
4

Typed–Untyped Interactions: A Comparative Analysis

BEN GREENMAN , PLT @ Brown University, USA

CHRISTOS DIMOULAS , PLT @ Northwestern University, USA

MATTHIAS FELLEISEN , PLT @ Northeastern University, USA

The literature presents many strategies for enforcing the integrity of types when typed code interacts with

untyped code. This article presents a uniform evaluation framework that characterizes the differences among
some major existing semantics for typed–untyped interaction. Type system designers can use this framework
to analyze the guarantees of their own dynamic semantics.

CCS Concepts: • Software and its engineering → Semantics ; Constraints; Functional languages;

Additional Key Words and Phrases: Complete monitoring, blame soundness, blame completeness

ACM Reference format:

Ben Greenman, Christos Dimoulas, and Matthias Felleisen. 2023. Typed–Untyped Interactions: A Compara-
tive Analysis. ACM Trans. Program. Lang. Syst. 45, 1, Article 4 (February 2023), 54 pages.
https://doi.org/10.1145/3579833

1

M

r

o

d

t

1

I

B
N
p
A
j
c
m
P
p
t
h
r
©
0
h

 CALLING ALL TYPES

any programming languages let typed code interact with untyped code in some ways while
etaining some desirable aspects of each typing discipline. The currently popular research focus
f gradual typing provides many examples. Exactly which interactions are allowed and which
esirable aspects are retained, however, varies widely among languages. There are four leading
ype-enforcement strategies that restrict interactions between typed and untyped code:

• Erasure (a.k.a. optional typing) is a hands-off method that uses types only for static analysis
and imposes no restrictions at run-time [8 , 11].

• Transient inserts shape checks 1 in typed code to guarantee only that operations cannot “go
wrong” in the typed portion of code due to values from the untyped portion [83 , 86].

• Natural uses higher-order checks to ensure the integrity of types in the entire program

[68 , 78].
 A shape check enforces a correspondence between a top-level value constructor and the top-level constructor of a type.
t generalizes the tag checks found in many runtime systems.

en Greenman research completed at Northeastern University prior to joining Brown.
SF Grants No. CCF 1518844, No. CCF 1763922, No. CNS 1823244, and No. CCF 2030859 (to the CRA for the CIFellows
roject) provided support.
uthors’ addresses: B. Greenman, Brown University, 115 Waterman Street, Providence RI 02912, USA; email: ben-

aminlgreenman@gmail.com; C. Dimoulas, Northwestern University, 2233 Tech Drive, Evanston IL, 60208, USA; email:
hrdimo@northwestern.edu; M. Felleisen, Northeastern University, 440 Huntington Avenue, Boston MA 02115, USA; email:
atthias@ccs.neu.edu.
ermission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
rovided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
he full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
onored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
equires prior specific permission and/or a fee. Request permissions from permissions@acm.org .

2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
164-0925/2023/02-ART4 $15.00
ttps://doi.org/10.1145/3579833

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

https://orcid.org/0000-0001-7078-9287
https://orcid.org/0000-0002-9338-7034
https://orcid.org/0000-0001-6678-1004
https://doi.org/10.1145/3579833
mailto:permissions@acm.org
https://doi.org/10.1145/3579833
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579833&domain=pdf&date_stamp=2023-03-05

4:2 B. Greenman et al.

I

u

t
u

f

a

s

e

p

i

m

t

E

t

o

m

t

t

b

(

a

i

A

s

(

u

b

e

T

a

a

n

t

a

a

2

r
3

t

A

• Concrete enforces types with tag checks. It ensures the full integrity of types, but requires
that every value comes with a fully descriptive type tag [52 , 93].

n addition, researchers have designed hybrid techniques [9 , 31 , 34 , 61 , 64]. An outstanding and
nusual exemplar of this kind is Pyret, a language targeting the educational realm (pyret.org).
Each semantic choice denotes a trade-off among static guarantees, expressiveness, and run-

ime costs. Language designers should understand these trade-offs when they create a new typed–
ntyped interface. Programmers need to appreciate the trade-offs if they can choose a language
or a project. If stringent constraints on untyped code are acceptable, then Concrete offers strong
nd inexpensive guarantees. If the goal is to interoperate with an untyped language that does not
upport proxy values, then Transient may be the most desirable option. If fine-grained interop-
rability demands complete type integrity ever y where, then Natural is the right choice. 2 And if
redictable behavior and performance matter most, then Erasure may be best—it is certainly the
ndustry favorite.

Unfortunately, the literature provides little guidance about how to compare such different se-
antics formally. For example, the dynamic gradual guarantee [69]—a widely studied property in

he gradual typing world—is satisfied by any type-enforcement strategy, including the no-check
rasure, as long as the type Dynamic is relatively well-behaved. 3 In short, the field lacks an apples-
o-apples way of comparing different strategies and considering their implications.

This article introduces a framework for systematically comparing the behavioral guarantees
ffered by different semantics of typed–untyped interaction. The comparison begins with a com-
on surface syntax to express programs that can mix typed and untyped code. This surface syn-

ax is then assigned multiple semantics, each of which follows a distinct protocol for enforcing
he integrity of types across boundaries. With this framework, one can directly study the possible
ehaviors for a single program.
Using the framework, the article compares the three implemented semantics explained above

Natural (N), Transient (T), Erasure (E)) and three theoretical ones (Co-Natural (C), Forgetful (F),
nd Amnesic (A)). Co-Natural enforces data structures lazily rather than eagerly. Forgetful is lazy
n the same way and also ignores type obligations that are not strictly required for type soundness.
mnesic is a variation of Transient that uses wrappers to improve its blame guarantees.
The comparison excludes two classes of prior work: Concrete, because of the stringent con-

traints it places on untyped code, and semantics that rely on an analysis of the untyped code
such as References [2 , 13 , 91]). That is, the focus is on enforcement strategies that can deal with
ntyped code as a “dusty deck” without recompiling the untyped world each time a new type
oundary appears.
Table 1 sketches the results of the evaluation. The six letters in the top row correspond to differ-

nt semantics for the common surface language. Each row introduces one discriminating property.
ype soundness guarantees the validity of types in typed code. Complete monitoring—a property
dapted from research on contracts [23]—guarantees that the type system moderates all bound-
ries between typed and untyped code—even boundaries that arise at run-time. Blame sound-
ess ensures that when a run-time check goes wrong, the error message contains only boundaries
hat are relevant to the problem. Blame completeness guarantees that error messages come with
ll relevant information, though possibly with some irrelevant extras. For both blame soundness
nd completeness, the notion of relevant boundaries is determined by an independent (axiomatic)
 Implementations of Natural can yield performance improvements relative to untyped code, especially when typed code
arely interacts with untyped code [44 , 75].
 Thanks to the TOPLAS reviewers for reminding us that the gradual guarantees are not meant to distinguish semantics in
erms of how they enforce types. The guarantees address a separate dimension; namely, the behavior of type Dynamic .

CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

https://www.pyret.org

Typed–Untyped Interactions: A Comparative Analysis 4:3

Table 1. Informal Sketch of Contributions

Natural Co-Natural Forgetful Transient Amnesic Erasure
Type soundness ✓ ✓ ✓ ✓ ✓ ✕

Complete monitoring ✓ ✓ ✕ ✕ ✕ ✕

Blame soundness ✓ ✓ ✓ ✕ ✓ ✓

Blame completeness ✓ ✓ ✕ ✕ ✓ ✕

Error preorder N � C � F � T � A � E

No wrappers ✕ ✕ ✕ ✓ ✕ ✓

Full results in Table 2 (page 51).

s

t

a

t

c

s

a

1

U

l

s

T

1

T

p

o

e

r

1

S

h

p

a

d

t

f

i

l

s

2

T

o
pecification that tracks values as they cross boundaries between typed and untyped code. Last,
he error preorder compares the relative permissiveness of types in two semantics. Natural (N)
ccepts the fewest programs without raising a run-time type mismatch and Erasure (E) accepts
he greatest number of programs. Additionally, Transient and Erasure are the only strategies that
an avoid the complexity of wrapper values.

In sum, the five properties enable a uniform analysis of existing strategies and can guide the
earch for new strategies. Indeed, the synthetic Amnesic semantics (A) is the result of a search for
 semantics that fails complete monitoring but guarantees sound and complete blame.

.1 Performance and Pragmatics Are Out of Scope

nderstanding the formal properties of typed–untyped interactions is only one third of the chal-
enge. Two parallel and ongoing quests aim to uncover the performance implications of different
trategies [6 , 24 , 34 , 37 , 38 , 44] and the pragmatics of the semantics for working developers [45].
hese efforts fall outside the scope of this article.

.2 Relation to Prior Work

his article is a synthesis of results that have been published piecemeal in two conference
apers [34 , 35] and a dissertation chapter [33]. It is the only article to compare the six semantics
n equal grounds. In addition to the synthesis, it brings three contributions: a survey of type-
nforcement strategies, a high-level comparison of the six semantics, and refined meta-theoretic
esults.

.3 Outline

ections 2 through 5 explain the what , why , and how of our design-space analysis. There is a
uge body of work on languages that support typed–untyped interactions that needs organizing
rinciples (Section 2). The properties listed in the top five rows of Table 1 offer an expressive
nd scalable basis for comparison (Section 3). By starting with a common surface language and
efining semantics that explore various strategies for enforcing types, the properties enable apples-
o-apples comparisons of the dynamics of typed–untyped interactions (Section 4). This article
ocuses on six type-enforcement strategies in particular (Section 5).

Section 6 formally presents the six semantics and the key results. Expert readers who are not
nterested in informal discussions may wish to begin there and use Section 5 as needed for a high-
evel picture. The supplementary material presents the essential definitions, lemmas, and proof
ketches that support the results.

 ASSORTED BEHAVIORS BY EXAMPLE

here are many languages that allow typed and untyped code to interact. Figure 1 arranges a few
f their names into a rough picture of the design space. Languages marked with a star (�) are
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:4 B. Greenman et al.

Fig. 1. Landscape of mixed-typed languages, † = migratory, � = gradual.

g

o

t

p

t

t

l

t

E

e

i

t

a

c

t

f

N

m

t

c

i

N

t

a

a

c

a

a

s

u

l

4

A

radual in the sense that they come with a universal dynamic type, often styled as Dynamic , � ,
r ? [68 , 77]. Technically, the type system supports implicit down-casts from the dynamic type
o any other type—unlike, say, the universal Object type in Java. This notion of gradual is more
ermissive than the refined one from Siek et al. [69], which asks for a dynamic type that satisfies
he gradual guarantees [69]. Languages marked with a cross (†) are migratory [81]; they add a
ailor-made type system to an untyped language (as opposed to working static-first [32]). Other
anguages have different priorities. This article uses the name “mixed-typed” as an umbrella term
o describe languages in the design space.

For the most part, these mixed-typed languages fit into the broad forms introduced in Section 1 .
rasure is by far the most popular strategy; perhaps because of its uncomplicated semantics and
ase of implementation. The Natural languages come from academic teams that are interested
n types that offer strong guarantees, Transient is gaining attention as a compromise between
ypes and performance, and Concrete has generated interest among industry teams as well as
cademics. Several languages exhibit a hybrid approach. Sorbet adds types to Ruby and optionally
hecks method signatures at run-time. Thorn and StrongScript offer both concrete and erased
ypes [61 , 93]. Pyret uses Natural-style checks to validate fixed-size data and Transient-style checks
or recursive types (e.g., lists) and higher-order types. 4 Static Python combines Transient and Co-
atural to mitigate the restrictions of the latter [46]. Grift has a second mode that implements a
onotonic semantics [4]. Prior to its 2.0 release , Dart took a hybrid approach. Developers could

oggle between a checked mode and an Erasure mode. Monotonic is similar to Natural, but uses a
hecked heap instead of wrappers and rejects additional programs [58 , 60 , 64 , 73]. A final variant
s from the literature. Castagna and Lanvin [15] present a semantics that creates wrappers like
atural but also removes wrapper that do not matter for type soundness. This semantics is similar

o the forgetful contract semantics [31].
Our goal is a systematic comparison of type guarantees across the wide design space. Such

 comparison is possible, because, despite the variety, the different guarantees arise from choices
bout how to enforce types at the boundaries between statically typed code and dynamically typed
ode. The following three subsections present illustrative examples of interactions between typed
nd untyped code in four programming languages: Flow [16], Reticulated [86], Typed Racket [81],
nd Nom [52]. These languages use the Erasure, Transient, Natural, and Concrete strategies, re-
pectively. Flow is a migratory typing system for JavaScript, Reticulated equips Python with grad-
al types, Typed Racket extends Racket, and Nom is a new gradual-from-the-start object-oriented

anguage.
 Personal communication with Benjamin Lerner and Shriram Krishnamurthi.

CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

https://medium.com/dartlang/dart-2-stable-and-the-dart-web-platform-3775d5f8eac7

Typed–Untyped Interactions: A Comparative Analysis 4:5

Fig. 2. Program (1) translated to four languages.

2

O

s

o

T

f

T

c

t

d

u

t

a

t

a

t

o

t

c

.1 Enforcing a Base Type

ne of the simplest ways that a typed–untyped interaction can go wrong is for untyped code to
end incorrect input to a typed context that expects a first-order value. The first example illustrates
ne such interaction:

(1)

he typed function on the left expects an integer. The untyped context on the right imports this
unction f and applies f to itself; thus the typed function receives a function rather than an integer.
he question is whether the program halts or invokes the typed function f on a nonsensical input.
Figure 2 translates the program to the four chosen languages. Each white box represents type-

hecked code, and each grey box represents untyped and un-analyzed code. The arrows represent
he boundary behavior: the solid arrow stands for the call from one area to the other, and the
ashed one for the return. Nom is an exception, however, because it cannot interact with truly
ntyped code (Section 2.2). Despite the differences in syntax and types, each clearly defines a
yped function that expects an integer and applies the function to itself in an untyped context.

In Flow (Figure 2 (a)), the program does not detect a type mismatch. The typed function receives
 function from untyped JavaScript and surprisingly computes a string (ECMA-262 edition 10, Sec-
ion 12.8.3). In the other three languages, the program halts with a boundary error message that
lerts the programmer to the mismatch between two chunks of code.

Flow does not detect the run-time type mismatch, because it follows the erasure , or optional
yping, approach to type enforcement. Erasure is hands-off; types have no effect on the behavior
f a program. These static-only types help find typo-level mistakes and enable type-directed IDE
ools, but disappear during compilation. Consequently, the author of a typed function in Flow
annot assume that it receives only well-typed input at run-time.
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

https://www.ecma-international.org/ecma-262/#sec-addition-operator-plus

4:6 B. Greenman et al.

Fig. 3. Program (2) translations.

c

t

2

T

r

T

a

a

u

c

c

s

v

a

o

s

A

The other languages enforce static types with some kind of dynamic check. For base types, the
heck validates the shape of incoming data. The checks for other types reveal differences among
hese non-trivial type enforcement strategies.

.2 Validating an Untyped Data Structure

he second example is about pairs. It asks what happens when typed code declares a pair type and
eceives an untyped pair:

(2)

he typed function on the left expects a pair of integers and uses the first element of the input pair
s a number. The untyped code on the right applies this function to a pair that contains a string
nd an integer.

Figure 3 translates this idea into Reticulated, Typed Racket, and Nom. The encodings in Retic-
lated and Typed Racket define a pair in untyped code and impose a type in typed code. The en-
oding in Nom is substantially different. Figure 3 (c) presents a Nom program in which the typed
ode expects an instance of one data structure but the untyped code provides something else. This
hape mismatch leads to a run-time error.

Nom cannot express program (2) directly, because the language does not allow truly untyped
alues. There is no common pair constructor that: (1) untyped code can use without constraints
nd (2) typed code can instantiate at a specific type. Instead, programmers must declare one kind
f pair for every two types they wish to combine. On the one hand, this requirement greatly
implifies run-time validation, because the outermost shape of any value determines the full type
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:7

o

s

a

r

R

f

b

a

R

2

F

c

t

d

u

i

s

m

T

h

t

a

o

t

c

t

b

f

r

t

U

t

t

l

f

m

l

t

c

5

f its elements. On the other hand, it imposes a significant programming burden. To add refined
tatic type checking at the use-sites of an untyped data structure, a programmer must either add
 cast to each use in typed code or edit the untyped code for a new data definition. Because of this
igidity, the model in Section 6 supports neither Nom nor other concrete languages [19 , 52 , 61 , 93],

Both Reticulated and Typed Racket raise an error on program (2), but for different reasons. Typed
acket rejects the untyped pair at the boundary to the typed context, because the pair does not

ully match the declared type. Reticulated accepts the value at the boundary, because it is a pair,
ut raises an exception at the elimination form y[0] , because typed code expects an integer result
nd receives a string. In general, Typed Racket eagerly checks the contents of data structures while
eticulated lazily validates them at use-sites.

.3 Debugging Higher-order Interactions

igures 4 and 5 present simplified excerpts from realistic programs that mix typed and untyped
ode. These examples follow a common general structure: an untyped client interacts with an un-
yped library through a thin layer of typed code. The solid arrows indicate these statically visible
ependencies. Additionally, the untyped client supplies an argument to the untyped service mod-
le that, due to type annotations, dynamically opens a back channel to the client; the dashed arrow

ndicates this dynamic dependency of the two untyped modules. Both programs also happen to
ignal run-time errors, but do so for different reasons and with rather different implications.

The first example shows how Typed Racket’s implementation of the Natural semantics, which
onitors all interactions that cross type boundaries, can detect a mistake in a type declaration.
he second example uses Reticulated’s implementation of the Transient semantics to demonstrate
ow a type-sound language can fail to detect a mismatch between a value and a type.

2.3.1 A Mistaken Type Declaration. Figure 4 consists of an untyped library, an incorrect layer of
ype annotations, and an untyped client of the typed layer. The module at the top left, net/url , is
 snippet from an untyped library that has been part of Racket for two decades. 5 The typed module
n the right defines types for part of the library. Last, the module at the bottom left imports the
yped library and invokes the library function call/input-url .

Operationally, the library function flows from net/url to the typed module and then to the
lient. When the client calls this function, it sends client data to the untyped library code via the
yped layer. The client application clearly relies on the type specification from typed/net/url
ased on the arguments that it sends: the first is a URL structure, the second (underlined) is a
unction that accepts a string, and the third is a function that maps an input port to an HTML
epresentation. Unfortunately for the client, the boldface type String in Figure 4 is in conflict with
he code in the library, which applies the second argument (a function) of call/input-url to a
RL struct rather than a string.
Fortunately, Typed Racket compiles types to contracts and thereby catches the mismatch. Here,

he compilation of typed/net/url generates a contract for call/input-url . The generated con-
ract ensures that the untyped client provides three type-matching argument values and that the
ibrary applies the callback to a string. When the net/url library eventually applies the callback
unction to a URL structure, the function contract for the callback halts the program. The blame
essage says that the interface for net/url broke the contract, but warns the developer on the

ast line with “assuming the contract is correct.” Thus, the contract error is a warning that either
he code in net/url or the type in its interface is incorrect; and indeed, the type from which the
ontract is derived is an incorrect specification of the library’s behavior.
 github.com/racket/net .

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

https://github.com/racket/net

4:8 B. Greenman et al.

Fig. 4. Typed Racket detects and reports a higher-order type mismatch.

t

(

v

I

t

e

l

A

Alternative Possibility . If Typed Racket was merely type-sound, then it would not be guaranteed
o catch the type mismatch between the interface and the client. In this case, the client function
underlined) passed to call/input-url would be executed with a URL struct bound to the str
ariable. The consequences of this bad input would depend on how the function is implemented.
f an error occurs at all, then it might happen in the client and it might happen in another module
hat the function passes its input to. Either way, the typed module would be off the stack for the
rror message; programmers would have to remember its role to debug the type mistake.

2.3.2 A Data Structure Mismatch. Figure 5 presents an arrangement of three Transient Reticu-
ated modules, similar to the code in Figure 4 . The module on the top left exports a function that
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:9

Fig. 5. Reticulated does not catch errors that occur in untyped Python code.

r

t

c

t

d

i

P

p

f

6

etrieves data from a URL. 6 This function accepts several optional and keyword arguments. The
yped adaptor module on the right formulates types for one valid use of the function; namely, a
lient may supply a URL as a string and a timeout as a pair of floats. These types are correct, but
he client module on the bottom left sends a tuple that contains an integer and a string.

Reticulated’s run-time checks ensure that the typed function receives a string and a tuple, but
o not validate the tuple’s contents. These same arguments thus pass to the untyped get function
n the requests module. When the untyped get eventually uses the string ‘‘zero’’ as a float,
ython (not Reticulated) raises an exception that originates from the requests module. A com-
letly untyped version of this program gives the same behavior; the Reticulated types are no help
or debugging.
 github.com/psf/requests .

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

https://github.com/psf/requests

4:10 B. Greenman et al.

i

i

c

w

t

g

3

T

w

t

A

i

p

s

A

f

o

d

a

fi

3

T

c

b

t

f

a

t

s

f

T

s

r

t

m

T

3

T

u

A

In this example, the developer is lucky, because the call to the typed version of get is still visible
n the stack trace, providing a hint that this call might be at fault. If Python were to properly
mplement tail calls, or if the library accessed the pair some time after returning control to the
lient, then this hint would not be present.

Alternative Possibility . If Reticulated chose to traverse the bad tuple at the type boundary, then it
ould discover the type mismatch. Similarly, if Reticulated checked all reads from the tuple in un-

yped contexts, then it could detect the mismatch and raise an appropriate error. Both alternatives
o beyond what is strictly required for type soundness, but would help for debugging this program.

 COMPARING SEMANTICS

he design of a type-enforcement strategy is a multi-faceted problem. A strategy determines:
hether mismatches between type specifications and value flows are discovered; whether the

yped portion of the code is statically typed in a conventional sense or a weaker one; what typed
PIs mean for untyped client code; and whether an error message can pinpoint which type spec-

fication does not match which value. All decisions have implications for language designers and
rogrammers.
The examples in Section 2 illustrate that various languages choose different points in this design

pace. But, examples can only motivate a systematic analysis; they cannot serve as an analysis.
fter all, examples tell us little about the broader implications of each choice.
A systematic analysis needs a suite of formal properties that differentiate the design choices

or the language designer and working developer. These properties must apply to a large part
f the design space. Finally, they should clarify which guarantees type specifications offer to the
evelopers of typed and untyped code, respectively. While the literature focuses on type soundness
nd the blame theorem, our analysis adds new properties to the toolbox, which all parties should
nd helpful in making design choices or selecting languages for a project.

.1 Type Soundness and the Blame Theorem

ype soundness is one formal property that meets the above criteria. A type soundness theorem
an be tailored to a range of type systems, has meaning for typed and untyped code, and can
e proven via a syntactic technique that scales to a variety of language features [92]. The use of
ype soundness in the literature, however, does not promote informed comparisons. Consider the
our example languages from the previous section. Chaudhuri et al. [16] present a model of Flow
nd prove a conventional type soundness theorem under the assumption that all code is statically
yped. Vitousek et al. [86] prove a type soundness theorem for Reticulated Python that focuses on
hapes of values rather than types. Muehlboeck and Tate [52] prove a full type soundness theorem
or Nom. Tobin-Hochstadt and Felleisen [78] prove a full type soundness theorem for a prototypical
yped Racket that includes a weak blame property. These four type soundness theorems differ in
everal regards: one focuses on the typed half of the language; a second proves a claim about a loose
elationship between values and types; a third is a truly conventional type soundness theorem; and
he last one incorporates a claim about the quality of error messages.

Another well-studied property is the blame theorem [1 , 64 , 78 , 86 –88]. It states that a run-time
ismatch may occur only when an untyped—or less-precisely typed—value enters a typed context.
he property is a useful design principle, but too many languages satisfy this property too easily.

.2 Our Analysis

he primary formal property has to be type soundness, because it tells a programmer that eval-
ation is well-defined in each component of a mixed-typed programs. The different levels of
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:11

s

c

o

a

w

t

b

d

n

o

a

i

c

s

n

d

o

T

s

c

4

T

a

s

t

c

o

4

T

M

e

m

�

r

T

a

g

l

7

w

oundness that arise in the literature must, however, be clearly separated. For one, the canoni-
al forms lemmas that support these different levels of soundness set limits on the type-directed
ptimizations that a compiler may safely perform.
The second property, complete monitoring , asks whether types guard all statically declared

nd dynamically created channels of communication between typed and untyped code. That is,
hether every interaction between typed and untyped code is mediated by run-time checks. Sec-

ion 2.3 illustrates this point with two contrasting example. Both open channels of communication
etween untyped pieces of code at run time—see the dashed arrows in Figures 4 and 5 —that are
ue to value flows through typed pieces of code. While Typed Racket’s type-enforcement mecha-
ism catches this problem, Reticulated’s does not. (The problem is caught by the run-time checks
f Python.)
When a run-time check discovers a mismatch between a type specification and a flow of values

nd the run-time system issues an error message, the question arises how informative the message
s to a debugging programmer. Blame soundness and blame completeness ask whether a semantics
an identify the responsible parties when a run-time type mismatch occurs. Soundness asks for a
ubset of the potential culprits; completeness asks for a superset.

Furthermore, the differences among type soundness theorems and the gap between type sound-
ess and complete monitoring suggests the question of how many errors an enforcement regime
iscovers. The answer is given by an error preorder relation, which compares semantics in terms
f the run-time mismatches that they discover.
Individually, each property characterizes a particular aspect of a type-enforcement strategy.

ogether, the properties inform us about the nature of the multi-faceted design space that this
emantics problem opens up. Additionally, this work should help with the investigation of the
onsequences of design choices for the working developer.

 EVALUATION FRAMEWORK

o formulate different type-enforcement stategies on an equal footing, the framework is based on
 single mixed-typed surface language (Section 4.1). This syntax is then equipped with distinct
emantics to model the different type-enforcement strategies (Section 4.2). Type soundness (Sec-
ion 4.3) and complete monitoring (Section 4.4) characterize the type mismatches that a semantics
an detect. Blame soundness and blame completeness (Section 4.5) measure the theoretical quality
f error messages. The error preorder (Section 4.6) is a direct comparison of the semantics.

.1 Surface Language

he surface syntax is a multi-language that combines two independent pieces in the style of
atthews and Findler [48]. Statically typed expressions constitute one piece; dynamically typed

xpressions are the other half. Technically, these expression languages are identified by two judg-
ents: typed expressions e 0 satisfy � e 0 : τ0 for some type τ0 , and untyped expressions e 1 satisfy
 e 1 : U for the uni-type. Boundary expressions connect the two pieces.

The uni-type U is not the flexible dynamic type from the theory of gradual typing that can
eplace any static type [5 , 68 , 77], rather, it describes all well-formed untyped expressions [48]. 7

here is consequently no need for a type precision judgment in the surface language, because
ll typed–untyped interactions occur through boundary expressions. In this way, our surface lan-
uage closely resembles the cast calculi that serve as intermediate languages in the gradual typing
iterature, e.g., References [67 , 69].
 How to add a dynamic type is a separate dimension that is orthogonal to the question of how to enforce types. With or
ithout such a type, our results apply to the language’s type-enforcement strategy.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:12 B. Greenman et al.

n

T

t

a

a

m

u

t

a

t

B

m

t

T

t

a

t

I

s

n

W

s

b

8

i
9

A
c

A

The sets of statically typed (v s) and dynamically typed (v d) values consist of integers, natural
umbers, pairs, and functions:

v s = i | n | 〈 v s , v s 〉 | λ(x : τ). e s , τ = Int | Nat | τ⇒ τ | τ×τ ,
v d = i | n | 〈 v d , v d 〉 | λx . e d .

hese core value sets are relatively small, but they suffice to illustrate the behavior of types for
he basic ingredients of a full language. First, the values include atomic data, finite structures,
nd higher-order values. Second, the natural numbers n are a subset of the integers i to motivate
 subtyping judgment for the typed half of the language. Subtyping adds some realism to the
odel 8 and allows it to distinguish between two sound enforcing methods (declaration-site vs.

se-site).
Surface expressions include function application, primitive operations, and boundaries. The de-

ails of the first two are fairly standard (Section 6.1), although function application comes with
n explicit app operator (app e 0 e 1). Boundary expressions (dyn and stat) are the glue that enables
yped–untyped interactions. A program starts with named chunks of code, called components.
oundary expressions link these chunks together with a static type to describe the values that
ay cross the boundary. Suppose that a typed component named � 0 imports and applies an un-

yped function from component � 1 :

(3)

he surface language can model the composition of these components with a boundary expression
hat embeds an untyped function in a typed context. The boundary expression is annotated with
 boundary specification (� 0 � Nat ⇒ Nat � � 1) to explain that component � 0 expects a function from
he server module � 1 , henceforth called sender :

(3) � app (dyn (� 0 � Nat ⇒ Nat � � 1) (λx 0 . sum x 0 2)) 9 .

n turn, this two-component expression may be imported into a larger untyped component. The
ketch below shows an untyped component in the center that imports two typed components: a
ew typed function on the left and the expression (3) on the right:

(4)

hen linearized to the surface language, this term becomes

(4) � app (stat (� 2 � Int ×Int ⇒ Int � � 3) (λ(x 1 : Int ×Int). fst x 1))

(stat (� 2 � Nat � � 0) (3)).

Technically, a boundary expression combines a boundary specification b and a sender expres-
ion. A dyn boundary embeds dynamically typed code in a typed context; a stat boundary em-
eds statically typed code in an untyped context. 9 The specification includes the names of the
 Adding this form of subtyping also ensures model can scale to include true union types, which are an integral part of the
diomatic type systems added to untyped languages [15 , 80 , 81].
 Boundary terms are similar to casts from the gradual typing literature, but provide more structure for blame assignment.
 boundary connects a typed component to an untyped component. A cast connects typed code to less-precisely typed

ode; both sides of a cast may be part of the same component.

CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:13

i

a

s

d

t

m

t

g

s

i

4

T

p

s

R

a

e

a

e

w

s

A

A

c

f

1

nteracting components along with a type to describe values that are intended to cross the bound-
ry. Names such as � 0 come from some countable set � (i.e., � 0 ∈ �). The boundary types guide the
tatic type checker, but are mere suggestions unless a semantics decides to enforce them:

e s = . . . | dyn b e d , b = (� � τ� �),
e d = . . . | stat b e s , � = countable set of names.

The typing judgments for typed and untyped expressions require a mutual dependence to han-
le boundary expressions. A well-typed expression may include any well-formed dynamically
yped code. Conversely, a well-formed untyped expression may include any typed expression that
atches the specified annotation:

Each surface-language component must have a name. These names must be coherent in the sense
hat the client name in all boundary specifications must match the name of its enclosing context.

The purpose of the names is to support blame assignment when an typed–untyped interaction
oes wrong. Suppose a program halts due to a mismatch between a type Nat and a value −2 . If the
emantics has knowledge of both the client and sender of the bad value, then an error report can
nclude this boundary where Nat is required and −2 arrived.

.2 Semantic Framework

he first ingredient a reduction semantics must supply is the set of result values v to which ex-
ressions may reduce. Our result sets extend the sets of core values introduced in the preceding
ubsection (v ⊇ v s ∪ v d). Potential reasons for extending the value set include the following:

(1) to associate a value with a delayed type-check;
(2) to record the boundaries that a value has previously crossed;
(3) to permit untyped values in typed code, and vice versa; and

(4) to track the identity of values on a heap.

easons 1 and 2 call for two kinds of wrapper value. 10 A guard wrapper (G bv) associates a bound-
ry specification with a value to achieve delayed type checks. Guards are similar to boundary
xpressions; they separate a context component from a value component. A trace wrapper (T b v)
ttaches a list of boundaries to a value as metadata. Trace wrappers simply annotate values.

The second ingredient is a set of notions of reduction, most importantly those for boundary
xpressions. For example, the Natural semantics (Section 6.5) fully enforces types via the classic
rapper techniques [25 , 48], which is expressed as follows where a filled triangle (�) describes a

tep in untyped code and an open triangle (�) describes a step in typed code:

stat (� 0 � Nat � � 1) 42 �

N

42 , (a)

dyn (� 0 � (Int ⇒ Nat) � � 1) (λx 0 . −8) �

N

G (� 0 � (Int ⇒ Nat) � � 1) (λx 0 . −8). (b)

ccording to the first rule, a typed number may enter an untyped context without further ado.
ccording to the second rule, typed code may access an untyped function only through a newly

reated guard wrapper. Guard wrappers are a higher-order tool for enforcing types for first-class
unctions. As such, wrappers require elimination rules. To complete its type-enforcement strategy,
0 A language with the dynamic type will need a third wrapper for base values that have been assigned type dynamic.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:14 B. Greenman et al.

t

i

O

s

i

e

T

h

i

o

o

4

T

p

t

t

t

l

w

g

a

p

v

t

o

4

T

i

u

t

A

he Natural semantics includes the following rule to unfold the application of a guarded function
nto two boundaries:

app (G (� 0 � (Int ⇒ Nat) � � 1) (λx 0 . −8)) 1 �

N

dyn (� 0 � Nat � � 1) (app (λx 0 . −8) (stat (� 1 � Int � � 0) 1)). (c)

ther semantics have different behavior at boundaries and different supporting rules. The Tran-
ient semantics (Section 6.8) takes a first-order approach to boundaries. Instead of using wrappers,
t checks shapes at a boundary and guards elimination forms with shape-check expressions. For
xample, the following simplified reduction demonstrates a successful shape check:

check {(Nat ×Nat)} 〈 −1 , −2 〉 � �

T
〈 −1 , −2 〉 . (d)

he triangle is filled gray (� �), because Transient is defined via a single notion of reduction that
andles both typed and untyped code.
These two points, values and checking rules, are the distinctive aspects of a semantics. Other

ngredients can be shared, such as the errors, evaluation contexts, and interpretation of primitive
perations. Indeed, Section 6.2 defines three baseline evaluation languages—higher-order, first-
rder, and erasure—that abstract over the common ingredients.

.3 Type Soundness

ype soundness asks whether evaluation is well-defined and whether a surface-language type
redicts properties of the result. Since there are two kinds of surface expressions, soundness has
wo parts: one for statically typed code and one for dynamically typed code.

For typed code, the question is the extent to which surface types predict the result of an evalua-
ion. There are a range of possible answers. Suppose that an expression with surface type τ0 reduces
o a value. At one end, the result value may match the full type τ0 according to an evaluation-
anguage typing judgment. The other extreme is that the result is merely a well-formed value,
ith no stronger prediction about its shape. Even in this weak extreme, however, the language
uarantees that typed reductions cannot reach an undefined state.
For untyped code, there is one surface type. Soundness guarantees that evaluation cannot reach

n undefined state, but it cannot predict the shape of result values.
Both parts combine into the following definition, where the function F and judgment � F are

arameters. The function F maps surface types to observations that one can make about a result;
arying the choice of F offers a spectrum of soundness for typed code. For example, for Natural, F is
he identify function and for Transient, it is a function that ignores all but the top-level constructor
f a type. The judgment � F matches a value with a description.

Definition Sketch (F -type Soundness) .
If e 0 has static type τ0 (� e 0 : τ0),
then one of the following holds:

If e 0 is untyped (� e 0 : U),
then one of the following holds:

• e 0 reduces to a value v 0

and � F v 0 : F (τ0)
• e 0 reduces to an allowed error
• e 0 diverges.

• e 0 reduces to a value v 0

and � F v 0 : U
• e 0 reduces to an allowed error
• e 0 diverges.

.4 Complete Monitoring

he complete monitoring property holds if a language has complete control over every type-

nduced channel of communication between two components in a world that mixes typed and
ntyped code. Consider an identity function that flows from an untyped component � 0 to a
yped one � 1 , through an (Int ⇒ Int) type annotation. Now imagine that this function flows into
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:15

u

c

f

i

e

t

a

r

t

w

c

n

o

b

t

l

d

t

y

W

a

i

u

l

l
s

d

s
ntyped component � 2 , which applies this function to itself. This application opens a channel of
ommunication between � 0 and � 2 at run time. This channel is type-induced , because the identity
unction migrated to this point through a type boundary. If the language satisfies complete mon-
toring, then it rejects this application, because the argument is a function and not an integer; an
rror report could point back to the boundary between � 0 and � 1 , which imposed the obligation
hat arguments must be of type Int .

At first glance, this example seems to inject sophistication where none is needed. In particular,
pplying the identity function to itself does no harm. But, as Section 2.3 explains with a distilled
eal-world example, such mis-applications can be the result of type specifications for untyped code
hat are simply wrong. Thus, while the type checker may bless the typed code, its interactions
ith untyped code may reveal the mismatch between the obligation that a type imposes and the

omputations that the code performs.
Our approach to validating complete monitoring uses the well-known subject-reduction tech-

ique for a semantics modified to track obligations imposed by type boundaries. Tracking these
bligations relies on tracking boundary crossings via component labels, dubbed ownership labels

y Dimoulas et al. [22]. A sequence of labels on a value reflects the path that the value has taken
hrough components and, by implication, which type obligations the value has incurred. These
abels enrich the semantics with information without changing it . A meta-type system describes
esired properties of the evaluation in terms of the labels, and subject reduction establishes that
he properties hold.

Labels track information as follows. At the start of an evaluation, no interactions have occurred
et and every expression has exactly one label that names the component in which it resides.
hen a boundary term reduces, an interaction happens and the labels in the result term change

s follows:

• If the sender component supplies a value whose adherence to a client’s type specification
can be fully checked, then the value loses its old labels and comes under full control of the
client.

• If the check has to be partial, because the value is higher-order, there are two possible
outcomes depending on how the value crosses the boundary:
– If the original value crosses over as is, then it keeps its old labels and acquires the labels

of the client. The sender and client share joint responsibility for the value going forward.
– If the client receives a newly created proxy, then the proxy acquires the client’s labels

and the wrapped value retains its old labels. The sender remains responsible for the
wrapped value, and the client has full responsibility for the proxy.

In short, the ownership labels on a value denotes the parties responsible for the behavior of
the value. Storing these labels as a sequence keeps track of the order in which they gained
responsibility for the value.

A semantics that prevents joint-responsibility situations satisfies the goal of complete monitor-
ng; it controls every typed–untyped interaction. When a language is in control, it can present
seful error messages as demonstrated in Section 2.3.1 . When a language is not in control, mis-

eading errors can arise due to issues at type boundaries as the example in Section 2.3.2 illustrates.
An ownership label � 0 names one source-code component. Expressions and values come with at

east one ownership label; for example, (42) � 0 is an integer with one owner � 0 and (((42) � 0)
� 1

)
� 2

—
hort-hand: ((42)) � 0 � 1 � 2 —is an integer with three owners.

A complete monitoring theorem requires two ingredients that manage these labels. First, a re-
uction relation →

∗
r

must propagate ownership labels to reflect interactions and checks. Second, a
ingle-ownership judgment � must test whether every value in an expression has a unique owner
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:16 B. Greenman et al.

r

r

V

p

s

w

p

b

S

a

E

N

m

o

p

t

f

l

a

r

l

t

A

elative to a map L 0 from variables to their binding component. To satisfy complete monitoring,
eduction must preserve single-ownership.

The key single-ownership rules deal with labeled expressions and boundary terms:

alues such as ((42)) � 0 � 1 represent a communication that slipped through the run-time checking
rotocol and therefore fail to satisfy single ownership.
The definition of complete monitoring states that a labeled reduction relation must preserve the

ingle-ownership invariant.

Definition Sketch (Complete Monitoring) .
For all ·; � 0 � e 0 , any reduction e 0 →

∗
r
e 1 implies ·; � 0 � e 1 .

4.4.1 How to Uniformly Equip a Reduction Relation with Labels. In practice, a language comes
ith an unlabeled reduction system, and it is up to a researcher to design a lifted relation that
ropagates labels without changing the underlying relations. Lifting thus requires insight. If la-
els do not transfer correctly, then a complete monitoring theorem loses (some of) its meaning.
imilarly, if the behavior of a lifted relation depends on labels, then a theorem about it does not
pply to the original, un-lifted reduction system.

Section 6 present six reduction relations as the semantics of our single mixed-typed syntax.
ach relation needs a lifted version to support an attempt at a complete monitoring theorem.
ormally, the design of any lifted reduction relation is a challenge in itself [22 , 23 , 51 , 76]. Labels
ust reflect the communications that arise at run-time, and the possible communications depend

n the unlabeled semantics. The six lifted relations for this article, however, follow a common
attern. Section 6 therefore presents one lifted relation as an example (Section 6.5) and defers to
he supplementary material for the others.

To give readers an intuition for how each lifted relation comes about, this section presents in-
ormal guidelines for managing labels in a path-based way. Each guideline describes one way that
abels may be transferred or dropped during evaluation and comes with an illustrative reduction.

Because labels are an analytical tool that (in principle) apply to any reduction relation, the ex-
mples are posed in terms of a hypothetical reduction relation r over the surface language. To
ead an example, assume the unlabeled notion of reduction e r e is given and focus on how the
abels (superscripts) change in response. Recall that stat and dyn are boundary terms; they link
wo different components, a client context and an enclosed sender expression, via a type.

(G1) If a base value reaches a boundary with a matching base type, then the value drops its
current labels as it crosses the boundary.

Example: (stat (� 0 � Nat � � 1) (0)
� 2 � 1)

� 0
r (0) � 0 ,

Explanation: The value 0 fully matches the type Nat .
(G2) Otherwise, a value that crosses a boundary acquires the label of the new component.

Example: (stat (� 0 � Nat � � 1) (〈 −2 , 1 〉) � 1) � 0 r ((〈 −2 , 1 〉)) � 1 � 0 ,
Explanation: The pair 〈 −2 , 1 〉 does not match the type Nat .

(G3) Every value that flows out of a value v 0 acquires the labels of v 0 and the context.

Example: (snd ((〈 (1) � 0 , (2) � 1 〉)) � 2 � 3)
� 4

r ((2)) � 1 � 2 � 3 � 4 ,
Explanation: The value 2 flows out of the pair 〈 1 , 2 〉 .
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:17

A

a

l

m

(

a

(

(

4

B

p

a

a

c

t

o

h

l

t

b

f

(G4) Every value that flows into a function v 0 acquires the context’s label and v 0 ’s reversed
labels.

Example: (app ((λx 0 . fst x 0))
� 0 � 1 (〈 8 , 6 〉) � 2) � 3 r (((fst ((〈 8 , 6 〉)) � 2 � 3 � 1 � 0)) � 0 � 1)

� 3
,

Explanation: The argument value 〈 8 , 6 〉 is input to the function. The substituted body
flows out of the function, and by G3 acquires the function’s labels.

(G5) A new value produced by a primitive acquires the context’s label.

Example: (sum (2) � 0 (3) � 1)
� 2

r (5) � 2 ,
Explanation: Ignoring the labels, δ (sum , 2 , 3) = 5 .

(G6) Consecutive equal labels are dropped; they do not represent boundary crossings.
Example: ((0)) � 0 � 0 � 1 � 0 = ((0)) � 0 � 1 � 0 .

(G7) Labels on an error term are dropped; the path of an error term is not important.

Example: (dyn (� 0 � Int � � 1) (sum 9 (DivErr) � 1))
� 0

r DivErr .

lthough guideline G4 refers specifically to functions, the concept generalizes to reference cells
nd to other values that accept inputs.

To demonstrate how these guidelines influence a lifted reduction relation, the following rules
ift the examples from Section 4.2 . Each rule accepts input with any sequence of labels (�), pattern-

atches the important labels, and shuffles labels in accordance with the guidelines. The first rule
a ′) demonstrates a base-type boundary (G1). The second (b

′) demonstrates a higher-order bound-
ry (G2); the new guard on the right-hand side implicitly inherits the context label. The third rule
c ′) sends an input (G4) and creates new application and boundary expressions. The fourth rule
d

′) applies G3 for an output:

(stat (� 0 � Nat � � 1) ((42)) �2)
� 3 �

N

(42) � 3 , (a ′)

(dyn (� 0 � (Int ⇒ Nat) � � 1) ((λx 0 . ((−8)) �2))
�3

)
� 4

�

N

(b ′)

(G (� 0 � (Int ⇒ Nat) � � 1) ((λx 0 . ((−8)) �2))
�3

)
� 4

,

(app ((G (� 0 � (Int ⇒ Nat) � � 1) (v 0)
� 2))

�3
((1)) �4)

� 5

�

N

(c ′)

(dyn (� 0 � Nat � � 1) (app (v 0)
� 2 (stat (� 1 � Int � � 0) ((1))

�4 � 5 rev (�3)))
� 2

)
�3 � 5

,

(check {(Nat ×Nat)} ((〈 ((−1)) �0 , ((−2)) �1 〉))
�2

)
� 3

� �

T
((〈 ((−1)) �0 , ((−2)) �1 〉))

�2 � 3
. (d ′)

.5 Blame Soundness, Blame Completeness

lame soundness and blame completeness ask whether a semantics can identify the responsible
arties in the event of a run-time mismatch. A type mismatch occurs when a typed context receives
n unexpected value. The value may be the result of a boundary expression or an elimination form,
nd the underlying issue may lie with either the value, the current type expectation, or some prior
ommunication. To begin debugging, a programmer should know which boundaries the value
raversed; after all, it is these boundaries that imposed the violated obligations. A semantics may
ffer information by blaming a set of boundaries. Then the question is whether those boundaries
ave any connection to the value at hand.
Suppose that a reduction halts on the value v 0 and blames the set b ∗0 of boundaries. Ownership

abels let us check whether the set b ∗0 has anything to do with the boundaries that the lifted seman-
ics recorded, that is, the sequence of labels attached to the v 0 value. Relative to this source-of-truth,
lame soundness asks whether the names in b ∗0 are a subset of the labels. Blame completeness asks
or a superset of the labels.
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:18 B. Greenman et al.

C

p

a

a

4

W

o

X

w

r

m

o

d

i
v

5

T

f

s

t

m

T

a

t

A

A semantics can trivially satisfy blame soundness by reporting an empty set of boundaries.
onversely, the trivial way to achieve blame completeness is to blame every boundary for every
ossible mismatch. The technical challenge is to either satisfy both or find a middle ground.

Definition Sketch (Blame Soundness) .
For all reductions that end in a mismatch for value v 0 blaming boundaries b ∗0 , the names in b ∗0

re a subset of the labels on v 0 .

Definition Sketch (Blame Completeness) .
For all reductions that end in a mismatch for value v 0 blaming boundaries b ∗0 , the names in b ∗0

re a superset of the labels on v 0 .

.6 Error Preorder

hereas the above properties characterize semantics independently of one another, the error pre-

rder relation sets up a direct comparison. One semantics is below another in this preorder, written
 � Y , if it raises errors on at least as many well-formed programs. Put another way, X � Y holds
hen X is less permissive than Y is. When two semantics agree about which expressions raise

un-time errors, we use the notation X � Y .

Definition Sketch (Error Preorder �) .
X � Y iff e 0 →

∗
Y

Err implies e 0 →

∗
X

Err .

Definition Sketch (Error Equivalence �) .
X � Y iff X � Y and Y � X .

The six semantics in this article are especially close to one another. Although they use different
ethods for enforcing types, they agree on other behaviors. In particular, these semantics diverge

n the same expressions and compute equivalent values ignoring wrappers. This close correspon-
ence lets us view the error preorder in another way: X � Y holds for these semantics if and only
f Y reduces at least as many expressions to a result value ({e 0 | ∃ v 0 .e 0 →

∗
X
v 0 } ⊆ {e 1 | ∃ v 1 .e 1 →

∗
Y

 1 }). The supplementary material presents bisimulations that establish the correspondences.

 TYPE-ENFORCEMENT STRATEGIES

he six chosen type-enforcement strategies share some commonalities and exhibit significant dif-
erences in philosophy and technicalities. This section supplies the ideas behind each strategy and
erves as a quick, informal reference. Readers who prefer formal definitions may wish to skip
o Section 6 .

The overview begins with the strategy that is lowest on the error preorder and ascends to the
ost lenient strategy:

Natural : Wrap higher-order values; eagerly check first-order values.
Co-Natural : Wrap higher-order and first-order values.
Forgetful : Wrap higher-order and first-order values, but drop inner wrappers.
Transient : Never use wrappers; check the shape of all values that appear in typed code.
Amnesic : Check shapes like Transient; use wrappers only to remember boundary types.
Erasure : Never use wrappers; check nothing. Do not enforce static types at run-time.

hree of these strategies have been implemented in full-fledged languages: Natural, Transient,
nd Erasure. Two, Co-Natural and Forgetful, originate in prior work [31 , 34] and, sitting between
he Natural and Transient strategies, highlight the variety of designs. Finally, Amnesic is a
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:19

Fig. 6. Natural boundary checks (omitting blame).

s

p

5

N

c

v

t

d

v

e

s

s

r

a

P

d

c

l

t

c

3

i

l

b

m

w

m

r

ynthetic semantics, created to demonstrate how the analysis framework can be used to address
roblems, specifically the impoverished nature of blame assignment in Transient.

.1 Natural

atural strictly enforces the boundaries between typed and untyped code. Every time a typed
ontext imports an untyped value, the value undergoes a comprehensive check. For first-order
alues, this implies a deep traversal of the incoming value. For higher-order values, a full check at
he time of crossing the boundary means creating a wrapper to monitor its future behavior.

Figure 6 describes in more detail the checks that happen when a value reaches a boundary. The
escriptions omit component names and blame to keep the focus on types. These checks either
alidate an untyped value entering typed code (left column) or protect a typed value before it
nters untyped code (right column).

5.1.1 Theoretical Costs, Motivation for Alternative Methods. Implementations of Natural have
truggled with the performance overhead of enforcing types [25 , 38]. A glance at the sketch above
uggests three sources for this overhead: checking that a value matches a type, the layer of indi-

ection that a wrapper adds, and the allocation cost.
For base types and higher-order types, the cost of checking is presumably low. Testing whether

 value is an integer or a function is a cheap operation in languages that support dynamic typing.
airs and other first-order values, however, illustrate the potential for serious overhead. When a
eeply nested pair value reaches a boundary, Natural follows the type to conduct an eager and
omprehensive check whose cost is linear in the size of the type. To check recursive types such as
ists, the cost is linear in the size of the incoming value.

The indirection cost grows in proportion to the number of wrappers on a value. There is no limit
o the number of wrappers in Natural, so this cost can grow without bound. Indeed, the combined
ost of checking and indirection can lead to exponential slowdown even in simple programs [24 ,
1 , 41 , 44 , 74].

Last, creating a wrapper initializes a data structure. Creating an unbounded number of wrappers
ncurs a proportional cost, which may add up to a significant fraction of a program’s running time.

Researchers have addressed these costs to some extent with implementation techniques that
ower the time and space bounds for Natural [6 , 14 , 24 , 31 , 41 , 44 , 63 , 66] without changing its
ehavior. The next three type-enforcement strategies can, however, offer more drastic improve-
ents. First, the Co-Natural strategy (Section 5.2) reduces the up-front cost of checks by creating
rappers for pairs. Second, the Forgetful strategy (Section 5.3) reduces indirection by keeping at
ost two wrappers on any value and discarding the rest. Third, the Transient strategy (Section 5.4)

emoves wrappers altogether by enforcing a weaker type soundness invariant.
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:20 B. Greenman et al.

Fig. 7. Co-Natural boundary checks.

w

P

i

r

j

s

5

T

i

T

l

i

o

w

t

“

m

v

c

5

T

a

C

r

b

o

a

w

T

A

5.1.2 Origins of the Natural strategy. The name “Natural” is due to Matthews and Findler [48],
ho use it to describe a proxy method for transporting untyped functions into a typed context.
rior works on higher-order contracts [25], remote procedure calls [55], and typed foreign function

nterfaces [56] employ a similar type-directed proxy method. In the gradual typing literature, Natu-
al is also called “guarded” [84], “behavioral” [18], and “deep” [82]. This strategy has an interesting
ustification via work on AGT [28]; namely, its checks ensure that a proof of type preservation is
till possible given the untyped values that have arisen at runtime.

.2 Co-Natural

he Co-Natural strategy checks only the shape of values at a boundary. Instead of eagerly validat-
ng the contents of a data structure, Co-Natural creates a wrapper to perform validation by need.
he cost of checking at a boundary is thereby reduced to the worst-case cost of a shape check. Al-

ocation and indirection costs may increase, however, because even first-order values are wrapped
n monitors. Figure 7 outlines the strategy.

5.2.1 Origins of the Co-Natural strategy. The Co-Natural strategy introduces a small amount
f laziness. By contrast to Natural, which eagerly validates immutable data structures, Co-Natural
aits until the data structure is accessed to perform a check. The choice is analogous to the ques-

ion of initial algebra versus final algebra semantics for such datatypes [7 , 12 , 89], hence the prefix
Co” is a reminder that some checks now happen at an opposite time. Findler et al. [27] imple-
ent exactly the Co-Natural strategy for Racket struct contracts. Other researchers have explored

ariations on lazy contracts [17 , 20 , 21 , 42]; for instance, by delaying even shape checks until a
omputation depends on the value.

.3 Forgetful

he goal of Forgetful is to guarantee type soundness and to limit the number of wrappers around
 value. A non-goal is to enforce types in any way that is not strictly required by soundness.
onsequently, types in Forgetful are not compositionally valid claims about code. Typed code can

ely on the static types that it declares, nothing more. Untyped code cannot trust type annotations,
ecause those types may be forgotten without ever getting checked.
The Forgetful strategy is to keep at most two wrappers around a value. An untyped value gets

ne wrapper when it enters a typed context and loses this wrapper upon exit. A typed value gets
 “sticky” inner wrapper the first time it exits typed code and gains a “temporary” outer wrapper
henever it re-enters a typed context. The sticky wrapper protects the function from bad inputs.
he temporary outer wrappers protect callers. Figure 8 presents an outline of the strategy.
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:21

Fig. 8. Forgetful boundary checks.

Fig. 9. Natural vs. Forgetful.

m

i

t

t

1

5.3.1 Comparison to Natural. Figure 9 present two examples to demonstrate how Forgetful
anages guard wrappers as compared to the Natural semantics. 11 Each example term sends an

dentity function across three boundaries. To keep the illustration concise, let A , B , and C be three
ypes such that the example terms are well-typed. The three boundaries at hand use the function
ypes A ⇒ A , B ⇒ B , and C ⇒ C .
1 Since these examples use only function types, they exhibit the same behavior according to Co-Natural as well as Natural.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:22 B. Greenman et al.

e

w

h

b

w

t

p

b

a

p

b

t

c

g

t

s

w

w

g

w

5

T

i

T

t

f

m

s

u

o

c

t

c

o

a

r

a

A

These examples are formatted in a tabular layout. Each row of the table corresponds to a type-
nforcement strategy. From left to right, the cells in a row show how a value accumulates guard
rappers. Each column states whether the current redex is untyped or typed. Untyped columns
ave a shaded background. Typed columns come with an expected type. Similarly, the arrows
etween the columns are open (�) when the value passes through a dyn boundary and filled (�)
hen the value passes through a stat boundary. The top of each figure presents a full example

erm that can be reduced using the semantics in Section 6 .

Example: Untyped Identity Function . Figure 9 (top) shows how Natural and Forgetful add wrap-
ers to an untyped function that crosses three boundaries. Natural creates one wrapper for each
oundary. Forgetful creates a temporary wrapper whenever the function enters a typed context
nd removes this wrapper when the function exits.

Example: Typed Identity Function . Figure 9 (bottom) shows how Natural and Forgetful add wrap-
ers to a typed function that crosses three boundaries. Natural creates one guard wrapper for each
oundary. Forgetful creates an initial “sticky” guard wrapper when a typed function first exits
yped code. This wrapper enforces the function’s domain type. When the function re-enters typed
ode, Forgetful adds a wrapper to record its new type. When it exits typed code, this outer wrapper
ets forgotten.

5.3.2 Origins of the Forgetful strategy. Greenberg [30 , 31] introduces forgetful manifest con-
racts, proves their type soundness, and observes that unlike normal types, forgetful types cannot
upport abstraction and information hiding. Castagna and Lanvin [15] present a gradual language
ith union and intersection types that has a forgetful semantics to keep the formalism simple
ithout affecting type soundness.
There are other strategies that limit the number of wrappers on a value without sacrificing type

uarantees [31 , 41 , 63]. These methods require an implementation of wrappers that can be merged
ith one another, whereas Forgetful can treat wrappers as black boxes.

.4 Transient

he Transient strategy aims to prevent typed code from “going wrong” [49] in the sense of apply-
ng a primitive operation to a value outside its domain. For example, every application (e 0 e 1) in
ransient-typed code can trust that the value of e 0 is a function.
Transient meets this goal without wrappers and without traversing data structures by rewriting

yped code ahead-of-time in a conservative fashion. Ever y type boundar y, ever y typed elimination
orm, and every typed function body gets rewritten to execute a shape check. These shape checks
atch the top-level constructor of a value against the top-level constructor of a type. By applying

hape checks wherever an ill-typed value might sneak in, Transient protects typed code against
ndefined primitive operations.
Figure 10 describes the checks that happen at a boundary in the Transient semantics. Unlike the

ther semantics, however, these boundary checks are only part of the story. Additional dyn -style
hecks appear within typed code because of the rewriting pass.

In general, Transient checks add up to a greater number of run-time validation points than those
hat arise in a wrapper-based semantics, because every expression in typed code may require a
heck. The net cost of these checks, however, may be lower and easier to predict than in higher-
rder strategies, because each check has a low cost [29 , 37 , 62 , 86]. Often a tag check suffices,
lthough unions and other expressive types require a deeper check [36]. Static analysis can further
educe costs by identifying overly conservative checks [85], and JIT compilers have been effective
t reducing the costs of Transient [29 , 46 , 62 , 85].
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:23

Fig. 10. Transient boundary checks.

Fig. 11. Amnesic boundary checks.

T

a

T

i

5

T

i

o

c

m

t

t

t

i

b

v

s

t

5.4.1 Origins of the Transient strategy. Vitousek [83] invented Transient for Reticulated Python.
he name suggests the nature of its run-time checks: Transient type-enforcement enforces local
ssumptions in typed code but has no long-lasting ability to influence untyped behaviors [84].
ransient has been adapted to Typed Racket [34 , 36] and has inspired closely related approaches

n Grace [29 , 62] and in Static Python [46].

.5 Amnesic

he goal of the Amnesic semantics is to specify basically the same behavior as Transient but
mprove the error messages when a type mismatch occurs. Amnesic demonstrates that wrappers
ffer more than a way to detect errors; they seem essential for informative errors.
The Amnesic strategy wraps values, discards all but three wrappers, and keeps a record of dis-

arded boundary specifications. To record boundaries, Amnesic uses trace wrappers. When a type
ismatch occurs, Amnesic presents the recorded boundaries to the programmer.
If an untyped function enters a typed component, then Amnesic wraps the function in a guard. If

he function travels back to untyped code, then Amnesic replaces the guard with a trace wrapper
hat records two boundaries. Future round-trips extend the trace. Conversely, a typed function
hat flows to untyped code and back N +1 times gets three wrappers: an outer guard to protect
ts current typed client, a middle trace to record its last N trips, and an inner guard to protect its
ody. Figure 11 outlines the strategy.

5.5.1 Comparison to Forgetful and Transient. The design of Amnesic is best understood as a
ariation of Transient that accepts a limited number of wrappers per value. Like the Forgetful
emantics, it puts at most two guard wrappers around a value. It also uses at most one trace wrapper
o remember all boundaries that the value has crossed.
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:24 B. Greenman et al.

Fig. 12. Forgetful vs. Transient vs. Amnesic.

s

s

n

t

c

f

n

a

t

a

w

A

The following two examples compare Forgetful, Transient, and Amnesic side-by-side using the
ame example terms as in Figure 9 . As before, let A ⇒ A , B ⇒ B , and C ⇒ C be three function types
uch that the example terms are well-typed.

Example: Untyped Identity Function . Figure 12 (top) shows how Forgetful, Transient, and Am-
esic manage an untyped function that crosses three boundaries. Forgetful creates a wrapper when
he function enters typed code and removes a wrapper when it leaves. Transient lets the function
ross boundaries without creating wrappers. Amnesic creates the same guard wrappers as Forget-
ul and also uses a trace wrapper to record the obligations from forgotten guards.

Example: Typed Identity Function . Figure 12 (bottom) shows how Forgetful, Transient, and Am-
esic manage a typed function that crosses three boundaries. Both Forgetful and Amnesic create
 sticky wrapper when the function leaves typed code. When the function re-enters typed code,
hey add a second guard wrapper that gets removed on the next exit. Amnesic additionally uses
 trace wrapper to collect all boundaries that the function has crossed. Transient does not create
rappers.
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:25

Fig. 13. Erasure boundary checks.

p

p

p

m

b

e

d

s

5

T

a

t

a

t

A

w

a

t

o

C

6

T

s

t

t

e

w

d

e

s

5.5.2 Theoretical Costs. Amnesic is a theoretical design that may not be realizable in practice. In
articular, an implementation must find an efficient representation of trace wrappers. Trace wrap-
ers track every boundary that a value has crossed. Consequently, they have a space-efficiency
roblem similar to the unbounded number of guard wrappers in the Natural and Co-Natural se-
antics. One simple fix is to settle for worse blame by putting an upper bound on the number of

oundaries that a trace wrapper can hold. Another option is to invent a compression scheme that
xploits redundancies among boundaries to reduce the space needs of a large set.

5.5.3 Origins of the Amnesic strategy. Amnesic is a synthesis of Forgetful and Transient that
emonstrates how our framework can guide the design of new checking strategies [35]. The name
uggests a connection to forgetful and the Greek origin of the second author.

.6 Erasure

he Erasure strategy is based on a view of types as an optional syntactic artifact. Type annotations
re a structured form of comment that help developers and tools read a codebase. At run-time,
ypes check nothing (Figure 13). Any value may flow into any context.

Despite the complete lack of type enforcement, the Erasure strategy is widely used (Figure 1)
nd has a number of pragmatic benefits. The static type checker can point out logical errors in
ype-annotated code. An IDE may use the static types in auto-completion and in refactoring tools.
n implementation does not require any instrumentation to enforce types. Users that are familiar
ith the host language do not need to learn a new semantics to understand the behavior of type-

nnotated programs. Finally, Erasure programs run as fast as a host-language program.

5.6.1 Origins of the Erasure strategy. Erasure is also known as optional typing and dates back to
he type hints of MACLISP [50] and Common Lisp [71]. StrongTalk is another early and influential
ptionally typed language [11]. Models of optional typing exist for JavaScript [8 , 16], Lua [47], and
lojure [10].

 TECHNICAL DEVELOPMENT

he technical analysis consists of three major pieces: the precise surface syntax (Section 6.1); the
ix reduction semantics, each equipped with a typed evaluation syntax (Section 6.2); and a set of
heorems concerning the properties that each semantics satisfies. Figure 14 displays a diagram
hat outlines the presentation. As the diagram indicates, four of the semantics share a common
valuation syntax; the intrinsically first-order transient semantics is separate from those.

Several properties depend on lifted semantics that propagate ownership labels in accordance
ith the guidelines from Section 4.4.1 . Meaning, the map in Figure 14 is only half of the formal
evelopment. Each syntax and semantics comes with a parallel, lifted version. Since the differ-
nces are in small details, the section presents only one lifting in full. The others appear in the
upplement.
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:26 B. Greenman et al.

Fig. 14. Map of definitions in Section 6 .

6

F

v

T

w

a

m

t

e

m

c

f

n

d

e

a

i

k

t

o

o

m

m

i

r

p

A

.1 Surface Syntax, Types, and Ownership

igure 15 presents the syntax and typing judgments for the surface language. Expressions e include
ariables, integers, pairs, functions, primitive operations, applications, and boundary expressions.
he primitive operations are pair projections and arithmetic functions; these model interactions
ith a runtime system. A boundary expression either embeds a dynamically typed expression in
 statically typed context (dyn) or a typed expression in an untyped context (stat).

A type specification

τ/ U

is either a static type τ or the symbol U for untyped code. Fine-grained
ixtures of τ and U, such as Int ×U, are not grammatical; the model describes two parallel syn-

axes that are connected through boundary expressions (Section 4.1). A statically typed expression
 0 is one for which the judgment Γ0 � e 0 : τ0 holds for some type environment and type. This judg-
ent depends on a standard notion of subtyping (�

:) that is based on the relation Nat �

: Int ,
ovariant for pairs and function codomains, and contravariant for function domains. The meta-
unction Δ determines the output type of a primitive operation. For example, the sum of two natural
umbers is a natural (Δ(sum , Nat , Nat) = Nat) but the sum of two integers returns an integer. A
ynamically typed expression e 1 is one for which Γ1 � e 1 : U holds for some environment Γ1 .
Every function application and operator application comes with a type specification

τ/ U

for the
xpected result. These annotations serve two purposes: to determine the behavior of the Transient
nd Amnesic semantics, and to disambiguate statically typed and dynamically typed redexes. An
mplementation could reconstruct valid annotations from the term and its context. The model
eeps them explicit to easily formulate examples where subtyping affects behavior; for instance,
he terms unop { Nat } e 0 and unop { Int } e 0 may give different results for the same input expression.

Figure 16 augments the surface syntax with ownership labels and introduces a single-owner
wnership consistency relation. These labels record the component from which an expression
riginates. The augmented syntax brings one addition, labeled expressions (e) � , and a require-
ent that boundary expressions label their inner component. The single-owner consistency judg-
ent (L ; � � e) ensures that every subterm of an expression has a unique owner. This judgment

s parameterized by a mapping from variables to labels (L) and a context label (�). Every variable
eference must occur in a context that matches the map entry for that variable; every labeled ex-
ression must match the context; and ever y boundar y expressions must have a client name that
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:27

Fig. 15. Surface syntax and typing rules.

m

u

w

p

m

v

w

m

t

s

o

atches the context label. For example, the expression (dyn (� 0 � Nat � � 1) (x 0)
� 1)

� 0
is consistent

nder a mapping that contains (x 0 : � 1) and the � 0 context label. The expression ((42) � 0)
� 1

, also
ritten ((42)) � 0 � 1 (Figure 18), is inconsistent for any parameters.
Labels correspond one-to-one to component names but come from a distinct set. Thus, the ex-

ression (dyn (� 0 � Nat � � 1) (x 0)
� 1) contains two names (� 0 and � 1) and one label (� 1). The label

atches the inner component name, which means that the inner component is responsible for the
ariable inside the boundary. The reason for using two distinct sets is to keep our analysis frame-
ork separate from the semantics that it analyzes. Whereas a semantics can freely inspect and
anipulate component names (which would be realized as symbols or addresses in an implementa-

ion), it cannot use labels to determine its behavior (labels would not be part of an implementation).
Last, a surface expression is well-formed (e : τ/ U

wf) if it satisfies a typing judgment—either
tatic or dynamic—and single-owner consistency under some labeling and context label. The the-
rems below all require well-formed expressions (though some ignore the ownership labels).
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:28 B. Greenman et al.

Fig. 16. Ownership syntax and single-owner consistency.

6

E

m

s

s

a

c

p

E

j

A

.2 Three Evaluation Syntaxes

ach semantics requires a unique evaluation syntax, but overlaps among these six languages
otivate three common platforms. A higher-order evaluation syntax supports type-enforcement

trategies that require wrappers. A first-order syntax, with simple checks rather than wrappers,
upports Transient. And an erased syntax supports the compilation of typed and untyped code to
 common untyped host.

Figure 17 defines common aspects of the evaluation syntax. These include errors Err , shapes (or,
onstructors) s , evaluation contexts, and evaluation metafunctions.

The evaluation syntax extends the surface syntax in a technical sense; namely, the grammar
resented in Figure 17 would be complete if it included a copy of the grammar from Figure 15 .
very occurrence of the word “extends” in a figure has a similar meaning. For example, the typing

udgments in Figure 19 would be complete if the judgment rules from Figure 15 were copied in.
A program evaluation may signal four kinds of errors.

• A dynamic tag error (TagErr) occurs when an elimination form is applied to a mis-shaped
input. For example, the first projection of an integer signals a tag error.

• An invariant error (InvariantErr) occurs when the shape of a typed redex contradicts static
typing. A “tag error” in typed code is one way to reach an invariant error. A type-sound
system eliminates such contradictions.

• A division-by-zero error (DivErr) may be raised by an application of the quotient primitive.
In a full language, there will be many additional primitive errors.

• A boundar y error (Boundar yErr (b ∗, v)) reports a mismatch between two components. The
sender provides the enclosed value; the client rejects it. The set of witness boundaries sug-
gests potential sources for the fault; intuitively, this set should include the client–sender
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:29

Fig. 17. Common evaluation syntax and metafunctions.

c

m

c

c

a

τ

t
boundar y. The error Boundar yErr ({(� 0 � τ0 � � 1)}, v 0) , for example, says that a mismatch
between value v 0 and type τ0 prevented the value sent by the � 1 component from entering
the � 0 component.

Remark: The semantics in this article all blame a set of boundaries to share a common
evaluation syntax. Many semantics can, however, provide more precise blame. Natural and
Co-Natural can blame a single boundary; Forgetful and Amnesic can blame a sequence.
The supplementary material presents these alternatives. In the supplement, it is therefore
crucial that a lifted reduction relation tracks sequences of labels rather than sets.

The four shapes, s , correspond both to type constructors and to value constructors. Half of the
orrepondence is defined by the �·� metafunction, which maps a type to a shape. The s hape - match
etafunction is the other half; it checks the top-level shape of a value.
Both metafunctions use an · ∈ · judgment, which holds if a value is a member of a set. The

laim v 0 ∈ n, for example, holds when the value v 0 is a member of the set of natural numbers. By
onvention, a variable without a subscript refers to a set and a term containing a set describes
 comprehension. The term (λ(x : τ) . v) , for instance, describes the set {(λ(x i : τj). v k) | x i ∈ x ∧
j ∈ τ ∧ v k ∈ v} of all typed functions that return a value (rather than an expression).

The s hape - match metafunction also makes reference to two value constructors unique to
he higher-order evaluation syntax: guard (G bv) and trace (T b ∗v) wrappers. A guard has
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:30 B. Greenman et al.

Fig. 18. Metafunctions for boundaries and labels.

Fig. 19. Higher-order syntax, typing rules, and ownership consistency.

a

p

v

s

r

r

t

T

w

a
m

s

A

 shape determined by the type in its boundary. A trace is metadata, so s hape - match looks
ast it. Section 4.2 informally justifies the design. Figure 19 formally introduces these wrapper
alues.

The final components of Figure 17 are the δ metafunctions. These provide a standard and partial
pecification of the primitive operations.

Figure 18 defines additional metafunctions for boundaries and ownership labels. For boundaries,
ev flips every client and sender name in a set of specifications. Both Transient and Amnesic
everse boundaries at function calls. The s e nde rs metafunction extracts the sender names from
he right-hand side of every boundary specification in a set. For labels, rev reverses a sequence.
he ow ne rs metafunction collects the labels around an unlabeled value stripped of any trace-
rapper metadata. Guard wrappers are not stripped, because they represent boundaries. Last, the

bbreviation ((·)) · captures a list of boundaries. The term ((4)) � 0 � 1 is short for ((4) � 0)
� 1

and ((5)) �0

atches 5 with � 0 bound to the empty list.

6.2.1 Higher-order Syntax, Path-based Ownership Consistency. The higher-order evaluation
yntax (Figure 19) introduces the two wrapper values described in Section 4.2 . A guard wrapper
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:31

a

F

t

c

t

f

i

c

f

a

s

s

w

i

t

i

m

t

f

e

j

p

N

f

v

d

t

b

e

s

I

c

m

s

A

a

1

w

(G (� � τ� �) v) represents a boundary between two components. 12 A trace wrapper (T b ∗v)
ttaches metadata to a value.

Type-enforcement strategies typically use guard wrappers to constrain the behavior of a value.
or example, the Co-Natural semantics wraps any pair that crosses a boundary with a guard;
his wrapper validates the elements of the pair upon future projections. Trace wrappers do not
onstrain behavior. A traced value simply comes with extra information; namely, a collection of
he boundaries that the value has previously crossed.

The higher-order typing judgments, Γ � 1 e : τ/ U

, extend the surface typing judgments with rules
or wrappers and errors. Guard wrappers may appear in both typed and untyped code; the rules
n each case mirror those for boundary expressions. Trace wrappers may only appear in untyped
ode; this restriction simplifies the Amnesic semantics (Figure 28). A traced expression is well-
ormed iff the enclosed value is well-formed. An error term is well-typed in any context.

Figure 19 also extends the single-owner consistency judgment to handle wrapped values. For
 guard wrapper, the outer client name must match the context and the enclosed value must be
ingle-owner consistent with the inner sender name. For a trace wrapper, the inner value must be
ingle-owner consistent relative to the context label.

6.2.2 First-order Syntax. The first-order syntax (Figure 20) supports typed–untyped interaction
ithout proxy wrappers. A new expression form, (check { τ/ U

} e 0 p 0), represents a shape check. The
ntended meaning is that the given type must match the value of the enclosed expression. If not,
hen the location p 0 may be the source of the fault. Locations are names for the pairs and functions
n a program. These names map to pre-values in a heap (H) and to sets of boundaries in a blame

ap (B). Pairs and functions are now second-class pre-values (w) that must be allocated before
hey may be used.

Three meta-functions define heap operations: ·(·), ·[· �→ ·] , and ·[· ∪ ·] . The first gets an item
rom a finite map, the second replaces a blame heap entry, and the third extends a blame heap
ntry. Because maps are sets, set union suffices to add new entries.

The first-order typing judgments state basic invariants. For statically typed expressions, the
udgment checks the top-level shape (s) of an expression and the well-formedness of any subex-
ressions. This judgment depends on a subtyping judgment for shapes, which is reflexive, allows
at �

: Int , and nothing more. For dynamically typed expressions, the judgment checks well-
ormedness. Both judgments rely on a store typing environment (T) to describe heap-allocated
alues. Store types must be consistent with the actual values on the heap, a standard technical
evice that is spelled out in the supplement.
Two aspects of the first-order typing judgments deserve special mention. First, untyped func-

ions may appear in typed contexts and typed functions may appear in untyped contexts. This
ehavior is an essential aspect of the first-order language, which allows typed-untyped interop-
rability and does not use wrappers to enforce a separation between the two worlds. Second,
hape-check expressions are allowed in typed and untyped contexts. This is a technical device.
n particular, checks arise after a function call to separate the substituted body from the calling
ontext, and this separation allows the typing judgments to switch from static mode to dynamic
ode as needed.

6.2.3 Erased Syntax. Figure 21 defines an evaluation syntax for type-erased programs. Expres-
ions include error terms. The typing judgment holds for any expression without free variables.
side from the type annotations left over from the surface syntax, which could be removed with
 translation step, the result is a conventional dynamically typed language.
2 Correction note: our prior work uses the name monitor wrapper and value constructor mon [34 , 35]. The name guard

rapper better matches earlier work [23 , 76], in which mon creates an expression and G creates a wrapper.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:32 B. Greenman et al.

Fig. 20. First-order syntax and typing rules.

6

T

i

i

A

.3 Properties of Interest

ype soundness guarantees that the evaluation of a well-formed expression (1) cannot end in an
nvariant error and (2) preserves an evaluation-language image of the surface type. Note that an
nvariant error captures the classic idea of an evaluation going wrong [49].
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:33

Fig. 21. Erased evaluation syntax and typing.

s

T

t

c

t

R

e

e

s

t

s

c

t

n

t

s

Y

Definition 6.1 (F -type Soundness). Let F map surface types to evaluation types. A semantics X

atisfies TS ((F)) if for all e 0 : τ/ U

wf one of the following holds:

• e 0 →

∗
X
v 0 and � F v 0 : F (τ/ U

),

• e 0 →

∗
X
{ TagErr , DivErr } ∪ BoundaryErr (b ∗, v),

• e 0 diverges .

hree surface-to-evaluation maps (F) suffice for the evaluation languages: an identity map 1 , a
ype-shape map s that extends the metafunction from Figure 17 , and a constant map 0 :

1 (τ/ U

) = τ/ U

, s (τ/ U

) =

{
U if τ/ U

= U

�τ0 � if τ/ U

= τ0
, 0 (τ/ U

) = U .

Complete monitoring guarantees that a semantics can enforce types for all interactions between
omponents. The definition of “all interactions” comes from the propagation guidelines (Sec-
ion 4.4.1). In particular, the labels on a value enumerate all partially responsible components.
elative to this specification, a reduction that preserves single-owner consistency (�, Figure 16)
nsures that a value cannot enter a new component without a full type check or a wrapper.

Definition 6.2 (Complete Monitoring). A semantics X satisfies CM if for all (e 0)
� 0 : τ/ U

wf and all
 1 such that e 0 →

∗
X
e 1 , the contractum is single-owner consistent: � 0 � e 1 .

Blame soundness and blame completeness measure the quality of error messages relative to a
pecification of the components that handled a value during an evaluation. A blame-sound seman-
ics reports a subset of the true senders, though it may miss some or even all. A blame-complete
emantics reports all the true senders, though it may also report irrelevant extras. A sound and
omplete semantics reports exactly the responsible components.

The path-based definitions for blame soundness and blame completeness rely on the propaga-
ion guidelines from Section 4.4.1 . Relative to these guidelines, the definitions relate the sender
ames in a set of boundaries (Figure 18) to the true owners of the mismatched value.

Definition 6.3 (Path-based Blame Soundness and Blame Completeness). For all well-formed e 0 such
hat e 0 →

∗
X

BoundaryErr (b ∗0 , v 0):

• X satisfies BS iff s e nde rs (b ∗0) ⊆ ow ne rs (v 0),
• X satisfies BC iff s e nde rs (b ∗0) ⊇ ow ne rs (v 0).

Last, the error preorder relation allows direct behavioral comparisons. If X and Y represent two
trategies for type enforcement, then X � Y states that the X semantics is less permissive than the
 semantics (or, as Section 4.6 notes, Y reduces at least as many expressions to a value as X).
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:34 B. Greenman et al.

Fig. 22. Common notions of reduction for Natural, Co-Natural, Forgetful, and Amnesic.

e

I

m

6

F

t

r

e

r

F

6

F

r

G

v

t

o

s

W

t

A

Definition 6.4 (Error Preorder). X � Y iff e 0 →

∗
Y

Err 0 implies e 0 →

∗
X

Err 1 for all well-formed
xpressions e 0 .

f two semantics lie below one another according to the error preorder, then they report type
ismatches on exactly the same well-formed expressions.

Definition 6.5 (Error Equivalence). X � Y iff X � Y and Y � X .

.4 Common Higher-order Notions of Reduction

our of the semantics build on the higher-order evaluation syntax. In redexes that do not mix
yped and untyped values, these semantics share the common behavior specified in Figure 22 . The
ules for typed code (�) handle elimination forms for unwrapped values and raise an invariant
rror (InvariantErr) for invalid input. Type soundness ensures that such errors do not occur. The
ules for untyped code (�) raise a tag error for a malformed redex. Later definitions, for example,
igure 23 , combine these relations (� , �) with others to define a semantics.

.5 Natural and Its Properties

igure 23 presents the values and key reduction rules for the Natural semantics. Conventional
eductions handle primitives and unwrapped functions (� and � , Figure 22).

A successful Natural reduction yields either an unwrapped value or a guard-wrapped function.
uards arise when a function value reaches a function-type boundary. Thus, the possible wrapped
alues are drawn from the following two sets:

v s = G (� � (τ⇒ τ) � �) (λx . e) ,
| G (� � (τ⇒ τ) � �) v d ,

v d = G (� � (τ⇒ τ) � �) (λ(x : τ) . e) ,
| G (� � (τ⇒ τ) � �) v s .

The presented reduction rules are those relevant to the Natural strategy for enforcing static
ypes. When a dynamically typed value reaches a typed context (dyn), Natural checks the shape
f the value against the type. If the type and value match, then Natural wraps functions and recur-
ively checks the elements of a pair. Otherwise, Natural raises an error at the current boundary.

hen a wrapped function receives an argument, Natural creates two new boundaries: one to pro-
ect the input to the inner, untyped function and one to validate the result.
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:35

Fig. 23. Natural notions of reduction.

w

c

f

t

F

a

T

Reduction in dynamically typed code (�

N

) follows a dual strategy. The rules for stat boundaries
rap functions and recursively protect the contents of pairs. The application of a wrapped function

reates boundaries to validate the input to a typed function and to protect the result.
Unsurprisingly, this checking protocol ensures the validity of types in typed code and the well-

ormedness of expressions in untyped code. The Natural approach additionally keeps boundary
ypes honest throughout the execution.

Theorem 6.6. Natural satisfies TS ((1)) .

Proof Sketch. By progress and preservation lemmas for the higher-order typing judgment (� 1).
or example, if an untyped pair reaches a boundary, then a typed step (�

N

) makes progress to either
 new pair or to an error. In the former case, the new pair contains two boundary expressions:

dyn (� 0 � τ0 ×τ1 � � 1) 〈 v 0 , v 1 〉 �

N

〈 dyn (� 0 � τ0 � � 1) v 0 , dyn (� 0 � τ1 � � 1) v 1 〉 .
he typing rules for pairs and for dyn boundaries validate the type of the result.
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:36 B. Greenman et al.

Fig. 24. Natural labeled notion of reduction for typed code.

I

r

b

r

t

s

A

A second interesting case is for the rule that applies a wrapped function in a typed context:

app {τ0 } (G (� 0 � (τ1 ⇒ τ2) � � 1) v 0) v 1 �

N

dyn (� 0 � τ2 � � 1) (app {U} v 0 (stat (� 1 � τ1 � � 2) v 1)) .

f the redex is well-typed, then v 1 has type τ1 and the inner stat boundary is well-typed. Similar
easoning for v 0 shows that the untyped application in the result is well-typed. Thus, the dyn

oundary has type τ2 , which, by the types on the redex, is a subtype of τ0 . �

Figure 24 presents a labeled variant of the Natural semantics for typed code. Ignoring labels, the
ules in this figure are a combination of those in Figures 22 and 23 . The labels reflect communica-
ions and changes of ownership. The labeled rules for untyped code are similar and appear in the
upplementary material.

Theorem 6.7. Natural satisfies CM .
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:37

c

d

w

a

I

(

p

I

q

b

c

c

e

a

T

i

a

6

F

I

c

v

t

s

a

Proof Sketch. By showing that a lifted variant of the →

∗
N

relation preserves single-owner
onsistency (�). Full lifted rules for Natural appear in the supplementary material, but one can
erive the rules by applying the guidelines from Section 4.4.1 . For example, consider the �

N

rule,
hich wraps a function. The lifted version (�

N

) accepts a term with arbitrary ownership labels

nd propagates these labels to the result:

(stat (� 0 � (τ0 ⇒ τ1) � � 1) ((v 0))
�2)

� 3 �

N

(G (� 0 � (τ0 ⇒ τ1) � � 1) ((v 0))
�2)

� 3

if s hape - match (�τ0 ⇒ τ1 �, v 0).

f the redex satisfies single-owner consistency, then the context label matches the client name
 � 3 = � 0) and the labels inside the boundary match the sender name (� 2 = � 1 · · · � 1). Under these
remises, the result also satisfies single-owner consistency.
As a second example, consider the lifted rule that applies a wrapped function:

(app {τ0 } ((G (� 0 � (τ1 ⇒ τ2) � � 1) (v 0)
� 2))

�3
v 1)

� 4

�

N

(dyn (� 0 � τ2 � � 1) (app {U} v 0 (stat (� 1 � τ1 � � 0) (v 1)
� 4 r ev (�3)))

� 2
)
�3 � 4

.

f the redex satisfies single-owner consistency, then � 0 = � 3 = � 4 and � 1 = � 2 . Hence, both se-
uences of labels in the result contain nothing but the context label � 4 . �

Blame soundness and completeness ask whether Natural identifies the components responsi-
le for a boundary error. Here, complete monitoring helps to simplify the questions. Specifically,
omplete monitoring implies that the Natural semantics detects every mismatch between two
omponents—either immediately, or as soon as a function computes an incorrect result. Hence,
very mismatch is due to a single boundary.

Lemma 6.8. If e 0 is well-formed and e 0 →

∗
N

BoundaryErr (b ∗0 , v 0), then s e nde rs (b ∗0) = ow ne rs (v 0)

nd furthermore b ∗0 contains exactly one boundary specification.

Proof. The sole Natural rule that detects a mismatch blames a single boundary:

(e 0)
� 0 →

∗
N

E[dyn (� 1 � τ0 � � 2) v 0]

→

∗
N

BoundaryErr ({(� 1 � τ0 � � 2)}, v 0).

hus, b ∗0 = {(� 1 � τ0 � � 2)} and s e nde rs (b ∗0) = {� 2 }. This boundary is the correct one to blame only if
t matches the true owner of the value; that is, ow ne rs (v 0) = {� 2 }. Complete monitoring guarantees
 match via � 0 � E[dyn (� 1 � τ0 � � 2) (v 0)

� 2] . �

Corollary 6.9. Natural satisfies BS and BC .

.6 Co-Natural and Its Properties

igure 25 presents the Co-Natural strategy. Co-Natural is a lazier variant of the Natural approach.
nstead of eagerly validating pairs at a boundary, Co-Natural creates a wrapper to delay element-
hecks until they are needed.

Relative to Natural, there are two changes in the notions of reduction. First, the rules for a pair
alue at a pair-type boundary create guards. Second, new projection rules handle guarded pairs;
hese rules make a new boundary to validate the projected element.

Co-Natural still satisfies both a strong type soundness theorem and complete monitoring. Blame
oundness and blame completeness follow from complete monitoring. Nevertheless, Co-Natural
nd Natural can behave differently.
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:38 B. Greenman et al.

Fig. 25. Co-Natural notions of reduction.

M

t

T

a

A

Theorem 6.10. Co-Natural satisfies TS ((1)) .

Proof Sketch. By progress and preservation lemmas for the higher-order typing judgment (� 1).
any of the proof cases are similar to cases for Natural. One case unique to Co-Natural is for pairs

hat cross a boundary:

dyn (� 0 � τ0 ×τ1 � � 1)〈 v 0 , v 1 〉 �

C

G (� 0 � τ0 ×τ1 � � 1)〈 v 0 , v 1 〉 .
he typing rule for guard wrappers validates the result. �

Theorem 6.11. Co-Natural satisfies CM .

Proof Sketch. By preservation of single-owner consistency for the lifted →

∗
C

relation. For ex-
mple, consider the lifted rule that extracts the first element from a wrapped, untyped pair:
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:39

I

a

w

a

p

N

e

6

T

l

A

p

t

t

m

v

t

a

o

s

l

o

(

p

t

(fst {U} ((G (� 0 � τ0 ×τ1 � � 1) (v 0)
� 2))

�3
)
� 4

�

C

(stat (� 0 � τ0 � � 1) (fst {τ0 } (v 0)
� 2)

� 2
)
�3 � 4
.

f the redex satisfies single-owner consistency, then � 0 = � 3 = � 4 and � 1 = � 2 . �

Theorem 6.12. Co-Natural satisfies BS and BC .

Proof Sketch. By the same line of reasoning that supports Natural; refer to Lemma 6.8 . �

Theorem 6.13. N � C .

Proof Sketch. By a stuttering simulation between Natural and Co-Natural. Natural takes
dditional steps when a pair reaches a boundary, because it immediately checks the contents,
hereas Co-Natural creates a guard wrapper. Co-Natural takes additional steps when eliminating
 wrapped pair. The supplement defines the simulation relation. �

Theorem 6.14. C � N .

Proof Sketch. The pair wrappers in Co-Natural imply C � N . Consider a statically typed ex-
ression that imports an untyped pair with an ill-typed first element:

dyn (� 0 � Nat ×Nat � � 1)〈 −2 , 2 〉 .
atural detects the mismatch at the boundary, but Co-Natural will raise an error only if the first

lement is accessed. �

.7 Forgetful and Its Properties

he Forgetful semantics (Figure 26) creates wrappers to enforce pair and function types, but strictly
imits the number of wrappers on any one value. An untyped value acquires at most one wrapper.
 typed value acquires at most two wrappers: one to protect itself from inputs and a second to
rotect its current client:

v s = G b 〈 v , v 〉
| G b λx . e
| G b (G b〈 v , v 〉)
| G b (G b λ(x : τ). e)

v d = G b 〈 v , v 〉
| G b λ(x : τ). e

Forgetful enforces this two-wrapper limit by removing the outer wrapper of any guarded value
hat flows to untyped code. An untyped-to-typed boundary always makes a new wrapper, but
hese wrappers do not accumulate, because a value cannot enter typed code twice in a row; it
ust first exit typed code and lose one wrapper.
Removing outer wrappers does not affect the type soundness of untyped code; all well-formed

alues match U, with or without wrappers. Type soundness for typed code is guaranteed by
he temporary outer wrappers. Complete monitoring is lost, however, because the removal of
 wrapper creates a joint-ownership situation. When a type mismatch occurs, Forgetful blames
ne boundary. Though sound, this one boundary is generally not enough information to find the
ource of the problem; in other words, Forgetful fails to satisfy blame completeness. Forgetful
ies above Co-Natural and Natural in the error preorder, because it fails to enforce certain type
bligations.

Theorem 6.15. Forgetful satisfies TS ((1)) .

Proof Sketch. By progress and preservation lemmas for the higher-order typing judgment
 � 1). The most interesting proof case shows that dropping a guard wrapper does not break type
reservation. Suppose that a pair v 0 with static type Int ×Int crosses two boundaries and re-enters
yped code at a different type:
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:40 B. Greenman et al.

Fig. 26. Forgetful notions of reduction.

N

p

o

i

A

dyn (� 0 � (Nat ×Nat) � � 1) (stat (� 1 � Int ×Int � � 2) v 0) →

∗
F

G (� 0 � (Nat ×Nat) � � 1) (G (� 1 � Int ×Int � � 2) v 0).

o matter what value v 0 is, the result is well-typed, because the context trusts the outer wrap-
er. If this double-wrapped value—call it v 2 —crosses another boundary, then Forgetful drops the
uter wrapper. Nevertheless, the result is a dynamically typed wrapper value with sufficient type
nformation:
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:41

d

T

S

T

a

e

c

t

t

I

f

g

v

T

stat (� 3 � (Nat ×Nat) � � 0) v 2 →

∗
F

G (� 1 � Int ×Int � � 2) v 0 .

When this single-wrapped wrapped pair reenters a typed context, it again gains a wrapper to
ocument the context’s expectation:

dyn (� 4 � (τ1 ×τ2) � � 3) (G (� 1 � Int ×Int � � 2) v 0) →

∗
F

G (� 4 � (τ1 ×τ2) � � 3) (G (� 1 � Int ×Int � � 2) v 0).

he new wrapper preserves types. �

Theorem 6.16. Forgetful does not satisfy CM .

Proof. Consider the lifted variant of the stat rule that removes an outer guard wrapper:

(stat (� 0 � τ0 � � 1) ((G b 1 v 0))
�2)

� 3 �

F
((v 0))

�2 � 3

if s hape - match (�τ0 �, (G b 1 v 0)) .

uppose � 0 � � 1 . If the redex satisfies single-owner consistency, then � 2 contains � 1 and � 3 = � 0 .
hus, the rule produces a value with two distinct labels. �

Theorem 6.17. Forgetful satisfies BS .

Proof. By a preservation lemma for a weakened version of the � judgment. The weak judgment
sks whether the owners on a value contain at least the name of the current component. Forgetful
asily satisfies this invariant, because the ownership guidelines (Section 4.4.1) never drop an un-
hecked label. Thus, when a boundary error occurs,

dyn (� 0 � τ0 � � 1) v 0 �

F
BoundaryErr ({(� 0 � τ0 � � 1)}, v 0)

if ¬ s hape - match (�τ0 �, v 0),

he sender name � 1 matches one of the ownership labels on v 0 . �

Theorem 6.18. Forgetful does not satisfy BC .

Proof. The proof of Theorem 6.16 shows how a value can acquire two labels. If such a value
riggers a boundary error, then the error will be incomplete:

dyn (� 2 � Int � � 1) ((λx 0 . x 0))
� 0 � 1 �

F
BoundaryErr ({(� 2 � Int � � 1)}, ((λx 0 . x 0)) � 0 � 1).

n this example, the error output does not point to component � 0 . �

Theorem 6.19. C � F .

Proof Sketch. By a stuttering simulation. Co-Natural can take extra steps at an elimination
orm to unwrap an arbitrary number of wrappers; Forgetful has at most two to unwrap. The For-
etful semantics shown above never steps ahead of Co-Natural, but the supplement presents a
ariant with Amnesic-style trace wrappers that does step ahead. �

Theorem 6.20. F � C .

Proof Sketch. F � C , because Forgetful drops checks. Let:

e 0 = stat b 0 (dyn (� 0 � (Nat ⇒ Nat) � � 1) (λx 0 . x 0)) ,

e 1 = app {U} e 0 〈 2 , 8 〉 .
hen, e 1 →

∗
F
〈 2 , 8 〉 and Co-Natural raises a boundary error. �
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:42 B. Greenman et al.

6

T

s

t

a

b

s

fi

r

v

a

v

s

o

a

e

s

c

d

t

a

a

P

d

d

s

c

t

b

d

T

1

i

A

.8 Transient and Its Properties

he Transient semantics in Figure 27 builds on the first-order evaluation syntax (Figure 20); it
tores pairs and functions on a heap as indicated by the syntax of Figure 20 , and aims to enforce
ype constructors (s , the codomain of �·�) through shape checks. For every pre-value w stored on
 heap H , there is a corresponding entry in a blame map B that points to a set of boundaries. The
lame map provides information if a mismatch occurs, following Reticulated Python [83 , 86].

Unlike for the higher-order-checking semantics, there is a significant overlap between the Tran-
ient rules for typed and untyped redexes. Figure 27 thus presents one notion of reduction. The
rst group of rules in Figure 27 handle boundary expressions and check expressions. When a value
eaches a boundary, Transient matches its shape against the expected type. If successful, then the
alue crosses the boundary and its blame map records the fact; otherwise, the program halts. For
 dyn boundary, the result is a boundary error. For a stat boundary, the mismatch reflects an in-
ariant error in typed code. Check expressions similarly match a value against a type-shape. On
uccess, the blame map gains the boundaries associated with the location p 0 from which the value
riginated. On failure, these same boundaries may help the programmer diagnose the fault.
The second group of rules handles primitives and application. Pair projections and function

pplications must be followed by a check in typed contexts to enforce the type annotation at the
limination form. In untyped contexts, a check for the dynamic type embeds a possibly typed
ubexpression. The binary operations are not elimination forms, so they are not followed by a
heck. Applications of typed functions additionally check the input value against the function’s
omain type. If successful, then the blame map records the check. Otherwise, Transient reports
he boundaries associated with the function and its argument. 13 Note that untyped functions may
ppear in typed contexts and vice-versa, because Transient does not create wrappers.

Applications of untyped functions in untyped code do not update the blame map. This allows
n implementation to insert checks by rewriting only typed code, leaving untyped code as is.
rotected typed code can thus interact with any untyped libraries [86], just like other variants.
Not shown in Figure 27 are rules for elimination forms that halt the program. When δ is un-

efined or when a non-function is applied, the result is either an invariant error or a tag error
epending on the context.
Transient shape checks do not guarantee full type soundness, complete monitoring, or blame

oundness and completeness. They do, however, preserve the top-level shape of all values in typed
ode. Blame completeness fails, because Transient does not update the blame map when an un-
yped function is applied in an untyped context.

Theorem 6.21. Transient does not satisfy TS ((1)) .

Proof Sketch. Let e 0 = dyn (� 0 � (Nat ⇒ Nat) � � 1) (λx 0 . −4).

• Then � e 0 : Nat ⇒ Nat in the surface syntax,
• and e 0 ; ∅ ; ∅ →

∗
T

p 0 ; H 0 ; B 0 , where H 0 (p 0) = (λx 0 . −4),

ut � 1 (λx 0 . −4) : Nat ⇒ Nat . �

Theorem 6.22. Transient satisfies TS ((s)) .

Proof Sketch. Recall that s maps types to type shapes and the unitype to itself. The proof
epends on progress and preservation lemmas for the first-order typing judgment (� s). Although
ransient lets any well-shaped value cross a boundary, the check expressions that appear after
3 Blaming the argument as well as the function is a change to the original Transient semantics [86] that may provide more
nformation in some cases (personal communication with Michael M. Vitousek).

CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:43

Fig. 27. Transient notions of reduction.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:44 B. Greenman et al.

e

e

T

d

p

i

a

R

S

b

o

R

A

limination forms preserve soundness. Suppose that an untyped function crosses a boundary and
ventually computes an ill-typed result:

(app { Int } p 0 4); H 0 ; B 0 � �

T
(check { Int } 〈 4 , sum {U} 4 1 〉 p 0); H 0 ; B 1

if H 0 (p 0) = λx 0 . 〈 x 0 , sum {U} x 0 1 〉
and B 1 = B 0 [v 0 ∪ rev (B 0 (p 0))] .

he check expression guards the context. �

Theorem 6.23. Transient does not satisfy CM .

Proof. A structured value can cross any boundary with a matching shape, regardless of the
eeper type structure. For example, the following lifted rule (� �

T
) adds a new label to a pair:

(dyn (� 0 � τ0 ×τ1 � � 1) ((p 0))
�2)

� 3
; H 0 ; B 0 � �

T
((p 0))

�2 � 3 ; H 0 ; B 1 ,

where H 0 (p 0) ∈ 〈 v , v 〉 .
�

Theorem 6.24. Transient does not satisfy BS .

Proof. Let component � 0 define a function f 0 and export it to components � 1 and � 2 . If com-
onent � 2 triggers a type mismatch, as sketched below, then Transient blames both � 2 and the

rrelevant � 1 :

The following term expresses this scenario using a let-expression to abbreviate untyped function
pplication:

(let f 0 = (λx 0 . 〈 x 0 , x 0 〉) in

let f 1 = (stat (� 0 � (Int ⇒ Int) � � 1) (dyn (� 1 � (Int ⇒ Int) � � 0) (f 0)
� 0)

� 1
) in

stat (� 0 � Int � � 2) (app { Int } (dyn (� 2 � (Int ⇒ Int) � � 0) (f 0)
� 0)5)

� 2
)
� 0

; ∅ ; ∅ .
eduction ends in a boundary error that blames three components. �

Theorem 6.25. Transient does not satisfy BC .

Proof. An untyped function application in untyped code does not update the blame map:

(app {U} p 0 v 0); H 0 ; B 0 � �

T
(e 0 [x 0 ← v 0]); H 0 ; B 0

if H 0 (p 0) = λx 0 . e 0 .

uch applications lead to incomplete blame when the function has previously crossed a type
oundary. To illustrate, the term below uses an untyped identity function f 1 to coerce the type
f another function f 0 . After the coercion, an application leads to type mismatch:

(let f 0 = stat (� 0 � τ0 � � 1) (dyn (� 1 � τ0 � � 2) (λx 0 . x 0)
� 2)

� 1
in

let f 1 = stat (� 0 � (τ0 ⇒ τ1) � � 3) (dyn (� 3 � (τ0 ⇒ τ1) � � 4) (λx 1 . x 1)
� 4)

� 3
in

stat (� 0 � (Int ×Int) � � 5)

(app { Int ×Int } (dyn (� 5 � τ1 � � 0) (app {U} f 1 f 0) � 0)42)
� 5

)
� 0

; ∅ ; ∅ .
eduction ends in a boundary error that does not report the crucial labels � 3 and � 4 . �

Finally, Transient is more permissive than Forgetful in the error pre-order.
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:45

i

b

e

e

i

q

6

T

t

t

v

s

i

(

t

f

t

p

i

1

s

Theorem 6.26. F � T .

Proof Sketch. Indirectly, via T � A (Theorem 6.30) and F � A (Theorem 6.31). �

The results about the wrapper-free Transient semantics are negative. It fails CM and BC , because
t has no interposition mechanism to keep track of type implications for untyped code. Its heap-
ased approach to blame fails BS , because the blame heap conflates different paths in a program. 14

If several clients use the same library function and one client encounters a type mismatch, then
very component gets blamed. The reader should keep in mind, however, that the chosen prop-
rties are of a purely theoretical nature. In practice , Transient has played an important role when
t comes to performance [33 , 36 , 37]. Furthermore, the work of Lazarek et al. [45] has also raised
uestions concerning the pragmatics of blame soundness (and completeness).

.9 Amnesic and Its Properties

he Amnesic semantics (Figure 28) employs the same dynamic checks as Transient and supports
he synthesis of error messages with path-based blame information. While Transient attempts to
rack blame with heap addresses, Amnesic uses trace wrappers to attach blame information to
alues.

Amnesic bears a strong resemblance to the Forgetful semantics. Both use guard wrappers in the
ame way, keeping a sticky “inner” wrapper around typed values and a temporary “outer” wrapper
n typed contexts. There are two crucial differences:

• Whenever Amnesic removes a guard wrapper, it saves the boundary specification in a trace
wrapper. The number of boundaries in a trace can thus grow without bound, but the num-
ber of wrappers around a value is limited to three.

• At elimination forms, Amnesic checks only the context’s type annotation. If an untyped
function enters typed code at one type and is later used at a supertype,

app { Int } (G (� 0 � (Nat ⇒ Nat) � � 1)λx 0 . −7)2 ,

then Amnesic runs successfully, whereas Forgetful raises a boundary error.

The elimination rules for guarded pairs show the clearest difference between checks in Amnesic
which mimics Transient) and Forgetful. Amnesic ignores the type in the guard. Forgetful ignores
he type annotation on the pair projection.

The following wrapped values can occur at run-time in Amnesic. The notation (T ? b
∗ e) is short

or an expression that may or may not have a trace wrapper.

v s = G b (T ? b
∗ 〈 v , v 〉)

| G b (T ? b
∗ λx . e)

| G b (T ? b
∗ (G b〈 v , v 〉))

| G b (T ? b
∗ (G b λ(x : τ). e)),

v d = T b
∗ i

| T b ∗ 〈 v , v 〉
| T b ∗ λx . e
| T ? b ∗ (G b〈 v , v 〉)
| T ? b ∗ (G b λ(x : τ) . e) .

Figure 29 defines three metafunctions and one abbreviation for trace wrappers. The metafunc-
ions extend, retrieve, and remove the boundaries associated with a value. The abbreviation sim-
lifies the formulation of the reduction rules as they now accept optionally traced values.
Amnesic satisfies full type soundness thanks to guard wrappers and fails complete monitor-

ng, because it drops wrappers. This is no surprise, because Amnesic creates and removes guard
4 It is possible to adapt the path-based notion of ownership to a form of “shared” ownership that partially matches Tran-
ient’s “collaborative ” blame strategy [35]. A notion of ownership that matches Transient fully remains an open problem.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:46 B. Greenman et al.

Fig. 28. Amnesic notions of reduction.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:47

Fig. 29. Metafunctions for Amnesic.

Fig. 30. Path-based ownership consistency for trace wrappers.

w

w

a

(

o

e

T

s

�

U

b

p

rappers in the same manner as Forgetful. Unlike the Forgetful semantics, Amnesic uses trace
rappers to remember the boundaries that a value has crossed. This information leads to sound

nd complete blame messages.

Theorem 6.27. Amnesic satisfies TS ((1)) .

Proof Sketch. By progress and preservation lemmas for the higher-order typing judgment
 � 1). Amnesic creates and drops wrappers in the same manner as Forgetful (Theorem 6.15), so the
nly interesting proof cases concern elimination forms. For example, when Amnesic extracts an
lement from a guarded pair, it ignores the type in the guard (τ1 ×τ2):

fst {τ0 } (G (� 0 � τ1 ×τ2 � � 1) v 0) �

A
dyn (� 0 � τ0 � � 1) (fst {U} v 0).

he new boundary enforces the context’s assumption (τ0), which is enough to satisfy type
oundness. �

Theorem 6.28. Amnesic does not satisfy CM .

Proof Sketch. Removing a wrapper creates a value with more than one label:

(stat (� 0 � (τ0 ⇒ τ1) � � 1) ((G b 1 ((T b
∗
0 ((λx 0 . x 0))

�2))
�3

))
�4

)

� 5

�

A

((trace ({(� 0 � (τ0 ⇒ τ1) � � 1), b 1 } ∪ b ∗0) ((λx 0 . x 0))
�2))

�3 �4 � 5
. �

Theorem 6.29. Amnesic satisfies BS and BC .

Proof Sketch. By progress and preservation lemmas for a path-based consistency judgment,

p , that weakens single-owner consistency to allow multiple labels around a trace-wrapped value.
nlike the heap-based consistency for Transient, which requires an entirely new judgment, path-
ased consistency replaces only the rules for trace wrappers (shown in Figure 30) and trace ex-
ressions. Now consider the guard-dropping rule:
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:48 B. Greenman et al.

P

b

m

e

s

c

c

b

g

t

S

6

F

a

W

u

a

s

b

t

(

m

A

(stat (� 0 � (τ0 ⇒ τ1) � � 1) ((G b 1 ((T b
∗
0 ((λx 0 . x 0))

�2))
�3

))
�4

)

� 5

�

A

((trace ({(� 0 � (τ0 ⇒ τ1) � � 1), b 1 } ∪ b ∗0) ((λx 0 . x 0))
�2))

�3 �4 � 5
.

ath-consistency for the redex implies that � 3 and � 4 match the component names on the boundary
 1 , and that the client side of b 1 matches the outer sender � 1 . Thus, the new labels on the result
atch the sender names on the two new boundaries in the trace. �

Theorem 6.30. T � A.

Proof Sketch. By a stuttering simulation between Transient and Amnesic. Amnesic may take
xtra steps at an elimination form and to combine traces into one wrapper. Transient takes extra
teps to place pre-values on the heap and to check the result of elimination forms. In fact, the two
ompute equivalent results up to wrappers and blame. �

Theorem 6.31. F � A.

Proof Sketch. By a lock-step bisimulation. The only difference between Forgetful and Amnesic
omes from subtyping. Forgetful uses wrappers to enforce the type on a boundary. Amnesic uses
oundary types only for an initial shape check and instead uses the static types in typed code to
uide checks at elimination forms. �

Theorem 6.32. A � F .

Proof Sketch. In the following A � F example, a boundary declares one type and an elimina-
ion form requires a weaker type:

fst { Int } (dyn (� 0 � (Nat ×Nat) � � 1) 〈 −4 , 4 〉) .
ince −4 is an Int , Amnesic reduces the expression to a value. Forgetful detects an error. �

.10 Erasure and Its Properties

igure 31 presents the values and notions of reduction for the Erasure semantics. Erasure ignores
ll types at run-time. As the first two reduction rules show, any value may cross any boundary.
hen an incompatible value reaches an elimination form, the result depends on the context. In

ntyped code, the redex steps to a tag error. In typed code, the malformed redex indicates that
n ill-typed value crossed a boundary. Thus, Erasure ends with a boundary error at the last pos-
ible moment. These errors come with no information, because there is no record of the relevant
oundary to point back to.

Theorem 6.33. Erasure satisfies neither TS ((1)) nor TS ((s)) .

Proof. Dynamic-to-static boundaries are unsound. An untyped function, for example, can en-
er a typed context that expects an integer: dyn (� 0 � Int � � 1) (λx 0 . 42) � �

E
(λx 0 . 42). �

Theorem 6.34. Erasure satisfies TS ((0)) .

Proof Sketch. By progress and preservation lemmas for the erased “dynamic-typing” judgment
 � 0). Given well-formed input, every � �

E
rule yields a dynamically typed result. �

Theorem 6.35. Erasure does not satisfy CM .

Proof Sketch. This static-to-dynamic transition (stat (� 0 � τ0 � � 1) (v 0)
� 2)

� 3 � �

E
((v 0))

� 2 � 3 adds

ultiple labels to a value. �
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:49

Fig. 31. Erasure notions of reduction.

T

e

Theorem 6.36.

• Erasure satisfies BS .

• Erasure does not satisfy BC .

Proof Sketch. An Erasure boundary error blames an empty set, for example,

fst { Int } (λx 0 . x 0) � �

E
BoundaryErr (∅ , (λx 0 . x 0)) .

he empty set is trivially sound and incomplete. �

Theorem 6.37. A � E.

Proof Sketch. By a stuttering simulation. Amnesic takes extra steps at elimination forms, to
nforce types, and to create trace wrappers. �

Theorem 6.38. E � A.
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:50 B. Greenman et al.

f

A

7

S

T

e

s

e

e

a

r

N

p

p

c

a

i

p

8

O

o

c

a

fi

a

b

d

h

a

a

r

o

g

1

A

Proof Sketch. As a counterexample showing E � A, the following term applies an untyped
unction:

app { Nat } (dyn (� 0 � (Nat ⇒ Nat) � � 1) (λx 0 . −9)) 4 .

mnesic checks for a natural-number result and errors, but Erasure checks nothing. �

 RELATED WORK

everal authors have used cast calculi to design and analyze variants of the Natural semantics.
he original work in this lineage is Henglein’s coercion calculus [40]. Siek et al. [67] discover sev-
ral variants by studying two design choices: laziness in higher-order casts and blame-assignment
trategies for the dynamic type. Siek et al. [63] present two space-efficient calculi and prove them
quivalent to a Natural blame calculus. Siek and Chen [65] generalize these calculi with a param-
terized framework and directly model six of them.

The literature has many other variants of the Natural semantics. Some of these are eager, such
s AGT [28] and monotonic [64]; others are lazy like Co-Natural [20 , 21 , 27]. All can be positioned
elative to one another by our error preorder.

The KafKa framework expresses all four type-enforcement strategies compared in Section 2 :
atural (Behavioral), Erasure (Optional), Transient, and Concrete [18]. It thus enables direct com-
arisons of example programs. The framework is mechanized and has a close correspondence to
ractical implementations, because each type-enforcement strategy is realized as a compiler to a
ommon core language. KafKa does not, however, include a meta-theoretical analysis.

New et al. [53 , 54] develop an axiomatic theory of term precision to formalize the gradual guar-
ntee and subsequently derive an order-theoretic specification of casts. This specification of casts
s a guideline for how to enforce types in a way that preserves standard type-based reasoning
rinciples. Only the Natural strategy satisfies the axioms.

 DISCUSSION

ne central design issue for languages that can mix typed and untyped code is the semantics
f types and specifically how their integrity is enforced as values flow from typed to untyped
ode and back. Among other things, the choice determines whether static types can be trusted
nd whether error messages come with useful information when an interaction goes wrong. The
rst helps the compiler with type-based optimization and influences how a programmer thinks
bout performance. The second might play a key role when programmers must debug mismatches
etween types and code. Without an interaction story, mixed-typed programs are no better than
ynamically typed programs when it comes to run-time errors. Properties that hold for the typed
alf of the language are only valid under a closed-world assumption [8 , 16 , 58]; such properties
re a starting point, but make no contribution to the overall goal.

As our analysis demonstrates, the limitations of the host language determine the invariants that
 language designer can hope to enforce. First, higher-order wrappers enable strong guarantees but
equire functional APIs 15 or support from the host runtime system. A language without wrappers
f any sort sets up weak guarantees by rewriting typed code.
Technically speaking, the article presents six distinct semantics from four different an-

les (Table 2) and establishes an error preorder relation:

• Type soundness is a relatively weak property; it determines whether typed code can trust
its own types. Except for the Erasure semantics, which does nothing to enforce types, type
soundness does not clearly distinguish the various strategies.
5 A language with first-class functions can always use lambda as a wrapper [70].

CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

Typed–Untyped Interactions: A Comparative Analysis 4:51

Table 2. Technical Contributions

Natural Co-Natural Forgetful Transient Amnesic Erasure
Type soundness 1 1 1 s 1 0

Complete monitoring ✓ ✓ ✕ ✕ ✕ ✕

Blame soundness ✓ ✓ ✓ ✕ ✓ ∅
Blame completeness ✓ ✓ ✕

† ✕ ✓ ✕

Error preorder N � C � F � T � A � E

† Satisfiable by adding Amnesic-style trace wrappers; see supplement.

d

W

A

f

u

i

w

d

m

g

t

m

A

M

s

s

a

d

• Complete monitoring is a stronger property, adapted from the literature on higher-order
contracts [23]. It holds when untyped code can trust type specifications and vice-versa.

The last two properties tell a developer what aid to expect if a type mismatch occurs.

• Blame soundness ensures that every boundary in a blame message is potentially responsi-
ble. Four strategies satisfy blame soundness relative to a path-based notion of responsibility.
Transient fails to satisfies blame soundness, because it merges blame information for dis-
tinct references to a heap-allocated value (Theorem 6.24). Erasure is trivially blame-sound,
because it gives the programmer zero information.

• Blame completeness ensures that every blame error comes with an overapproximation of
the responsible parties. Three of the blame-sound semantics satisfy blame completeness,
and Forgetful can be made complete with a straightforward modification. The Erasure strat-
egy trivially fails blame completeness. The Transient strategy fails because it has no way
to supervise untyped values that flow through a typed context.

Transient and Erasure provide the weakest guarantees, but they also have a strength that Table 2
oes not bring across; namely, they are the only strategies that do not require wrapper values.
rappers impose space costs and time costs; they also raise object identity issues [26 , 43 , 72 , 84].
 wrapper-free strategy with stronger guarantees would therefore be promising. A related topic

or future work is to test whether the weaker guarantees of wrapper-free strategies are sufficiently
seful in practice. Lazarek et al. [45] find that the gap between Natural blame and Transient blame

s smaller than expected across thousands of simulated debugging scenarios. It remains to be seen
hether this small gap nevertheless has large implications for working programmers.
The choice of semantics of type enforcement has implications for two major aspects of language

esign: the performance of an implementation and its acceptance by working developers. Green-
an et al. [38] developed an evaluation framework for the performance concern that is slowly

aining in acceptance; Tunnell Wilson et al. [82] present rather preliminary results concerning
he acceptance by programmers. In conclusion, though, much remains to be done before the com-
unity can truly claim to understand this multi-faceted design space.

CKNOWLEDGMENTS

ichael Ballantyne inspired the strategy-oriented comparisons in Section 5 . Michael M. Vitousek
uggested that Transient is not as unsound as it first seems, which led us toward the bisimilar,
ound Amnesic semantics. Amal Ahmed, Stephen Chang, and Max New criticized several of our
ttempts to explain complete monitoring. Max also provided a brief technical description of his
issertation work.
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

4:52 B. Greenman et al.

R

[

[

[
[
[

[

[

[
[

[
[

[

[

[

[

[

[

[

[

[

A

EFERENCES

[1] Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. 2011. Blame for all. In Proceedings of the POPL .
201–214.

[2] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. 1994. Soft typing with conditional types. In Proceedings

of the POPL . 163–173.
[3] Esteban Allende, Oscar Callaú, Johan Fabry, Éric Tanter, and Marcus Denker. 2013. Gradual typing for smalltalk. Sci.

Comput. Program. 96, 1 (2013), 52–69.
[4] Deyaaeldeen Almahallawi. 2020. Towards Efficient Gradual Typing via Monotonic References and Coercions . Ph.D. Dis-

sertation. Indiana University.
[5] Christopher Anderson and Sophia Drossopoulou. 2003. BabyJ: From object based to class based programming via

types. WOOD 82, 7 (2003), 53–81.
[6] Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt. 2017. Sound gradual typing:

only mostly dead. PACMPL 1, OOPSLA (2017), 54:1–54:24.
[7] Jan A. Bergstra and John V. Tucker. 1983. Initial and final algebra semantics for data type specifications: Two char-

acterization theorems. SIAM J. Comput. 12, 2 (1983), 366–387.
[8] Gavin Bierman, Martin Abadi, and Mads Torgersen. 2014. Understanding TypeScript. In Proceedings of the ECOOP .

257–281.
[9] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor Richards, Rok Strniša, Jan Vitek, and To-

bias Wrigstad. 2009. Thorn: Robust, concurrent, extensible scripting on the JVM. In Proceedings of the OOPSLA .
117–136.

10] Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-Hochstadt. 2016. Practical optional types for clojure. In
Proceedings of the ESOP . 68–94.

11] Gilad Bracha and David Griswold. 1993. Strongtalk: Typechecking smalltalk in a production environment. In Pro-

ceedings of the OOPSLA . 215–230.
12] Robert Cartwright. 1980. A constructive alternative to data type definitions. In Proceedings of the LFP . 46–55.
13] Robert Cartwright and Mike Fagan. 1991. Soft typing. In Proceedings of the PLDI . 278–292.
14] Giuseppe Castagna, Guillaume Duboc, Victor Lanvin, and Jeremy G. Siek. 2019. A space-efficient call-by-value virtual

machine for gradual set-theoretic types. In Proceedings of the IFL . 8:1–8:12.
15] Giuseppe Castagna and Victor Lanvin. 2017. Gradual typing with union and intersection types. PACMPL 1, ICFP

(2017), 41:1–41:28.
16] Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levy. 2017. Fast and precise type

checking for JavaScript. PACMPL 1, OOPSLA (2017), 56:1–56:30.
17] Olaf Chitil. 2012. Practical typed lazy contracts. In Proceedings of the ICFP . 67–76.
18] Benjamin W. Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek. 2018. KafKa: Gradual typing for objects. In

Proceedings of the ECOOP . 12:1–12:23.
19] Dart. 2020. The Dart Type System. Retrieved from https://dart.dev/guides/language/type-system .
20] Markus Degen, Peter Thiemann, and Stefan Wehr. 2012. The interaction of contracts and laziness. In Proceedings of

the PEPM . 97–106.
21] Christos Dimoulas and Matthias Felleisen. 2011. On contract satisfaction in a higher-order world. Trans. Program.

Lang. Syst. 33, 5 (2011), 16:1–16:29.
22] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and Matthias Felleisen. 2011. Correct blame for contracts:

No more scapegoating. In Proceedings of the POPL . 215–226.
23] Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Complete monitors for behavioral contracts.

In Proceedings of the ESOP . 214–233.
24] Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent St-Amour. 2018. Collapsible

contracts: Fixing a pathology of gradual typing. PACMPL 2, OOPSLA (2018), 133:1–133:27.
25] Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for higher-order functions. In Proceedings of the ICFP .

48–59.
26] Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. 2004. Semantic casts: Contracts and structural subtyping

in a nominal world. In Proceedings of the ECOOP . 364–388.
27] Robert Bruce Findler, Shu-yu Guo, and Anne Rogers. 2007. Lazy contract checking for immutable data structures. In

Proceedings of the IFL . 111–128.
28] Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting gradual typing. In Proceedings of the POPL . 429–

442.
29] Isaac Oscar Gariano, Richard Roberts, Stefan Marr, Michael Homer, and James Noble. 2019. Which of my transient

type checks are not (almost) free? In Proceedings of the VMIL . 58–66.
CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

https://dart.dev/guides/language/type-system

Typed–Untyped Interactions: A Comparative Analysis 4:53

[
[
[

[
[

[

[

[
[

[

[
[

[

[

[

[

[

[

[

[
[
[

[

[
[
[

[

[

[

[

[

[

[
30] Michael Greenberg. 2014. Space-efficient manifest contracts. Retrieved from https://arxiv.org/abs/1410.2813 .
31] Michael Greenberg. 2015. Space-efficient manifest contracts. In Proceedings of the POPL . 181–194.
32] Michael Greenberg. 2019. The dynamic practice and static theory of gradual typing. In Proceedings of the SNAPL .

6:1–6:20.
33] Ben Greenman. 2020. Deep and Shallow Types Ph.D. Dissertation. Northeastern University.
34] Ben Greenman and Matthias Felleisen. 2018. A spectrum of type soundness and performance. PACMPL 2, ICFP (2018),

71:1–71:32.
35] Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2019. Complete monitors for gradual types. PACMPL 3,

OOPSLA (2019), 122:1–122:29.
36] Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen. 2022. A transient semantics for typed

racket. Programming 6, 2 (2022), 1–25.
37] Ben Greenman and Zeina Migeed. 2018. On the cost of type-tag soundness. In Proceedings of the PEPM . 30–39.
38] Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan Vitek, and Matthias Felleisen.

2019. How to evaluate the performance of gradual type systems. J. Funct. Program. 29, e4 (2019), 1–45.
39] Hugo Musso Gualandi and Roberto Ierusalimschy. 2018. Pallene: A statically typed companion language for Lua. In

Proceedings of the SBLP . 19–26.
40] Fritz Henglein. 1994. Dynamic typing: Syntax and proof theory. Sci. Comput. Program. 22, 3 (1994), 197–230.
41] David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-efficient gradual typing. Higher-order Symbol. Com-

put. 23, 2 (2010), 167–189.
42] Ralf Hinze, Johan Jeuring, and Andres Löh. 2006. Typed contracts for functional programming. In Proceedings of the

FLOPS . 208–225.
43] Matthias Keil, Sankha Narayan Guria, Andreas Schlegel, Manuel Geffken, and Peter Thiemann. 2015. Transparent

object proxies in JavaScript. In Proceedings of the ECOOP . 149–173.
44] Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. 2019. Toward efficient gradual typing for struc-

tural types via coercions. In Proceedings of the PLDI . 517–532.
45] Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2021. How to evaluate blame for gradual

types. PACMPL 5, ICFP (2021), 68:1–68:29.
46] Kuang-Chen Lu, Ben Greenman, Carl Meyer, Dino Viehland, Aniket Panse, and Shriram Krishnamurthi. 2023. Gradual

soundness: Lessons from static python. Programming 7, 1 (2023), 2:1–2:40.
47] Andre Murbach Maidl, Fabio Mascarenhas, and Roberto Ierusalimschy. 2015. A formalization of typed lua. In Pro-

ceedings of the DLS . 13–25.
48] Jacob Matthews and Robert Bruce Findler. 2009. Operational semantics for multi-language programs. Trans. Program.

Lang. Syst. 31, 3 (2009), 1–44.
49] Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17, 3 (1978), 348–375.
50] David A. Moon. 1974. MACLISP Reference Manual, Revision 0 . Technical Report. MIT Project MAC.
51] Scott Moore, Christos Dimoulas, Robert Bruce Findler, Matthew Flatt, and Stephen Chong. 2016. Extensible access

control with authorization contracts. In Proceedings of the OOPSLA . 214–233.
52] Fabian Muehlboeck and Ross Tate. 2017. Sound gradual typing is nominally alive and well. PACMPL (2017), 56:1–56:30.
53] Max S. New. 2020. A Semantic Foundation for Sound Gradual Typing Ph.D. Dissertation. Northeastern University.
54] Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual type theory. PACMPL (2019), 15:1–15:31.
55] Atsushi Ohori and Kazuhiko Kato. 1993. Semantics for communication primitives in a Polymorphic language. In

Proceedings of the POPL . 99–112.
56] Norman Ramsey. 2008. Embedding an interpreted language using higher-order functions and types. J. Funct. Program.

21, 6 (2008), 585–615.
57] Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. 2012. The ins and outs of gradual type inference. In Proceedings

of the POPL . 481–494.
58] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. 2015. Safe & efficient gradual

typing for TypeScript. In Proceedings of the POPL . 167–180.
59] Brianna M. Ren, John Toman, T. Stephen Strickland, and Jeffrey S. Foster. 2013. The ruby type checker. In Proceedings

of the SAC . 1565–1572.
60] Gregor Richards, Ellen Arteca, and Alexi Turcotte. 2017. The VM already knew that: Leveraging compile-time knowl-

edge to optimize gradual typing. PACMPL (2017), 55:1–55:27.
61] Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. 2015. Concrete types for TypeScript. In Proceedings of the

ECOOP . 76–100.
62] Richard Roberts, Stefan Marr, Michael Homer, and James Noble. 2019. Transient typechecks are (almost) free. In

Proceedings of the ECOOP . 15:1–15:29.
ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

https://arxiv.org/abs/1410.2813

4:54 B. Greenman et al.

[

[

[

[

[

[
[

[
[
[

[

[

[

[

[
[

[

[

[

[

[
[

[

[

[
[

[
[

[

[

[

R

A

63] Jeremy Siek, Peter Thiemann, and Philip Wadler. 2015. Blame and coercion: Together again for the first time. In
Proceedings of the PLDI . 425–435.

64] Jeremy Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald Garcia. 2015. Monotonic refer-
ences for efficient gradual typing. In Proceedings of the ESOP . 432–456.

65] Jeremy G. Siek and Tianyu Chen. 2021. Parameterized cast calculi and reusable meta-theory for gradually typed
lambda calculi. J. Funct. Program. 31 (2021), e30.

66] Jeremy G. Siek and Ronald Garcia. 2012. Interpretations of the gradually typed lambda calculus. In Proceedings of the

SFP . 68–80.
67] Jeremy G. Siek, Ronald Garcia, and Walid Taha. 2009. Exploring the design space of higher-order casts. In Proceedings

of the ESOP . 17–31.
68] Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional languages. In Proceedings of the SFP . 81–92.
69] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined criteria for gradual typing.

In Proceedings of the SNAPL . 274–293.
70] Guy Lewis Steele, Jr. 1976. Lambda The Ultimate Declarative . Technical Report AI Memo 379. MIT.
71] Guy L. Steele, Jr. 1990. Common Lisp (2nd ed.). Digital Press.
72] T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt. 2012. Chaperones and imper-

sonators: Run-time support for reasonable interposition. In Proceedings of the OOPSLA . 943–962.
73] Nikhil Swamy, Cédric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan Chen, Pierre-Yves Strub, and Gavin

Bierman. 2014. Gradual typing embedded securely in JavaScript. In Proceedings of the POPL . 425–437.
74] Asumu Takikawa, Daniel Feltey, Earl Dean, Robert Bruce Findler, Matthew Flatt, Sam Tobin-Hochstadt, and Matthias

Felleisen. 2015. Towards practical gradual typing. In Proceedings of the ECOOP . 4–27.
75] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is sound gradual

typing dead? In Proceedings of the POPL . 456–468.
76] Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012.

Gradual typing for first-class classes. In Proceedings of the OOPSLA . 793–810.
77] Satish Thatte. 1990. Quasi-static typing. In Proceedings of the POPL . 367–381.
78] Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage migration: From scripts to programs. In Proceedings

of the DLS . 964–974.
79] Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The design and implementation of typed scheme. In Proceedings

of the POPL . 395–406.
80] Sam Tobin-Hochstadt and Matthias Felleisen. 2010. Logical types for Untyped languages. In Proceedings of the ICFP .

117–128.
81] Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Ben Greenman, Andrew M. Kent, Vin-

cent St-Amour, T. Stephen Strickland, and Asumu Takikawa. 2017. Migratory typing: Ten years later. In Proceedings

of the SNAPL . 17:1–17:17.
82] Preston Tunnell Wilson, Ben Greenman, Justin Pombrio, and Shriram Krishnamurthi. 2018. The behavior of gradual

types: A user study. In Proceedings of the DLS . 1–12.
83] Michael M. Vitousek. 2019. Gradual Typing for Python, Unguarded Ph.D. Dissertation. Indiana University.
84] Michael M. Vitousek, Andrew Kent, Jeremy G. Siek, and Jim Baker. 2014. Design and evaluation of gradual typing

for python. In Proceedings of the DLS . 45–56.
85] Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. 2019. Optimizing and evaluating transient gradual typing.

In Proceedings of the DLS . 28–41.
86] Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big types in little runtime: Open-world soundness

and collaborative blame for gradual type systems. In Proceedings of the POPL . 762–774.
87] Philip Wadler. 2015. A complement to blame. In Proceedings of the SNAPL . 309–320.
88] Philip Wadler and Robert Bruce Findler. 2009. Well-typed programs can’t be blamed. In Proceedings of the ESOP . 1–15.
89] Mitchell Wand. 1979. Final algebra semantics and data type extensions. J. Comput. Syst. Sci. 19 (1979), 27–44.
90] Jack Williams, J. Garrett Morris, Philip Wadler, and Jakub Zalewski. 2017. Mixed messages: Measuring conformance

and non-interference in TypeScript. In Proceedings of the ECOOP . 28:1–28:29.
91] Andrew K. Wright and Robert Cartwright. 1994. A practical soft type system for scheme. In Proceedings of the LFP .

250–262.
92] Andrew K. Wright and Matthias Felleisen. 1994. A syntactic approach to type soundness. Info. Comput. 115, 1 (1994),

38–94. First appeared as Technical Report TR160, Rice University, 1991.
93] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan Vitek. 2010. Integrating typed

and untyped code in a Scripting language. In Proceedings of the POPL . 377–388.
eceived 30 July 2021; revised 11 September 2022; accepted 14 November 2022

CM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.

	1 CALLING ALL TYPES
	1.1 Performance and Pragmatics Are Out of Scope
	1.2 Relation to Prior Work
	1.3 Outline

	2 ASSORTED BEHAVIORS BY EXAMPLE
	2.1 Enforcing a Base Type
	2.2 Validating an Untyped Data Structure
	2.3 Debugging Higher-order Interactions

	3 COMPARING SEMANTICS
	3.1 Type Soundness and the Blame Theorem
	3.2 Our Analysis

	4 EVALUATION FRAMEWORK
	4.1 Surface Language
	4.2 Semantic Framework
	4.3 Type Soundness
	4.4 Complete Monitoring
	4.5 Blame Soundness, Blame Completeness
	4.6 Error Preorder

	5 TYPE-ENFORCEMENT STRATEGIES
	5.1 Natural
	5.2 Co-Natural
	5.3 Forgetful
	5.4 Transient
	5.5 Amnesic
	5.6 Erasure

	6 TECHNICAL DEVELOPMENT
	6.1 Surface Syntax, Types, and Ownership
	6.2 Three Evaluation Syntaxes
	6.3 Properties of Interest
	6.4 Common Higher-order Notions of Reduction
	6.5 Natural and Its Properties
	6.6 Co-Natural and Its Properties
	6.7 Forgetful and Its Properties
	6.8 Transient and Its Properties
	6.9 Amnesic and Its Properties
	6.10 Erasure and Its Properties

	7 RELATED WORK
	8 DISCUSSION
	9 ACKNOWLEDGMENTS
	REFERENCESendgraf

