103] Including a perception dataset with high-resolution sensor data
and labels, and a motion dataset with object trajectory and cor-
responding 3D map

493,354 images -

2020 inD [331] Naturalistic trajectories of vehicles and vulnerable road users
recorded at German intersections

10h videos -

2020 Ford [332] Multiple seasons, traffic conditions, and driving environments - -
2020 rounD [333] Naturalistic trajectories of vehicles and vulnerable road users

recorded at German roundabouts
- -

2020 openDD [334] A trajectory dataset covering seven roundabouts 62h videos -
2021 Bosch Small Traffic

Light [335]
An accurate dataset for vision-based traffic light detection 13,427 images [58, 95]

2022 CrashD [336] A synthetic LiDAR dataset to quantify the generality of 3D ob-
ject detectors on out-of-domain samples

- [300]

roundabouts; SYNTHIA [318] and GTA5 [339] contain synthetic images from virtual environments,
which may be not realistic enough for ADS testing.

Tool stacks. As mentioned before, simulation-based testing has become an important alternative
approach for real-world testing. Simulators usually provide vehicle dynamics, e.g., longitudinal and
lateral motion of the vehicle, and virtual traffic scenarios. Moreover, simulators can help generate
those extreme scenarios for testing, e.g., harsh weather, which are rarely encountered in the real
world. There have been many advanced simulation platforms developed for ADS testing in recent
years. For example, Carla [345] is an open-source simulator for ADS training and testing, which
supports various sensor models and environmental conditions.

In this section, we summarize the simulation platforms, namely, the simulators usually used for
ADS testing in Table 11. As shown in the table, we collect 20 simulation platforms including classical
platforms such asMatlab/Simulink [340] and CarSim [341], and emerging popular simulators
such as Carla and LGSVL [351]. Since these simulators have their own pros and cons, we compare
them in the table and focus on several aspects of interest, e.g., their gap from real environment.
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Table 11. Simulation platforms for ADS testing

Simulator Open-source

Vehicle dynamic X-in-the-loop Interface to other

simulators

Reference

customization soft/rigid MiL SiL HiL ViL

Matlab/Simulink [340] × ✓ - ✓ ✓ ✓ -

CarSim, CarMaker, PreScan,

Gazebo, Carla, rFpro,

VTD, Cognata, ADAMS

Pro-SiVIC

[162, 163, 248]

[188, 204, 277]

[153, 218, 257]

[195, 198]

CarSim [341] × ✓ rigid ✓ ✓ ✓ -

Matlab/Simulink, rFpro,

NVIDIA Drive Sim, VTD,

Pro-SiVIC, Donkey Car

[195, 257]

VISSIM [281] × × - - ✓ ✓ ✓
Carla, VTD, PreScan,

CarMaker, rFpro, SUMO
[288, 289]

SUMO [280] ✓ × - - ✓ ✓ ✓
Carla, VISSIM, Cognata,

rFpro

[194, 242, 277]

[283]

Webots [342] ✓ - rigid - ✓ - - - [247, 292]

VTD [343] × ✓ - ✓ ✓ ✓ ✓
CarSim, Matlab/Simulink,

ADAMS, VISSIM, rFpro
[260, 308]

Gazebo [344] ✓ - rigid - ✓ ✓ - Matlab/Simulink, ADAMS [254, 271, 275]

PreScan [303] × - rigid ✓ ✓ ✓ ✓
Matlab/Simulink, VISSIM,

Pro-SiVIC

[166, 188, 306]

[195, 302]

BeamNG [25] ✓ ✓ soft ✓ ✓ ✓ ✓ -

[189, 193, 293]

[190, 200, 293]

[191, 192]

Carla [345] ✓ × rigid ✓ ✓ ✓ ✓
CarSim, VISSIM, SUMO,

Matlab/Simulink
[101, 171, 346]

AirSim [347] ✓ × rigid - ✓ ✓ - - -

rFpro [348] × ✓ rigid - ✓ ✓ -

CarSim, Matlab/Simulink,

CarMaker, VISSIM, VTD,

SUMO

-

Cognata [349] × ✓ - ✓ ✓ ✓ - Matlab/Simulink, SUMO -

NVIDIA Drive Sim [350] ✓ ✓ - - ✓ ✓ ✓ CarMaker, CarSim -

LGSVL [351] ✓ × - ✓ ✓ ✓ - -
[72, 140, 196]

[235, 252, 305]

SCANeR Studio [352] × ✓ soft/rigid ✓ ✓ ✓ ✓ - [164]

ADAMS [353] × ✓ rigid - ✓ ✓ -
Gazebo, Matlab/Simulink,

VTD
-

CarMaker [222] × ✓ rigid ✓ ✓ ✓ ✓
Matlab/Simulink, VISSIM,

rFpro, NVIDIA Drive Sim

[214, 277, 288]

[218, 221, 289]

[198, 221, 308]

Pro-SiVIC [354] × ✓ - ✓ ✓ ✓ ✓
Matlab/Simulink, CarSim,

PreScan
[302]

Donkey Car [282] ✓ × - - ✓ ✓ ✓ Matlab/Simulink [279]

Specifically, the first column lists the name and the second column shows the accessibility of each
simulator. The third column is relevant to physical aspects, that is, whether the simulator allows
for customizing a dynamic model and whether it is a soft-body or rigid-body based simulator. The
fourth column indicates the level of support for mixed-reality testing, including model-in-the-loop
(MiL), software-in-the-loop (SiL), hardware-in-the-loop (HiL), and vehicle-in-the-loop (ViL). The
fifth column presents the capability of these simulators to complement each other, e.g., whether
they support co-simulation with other simulators. The last column indicates the related works that
adopt these simulators in their research.

Based on the table, we can draw the following conclusions:
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Table 12. Open-source ADS

System Category Name Description

Modular Apollo A commercial-grade ADS developed by Baidu

Autoware [355] A L4 ADS developed by Nagoya University

OpenPilot A commercial-grade L2 ADAS developed by Comma.ai

Pylot [23] A modular ADS with low-latency dataflow from academic

End-to-end LBC [356] An end-to-end controller based on imitation learning

DeepDriving [357] A CNN based end-to-end system that provides ACC and ALC

Nvidia CNN Lane Follower [358] An end-to-end lane following system based on CNN

Udacity DNN Models [359]
DNN-based steering prediction models from the Udacity challenge,

e.g., Chauffeur [179] and Epoch [180]

Other BeamNG.AI [15] An AI agent in BeamNG, which can realize simple control of vehicles

Carla PID [345] A specific controller built in Carla

• First, there exist many commercial simulators which are not open-source, e.g., CarMaker [222]
and PreScan [303]. These simulators could be expensive and difficult for researchers to satisfy
their research goals. In comparison, open-source simulators like Carla could have broader
prospects for future research;

• Second, accurate physical dynamic models are needed to bridge the gap between simulation-
based testing and real-world testing, and satisfy different testing requirements, e.g., smooth road
needs a lower friction coefficient. We find that there have been simulators, i.e., BeamNG [15] and
CarSim, dedicated to this aspect and allowing for dynamic model customization. In particular,
BeamNG is also a soft-body based simulator which supports more realistic collision effects (see
more details in §2.3);

• Third, we find that most simulators support software-in-the-loop and hardware-in-the-loop
testing. Several simulators, e.g., CarMaker and VTD [343], support vehicle-in-the-loop testing,
which closes the gap between hardware-in-the-loop testing and real-world testing.

• Lastly, we find that a number of simulators have built-in interfaces to other simulators. This
is essential to perform co-simulation for ADS testing since these simulators have their own
pros and cons, and co-simulation could complement each other for a more realistic testing
environment. For example, CarMaker (accurate vehicle dynamics) and VISSIM (representational
traffic flow) are combined into a co-simulation framework [288] for generating more realistic
testing scenarios.
Overall, it can be seen from the reference column that Matlab/Simulink and BeamNG have

been widely used for ADS testing. Simulators like NVIDIA Drive Sim and Gazebo also have great
potential for future research since they cover multiple features we list in the table, e.g., whether
they could perform ViL testing or co-simulation with other simulators.

Moreover, we also introduce several publicly available systems under test in Table 12. OpenPilot,
Apollo, Autoware and Pylot are all modular systems and have already been described in §2.3, so
we will not repeat them here. In addition to modular ADS systems, there also exist open-source
end-to-end based systems: LBC [356] is an imitation learning controller, which uses camera images
and direction commands as input to control the direction of the vehicle in the lane and intersection;
DeepDriving [357] and Nvidia CNN Lane Follower [358] are also widely used CNN-based
end-to-end controllers; Open-source DNN models from the Udacity self-driving challenge, such as
Chauffeur [179] and Epoch [180], are another line of end-to-end driving controllers; Besides, there
are also driving agents and controllers from simulators, such as BeamNG and Carla. BeamNG.AI,
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Table 13. Programming languages for scenario generation

Language Dependencies Supported simulators Other features Reference

OpenScenario Unified Modeling
Language (UML),
XML

Carla, Matlab, PreScan A scenario is described in a “Storyboard” tag in
XML, which includes a series of events

[101]

GeoScenario [360] XML An Unreal-based driving
simulator

The language is based on open street map stan-
dard. Users can either program by dragging icons,
or code in an XML editor.

-

Scenic [361] Imperative, object
oriented (Python-
like)

Carla, LGSVL,Webots It is a probabilistic programming language that
can specify the input distributions of machine
learning components, and use that information
for testing and analysis.

[305]

stiEF [362] Domain specific
language

VTD It supports multilingual representations for sce-
nario description.

-

SceML [363] Graph-based mod-
eling framework

Carla It allows information modeling at different depths,
to support scenarios at different abstraction levels.

-

CommonRoad [364] XML SUMO It provides a benchmark set that contains scenar-
ios for the study of motion planning.

[143]

SceGene [365] A hierarchical rep-
resentation model

- It supports scenario generation via bio-inspired
operations, such as crossover and mutation.

-

paracosm [366] Reactive program-
ming model

Udacity’s self-driving
simulator

It adopts reactive objects that allow to describe
temporal reactive behavior of entities. It also de-
fines coverage criteria for test case generation.

-

which has been mentioned in §2.3, is an AI agent in BeamNG simulator and could accept virtual
images in the simulator as input for path planning and trajectory tracking. Carla PID is a specific
module in Carla that performs calculations at the motion planning stage, and estimates the
acceleration, braking, and steering inputs required to reach target positions.

Programming languages. In order to systematically generate test cases, it has become a trend to
propose new programming languages for testing scenario description. In this way, the generation
of a new test case boils down to writing a program that describes the scenario. Also, researchers
can make use of existing coverage criteria for programs, such as the code coverage criteria, to
assess the adequacy of the generated tests.

To define such a programming language, researchers need to formally express the basic elements
in an ADS scenario, e.g., the ego car, other cars, pedestrians, and static objects. Since these languages
are usually dependent on existing formats, they vary in their ways of expressing those elements,
based on their dependent formats. For instance, Scenic [361], a python-like language, requires users
to define those objects as variables; in contrast, GeoScenario [360] provides users with a graphical
interface where users can drag the icons to describe a scenario. Moreover, these languages usually
do not emerge independently; instead, they come with specific simulators, or even specific ADS.

In this section, we summarize the state-of-the-art programming languages for test case generation
in Table 13, and introduce their dependent formalism, their bonded simulator, other features,
and their adoption in ADS testing. There exists literature, e.g., [367], that surveys programming
languages for the test generation of ADS. Compared to [367], ourmain aim is to show the ecosystems
and the landscape of the use of these languages in ADS testing, as a reference for the readers
to better understand the testing techniques in §5 and §6. Also, our study includes some latest
achievements, e.g., paracosm [366] and SceGene [365], in this direction.

As shown by Table 13, we collect 8 representative programming languages, including the classic
ones, such as OpenScenario, that have been widely used in different stages of the development of
ADS, and emerging ones, such as paracosm [366]. As our findings, first, different languages are
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Fig. 6. Illustration of challenges and opportunities

designed for different purposes and attached with different features, e.g., Scenic [361] allows proba-
bilistic sampling for testing driving systems with machine learning components; SceGene [365]
designs bio-inspired operations, such as crossover and mutation, for scenario generation. Second,
some of these languages provide more user-friendly features; for instance, some of the languages,
e.g., SceML [363] provide a GUI for users to define their scenarios. However, as the column of
reference shows, most of these languages have not been widely adopted in practice. This can be due
to several reasons: one possibility is that some languages are still too specialized for practitioners
to adopt them in their work; also, since many of the languages, such as GeoScenario [360], are
designed for specific systems, they are still ad hoc and not easily extensible to be adopted in other
systems.
In conclusion, programming languages are increasingly deemed as powerful weapons for test

case generation in ADS testing, but currently they have not been widely adopted in practice yet.

8 CHALLENGES AND OPPORTUNITIES
As this survey reveals, ADS testing has experienced rapid growth in recent years. Nevertheless,
there are still many challenges and open questions in its development and deployment. Based on
our analysis of the collected literature and our discussions in each section, we answer RQ3 by
listing the challenges and opportunities in this direction , as shown in Fig. 6. To account for it,
there exist several solutions to the first four challenges that could be improved, while the last three
challenges still need further exploration and require a long period of research.

Efficient test generation methods. Efficiency is one of the most important objectives in ADS
testing, since system executions, whether in simulator environments or the real world, are too
expensive. There have been many methods that aim to reduce the number of system executions,
e.g., training surrogate models [202–205], or adopting sampling-based methods [217–219, 221, 223,
224, 228–230], as discussed in §6.1.1. However, there are several limitations to these methods; for
example, the process of preparing training data in [202] for surrogate models is time-consuming.
One potential future direction is to explore the application of traditional cost reduction techniques,
such as test selection and test prioritization, to further accelerate the testing process.

Realism of test cases. Generating realistic test cases that can really threaten the safety of ADS in
the real world should be another important goal of test case generation. Unrealistic test cases that
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cannot happen in the real world are meaningless and not worthy of being taken care of. However,
compared to efficiency, this aspect is usually ignored. Generating realistic test cases is a demand
over different modules, and some existing works have paid attention to this problem. For example,
in the perception module testing, RP2 [80] is proposed to generate test cases under real physical
conditions; in the planning module testing, avoidable collision [148] is proposed to filter out useless
test cases; moreover, this is also a major issue in system-level testing, as discussed in §6.3. In
addition to these efforts, the problem is worthy of more attention, in order to find out those really
useful test cases.

Oracle problem for different modules. Although there have been many works that try to
design suitable oracles for different modules of ADS, there still remain many open challenges
in defining oracles regarding different characteristics of different modules. For the perception
module, as discussed in §5.2.4, the automatically labeling method in [92] targets only at semantic
segmentation models, so one future direction is to explore how to automatically generate high-
fidelity ground-truth labels for other types of models in the perception module. For the planning
module, as discussed in §5.3.4, the criteria such as avoidable collision [148] are ad hoc and may not be
generalized to other systems. Metamorphic relations are widely adopted by works [94–99, 165, 173]
for different modules, but they may lack sufficiently accuracy and so lead to false positives. Hence,
one potential future direction is to design more accurate and reliable oracles for the testing of
different modules in ADS.

Effective coverage criteria. Coverage criteria are used as guidance to generate diverse test cases
for testing. As discussed in §5 and §6, various coverage criteria have been proposed for testing
different modules of the ADS, e.g., neuron coverage [107] for perception and end-to-end modules,
weight coverage [137] and route coverage [140] for the planning module. Notably, few coverage
criteria have been proposed for the control module, which indicates a future research direction.
Moreover, one problem in the existing studies is that they mainly consider covering the spatial
aspects of the test cases; for instance, neuron coverage [107] is computed based on the activated
neurons in a DNN model and used as a guidance to trigger diverse behavior of single DNNs.
However, in the testing of ADS which run over a time period, even though a strange behavior for a
moment is triggered to happen, if it is immediately corrected, it may not affect the system behavior
over the period. Therefore, in the testing of ADS, we need to trigger the diverse behavior of the
DNNs over time. For instance, if a DNN keeps making wrong predictions for a period, it is likely to
lead to a collision. Besides, several studies [134–136] have demonstrated that neuron coverage may
not be suitable for guiding the testing process. Whether these findings will effect the ADS testing
or there exists more effective criteria dedicated to perception testing needs further exploration.
To sum up, coverage criteria dedicated to the control module are expected to be proposed in the
future, and another research direction is to consider incorporating the temporal aspects into the
existing coverage criteria.

Onlinemonitoring. In this work, we mainly see testing techniques for ADS based on the posterior
checking of the system execution; another effective quality assurance scheme is online monitor-
ing [368, 369] that monitors the system behavior at runtime. As an advantage, online monitoring
can detect unsafe behavior during the system execution, and thus warn drivers to take actions to
avoid the safety risk. As discussed in §5.2.4, there have been some works, e.g., [101], that rely on
formal temporal specifications to monitor the perception module at runtime. Besides, the model-
based oracle proposed by Stocco et al. [175] is also a system-level online monitoring approach,
as it predicts the misbehaviors of the system at runtime. However, how to automatically monitor
other modules of the system remains a great challenge. One potential future direction is to develop
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monitoring techniques for other modules. Meanwhile, more expressive specification languages
should be provided to handle real-world system requirements.

Fault analysis of system failure. As this survey shows, the function of an ADS relies on the
collaborative work of different modules; indeed, the wrong function of any module can cause a
failure at the system level. Therefore, one question arises that which module should be deemed
as the main cause of the system failure. Currently, as discussed in §6.1.4, the research attention is
mostly focused on failure detection, rather than fault analysis. Moreover, fault analysis of ADS is
challenging in nature, because it requires defining the boundaries of each module properly and
making the oracles of each module clear. Sometimes, the failure of the system is not due to single
modules but to the interactions between different modules. Therefore, one future direction is to
propose effective fault analysis techniques as well as their validation methods.

Simulators vs. real world. Because of the high cost of real-world testing, simulation-based
testing is the most commonly used testing paradigm; however, even with modern high-fidelity
simulators (e.g., Carla and LGSVL), there is still a gap from real-world testing. Recently, lightweight
mixed-reality testing schemes, including hardware-in-the-loop (HiL), vehicle-in-the-loop (ViL), and
scenario-in-the-loop (SciL) (more detail in §6.2), that mix the simulation-based testing and the
real-world testing, also emerge to achieve a trade-off between the two. While HiL and ViL testing
have developed quickly over the years, SciL testing, which is closest to the real world, is still at a
theoretical stage and has not yet been widely adopted. As discussed in §7.2, existing simulators
all have their pros and cons, and one future direction is to combine their distinguishing features,
e.g., co-simulation, to enhance the realism of the simulation environment. Moreover, there have
been several works in §6.3 that try to estimate how far the simulation-based testing is from the
real-world testing. Nevertheless, in the case of handling complex traffic scenarios in testing, there
are still open questions, such as the selection between simulation-based testing and real-world
testing, and how to mitigate the weaknesses of the selected testing paradigm, that are seeking for
better answers. To sum up, the gap between simulation-based testing and real-world testing still
exists, and one research direction is to explore how to utilize the results of simulation-based testing
to reduce the cost of real-world testing.

Answer to RQ3. Based on our survey results, we identify 7 major challenges for ADS testing and
discuss the corresponding potential research opportunities. Moreover, as shown in Fig. 6, we find
that several challenges such as the efficiency of test generation could be improved in the short run;
by contrast, some other challenges (for example, how to mitigate the gap between simulation and
real-world environments) may require a long period of research.

9 CONCLUSION
This survey provides a comprehensive overview and analysis of the relevant studies on ADS testing.
These testing works cover both module-level testing and system-level testing of ADS, and we also
include the works on empirical study w.r.t. system testing, mixed-reality testing, and real-world
testing. In the introduction to the testing of each module, we respectively unfold the landscape
of the literature from three perspectives, namely, test methodology, test oracle and test adequacy.
Based on the literature review, we also perform analysis on the landscape of ADS testing, and
propose a number of challenges and research opportunities in this direction.

Our work gives a specific emphasis on the technical differences in the testing of different modules,
and also reveals the gap between simulation-based testing and real-world testing. Moreover, our
analysis and discussion on the challenges and opportunities based on the literature review point
out the future direction of research in this field. We hope that this work can inspire and motivate

ACM Forthcoming, Vol. 1, No. 1, Article . Publication date: January 2023.



46 S. Tang et al.

more contributions to the safety assurance of ADS, and we also hope that ADS can be sufficiently
reliable to be adopted by more people as early as possible.
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