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ABSTRACT
Subgraph Isomorphism is a fundamental problem in graph theory. It
has many applications in social network analysis, molecular inves-
tigations, knowledge graphs, etc. Given a Query Graph and a Data
Graph, the target of Subgraph Isomorphism, i.e., Subgraph Match-
ing, is to determine if this Query Graph is isomorphic to any sub-
graph of the Data Graph. This work proposes a new type of Query
Graph, combined with multiple general Query Graphs. We call it
Compulsory-Optional Query Graph (CO Query Graph). This new
type of Query Graph contains all the vertices in the combined gen-
eral Query Graph, and each vertex corresponds to a search priority.
Based on CO Query Graph, the previous multiple match processes
can be reduced to one. It tremendously improves search efficiency.
The Subgraph Isomorphism based on this new kind of Query Graph
is an extension and improvement of the previous Subgraph Isomor-
phism studies. We propose a backtracking-pruning-based CO solver
(BPC). This algorithm builds on the backtracking-pruning frame-
work. BPC modifies the output criterion and matching conditions
to satisfy the CO query context. A case study of real-world graph
data illustrates that BPC built on CO Query Graph is more efficient
than conventional Query Graphs. To verify the effectiveness of our
method, we conducted experiments on the synthetic graph and
real-world data. The results show that the BPC can significantly
reduce the search space and improve the search efficiency in the
recursive calls and the response time. Experiments resulting from
synthetic graph data analysis allow us to primarily identify the
critical factor that affects the efficiency of the BPC primarily.
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1 INTRODUCTION
The goal of information retrieval is to obtain the required informa-
tion from a large amount of informative data, which is typically
those informative data are collected in a database. We construct
the information needed into a formal statement and regard it as a
query. With the development of computer technology, the size of a
database has become larger and larger. Thus, information retrieval
requires a sophisticated design to handle large-scale data.

Structural data are prevalent objects in information retrieval
studies. The graph is one type of Structural data. Due to its conve-
nience of modeling and processing, many retrieval systems seek the
help of graphic data. Subgraph matching, a fundamental problem
in graph theory, plays an essential role in graphic information re-
trieval. Given a graphic pattern, it will search for the most relevant
data and give it back to the users. It plays a crucial role in many
disciplines, including social network [2, 3], biochemistry [12], natu-
ral language processing [9], and computer version[4]. In subgraph
matching, the queries are in graphic manner. We call them query
graphs. Similarly, the information retrieval process gives a collec-
tion of graphical information contained in a database. We view one
piece of it as the data graph.

Subgraph matching gives a more organized, efficient, and di-
versified way to retrieve information from a graph perspective.
This issue is designed to answer the following questions: (1) Does
this query graph exist in a given data graph? (2) How many sub-
graphs in the data graph [11] are isomorphic to this query graph?
(3) How does the query graph embed those isomorphic subgraphs
in relevant data graphs?

Subgraph Isomorphism has been proven as an NP-Complete
problem. It is easy to verify whether a given solution is correct or
not, whereas it is difficult to figure out the correct solutions. That
means with the growth of vertices number, solving this problem
has become time-consuming [7]. Not only that, its matching condi-
tions are too strict to miss a lot of relevant, valuable data graphs
that are partially matched with its query graph. Using a subgraph
isomorphism solver is not an optimized way to handle subgraph
matching.

We introduce CO matching designs a new type of query graph
with three search priorities to lose the matching constraints. We use
three kinds of vertices to construct CO query graph, i.e., compulsory
and optional vertices. Compulsory vertices contain the ultimate
information that the solver must find. Optional vertices are the
unique vertices that can not be shown in the data graph. Not only
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Figure 1: An example of CO query graph

can it precisely match the relevant data graphs, but also can improve
the computational efficiency compared to the strict query graphs
used by subgraph isomorphism.

To tackle the CO matching problem, we propose a backtracking-
pruning-based algorithm, a backtracking-pruning-based CO solver
(BPC). This algorithm is specifically designed by changing the out-
put criterion and matching conditions. We conduct experiments
on three synthetic and two real-world graph datasets to evaluate
the performance of BPC. Results show that it has achieved great
improvements on search efficiency.

Main contributions of this study:
(1) In this work, we follow a subject of COmatching and propose

BPC to solve this subgraph matching problemwith CO query
graph.

(2) We conduct systematic experiments to evaluate the advan-
tages of CO query graphs over conventional query graphs
used in Subgraph Isomorphism.

(3) Our work alleviates the burden of conventional querying
work and accelerates the graph information retrieval process
by matching label first.

2 PROBLEM DEFINITION AND PRELIMINARY
Besides Maximum Common Subgraph, there are various subgraph
matching variants. Yves Deville [16] proposed approximating sub-
graph matching. It divided the vertices of its query graph into two
classes, i.e., the compulsory and the optional vertices. However,
their work builds on VF algorithm which has been developed far
more efficient. While Hoffmann [8] gives an alternative matching
problem between Subgraph Isomorphism and Maximum Common
Subgraph, named k-less matching. It aims to match a query graph
with all but k vertices to the data graph. Moreover, the maximum
common partial subgraph problem [13], which concentrates on
maximizing the mapping edges, can also serve as a tool for graph
retrieval.

Figure 1 gives an example of CO query graph 𝑄 in which com-
pulsory vertices are in blue; and optional vertices are in yellow.

We classify the vertices of CO query graph into three types: the
Compulsory vertex 𝑉𝑐𝑜𝑚𝑝𝑢𝑙𝑠𝑜𝑟𝑦 and the Optional vertex 𝑉𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 .
M is a mapping function from vertices in 𝑄 to that in 𝐷 . If a
data graph 𝐷 is matched with query graph 𝑄 , the vertices with a
compulsory label of query graph 𝑄 must be contained in the data
graph 𝐷 . The vertices with optional labels should be included as
much as possible in the data graph𝐷 for full information extraction.

In this thesis, we mainly consider undirected, vertex-labeled
graphs, 𝐷=(V, E, L), where 𝑉 is the set of vertices, 𝐸 is the set of
edges, and 𝑓 is the mapping function from vertices to their labels.
All graphs in this work are connected. We use the adjacency matrix
to store the graphs. From this perspective, we can handle the CO
matching problem by changing the output criterion and matching
conditions. The vertices order, manifesting as the diagonal of an
adjacency matrix of data graph 𝐷 , is regarded as the built-in order
of vertices in 𝑄 . We denote the indexed vertex set 𝑢1, 𝑢2, ..., 𝑢 |𝑉 |.

3 BACKTRACKING-PRUNING-BASED CO
MATCHING SOLVER

3.1 Filtering Process
Firstly, we implement a simple filtering algorithm to drop out some
unrelated data graph vertices in advance. It filters the vertices of
data graph with label not showing in the query graph.

Given the label functions of query graph and original Data Graph
𝑓𝑄 : 𝑉𝑄 ← 𝐿𝑉𝑄 , 𝑓𝑂 : 𝑉𝑂 ← 𝐿𝑉𝑂 , 𝐿𝑉𝑂 and 𝐿𝑉𝑂 are the label sets of
data graph and query graph, respectively. The filtering process will
get data graphs with 𝑓𝐷 : 𝑉𝐷 ← 𝐿𝑉𝐷

, where 𝑠𝑒𝑡 (𝐿𝑉𝐷
) = 𝑠𝑒𝑡 (𝐿𝑉𝑄 ).

We take the neat data graphs 𝐷 , whose label set is equal to that
of query graph 𝑄 , as the data graph to be matched.

3.2 Backtracking-pruning-based CO Solver
(BPC)

We invent a novel algorithm based on a backtracking-pruning
framework to settle CO matching. We call it Backtracking-Pruning-
basedCOF solver (BPC). To settle COmatching, themain challenges
compared to the basic backtracking algorithm are listed as follows:

(1) Problem 1: The vertex order in the query graph generally
differs from its corresponding order organized in the data
graph.

(2) Problem 2: The duplicated vertices, which have the same
label and same relationships with other vertices in graph,
will result in several mapping solutions.

(3) Problem 3: In case the data graph has fewer vertices com-
pared to the query graph, our method should find the inter-
section of the query and data graph vertices.

(4) Problem 4: How to distinguish the current vertex type as the
primary concern of BPC.

We present the outlines of BPC in algorithm 1.
Unlike the general subgraph matching way, CO matching is

simplified to match the labels of query graph 𝑄 with that of data
graph 𝐷 instead of their vertex indexes. This makes the search
process mainly focus on the label matching instead of the vertex
index. If there is a one-to-one relationship between the vertex label
and index, i.e., one label gets one vertex index, it just needs to
return the vertex’s index. If there are one-to-many relationships,
i.e., one label gets several corresponding vertices, the search tree
will branch to ensure that the results cover all correct solutions.
That settles problem 2. Technically, it needs a decision tree model.
We illustrate this process in Figure 2.

At the beginning of BPC, the first vertex in the data graph𝐷 is set
to match the vertex with the same label in the query graph𝑄 . Then,
the algorithm visits the next vertex 𝑢 in the query graph𝑄 to query
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Algorithm 1 Backtracking-pruning-based CO Solver (BPC)
Require: Data graph𝐷 , query graph𝑄 , mapping solutionM = ∅
Ensure: Mapping solutionM

if M(𝑢 ) satisfied the output criterion then
Output(M(𝑢 ) )

else
if still have vertex in 𝐷 not been visited then

Visit the next 𝑣 in 𝐷

BPC(data graph𝐷 , query graph𝑄 ,M)
end if
if candidate 𝑣 = 𝐶 (𝑢 ) and 𝑢 satisfied the matching conditions then

Include (𝑢, 𝑣) intoM; mark 𝑢 queried
Query next 𝑢 in𝑄

BPC(data graph𝐷 , query graph𝑄 ,M)
Mark 𝑢 un-queried; delete (𝑢, 𝑣) from𝑀

end if
end if

Figure 2: The decision tree of label match process

if any unmatched vertex in data graph 𝐷 can match it. (The match
conditions are elaborated above.) If 𝑣 and𝑢 match, (𝑢, 𝑣) will belong
toM. The search process will partition into two search branches
when it finds the current matched vertex pair. One is included in the
matched vertex pair (𝑢, 𝑣). Another is to skip this matched vertex
pair (𝑢, 𝑣) and keeps the current vertex 𝑢 unmatched to find the
candidate𝐶 (𝑢) of another vertex in data graph 𝐷 . If 𝑢 and 𝑣 are not
matched, BPC will visit the next vertex in data graph 𝐷 , namely
the next element in the diagonal of A. If it does not meet the output
criterion, the algorithm will return to the branch point to search
for another path. Only by broadening the search scope through this
way can we meet all the possible solutions and solve problem 3.

The match conditions of the two vertices 𝑢 and 𝑣 matching are
outlined as follows:

(1) The labels of the current vertex pair match each other, i.e.,
𝑓𝐷 (𝑣) = 𝑓𝑄 (𝑢).

(2) There still have unvisited vertices in the data graph.
(3) The number of vertices remaining not being visited in

data graph 𝐷 is more than that of the compulsory ver-
tices in query graph, namely ∥𝑉 (𝐷)∥ − ∥𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑 (𝐷)∥ ≥
unmathed∥𝑉𝑐𝑜𝑚𝑝𝑢𝑙𝑠𝑜𝑟𝑦 ∥, where is the number of un-queried
compulsory vertices.

(4) The adjacent vertices of 𝑣 ∈ 𝐶 (𝑢) is identified with that of 𝑢.
That normally uses the adjacency matrix to compare.

Table 1: Real-world dataset statistics

Name Num.Graphs Avg.Vertices Avg.Edges

BZR_MD 306 21.30 225.06
MSRC_9 221 40.58 97.94

(5) The number of adjacent vertices,i.e., the degree, of 𝑢 is no
more than that of 𝑣 ∈ 𝐶 (𝑢), namely ∥𝑑 (𝑢)∥ ≤ ∥𝑑 (𝑣)∥, where
𝑑 (𝑢) is the degree of 𝑢[6].

If all match conditions above are qualified, the candidate vertex
𝐶 (𝑢) = 𝑣 in data graph can be included inM.

To improve the search efficiency, we also provide the output
criterion that can stop the unpromising search work earlier. Here
are the criteria, i.e., output criterion, to end the recursions:

(1) All vertices in the data graph 𝐷 have been visited.
(2) As many as possible optional vertices in the query graph

have been mapped.
(3) All compulsory vertices have been included in the candidate

sets 𝐶 (𝑢).
This solver outputs the final result if all output criterion above

are qualified. That helps us figure out problem 4.

4 EXPERIMENTS AND ANALYSIS
4.1 Experiments Setting

4.1.1. Synthetic Datasets
There are three graph datasets generated by three different graph

synthetic algorithms, i.e., Random Networks generated by Erdos-
Renyi (ER) [5] algorithm and Scale-Free Networks generated by
Barabasi-Alber (BA) [1]. To make a fair comparison, we let each
data graph contain 20, 30 and 50 vertices. All query graphs have 6
vertices.We control the generating factors of each random synthetic
methods to see its impact on the efficiency of BPC. Each generating
graph is randomly created ten times. We take the mean value of
them to produce the final results.

Also, we do the ablation study on strict query graphs. All CO
query graphs are attached to the tag [0,0,1,1,1,1]. , so that CO query
graph setting will result in 𝐶2

3 = 3 strict query graphs. We install
our BPC and a basic backtracking algorithm to the CO query graphs
and the strict query graphs, respectively.

4.1.2. Real-world Datasets
We conduct experiments on BZR_MD [10, 15], a small molecules

graph dataset, and MSRC_9 [14], a computer vision graph dataset to
evaluate the performance of BPC on the real-world datasets. Table
1 gives the statistics of those two real-world graph datasets. Both
of them are vertex-labeled, undircted graphs.

4.1.3. Implement Details and Evaluated Method
This work is implemented on Intel(R) Core(TM) i7-9800X CPU

at 3.80GHz. All experiments are conducted on the Windows system.
We use python as the programming language.

4.2 Real-world Case Study
We chose a real-world case from the dataset generated from the
semantic spinning tree. The input of this example is illustrated in
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Figure 3: Example of real-world dataset

Figure 4: Recursive calls comparison between strict query
graph and the CO query graph

Figure 3. The vertex is the word segmentation of a sentence. The
diagonal is the label of each vertex, and the element of 1 in upper
and lower triangular matrix implies the connection between two
vertices. The first raw is the search priorities label of those vertices,
where 0 denotes optional vertex and 1 denotes compulsory vertex.
We conduct our real-case study on this example.

4.2.1. The Effect of Alleviating the Burden of Query Graph
Building Work

As illustrated by Figure 3, we only get two compulsory vertices
in the query graph. If we want to get all the results of the diverse
strict query graphs, we need to build 𝐶2

5 = 15 query graphs. We
implement VF2 for all those strict query graphs. The red line in
Figure 4 denotes the accumulating recursive calls of those 15 cases.
The blue line is the up-bound of the recursive calls of the CO query
graph. As we can see, with only one CO query graph, we can get all

Figure 5: Performance of BPC on random graph

the results with only 316 recursive calls at most. A strict constraint
will result in 245 recursive calls. However, there will be a total
requirement of 413 recursive calls through the strict query graph to
get all the results we need. This figure indicates that our CO query
graph not only alleviates the burden of the query graph building
work but also accelerates the search process.

4.3 Synthetic Dataset
4.3.1. Random Networks
ER random graph is a network in which the vertex pair connect

to each other with probability 𝑃𝑒𝑟 . We choose two vertices in the
query graph as the compulsory vertex. Figure 5 shows the recursive
calls and the response time changing along with the probability
of the connection between vertex pair. It demonstrates that it is
extremely hard to find out the result when the vertices connect
to each other with a small probability or with a large probability.
When the vertices connect to each other with the probability of 0.5,
the recursive calls and the response time are at their lowest value.
When the vertices connect to each other with the probability of 0.95,
the recursive calls and the response time are at their highest value.
As we can see, the density of edges affects the search efficiency
mostly when it is extremely large. This phenomenon has since
been discovered to apply to all ER random networks with 20,30,50
vertices.

Figure 6 shows the difference in recursive calls between CO
matching and strict Subgraph Isomorphism matching. It changes
along with the probability of vertices connection. For the ER net-
works with 50 vertices, the CO matching shows superiority over
the strict Subgraph Isomorphism for graphs with higher and lower
vertices connection probabilities, such as probabilities below 0.25
and beyond 0.7. Additionally, they perform similarly over vertices
with connection probabilities ranging from 0.3 to 0.65. Our CO
query graph requires significant work to obtain the mapping solu-
tion only on the graph with a 0.6 vertices connection probability.
The more vertices the data graphs contain, the more recursive calls
will be saved by CO matching.

4.3.2. Scale-Free Networks
We study the scale-free networks with 20 vertices. The recursive

call and the response time are given in Figure 7. This figure shows
that the recursive calls decrease with the growth of connected edges.
The scale-free graph case will have the best search efficiency when
the number of inserted edges in the Data Graph is close to the
number of vertices in the query graph. This phenomenon is applied
to all scale-free networks with 20, 30, and 50 vertices.
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Figure 6: Difference between CO matching and strict SI
matching on random graphs

Figure 7: Performance of BPC on scale-free graphs

Figure 8: Difference between CO matching and strict SI
matching on scale-free graphs

Table 2: Recursive calls: CO matching vs. strict SI matching

Name Avg.CO Avg.strict SI Avg.Difference
recursive calls recursive calls recursive calls

BZR_MD 26461.51 38750.36 12288.85
MSRC_9 181205.24 315866.29 134661.06

Table 3: Response time: CO matching vs. strict SI matching

Name Avg.CO Avg.strict SI Avg.Difference
response time response time response time

BZR_MD 643.80 378.31 -265.48
MSRC_9 2957.30 1970.81 -986.49

Figure 8 gives the difference between CO matching and Strict
Subgraph Isomorphism matching on small-world graph data. As we
can see, the CO query format significantly increases the effective-
ness of the search with the growth of graph vertices. Scale-free data
graph with 20 vertices has little advantage over graphs with larger
vertices. The search format of the CO query graph significantly
reduces the number of recursive calls regardless of the number of
inserted edges. The results show that the CO query graph format
is a more useful query format for scale-free networks subgraph
matching.

4.4 Real-world Dataset
We implement BPC on CO matching and a basic backtracking algo-
rithm on strict SI matching on the two real-world dataset. Table 2
gives the results of the recursive calls on two real-world datasets.
Table 3 shows the response time results. We give the equation to
calculate the difference between CO matching and strict SI match-
ing as shown in 1, where S denotes the result of recursive calls
or response time of strict SI matching, N.CO denotes that of CO
matching and i denotes i𝑡ℎ data graph. This equation is suitable for
both difference calculation of recursive calls and response time.

Avg.diff =

∑𝑛
𝑖=1 N.S𝑖 - N.CO𝑖

𝑛
(1)

In conclusion, BPC has better performance in not only alleviating
the burden of query graph building work but also the recursive calls.
However, it will spend more time finding the correct solutions.

5 CONCLUSION
In this work, we developed an algorithm BPC to solve the CO
matching. By classifying the vertices of CO query graph 𝑄 into
compulsory and optional vertex, multiple search work from data-
base can use only one CO query graph. Hence the heavy work of
query graph building will be alleviated. A real-world case verifies
this result.

We also examined the effectiveness of BPC on various synthetic
graphs. The results indicate that the ER random graph is primarily
influenced by the vertices’ connection probability. The number
of neighborhoods primarily affects the small-world graph. The
scale-free graph is primarily impacted by the inserted edge number
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proportions. We also conducted experiments on two real-world
graph datasets. Results show that our method can accelerate the
search process and find the result as accurately as possible. In
addition, this method creatively converts the subgraph matching
into label matching which provides a novel approach to dealing
with the classic order problem.
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