
6

Satisfiability Modulo Ordering Consistency Theory for
SC, TSO, and PSO Memory Models

HONGYU FAN, ZHIHANG SUN, and FEI HE, Tsinghua University, China, Key Laboratory for

Information System Security, MoE, China, and Beijing National Research Center for Information Science

and Technology, China

Automatically verifying multi-threaded programs is difficult because of the vast number of thread interleav-
ings, a problem aggravated by weak memory consistency. Partial orders can help with verification because
they can represent many thread interleavings concisely. However, there is no dedicated decision procedure
for solving partial-order constraints.

In this article, we propose a novel ordering consistency theory for concurrent program verification that is
applicable not only under sequential consistency, but also under the TSO and PSO weak memory models. We
further develop an efficient theory solver, which checks consistency incrementally, generates minimal conflict
clauses, and includes a custom propagation procedure. We have implemented our approach in a tool, called
Zord, and have conducted extensive experiments on the SV-COMP 2020 ConcurrencySafety benchmarks. Our
experimental results show a significant improvement over the state-of-the-art.

CCS Concepts: • Software and its engineering→ Formal software verification; • Theory of computa-

tion→ Logic and verification;

Additional Key Words and Phrases: Program verification, satisfiability modulo theory, weak memory models,
concurrency

ACM Reference format:

Hongyu Fan, Zhihang Sun, and Fei He. 2023. Satisfiability Modulo Ordering Consistency Theory for SC, TSO,
and PSO Memory Models. ACM Trans. Program. Lang. Syst. 45, 1, Article 6 (March 2023), 37 pages.
https://doi.org/10.1145/3579835

1 INTRODUCTION

Shared-memory multi-threaded programs are commonly used in modern computing systems. The
number of interleavings of a concurrent program makes its verification very hard in practice. It is
highly desirable to develop techniques to alleviate the execution explosion problem of concurrent
program verification.

A memory consistency model (for short, memory model) [5] restricts the execution order of
shared-memory accesses from different threads. It determines what value(s) a read access can

This work was supported in part by the National Natural Science Foundation of China (No. 62072267 and No. 62021002)
and the National Key Research and Development Program of China (No. 2018YFB1308601).
Authors’ address: H. Fan, Z. Sun, and F. He (corresponding author), School of Software, Tsinghua University, Beijing, China,
Key Laboratory for Information System Security, MoE, Beijing, China, and Beijing National Research Center for Infor-
mation Science and Technology, Beijing, China; emails: fhy18@mails.tsinghua.edu.cn, sunzh20@mails.tsinghua.edu.cn,
hefei@tsinghua.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
0164-0925/2023/03-ART6 $15.00
https://doi.org/10.1145/3579835

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

https://orcid.org/0000-0002-6135-7308
https://orcid.org/0000-0002-3787-0144
https://orcid.org/0000-0002-4266-875X
https://doi.org/10.1145/3579835
https://doi.org/10.1145/3579835
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579835&domain=pdf&date_stamp=2023-03-03

6:2 H. Fan et al.

return. The sequential consistency (SC) model [42] forces memory accesses in each thread to
follow the program order of instructions. To make full use of hardware resources and improve
the efficiency of multi-threaded program execution, weak memory models allow certain memory
access orders to be relaxed. Compared to SC, a weak memory model allows more concurrent be-
haviors and further aggravates the execution explosion problem. This article examines two weak
memory models, i.e., total store order (TSO) [47] and partial store order (PSO) [58].

Bounded model checking (BMC) [15, 17] is a verification technique that is particularly efficient
in bug-finding and has been widely adopted by most verification tools. BMC sets upper bounds for
loops and recursive functions to obtain a bounded program and then uses SMT solvers to verify
its correctness. A promising technique for handling multi-threaded programs with BMC is to use
partial orders to represent the happens-before relation between shared-memory access events [9,
10]. In this way, one can achieve a compact representation of the vast number of interleaving
behaviors of multi-threaded programs.

The standard approach (e.g., in References [8–10, 51, 61]) for solving partial order constraints
is based on integer difference logic. Each event is associated with an integer-valued clock, and
event orders are represented as differences among these clock variables. Then, the partial order
constraints can be solved by the decision procedure of integer difference logic. There are two
problems with this approach. First, it determines a clock value for each event, which goes a little
bit too far, because we only care about the events’ order, not their exact clock values. Second, there
is an important axiom (Axiom 3 in Section 4) in reasoning about multi-threaded programs, which
defines the derivation rule for the so-called from-read orders. Existing approaches [8–10, 28, 51]
encode all possible from-read constraints, irrespective of whether they are actually needed for
verification. This method yields numerous from-read constraints, which significantly increases
the burden on the solver and worsens its performance.

In this article, we propose a new and novel ordering consistency Tord theory (see Section 4) and
elaborate on its theory solver (see Section 5) for multi-threaded program verification. Using this
method, we no longer need to specify all possible from-read orders in the encoding formula. One
direct benefit is the significant reduction in the size of the encoding formula. Another benefit is
the on-demand deduction of from-read orders. With a specialized theory propagation procedure
(see Section 5.5), a from-read order is derived only when the relevant variables get assigned. In
this way, we avoid the generation of massive useless from-read constraints.

We develop an efficient theory solver for Tord and integrate it into the DPLL(T) framework [26].
Given a partial assignment, the solver judges whether this assignment is consistent with the theory
axioms, which can further be reduced to detecting cycles on a so-called event graph. In particular,
we use an incremental consistency checking algorithm (see Section 5.2) that utilizes the previ-
ously computed results and attains better efficiency. We also devise a conflict clause generation
algorithm (see Section 5.3) for finding the minimal reasons for inconsistency. The complexity of
this algorithm is linear in the number of conflict clauses and the number of edges in the event
graph.

Last but not least, inspired by the idea of unit clause propagation, we propose a novel technique
for theory propagation. We attempt to find the so-called unit edges and use these edges to enforce
values of some unassigned variables (see Section 5.5.1). With this technique, the decision iterations
of DPLL(T) are greatly reduced, and the whole performance is significantly improved.

We have implemented the proposed approach in CBMC [41] and Z3 [21] and conducted exper-
iments on 1,061 benchmarks in the ConcurrencySafety category of SV-COMP 2020. We compare
our approach with state-of-the-art concurrent verification tools, including CBMC [9, 41], Lazy-
CSeq [36], Lazy-SMA [54], CPA-Seq [13, 14], and Dartagnan [27], under SC, TSO, and PSO,
respectively:

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:3

• Under SC,1 our approach solves 38, 119, and 897 more cases than CBMC, CPA-Seq, and
Dartagnan, respectively, and 6 less cases than Lazy-CSeq; counting on both-solved cases,
our approach runs 2.44×, 90.04×, 139.47×, and 7.20× faster, consumes 20.8%, 99.6%, 99.0%,
and 94.5% less memory, than CBMC, CPA-Seq, Dartagnan, and Lazy-CSeq, respectively.
• Under TSO,2 our approach solves 47, 925, and 533 more cases than CBMC, Dartagnan,

and Lazy-SMA, respectively; counting on both-solved cases, our approach is 2.47×, 174.18×,
4.49× faster, and consumes 31.8%, 98.2%, 92.6% less memory than CBMC, Dartagnan, and
Lazy-SMA, respectively.
• Under PSO, our approach solves 50, 890, and 273 more cases than CBMC, Dartagnan, and

Lazy-SMA, respectively; counting on both-solved cases, our approach runs 2.44×, 163.43×,
11.29× faster, and consumes 31.0%, 98.4%, 93.2% less memory, than CBMC, Dartagnan, and
Lazy-SMA, respectively.

We have also compared our approach with state-of-the-art stateless model checking (SMC)

tools, namely, Nidhugg [2, 4] and GenMC [40] on nine benchmarks from the Nidhugg suite. Ex-
perimental results show that as the program’s scale (measured by the number of traces) increases,
our approach is superior to these tools in most cases.

In summary, our main contributions are:

• We propose a new ordering consistency theory Tord for multi-threaded program verification
under SC, TSO, and PSO memory models.
• We elaborate on an efficient theory solver for Tord, which realizes incremental consistency

checking, minimal conflict clause generation, and specialized theory propagation to improve
the efficiency of SMT solving.
• We implement our approach in CBMC and Z3. Experimental results on SV-COMP concurrent

benchmarks demonstrate orders of magnitude improvements of our method over state-of-
the-art verification tools.

This article is an extended and revised version of a previous conference paper [32]. Compared
to Reference [32], this article makes the following new contributions: First, only the SC mem-
ory model is supported in Reference [32]; in this article, we extend our approach to support the
TSO and PSO memory models. Second, the Tord theory in Reference [32] assumes no atomicity
constraints. Noting that atomic operations are commonly specified in concurrent programs, this
article extends Tord to support atomicity constraints. This extension leads to a new atomicity re-
lation ≈ and adaptations in Tord and the Tord-solver (see Section 4). Third, this article also reports
two new sets of experimental results (see Section 6) for evaluating our approach under TSO and
PSO memory models.

The rest of the article is organized as follows: Section 2 introduces some background knowledge.
Section 3 demonstrates our symbolic encoding of multi-threaded programs. Section 4 proposes
the new Tord theory. Section 5 develops a theory solver for Tord. We report experimental results in
Section 6 and discuss related work in Section 7. Section 8 concludes this article.

2 PRELIMINARIES

2.1 Notions

In first-order logic, a term is a variable, a constant, or an n-ary function applied to n terms; an atom

is ⊥, �, or an n-ary predicate applied to n terms; a literal is an atom or its negation. A first-order

1Lazy-SMA does not support SC and is excluded from the experiment under SC.
2CPA-Seq and Lazy-CSeq do not support TSO and PSO and are excluded from the corresponding experiments.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:4 H. Fan et al.

Fig. 1. Flow of DPLL(T).

formula is built from literals using Boolean connectives and quantifiers. A model M consists of a
non-empty object set dom(M), called the domain of M , an assignment that maps each variable to
an object in dom(M), and an interpretation for each constant, function and predicate, respectively.
A formula Φ is satisfiable if there exists a model M , M |= Φ; Φ is valid if for any model M , M |= Φ.

A first-order theory T is defined by a signature and a set of axioms. The signature consists of
constant symbols, function symbols, and predicate symbols allowed in T ; the axioms prescribe
the intended meanings of these symbols. A T -model is a model that satisfies all axioms of T . A
formula Φ is T -satisfiable if there exists a T -model M so M |= Φ; Φ is T -valid if it is satisfied by
all T -models.

2.2 Satisfiability Modulo Theory and DPLL(T)

The satisfiability modulo theories (SMT) problem [11, 21, 22] is a decision problem for formulas
in some combination of first-order background theories. A theory solver is required for each back-
ground theory T , called T -solver, with which the T -satisfiability of any conjunction of literals
in T can be determined.

DPLL(T) is the standard framework for solving SMT instances. It extends the classical DPLL
algorithm [20, 45] with dedicated theory solvers. Figure 1 shows a high-level overview of DPLL(T).
Given an SMT formula Ψ, DPLL(T) first replaces each atom with a fresh Boolean variable. This
process is called Boolean abstraction, because the resulting formula, denoted by B (Ψ), is an over-
approximation of the original formula Ψ with respect to satisfiability. The satisfiability of B (Ψ)
can be determined by a SAT solver. If B (Ψ) is unsatisfiable, then so is Ψ; but the reverse may not
hold. If B (Ψ) is satisfiable and M is the satisfying model returned by the SAT solver, then we need
to go ahead to check whether M is consistent with the underlying first-order theories.

A theory solver can be integrated with DPLL(T) in an online or offline scheme. Let M be the
current (partial) assignment to B (Ψ). In the online scheme, T -solver checks T -consistency of M
as long as M is updated (even when M is a partial assignment); in the offline scheme, consistency
checking is involved only when M is a satisfying model of B (Ψ). If M is T -inconsistent, then T -
solver attempts to generate a conflict clause and adds it to the clause set to prevent the solver from
repeating the same inconsistency in the future. A typical theory solver also supports theory prop-

agation, which deduces values of unassigned literals by theory axioms. Our method is integrated
with DPLL(T) in an online scheme.

2.3 Concurrent Execution as Partial Order

A multi-threaded program comprises multiple threads running in parallel. It contains a set of vari-
ables that can be divided into local variables accessible to a specific thread only and shared variables

accessible to all threads. Our approach extends the framework of Alglave et al. [9], which models
executions of multi-threaded programs using partial order.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:5

An event is either a read or a write access to a shared variable and has the following attributes:

• type(e): the type of e , i.e., W if e is a write access, and R if e is a read access,
• addr (e): the memory address that e accesses,
• guard (e): the guard condition on which e is enabled.

Let E be the set of all events. There are some relations over events in E. The program order

(PO) relation ≺po is a total order of events from the same processor. The atomicity relation ≈ is
an equivalence relation such that e1 ≈ e2 iff e1 and e2 are contained in the same atomic operation.
The write serialization (WS) relation ≺ws is a total order of writes with the same address. The
read-from (RF) relation ≺rf links a write event e1 (with type(e1) = W) to a read event e2 (with
type(e2) = R), so e2 reads the value written by e1. Moreover, given a pair of write events e1, e2 (with
type(e1) = type(e2) = W) and a read event e3 (with type(e3) = R) so e1 ≺ws e2 and e1 ≺rf e3, we
know that e1 happens before e2, and e3 reads from e1. To ensure that e3 does not read from e2, e3

must happen before e2; we call such relation the from-read (FR) relation ≺fr.
A weak memory model allows the order of certain pairs of memory access events to be relaxed.

In this article, we focus on total store order (TSO) [47] and partial store order (PSO) [58]: the
former relaxes the write-to-read program orders, and the latter further relaxes the write-to-write
program orders. Formally, consider a program order e1 ≺po e2, TSO relaxes this order if type(e1) =
W, type(e2) = R and addr (e1) � addr (e2), PSO relaxes this order if type(e1) = W and addr (e1) �
addr (e2). Note that PSO can relax more program orders than TSO. We use ≺ppo to represent the
preserved program order (PPO) relation after relaxation. Especially, ≺ppo is identical to ≺po under
SC.

A concurrent execution of the multi-threaded program can be represented as a set of partial orders
over access events. Note that ≺ppo is determined by the program and the architecture, while ≺ws,≺rf

and ≺fr are specified by executions. A concurrent execution is valid if ≺rf ∪ ≺ws ∪ ≺fr is consistent
with ≺ppo and ≈; that is, there is a linearization of events on this execution that respects ≺ppo and
the accesses contained in each atomic operation are executed consecutively, not interrupted by
other accesses.

Lemma 1 ([50]). The relation ≺rf ∪ ≺ws ∪ ≺fr is consistent with the partial order ≺ppo and the

equivalence relation ≈, if and only if:

(1) (≺ppo ∪ ≺rf ∪ ≺ws ∪ ≺fr)∩ ≈ has no cycles, and

(2) all cycles in ≺ppo ∪ ≺rf ∪ ≺ws ∪ ≺fr ∪ ≈ are contained in ≈.

If there is no equivalence relation in the program, then ≺rf ∪ ≺ws ∪ ≺fr is consistent with ≺ppo

iff ≺ppo ∪ ≺rf ∪ ≺ws ∪ ≺fr has no cycles. An execution is correct if it satisfies the correctness
condition. An incorrect execution is also called a counterexample. A program is correct iff it does
not contain any valid counterexample.

3 SYMBOLIC ENCODING OF MULTI-THREADED PROGRAMS

In this section, we use a simple example to introduce our symbolic encoding, discuss its differences
with other approaches, and establish its correctness.

3.1 Symbolic Encoding

Consider the program in Figure 2(a), which contains three threads, i.e., main, t1, and t2. Our goal
is to verify thatm and n cannot be both equal to 1 at the end of the execution.

We first convert the original program to its static single assignments (SSA) form [19], shown
in Figure 2(b), where each occurrence (no matter write or read) of each shared variable is replaced

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:6 H. Fan et al.

Fig. 2. A three-threaded program.

with a fresh copy of this variable. A similar SSA transformation procedure is adopted in Refer-
ences [9, 51, 61].

SSA Variables and Access Events. Given an SSA variable xi , we write �xi � for its
corresponding access event. Especially, we write �xi �

w for a write access and �xi �
r for a

read access. With respect to the attributes, we have type(�xi �
w) = W, type(�xi �

r) = R, and
addr (�xi �

w) = addr (�xi �
r) = x .

Considering x in the program (Figure 2(a)), there are five accesses to this variable. Five fresh vari-
ables, i.e., x1,x2,x3,x4,x5, are introduced in the SSA form (Figure 2(b)). Note that x1, x5 represent
write accesses and x2, x3, x4 represent read accesses; their corresponding events are represented
as �x1�

w , �x2�
r , �x3�

r , �x4�
r , and �x5�

w , respectively.

Value Assignment Encoding. Value assignments of variables in each thread can be encoded
by directly interpreting SSA statements. The encoding ρt1

va of thread t1’s value assignment is:

(x2 = 1→m3 = 1) ∧ (¬(x2 = 1) →m4 = x3) ∧ (y2 = x4 + 1).

In a similar way, we get encodings ρt2
va and ρmain

va for value assignments of threads t2 and main,
respectively. The value assignment encoding of the whole program is:

ρva := ρt1
va ∧ ρt2

va ∧ ρmain
va .

Error Condition. We use ρerr to encode the error condition of the program. The error condition
of the example program is

ρerr := (m2 = 1) ∧ (n2 = 1).

Note that ρva ∧ ρerr is not sufficient for verifying the program’s correctness. A satisfying model
of ρva ∧ ρerr does not necessarily represent a valid execution.

Considering the example program in Figure 2, a satisfying model of ρva ∧ ρerr is:

{x1
→ 0,x2
→ 1,m3
→ 1,x4
→ 0,y2
→ 1,y3
→ 1,n3
→ 1,y5
→ 0,x5
→ 1,m2
→ 1, . . .}.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:7

The execution corresponding to this model is, however, invalid. Let us consider the variable x .
Recall that �x1�

w and �x5�
w are write accesses, �x2�

r and �x4�
r are read accesses. By x1 = x4 � x5,

�x4�
r must read from �x1�

w , and �x4�
r must happen before �x5�

w (otherwise, �x4�
r should read

from �x5�
w instead). Then, �x2�

r should also happen before �x5�
w (since �x2�

r happens before
�x4�

r), and therefore should also read from �x1�
w , which contradicts the fact that x1 � x2.

The main reason is that ρva ∧ ρerr does not restrict the order of memory accesses. In the following,
we formulate order constraints of concurrent executions.

Program Order Constraints. We use ρpo to encode the program order (PO) constraints,
which represents the natural order of access events in each thread. The program orders of thread
t1, t2, and main are

ρt1
po := �x2�

r ≺po �m3�
w ≺po �x3�

r ≺po �m4�
w ≺po �x4�

r ≺po �y2�
w ,

ρt2
po := �y3�

r ≺po �n3�
w ≺po �y4�

r ≺po �n4�
w ≺po �y5�

r ≺po �x5�
w ,

ρmain
po := �x1�

w ≺po �y1�
w ≺po �m1�

w ≺po �n1�
w ≺po �m2�

r ≺po �n2�
r .

Moreover, since t1 and t2 are child threads of main, all events in t1 and t2 should happen between
the invocations to pthread_create and pthread_join, respectively. As a result, we have the
following program order constraint:

ρ
spawn
po := �n1�

w ≺po �x2�
r ∧ �n1�

w ≺po �y3�
r ∧ �y2�

w ≺po �m2�
r ∧ �x5�

w ≺po �m2�
r .

Let ρpo be the conjunction of the above program order constraints, i.e.,

ρpo := ρt1
po ∧ ρt2

po ∧ ρmain
po ∧ ρ

spawn
po .

Note that some program orders are relaxed under weak memory models. Taking thread t1 as an
example, TSO relaxes �m3�

w ≺po �x3�
r and �m4�

w ≺po �x4�
r (write-to-read program orders), and

PSO relaxes these two program orders plus �m4�
w ≺po �y2�

w (write-to-write program order). In
the following, we use ρppo to represent the preserved program order (PPO) constraint. Note that
no program order is relaxed under SC, thus ρppo ≡ ρpo for SC.

Atomicity Constraints. We use ρ≈ to represent the atomicity constraints. Intuitively, e1 ≈
e2 means that e1 and e2 are in the same atomic operation, so they are executed indivisibly, not
interrupted by other accesses. There is no atomic operation specified in the example program in
Figure 2 (to simplify other discussions in this article). Assuming that the last statement in thread
t1, i.e., y2 = x4 + 1, is declared as an atomic operation,3 we have �x4�

r ≈ �y2�
w .

Read-from Variables and Constraints. Note that a read event �xi �
r reads a value written by

a write event to the same address. Let π (�xi �
r) be the set of write accesses that �xi �

r may read from.
Because of thread interactions, π (�xi �

r) may contain write accesses in other threads. Consider the
read event �x2�

r in the example program:

π (�x2�
r) = {�x1�

w , �x5�
w }.

For each write event �x j�
w ∈ π (�xi �

r), we define a Boolean variable r f x
j,i , called a read-from

(RF) variable, to specify whether �xi �
r reads its value from �x j�

w . For each RF variable, we have
the following constraints:

• RF-Val constraint: if r f x
j,i is true, �xi �

r and �x j�
w are enabled and their values are equal, i.e.,

r f x
j,i → guard (�xi �

r) ∧ guard (�x j�
w) ∧ (xi = x j);

3SV-COMP benchmarks use atomic_begin and atomic_end to declare atomic operations.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:8 H. Fan et al.

• RF-Ord constraint: if r f x
j,i is true, the write event �x j�

w must happen before the read event
�xi �

r , i.e.,
r f x

j,i → �x j�
w ≺rf �xi �

r ;

• RF-Some constraint: if the read event �xi �
r is enabled, it must obtain its value from a certain

write event in π (�xi �
r), i.e.,

guard (�xi �
r) →

∨

�x j �w ∈π (�xi �r)

r f x
j,i .

In the following, we use ρrf-val, ρrf-ord, and ρrf-some to represent the conjunctions of RF-Val, RF-Ord,
and RF-Some constraints over all RF variables, respectively. Considering the read event �x2�

r in
the example program, we have:

ρrf-val := (r f x
1,2 → (x2 = x1)) ∧ (r f x

5,2 → (x2 = x5)),

ρrf-ord := (r f x
1,2 → �x1�

w ≺rf �x2�
r) ∧ (r f x

5,2 → �x5�
w ≺rf �x2�

r),

ρrf-some := r f1,2 ∨ r f5,2.

Write-serialization Variables and Constraints. For each variable x , let γ (x) be the set of
write accesses to x . We need to determine a total order among all enabled write accesses in γ (x).
To this end, for each pair of write accesses �xi �

w , �x j�
w in γ (x), we define a Boolean variablewsx

i, j ,
called a write-serialization (WS) variable, to represent whether �xi �

w happens before �x j�
w .

For each WS variable, we have the following constraints:

• WS-Cond constraint: if wsx
i, j is true, then both �xi �

w and �x j�
w are enabled, i.e.,

wsx
i, j → guard (�xi �

w) ∧ guard (�x j�
w);

• WS-Ord constraint: if wsx
i, j is true, then the write event �xi �

w must happen before �x j�
w , i.e.,

wsx
i, j → �xi �

w ≺ws �x j�
w ;

• WS-Some constraint: if �xi �
w and �x j�

w are enabled, then one must happen before the other,
i.e.,

guard (�xi �
w) ∧ guard (�x j�

w) → wsx
i, j ∨wsx

j,i .

In the following, we use ρws-cond, ρws-ord, and ρws-some to represent the conjunctions of WS-Cond, WS-

Ord, and WS-Some constraints over all WS variables, respectively. Considering two write events
�m1�

w and �m3�
w in the example program, we have:

ρws-cond := (wsm
1,3 → (x2 = 1)) ∧ (wsm

3,1 → (x2 = 1)),

ρws-ord := (wsm
1,3 → �m1�

w ≺ws �m3�
w) ∧ (wsm

3,1 → �m3�
w ≺ws �m1�

w),

ρws-some := (x2 = 1) → wsm
1,3 ∨wsm

3,1.

From-read Constraints. Considering one read access �xi �
r and two write accesses �x j�

w ,
�xk �w to the same variable x , if �x j�

w happens before �xk �w and �xi �
r reads from �x j�

w , then
�xi �

r must also happen before �xk �w ; otherwise, �xk �w is closer than �x j�
w to �xi �

r , and �xi �
r

should read from �xk �w instead of �x j�
w . Formally, this rule can be formulated as the following

from-read (FR) constraint:
r f x

j,i ∧wsx
j,k → �xi �

r ≺fr �xk �w .

Let ρfr denote the conjunction of all FR constraints.
Most existing techniques [9, 51, 56] for concurrent program verification include all from-read

constraints in their encoding formulas. This is a safe choice to ensure the SMT encoding’s correct-
ness. However, it is not practical. For each FR constraint r f x

j,i∧wsx
j,k
→ �xi �

r ≺fr �xk �w , only when

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:9

both r f x
j,i and wsx

j,k
are evaluated true do we need to consider �xi �

r ≺fr �xk �w . At the beginning
of SMT solving, all RF and WS variables are unassigned—no FR orders need to be considered. For
most of the time, only a small portion of these FR constraints take effect. Maintaining such a large
set of (unnecessary for most of the time) constraints is expensive for the SMT solver. As a result,
the efficiency of SMT solving degenerates (see Section 6.3 for more details).

The Whole Encoding Formula. The whole encoding formula for a program is:

Ψ := Φssa ∧ Φord, (1)

where
Φssa = ρva ∧ ρerr ∧ ρrf-val ∧ ρrf-some ∧ ρws-cond ∧ ρws-some (2)

represents the data and control flow of the program, and

Φord = ρppo ∧ ρ≈ ∧ ρws-ord ∧ ρrf-ord (3)

represents the ordering constraints4 of the program.
Note that ρfr is excluded from our encoding formula. Instead of adding all FR constraints into

the SMT formula, we prefer adding them during SMT solving in an “online” schema—an FR order
is derived and activated only when the corresponding RF and WS variables are evaluated true.

LetXssa,Xrf, andXws be the sets of SSA, RF , and WS variables, respectively. RF and WS variables
are also called ordering variables. The formula Φssa is over Xssa ∪ Xrf ∪ Xws, and Φord is over
Xrf ∪ Xws. Actually, Φord is a “pure” formula that contains only ordering variables and ordering
literals; Φssa is a formula that does not include any ordering literal. To decide the satisfiability of
Φssa, we can use any existing solver that supports a sufficiently rich fragment of first-order logic.
To decide the satisfiability of Φord, we intend to develop a dedicated theory solver.

3.2 Constraints Generation

In this section, we detail the algorithms for generating PPO, atomicity, RF , and WS constraints
under various memory models, respectively.

3.2.1 Preserved Program Order and Atomicity Constraints. Algorithm 1 shows the pseudo code
for generating the preserved program order ρppo and atomicity constraints ρ≈. The algorithm starts
to process each thread Pi from line 2. Let Ei be the list of events in thread Pi , sorted by their
occurrences in Pi (line 3). The key challenge here is to avoid encoding transitive closure to obtain a
minimal number of constraints. More specifically, an order (ei , ej) is added to ≺ppo only if this order
cannot be implied by the transitive closure of the current ≺ppo, i.e., there does not exist an event
ek such that both (ei , ek) and (ek , ej) are in the current ≺ppo. To this end, we define a set succ_set

(initially {e}) for each event e in Ei (line 4) to keep all successor events of e in the current ≺ppo.
Algorithm 1 traverses all events in Ei in reverse order (line 5); and from line 6, the inner loop

traverses all subsequent events e ′ of e in the list Ei from near to far. The order (e, e ′) must be in
the transitive closure of ≺po. If e ≺po e

′ is preserved undermm (line 7), then we need go further to
check whether e ′ is already in the succ_set of e (line 8)—if it is, then the order (e, e ′) is implied by
the current ρppo, i.e., there exists another event e ′′ such that both e ≺ppo e

′′ and e ′′ ≺ppo e
′ are in

the current ρppo (note that the succ_set of e ′′ should be updated before the outer loop traverses e);
otherwise, e ≺ppo e ′ is explicitly added to ρppo (line 9), and the succ_set of e should be extended
with succ_set of e ′ (line 10). Moreover, if e and e ′ belong to the same atomic operation, then e ≈ e ′

is added to ρ≈ (line 12). Finally, each child thread is spawned by thread_create and stopped
by thread_join. All events of this child thread must happen after the call of thread_create and

4The atomicity constraints can be regarded as bi-directed ordering constraints.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:10 H. Fan et al.

ALGORITHM 1: Generation of preserved program order and atomicity constraints

Data: a memory model mm
Output: the preserved program order constraint ρppo and the atomicity constraint ρ≈

1 ρppo ← �, ρ≈ ← �;

2 foreach thread Pi do

3 Let Ei be the list of events in thread Pi , sorted by their occurrences in Pi ;

4 foreach e ∈ Ei do e .succ_set← {e} ;

5 foreach e ∈ Ei from last to first do // reverse traversal

6 foreach subsequent e ′ of e in Ei from near to far do // forward traversal

7 if Is_Preserved (e, e ′,mm) then

8 if e ′ � e .succ_set then

9 ρppo ← ρppo ∧ (e ≺ppo e
′);

10 e .succ_set← e .succ_set ∪ e ′.succ_set;

11 if e, e ′ in the same atomic operation then

12 ρ≈ ← ρ≈ ∧ (e ≈ e ′);

13 ρppo ← ρppo ∪ Interthread_Order_Generation();

14 return ρppo, ρ≈;

ALGORITHM 2: Is_Preserved(e, e ′,mm)

Input: two events e, e ′ and a memory model mm
Output: true if the order (e, e ′) is preserved undermm, and false otherwise

1 if addr (e) � addr (e ′) and e �≈ e ′ and (e, e ′) is not preserved by fences then

2 if mm = TSO ∧ type(e) = W ∧ type(e ′) = R then

3 return false;

4 if mm = PSO ∧ type(e) = W then

5 return false;

6 return true;

before the call of thread_join; we use Interthread_Order_Generation (line 13) to encode such
ordering constraints between the main and child threads.

Algorithm 2 determines whether the program order e ≺po e ′ is preserved under the memory
model mm. If addr (e) = addr (e ′), i.e., they access the same memory address; or e ≈ e ′, i.e., they
belong to the same atomic operation; or (e, e ′) is preserved by fences [9],5 then this program order
must be preserved. There are only two situations that the program order e ≺po e ′ are relaxed:
(1) type (e) = W and tyep (e ′) = R (i.e., write-to-read program order) under TSO (lines 2 and 3), and
(2) type (e) = W (i.e., write-to-read/write program order) under PSO (lines 4 and 5).

The key challenge of Algorithm 1 is to avoid redundant transitive closure of ≺ppo to obtain a
small number of constraints. Let ρppo be the output of Algorithm 1. We first prove that ρppo is
sufficient for representing all orders in ≺ppo.

Lemma 2. ∀(e, e ′) ∈ ≺ppo, it can be deduced from ρppo.

Proof. By e ≺ppo e ′, the order (e, e ′) is preserved under the memory model. If e ′ � e .succ_set,
by line 9 of Algorithm 1, the order (e, e ′) is explicitly encoded in ρppo, the lemma holds for this
case. If e ′ ∈ e .succ_set, then we prove that e ≺ppo e

′ can be deduced from ρppo by induction:

5A concurrent program can use fence instructions to prevent non-SC behaviors.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:11

• Suppose there is only one pair of events (e1, e2) ∈ ≺ppo, e1 ≺ppo e2 must be in ρppo (base case).
• Suppose there is a set of events e1, e2, . . . , en (n > 2) following their occurrence in Pi and
∀ei , i ∈ 2, . . . ,n.(e1, ei) ∈ ≺ppo and ei ∈ e1.succ_set, it can be deduced from ρppo (induction
hypothesis).
• Then, for PO-successor of en , named en+1, s.t. (e1, en+1) ∈ ≺ppo and en+1 ∈ e1.succ_set, we

show that (e1, en+1) ∈ ≺ppo can be deduced from ρppo. If e1 ≺ppo en+1 is in ρppo, then the
inductive step trivially holds. Otherwise, since

⋃n
i=2 ei .succ_set ⊆ e1.succ_set, let j be the

maximal i s.t. en+1 ∈ ej .succ_set, we have the PPO constraint ej ≺ppo en+1 in ρppo. Meanwhile,
by induction hypothesis, there is a set of PPO constraints in ρppo (abbreviated as S), which
implies (e1, ej) ∈ ≺ppo using transitivity. Therefore, S ∪ {ej ≺ppo en+1} deduces (e1, en+1) ∈
≺ppo (inductive step).

Therefore, the above lemma holds. �

Next, we prove that ρppo is minimal for representing ≺ppo. For simplicity, we write ce,e ′ for an
ordering constraint between e and e ′, ρppo can be regarded as a set of such constraints.

Lemma 3. ∀ce,e ′ ∈ ρppo, ce,e ′ cannot be deduced from ρppo\{ce,e ′ }.

Proof. We prove this lemma by contradiction. Assume e ≺ppo e
′ can be derived from ρppo\{ce,e ′ },

and let ce1,e2 , ce2,e3 , . . . , cen−1,en
where e1 = e , en = e ′, is the set of constraints in ρppo\{ce,e ′ } that

form the derive path e1 ≺ppo e2... ≺ppo en . By line 10 of Algorithm 1, ei+1.succ_set is integrated into
ei .succ_set for i ∈ 1, 2, . . . ,n − 1. Therefore, en is in e1.succ_set and Algorithm 1 skips to encode
ce,e ′ , which contradicts to the premise of ce,e ′ ∈ ρppo. �

Let ρ≈ be another output of Algorithm 1. It can be concluded from Algorithm 1 that atomicity
constraints are generated for each pair of PO-adjacent events in the same atomic operation. The
following lemma shows that ρ≈ is sufficient and minimal for representing all atomicity orders in
≈. The proof is trivial and is omitted.

Lemma 4. ∀(e, e ′) ∈≈, it can be deduced from ρ≈;∀ce,e ′ ∈ ρ≈, it cannot be deduced from ρ≈\{ce,e ′ }.

3.2.2 Read-from and Write-serialization Constraints. For each shared variable x , we first obtain
the set reads (or writes) of all read (or write) accesses to x . Basically, a read r in reads may get its
value from any write w in writes, except when r ≺po w (since r cannot read from a later issued
write). We then generate read-from constraints for all such pairs of read and write events.

Moreover, for each subset {w1,w2} ⊆ writes, either w1 ≺ws w2, or w2 ≺ws w1. Especially, if w1,
w2 belong to the same thread and w1 ≺po w2, we use a Boolean variable ws to imply w1 ≺ws w2;
meanwhile,w2 ≺ws w1 can never hold (otherwise, there forms a cyclew1 ≺po w2 ≺ws w1). Ifw1,w2

are from different threads, then we use two Boolean variables ws and ws ′ for representing these
two cases, respectively. We generate write-serialization constraints with these WS variables.

3.3 Comparison to Other Approaches

Our encoding is built on References [9, 10, 51, 56, 61]. Compared to their encoding formulas, the
most significant difference is that our encoding does not include FR constraints, which has already
been discussed in the preceding section (also see Section 6.3 for experimental results).

Second, the way we model ordering constraints is also different. The existing techniques
(e.g., References [9, 28, 51]) use integer-valued clocks to model the time of occurrence for each
event and use differences between clock values to model the order among events. Moreover, they
use clock equalities to represent the atomicity of events in the same atomic operation. Then, they
can rely on the integer difference logic to solve ordering constraints. However, note here, we do

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:12 H. Fan et al.

not need to compute the exact occurrence time of each event, but only their order. We thus intend
to develop a dedicated solver for ordering consistency theory.

Finally, compared to the encoding in Reference [9], the generation of each RF and WS constraint
is slightly different, i.e, in our encoding, if an RF or a WS variable is assigned true, the two related
events must both be enabled, while the encoding in Reference [9] has no such requirement. As a
result, the derivation of FR orders with our encoding need not consider guard conditions anymore.
This change is quite important, since the guard conditions often involve arithmetic computation
and data structures, which can hardly be handled by a dedicated theory solver for order constraints.

3.4 Correctness of the Encoding

Given a concurrent program P and a memory modelmm, the symbolic encoding procedure outputs
a formula Ψ := Φssa ∧ Φord. Even though our encoding is slightly different from that in Reference
[9], we can prove that Ψ ∧ ρfr is equi-satisfiable with the encoding in Reference [9]; we thus have
the following theorem:

Theorem 1. The formula Ψ ∧ ρfr is satisfiable iff there is a valid counterexample in the program.

4 ORDERING CONSISTENCY THEORY

This section presents our ordering consistency theory. We first introduce its definition, then discuss
a data structure that is useful for its reasoning.

4.1 Theory Definition

The theory of ordering consistency Tord has the signature

Σord : {e1, e2, . . . ,≺ppo,≺ws,≺rf,≺fr,≈},
where

• e1, e2, . . . are constants, intended to represent the access events in E,
• ≺ppo,≺ws,≺rf,≺fr are binary predicates, intended to represent different orders among access

events, and
• ≈ is a binary predicate, intended to represent the atomicity relation of the program.

A Σord-atom is either a Boolean variable or a predicate e1 ◦ e2, where ◦ ∈ {≺ppo,≺rf,≺ws, ≺fr,
≈}. A Σord-formula is constructed from Σord-atoms using Boolean connectives. Recall the ordering
constraints ρppo, ρrf-ord, ρws-ord, and ρ≈ (in Section 3). They are all Boolean combinations of Σord-
atoms, and thus are Σord-formulas; the formula Φord = ρppo ∧ ρrf-ord ∧ ρws-ord ∧ ρ≈ is also a Σord-
formula.

Each predicate symbol in Σord defines a binary relation over E. We use the same symbol for a
predicate and the binary relation it defines. Now, we discuss the axioms of Tord.

Axiom 1 (Partial Order). Predicates ≺ppo,≺ws,≺rf,≺fr in Σord represent partial orders, and

• ≺ws, ≺rf, ≺fr are over accesses to the same memory address;

• ∀e1, e2. e1 ≺ws e2 → type(e1) = type(e2) = W;

• ∀e1, e2. e1 ≺rf e2 → type(e1) = W ∧ type(e2) = R;

• ∀e1, e2. e1 ≺fr e2 → type(e1) = R ∧ type(e2) = W.

Axiom 2 (Eqivalence Relation). The predicate ≈ represents an equivalence relation.

Axiom 3 (FR Derivation). For any two write events e1, e2 ∈ E and a read event e3 ∈ E with

addr (e1) = addr (e2) = addr (e3), type(e1) = type(e2) = W, and type(e3) = R, we have:

e1 ≺rf e3 ∧ e1 ≺ws e2 ⇒ e3 ≺fr e2.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:13

Axiom 4 (Consistency). The union ≺ws ∪ ≺rf ∪ ≺fr needs to be consistent with ≺ppo and ≈.

The above axioms define the intended semantics of ≺ppo, ≺ws, ≺rf, ≺fr, ≈, as we understand them
in the preceding sections. Note that Axiom 4 should hold after any number of applications of
Axiom 3, i.e., after deriving any number of ≺fr orders.

4.2 Event Graph

Let α : Xrf ∪ Xws → {true, false, unassigned} be the current assignment to ordering variables, and
≺α the set of induced RF , WS, and FR orders by α . Let ≺ be the union ≺ppo ∪ ≈ ∪ ≺α . The event
set E and the order set ≺ can be represented as a graph, called an event graph, where events are
represented as nodes and orders as edges.6

At the beginning of SMT solving, all ordering variables are unassigned; no RF or WS edges are
drawn on the event graph. Since FR orders are derived from RF and WS orders, there are no FR

edges, either. Therefore, only PPO and atomicity edges present in the graph at that moment. The
event set E, the preserved program order PPO, and the atomicity constraints make up the skeleton

of the event graph. Later, along with variable assignments, more edges are added to the graph.
According to the axioms of Tord, on each edge addition, we need to check whether this new edge

leads to a cycle. If this is the case, then we say the current variable assignment is invalid—we then
need to analyze the event graph to find the inconsistency reason. Otherwise, if there is no cycle,
then we go ahead to apply Axiom 3 to derive FR edges. Note that if any FR edge is derived, then
we need to check the consistency of the current variable assignment again.

We associate each edge with a Boolean expression, called derivation reason (abbreviated as rea-

son), to indicate what this edge is derived from.

• The reason for a PPO or an atomicity edge is true, for this edge always presents in the graph.
• The reason for an RF or a WS edge is the corresponding ordering variable, for this edge is

directly derived from this variable.
• The reason for an FR edge is the conjunction of reasons for the RF edge and the WS edge that

derive this FR edge.

The concept of derivation reason can be lifted to a path. Let e1 ≺ e2 ≺ · · · ≺ en be a path on the
event graph; the reason for this path is the conjunction of reasons for each edge it passes, i.e.,

reason(e1 ≺ e2 ≺ · · · ≺ en) =
n−1∧

i=1

reason(ei ≺ ei+1).

Figure 3 shows several event graphs that may occur during SMT solving of the program in
Figure 2. To differentiate event types, we use grey and white nodes to represent write and read
events, respectively. Preserved program orders are drawn as solid lines, while others are drawn as
dashed lines. In the beginning, the event graph contains only PPO edges, as shown in Figure 3(a).
After some assignments, more edges are added to the graph; Figure 3(b) shows an updated event
graph of Figure 3(a) during SMT solving, in which �n1�

w ≺rf �n2�
r and �n1�

w ≺ws �n4�
w de-

rive �n2�
r ≺fr �n4�

w . Finally, the red dashed edges in Figure 3(c) form a cycle, indicating a Tord-
inconsistent execution.

An event graph may be different under weak memory models. Figure 3(a) shows an event graph
under SC; Figures 3(d) and 3(e) show event graphs of the same program under TSO and PSO,
respectively. Edges of these three graphs are quite different—some edges are deleted and some are
added. However, in comparison with their transitive closures (the PPO relation is transitive), the
graphs of TSO and PSO always contain less program orders. For example, considering the edge

6Equivalence relations are regarded as undirected edges.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:14 H. Fan et al.

Fig. 3. Updates of the event graph in SMT solving.

�x2�
r ≺ppo �x3�

r added in both Figures 3(d) and 3(e), the corresponding program order is also
contained in the transitive closure of Figure 3(a). In contrast, for edge �m3�

w ≺ppo �x3�
r , which is

deleted in Figures 3(d) and 3(e), the corresponding program order is also relaxed.
Similar structures to our event graph were defined in References [9, 51, 61]. Note that the events

discussed in this article can hold symbolic values, and thus our event graph is actually a “symbolic”
event graph. In Reference [9], a so-called symbolic event structure is defined, which, however, is
used to depict program order only. Moreover, the event order graph defined in Reference [61] repre-
sents a counterexample instead of a program. In Reference [51], an interference skeleton is defined,
which equals the skeleton of our event graph.

5 THEORY SOLVER FOR Tord

In this section, we present Tord-solver with emphasis on algorithms for consistency checking, con-
flict clause generation, and theory propagation.

5.1 Overview

Figure 4 shows an overview of Tord-solver. Each time an ordering variable is assigned in the SAT
solver, Tord-solver performs consistency checking (see Section 5.2) to detect if a cycle exists after
the corresponding edge addition to the event graph.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:15

Fig. 4. Tord-solver with DPLL(T).

If the current assignment is Tord-consistent, then Tord-solver proceeds to: (1) determine values
of unassigned literals by using axioms of Tord (called unit-edge propagation; see Section 5.5.1), and
(2) deduce all possible FR edges with respect to the assignment (called from-read propagation; see
Section 5.5.2). If any unassigned literal is assigned, then this assignment should be returned to the
SAT solver; if any FR edge is deduced, then the consistency checking needs to be invoked again.

If the current assignment is Tord-inconsistent, then Tord-solver computes conflict clauses (called
conflict clause generation; see Section 5.3) to record the inconsistency reason, returns it to DPLL(T)
to prevent the solver from going down the same path in the future.

5.2 Consistency Checking

Each time an ordering variable is assigned true, Tord-solver inserts the corresponding edge into the
event graph and performs consistency checking. Consistency checking can be reduced to cycle
detection on the event graph.

Let ≺ppo be the preserved program order of the program, ≈ the atomicity relation of the program,
and ≺α the set of induced RF , WS, and FR orders by the current assignment α . The basic routine
for consistency checking is as follows:

• If ≺ppo ∪ ≺α ∪ ≈ has no cycles, then so does its subset (≺ppo ∪ ≺α)∩ ≈. Then, both
conditions of Lemma 1 are satisfied. By Lemma 1, ≺α is consistent with ≺ppo and ≈.
• If ≺ppo ∪ ≺α ∪ ≈ has a cycle that is not contained in ≈, then this cycle must involve at

least two equivalence classes of ≈, indicating that condition (2) of Lemma 1 is violated. By
Lemma 1, ≺α is not consistent with ≺ppo and ≈.
• Otherwise, all cycles of ≺ppo ∪ ≺α ∪ ≈ are contained in ≈, i.e., condition (2) of Lemma 1 is

satisfied. We continue to check:
– If (≺ppo ∪ ≺α)∩ ≈ has cycles, then condition (1) of Lemma 1 is violated. By Lemma 1, ≺α

is not consistent with ≺ppo and ≈.
– Otherwise, by Lemma 1, ≺α is consistent with ≺ppo and ≈.

The following theorem ensures the correctness of consistency checking:

Theorem 2. The above consistency checking procedure finds no cycle if ≺α is consistent with ≺ppo

and ≈; otherwise, it can find cycle (s).

The efficiency of consistency checking is critical for the overall performance, because the model
checker performs many consistency checks. First, DPLL(T) must perform many assignments to the
ordering variables to reason about the complicated thread interactions, each of which leads to a

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:16 H. Fan et al.

consistency check. Second, from-read propagation generates further checks whenever it inserts
edges into the event graph.

Previous works [9, 28] perform a fresh cycle detection on each consistency check, which is in-
efficient. We found it better to perform cycle detection incrementally for two reasons. First, the
event graph must be acyclic before an edge addition—otherwise, it must have been recognized in
the previous consistency checking. Therefore, we can reuse the topological order of the previous
acyclic graph and try to build a new acyclic graph incrementally. Second, incremental cycle detec-
tion has been shown to be efficient for sparse graphs [12], and the event graph is typically sparse:
≺ppo only relates events within the same thread (as well as thread creating/joining), while ≺α only
relates events that access the same shared variable.

5.2.1 Incremental Cycle Detection. We employ an incremental cycle detection (ICD) algo-
rithm [7, 12] to check Tord-consistency. ICD algorithms are based on the topological order in di-
rected graphs (including the event graph). A topological order exists in a directed graph iff the
graph is acyclic: Each node in the graph is labeled with an integer-valued level such that for any
edge, say, from node ei to node ej , the level of ei (written lv (ei)) is smaller than that of ej (written
lv (ej)). Once a new edge is inserted into the event graph, the algorithm reuses the previous topo-
logical order and attempts to compute a new topological order incrementally. If a new topological
order is computed, then the graph is acyclic; therefore, the current assignment is Tord-consistent.
Otherwise, the algorithm finds a cycle; therefore, a Tord-inconsistency is reported.

We employ an ICD algorithm for sparse graphs [12]. This algorithm relaxes the topological order
into a pseudo-topological order such that for any edge from node ei to node ej , lv (ei) ≤ lv (ej). The
pseudo-topological order can handle atomicity by assigning the same integer-valued level to all
events in an atomic block. For each node e , except of its pseudo-topological level lv (e), the ICD
algorithm also keeps in(e) and out (e), where in(e) stores e’s incoming edges whose start nodes
have the same level as e , and out (e) stores e’s outgoing edges. During the process of inserting an
edge into the graph, the pseudo-topological levels, outgoing edges sets, and incoming edges sets
are incrementally updated, and these processes are described in detail in the following text.

We show the basic routine of the employed ICD algorithm below. When adding an edge, say, ei ≺
ej , into the event graph, we first check whether lv (ei) < lv (ej). If so, then ej cannot reach ei ; thus,
no cycle exists, and the previous pseudo-topological order is valid; therefore, Tord-solver can safely
insert this edge and update out (ei). Otherwise, lv (ei) ≥ lv (ej), we need to check whether there is
a path from ej to ei . If it does exist, this path, together with ei ≺ ej , forms a cycle, indicating that
the current edge insertion causes Tord-inconsistency. Otherwise, ej cannot reach ei (i.e., no cycle
exists), the ICD algorithm reports the current edge insertion being Tord-consistent. Meanwhile, the
previous pseudo-topological order and the related in/out sets are updated in the search process.

The standard approach to finding a path from ej to ei is to search forward exhaustively from the
outgoing edges of ej , e.g., Tarjan’s strongly connected component (SCC) algorithm [53]. How-
ever, this approach totally costs O (m2) time to construct a graph withm edges. In contrast, the em-
ployed ICD algorithm [12] in Tord-solver performs cycle detection based on an elaborate two-way

search, i.e., backward search and forward search. Bender et al. [12] prove that by setting a threshold

Δ = min{n 2
3 ,m

1
2 } to bound the maximum number of steps in the backward search, the employed

ICD algorithm can achieve O (m × min{n 2
3 ,m

1
2 }) time complexity in constructing a graph with n

nodes andm edges. Since thread interleaving may cause numerous edge insertions, the employed
ICD algorithm can achieve higher efficiency than Tarjan’s SCC algorithm. In Section 6.3, we report
the comparison results between the ICD algorithm and Tarjan’s SCC algorithm.

We detail the two-way search below. When adding an edge, say, ei ≺ ej , into the event graph
and lv (ei) ≥ lv (ej), before the forward search for a path from ej to ei , a backward search starts

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:17

from ei first. Recall that in(ei) only stores ei ’s incoming edges e ≺ ei with lv (e) = lv (ei). Following
the in sets, we search for nodes that can reach ei and have the same level of ei backwardly. We use
a set B to record the visited nodes during the backward search. The backward search ends in any
of the following situations:

• If ej is visited, then the algorithm reports a cycle and returns.
• If the backward search completes before visiting Δ edges, then the ICD algorithm runs out

of the edges that should be traversed in the backward search and fails to find a path from ej

to ei . Since lv (ei) ≥ lv (ej), there are two situations:
– If lv (ei) = lv (ej), then no cycle exists. We prove this by contradiction. Assume there is a

path from ej to ei . Since lv (ei) = lv (ej), all nodes along the path should have the same
level, and the backward search should be able to find ej . But the backward search completes
without finding ej , which is a contradiction. Therefore, there is no path from ej to ei . The
algorithm thus reports acyclic and returns.

– If lv (ei) > lv (ej), then for each visited eb ∈ B, lv (eb) = lv (ei) > lv (ej). In this case, the
algorithm does not know if there is a path from ej to eb —so we set lv (ej) := lv (ei) and
attempt to compute a new pseudo-topological order by invoking a forward search from ej .

• If Δ edges are visited, we stop backward search, set lv (ej) := lv (ei) + 1, and then attempt to
compute a new pseudo-topological order by invoking a forward search from ej .7

The forward search explores nodes reachable from ej . Among outgoing edges in out (ej), we
consider only edges ej ≺ ek such that lv (ej) ≥ lv (ek):

• if lv (ej) = lv (ek), then add ej to in(ek);
• if lv (ej) > lv (ek), then set lv (ek) := lv (ej), clear in(ek), and then add ej to in(ek).

After ek is visited, we continue to check the outgoing edges of ek in the same way. Nodes visited
in the forward search are stored in a set F. We then check if F ∩ B produces an empty set. If not,
then any node e ∈ F ∩ B witnesses a cycle, composed of the path segment from ej to e (by e ∈ F),
the segment from e to ei (by e ∈ B), and the inserted edge ei ≺ ej . Otherwise, if the forward search
completes with F ∩ B = ∅, then we confirm the absence of any cycle.

Note that even if we skip the backward search but only perform an exhaustive forward search,
the algorithm is still correct but degenerates into a fresh cycle detection on each edge insertion.
From this perspective, the key insight of the employed ICD algorithm is to integrate a backward

search—bounded by a “magic” threshold Δ = min{n 2
3 ,m

1
2 }—to limit the forward search. The fol-

lowing lemma is proved in Reference [12], which is crucial for analyzing the complexity of the
ICD algorithm:

Lemma 5 ([12]). For a graph with n nodes andm edges, with the ICD algorithm, no node’s pseudo-

topological level is greater than Δ + 2.

Complexity of the ICD algorithm can be analyzed as follows: First, the backward search of a
single edge insertion visits at most Δ edges, so the backward search during m edge insertions
visits at mostm ×Δ edges. Second, the forward search is invoked when the algorithm updates the
pseudo-topological level of a node, which, according to Lemma 5, happens at most Δ+ 2 times per
edge during the wholem edge insertions. Therefore, forward search duringm edge insertions visits
at most m × (Δ + 2) edges. Finally, each edge takes O (1) time to visit. Thus, the ICD algorithm’s
complexity is O (m × Δ).

7If the graph contains no cycles, then we can always construct a new topological order at the end of the search.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:18 H. Fan et al.

Fig. 5. The original graph. Fig. 6. The graph after inserting e3 ≺ e4.

Example. Figure 5 shows parts of nodes and edges of a graph, where the digit alongside each
node represents the pseudo-topological level of that node. Assume Δ is currently 3, and the edge
e3 ≺ e4 (the red dashed arrow in Figure 6) is inserted.

The algorithm first checks whether lv (e3) < lv (e4)—the result is not, thus the backward search
is invoked from e3. The backward search visits e1 ≺ e3, e2 ≺ e3, and e1 ≺ e2 (marked as red solid
arrows in Figure 6) in turn; and then stops (since the number of visited edges reaches Δ), and sets
lv (e4) = lv (e3) + 1 = 2. The set B = {e1, e2, e3} records nodes visited in the backward search.

Then, the forward search starts from e4. Note that lv (e4) is now 2, equaling lv (e5), the forward
search visits e4 ≺ e5 and adds e4 to in(e5); moreover, since lv (e4) < lv (e6), the forward search
ignores e4 ≺ e6. The set F = {e4, e5} records nodes visited in the forward search. Finally, we
confirm there is no cycle, since B ∩ F = ∅.

5.3 Conflict Clause Generation

If a Tord-inconsistency occurs, then we need to find the inconsistency reason and report it to the
SAT solver. To find the inconsistency reason, it is sufficient to consider critical cycles [50]. Formally,
a cycle is critical if it is simple (i.e., no duplicate nodes) and has no chords in ≺ppo ∪ ≈ [50]. Recall
that Tord-solver records a derivation reason for each edge, and the derivation reason of a path can be
calculated accordingly (see Section 4.2). The derivation reason of critical cycles can be returned as
the inconsistency reason. To ease the following discussions, we call the edges corresponding to PPO

and atomicity orders static edges (they are fixed during SMT solving), and the edges corresponding
to RF , WS, and FR orders induced edges (they are induced by variable assignments).

When a Tord-inconsistency occurs, the event graph may contain many critical cycles; we prefer
those with the shortest width (defined as the number of induced edges on the cycle). Their deriva-

tion reasons contain the minimal number of ordering literals and can be used to prune more search
space. If there are multiple critical cycles with the shortest width, then we generate them all.

An important fact is that the event graph must be acyclic before the current edge insertion.
Therefore, the newly added edge should present in all cycles. Let ei ≺ ej be the newly added edge;
the conflict clause generation needs to find all derivation reasons of ej ≺+ ei with the shortest
width.

Let Ej−i be the set of nodes that occur on any path of ej ≺+ ei , including ej and ei themselves.
For each en ∈ Ej−i , denote reasons (en) the set of all derivation reasons of ej ≺+ en with the shortest
width. We compute reasons (en) in the following routine:

Step 1 (Subgraph construction). We first construct subgraph Ej−i . Remember that in consis-
tency checking, set B contains visited nodes from incoming edges of ei and set F contains visited
nodes from outgoing edges of ej . Actually, for each node in B or F, we also record its parents (e.g.,
if edges e1 ≺ e3 and e2 ≺ e3 are visited in the forward search, then e3’s parents are {e1, e2}). In
consistency checking, once a cycle is detected when visiting a node (assumed to be ek), then ek

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:19

must be in both B and F. We can find all nodes on path ej ≺+ ei by tracking back to ek ’s parents;
we add these nodes to Ej−i . We construct this subgraph of the event graph by removing all nodes
other than Ej−i and deleting induced edges that have a chord in ≺ppo ∪ ≈ (e.g., �n1�

w ≺rf �n2�
r in

Figure 3(b)).

Step 2 (Iterative solving). We traverse the subgraph in topological order, starting from the
outgoing edges of ej . Let en be the current node to be visited. Without loss of generality, when
there are multiple edges waiting to be visited, we first visit PPO edges. There are two situations:

• When visiting PPO edge ep ≺ppo en , we append reasons (ep) to reasons (en). However, if node
en has been visited once (sowidth(en) has been calculated) andwidth(ep) > width(en), then
we skip this visit.
• We visit induced edges only when no PPO edges are waiting to be visited. When visiting

induced edge ep ≺ en (either ≺rf, ≺ws, or ≺fr), we append reasons (ep) to reasons (en) and add
reason(ep ≺ en) to each newly appended reason. However, if node en has been visited once
and width(ep) > width(en) − 1, then we skip this visit.

In this traversal order, we can always find the shortest width of a node at its first visit, i.e., we
first visit all nodes whose width = 0, then all nodes whose width = 1, and so on.

Formally, suppose the predecessors of en are ep1, . . . , epa , eq1, . . . , eqb where epi ≺ppo en and
eqj ≺ en (induced edges). According to the procedure described above, we have:

width(en) =min{width(ep1), . . . ,width(epa),width(eq1) + 1, . . . ,width(eqb) + 1},
so ∀epi width(epi) ≥ width(en) and ∀eqj width(eqj) ≥ width(en) − 1.

Denote SP (en) the set of shortest predecessors of en such that the paths ej ≺+ SP (en) ≺ en have
the shortest width. We lift ∧ operator to sets, and compute reasons (en) as⋃

ep ∈SP (en)

reasons (ep) ∧ reason(ep ≺ en).

After the traversal, reasons (ei) records the set of shortest derivation reasons of ej ≺+ ei . A path
in ej ≺+ ei and ei ≺ ej forms a cycle. We append reason(ei ≺ ej) to each reason in reasons (ei) and
return them as conflict clauses.

Example. Consider the event graph in Figure 7. Let e3 ≺fr e1 be the newly added edge. The
consistency checking reports Tord-inconsistency, i.e., cycle is detected in the event graph.

• First, we construct the subgraph by keeping all nodes that appear on any path from e1 ≺+ e3.
There are two paths: e1 ≺ppo e2 ≺rf e3 and e1 ≺rf e4 ≺fr e5 ≺ppo e2 ≺rf e3; therefore, e6 and e7

are removed.
• Second, we traverse the subgraph in topological order, starting from the outgoing edges of
e1. Note that width can be computed as the number of ≺rf,≺ws, and ≺fr edges in the cycle;
Figures 8 and 9 show two cycles with width = 2 and width = 4, respectively. Since we try
to find cycle(s) with the shortest width, we return the conflict clause: The conjunction of
ordering literals that imply e2 ≺rf e3 and e3 ≺fr e1.

We show the correctness and complexity of our conflict clause generation algorithm by the
following theorems.

Theorem 3. The above conflict clause generation algorithm finds all conflict clauses with the short-

est width.

Proof. Using mathematical induction, we prove that for each node en with predecessors
ep1, . . . , epa , eq1, . . . , eqb where epi ≺ppo en and eqi ≺ en (induced edges), reasons (en) contains

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:20 H. Fan et al.

Fig. 7. The original graph. Fig. 8. Cycle α : width = 2. Fig. 9. Cycle β : width = 4.

all reasons for ej ≺+ en with the shortest width, where soundness means there is no shorter rea-
son for ej ≺+ en ; and completeness means there is no reason for ej ≺+ en with the same width but
not contained in reasons (en). Both soundness and completeness trivially hold for ej , for the graph
is acyclic before the edge addition.

Soundness: Assume there exists a path pather r from ej to en corresponding to reasoner r of ej ≺+
en whose widther r < width(en), If its last step is epi ≺ en , then reasons (epi) must include this
reasoner r , which contradicts width(epi) ≥ width(en); otherwise, if the last step is eqj ≺ en , then
reasons (eqj) must include reasoner r without the last reason(whose width is widther r − 1), which
contradictswidth(eqj) + 1 ≥ width(en). Thus, we prove the soundness of n from the soundness of
its predecessors.

Completeness: Assume there exists a path pather r from ej to en corresponding to reasoner r of
ej ≺+ en whosewidth iswidth(en) but not included in reasons (en). If the last step ofpather r is epi ≺
en , then reasoner r is also a reason of ej ≺+ epi , thus, by soundness of epi , width(epi) ≤ width(en),
which gives width(epi) = width(en). By completeness of epi , reasoner r is included in reasons (epi)
and should be collected by reasons (en), which gives a conflict; otherwise, if the last step is eqj ≺ en ,
then reasoner r without the last reason is a reason of ej ≺+ eqj , thus width(eqj) ≤ width(en) − 1,
which gives width(eqj) = width(en) − 1. Then, reasoner r without the last reason is included in
reasons (eqj) and should be appended to the last reason and collected by reasons (en), which also
gives a conflict. Thus, we prove the completeness of en .

The graph has a topological order, since it is acyclic. By mathematical induction, we prove that
the algorithm is sound and complete. �

Theorem 4. The time complexity of our conflict clause generation algorithm is O (c ×m′), where c
is the number of computed conflict clauses andm′ is the number of edges in the constructed subgraph.

Proof. A reason is a conjunction of literals, usually implemented as a vector or set. To reduce
the time cost of copying reasons, when a reason is copied from reasons (d) to reasons (e), we only
copy its pointer. When a new_reason is constructed by appending r to an existing reason, we
represent the new_reason with r appending to the pointer of reason.

In this manner, any reason whose last element is r is constructed when visiting nodes e where
reason(d ≺ e) = r . Thus, each reason is constructed only once and we can give each reason a
unique ID to distinguish different reasons , i.e., it is easy to identify and remove duplicate reason
when computing reasons (e). reasons (e) has at most c elements, so for each edge ex ≺ ey in the
subgraph, at most c reasons are copied from reasons (ex) to reason(ey). As shown above, either copy
or construction of reasons cost O (1) time. Thus, the whole algorithm takes O (c ×m′) time. �

5.4 Backtracking

After the SAT solver being noticed of the conflict clauses, it backtracks to a previous state to get
rid of the current inconsistency. On this occasion, Tord-solver also needs to restore the event graph
to the correlating previous state, i.e., to remove all edges added after this state. Each edge deletion

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:21

takes O (1) time. Moreover, Tord-solver needs to restore the pseudo-topological levels, which is
necessary to preserve ICD’s complexity analyzed in Reference [12]. The restoration of each node
also takesO (1) time. Therefore, in the worst case (all edges are removed),Tord-solver costsO (m+n)
time on backtracking an event graph with n nodes and m edges. In practice, the time complexity
is often much smaller, since usually only a small portion of edges are removed.

5.5 Theory Propagation

We employ theory propagation to derive more ordering constraints. In detail, Tord-solver deduces
values of unassigned literals by unit-edge propagation and derives from-read orders by from-read

propagation.

5.5.1 Unit-edge Propagation. For ease of implementation, we pre-create an edge for each or-
dering variable in Xrf ∪ Xws. Each of these edges has two states, active and inactive (initially
inactive). Only active edges are present in the event graph. An inactive edge is activated when
the corresponding ordering variable is set to true. An active edge is inactivated if the correspond-
ing ordering variable is unassigned (due to backtracking of DPLL(T)).

Let ei ≺ ej be an inactive edge for an ordering variablev . It is a unit edge if there already exists
a path from ej to ei in the event graph. In other words, once the ordering variable v is assigned
true, a cycle ei ≺ ej ≺+ ei forms. To prevent this cycle, v must be set to false. In this way, we
deduce the value of an unassigned variable. We call this unit-edge propagation.

Unit-edge propagation is performed after incremental cycle detection. Let B and F be the node
sets obtained in the backward and forward search of ICD, respectively. For any node eb ∈ B and any
node ef ∈ F, there must be a path from eb to ef that passes the newly added edge. We enumerate
each such node pair and check if (ef , eb) corresponds to an inactive edge; if it does, then the
corresponding inactive edge is a unit edge.

Figure 3(c) shows a cycle led by assignments r f y
2,3
→ true and r f x

5,2
→ true. Assuming that
r f x

5,2
→ true is assigned first: the edge �x5�
w ≺rf �x2�

r is added; then there forms a path from �y3�
r

to �x5�
w (by PPO edges), to �x2�

r (by this added edge), and to �y2�
w (by PPO edges). According to

our unit-edge propagation, �y2�
w ≺rf �y3�

r is a unit edge, so the value of r f y
2,3 is enforced to false.

In this way, our unit-edge propagation can prevent the Tord-inconsistency shown in Figure 3(c).

5.5.2 From-read Propagation. FR constraints are not included in our encoding formula. We de-
pend on Tord-solver to deduce FR orders.

When adding an RF edge �xi �
w ≺rf �x j�

r , Tord-solver seeks outgoing WS edges of node �xi �
w .

For each of such edges, say, �xi �
w ≺ws �xk �w , Tord-solver derives �x j�

r ≺fr �xk �w and instantly
adds it to the event graph. Similarly, when adding a WS edge �xi �

w ≺ws �x j�
w , Tord-solver seeks

outgoing RF edges of �xi �
w , say, �xi �

w ≺rf �xk �r , and derives �xk �r ≺fr �x j�
w .

Figure 3(b) shows an example of from-read propagation, where �n1�
w ≺ws �n4�

w is added prior to
�n1�

w ≺rf �n2�
r . During the addition of �n1�

w ≺ws �n4�
w , since �n1�

w has no outgoing RF edges yet,
from-read propagation obtains nothing. Then, while adding �n1�

w ≺rf �n2�
r , there is an outgoing

WS edge �n1�
w ≺ws �n4�

w from �n1�
w . By from-read propagation, we deduce �n2�

r ≺fr �n4�
w .

In Tord theory solving, only unit-edge propagation interacts with the outer SAT solver, since it
can propagate values of some Boolean variables. In contrast, when from-read propagation deduces
a new edge, the theory solver inserts the edge and calls the consistency checking procedure, all
inside the Tord-solver.

Example. Let us consider how to verify the example program in Figure 2 using Tord-solver inte-
grated with DPLL(T). Given the encoding formula Ψ, DPLL(T) first applies unit-clause propagation
and theory propagation to make as many as possible deductions.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:22 H. Fan et al.

Before deciding any literal, DPLL(T) assigns PPO order constraints true for they occur alone in
the CNF-formulated input SMT formula. Unit-edge propagation assigns:

wsx
5,1,ws

y
2,1,ws

m
3,1,ws

m
4,1,ws

m
4,3,ws

n
3,1,ws

n
4,1,ws

n
4,3

to false. Then,wsx
1,5,wsy

1,2 are deduced to be true by DPLL(T). Ordering variables related to variable
m and n are not derived for some дuards not necessarily hold.

Assuming DPLL(T) chooses r f m
3,2 and decides its value to true, we perform deduction as follows:

r f m
3,2 =⇒ x2 = 1 (Guard holds)

=⇒ r f x
5,2 (RF-Val, RF-Some)

=⇒ ¬r f y
2,3 ∧ ¬r f

y
2,4 (Unit-edge)

=⇒ r f
y
1,3 ∧ ¬r f

y
2,4 (RF-Some)

=⇒ y3 = 0 ∧ ¬r f y
2,4 (RF-Val)

=⇒ r f
y
1,4 (RF-Some)

=⇒ y4 = 0 (RF-Val).

Then, we decide from which write (�n1�
w , �n3�

w , or �n4�
w) the access �n2�

r obtains its value. First,
�n3�

w is excluded from consideration, since its guard condition (y3 = 1) conflicts with the current
assignment (y3 = 0). Second, �n2�

r is also excluded, since the values of n2 (equals 1) and n1 (equals
0) are not equal. Third, if �n2�

r reads from �n4�
w , thenn2 = n4 = y4 = 1, conflicting with the current

assignment (y4 = 0), too. Therefore, the deduction from r f m
3,2 = true gets to a contradiction.

Then, DPLL(T) backtracks and assigns r f m
3,2 to false, i.e., �m2�

r cannot read from �m3�
w . Note

that �m2�
r also cannot read from �m1�

w form2 �m1. Thus, r f m
4,2 is the only choice. The subsequent

deduction is as follows:

r f m
4,2 =⇒ x3 =m4 =m2 = 1 (RF-Val)

=⇒ ¬r f x
1,3 (RF-Val)

=⇒ r f x
5,3 (RF-Some)

=⇒ ¬r f y
2,3 ∧ ¬r f

y
2,4 (Unit-edge).

Now the deduction gets to the same point as in the third line of the first deduction procedure. The
same as in the first deduction, it also leads to a contradiction.

From the deduction procedures above, we conclude that the encoding formula for the program
is unsatisfiable. Therefore, the safety property of this program holds.

6 EXPERIMENTAL EVALUATION

This section introduces the implementation of our approach and reports the comparative results
with some state-of-the-art verification tools.

6.1 Implementation and Setup

We implemented our techniques on top of CBMC [41] and Z3 [21]. CBMC is powerful and
flexible bounded model checker for C/C++ programs, and Z3 is a well-known and widely adopted
SMT solver. In our implementation, CBMC and Z3 act as the front and back ends, responsible
for generating and solving SMT formulas, respectively. We enhance CBMC by consulting our
Tord-theory, and extend Z3 with our Tord-solver. We follow the same strategy as in Reference [59]

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:23

for loop unrolling. All generated SMT formulas are in the SMT-LIB-v2.6 format. In the following,
we call our implementation Zord.8

All experiments were conducted on a computer with an Intel(R) Core(TM) i7-8700 CPU and
32 GB DDR4 memory. The operating system is ArchLinux-5.11.10. The time limit for each verifi-
cation task is 900 seconds.

6.2 Experiment on SV-COMP Benchmarks

We collect benchmarks from the ConcurrencySafety category of SV-COMP 2020.9 This category
is divided into 11 sub-categories, namely, ldv-races (12), pthread (38), atomic (11), C-DAC (4), com-

plex (5), divine (16), driver-races (21), ext (53), lit (11), nondet (6), and wmm (898), where the number
adhered to each sub-category represents the number of programs it contains. There are 14 pro-
grams in divine sub-category that cannot be compiled by CBMC and are thus excluded from the
benchmark set. In total, we get 1,061 test cases.

We compare Zord with the following tools:

• CBMC10: a tool that implements the standard partial-order-based verification algorithms [9],
with Z3 as the underlying SMT solver.
• Lazy-CSeq11: a tool that verifies concurrent programs under SC memory model using the

lazy sequentialization schema [36, 37].
• Lazy-SMA12: a tool that verifies concurrent programs under TSO and PSO memory models

using the lazy sequentialization schema [37, 54].
• CPA-Seq13: a configurable program verification platform [13, 14] with sequentially com-

bined analysis strategies.
• Dartagnan14: a bounded model checker [27] for concurrent program verification under

various memory models.

Results under SC. The experimental results under SC memory model are summarized in
Table 1. The first column #Solved shows the number of cases successfully solved by each tool.
The following columns list results for both-solved cases (cases that can be correctly verified by
both Zord and the tool being compared): Num gives the number of cases solved by Zord and the
baseline tool; True and False show the number of solved cases that satisfy and violate the desired
properties, respectively; CPU_time and Memory show the time and memory consumption of the
baseline tool and Zord, respectively.

In total, Zord solves 38 more cases than CBMC, 119 more cases than CPA-Seq, and 897 more
cases than Dartagnan. The only exception is Lazy-CSeq, which solves 6 more cases than ours.
Considering that Lazy-CSeq is a highly optimized tool (winner of the ConcurrencySafety cate-
gory of SV-COMP 2020), this result is acceptable. Considering the both-solved cases, Zord is 2.44×
faster than CBMC, 90.04× faster than CPA-Seq, 139.47× faster than Dartagnan, and 7.20× faster
than Lazy-CSeq. Meanwhile, Zord uses 20.8% less memory than CBMC, 99.6% less memory than
CPA-Seq, 99.0% less memory than Dartagnan, and 94.5% less memory than Lazy-CSeq.

We notice that programs in wmm sub-category are all very small ones with instrumentations
to model the weak memory semantics. One may not consider them as representative concurrent

8https://thufv.github.io/research/zord.html.
9https://sv-comp.sosy-lab.org/2020/.
10CBMC-v5.52.0: https://github.com/diffblue/cbmc/releases/tag/cbmc-5.52.0.
11Lazy-CSeq-v2.1: https://github.com/omainv/cseq/releases/tag/SVCOMP2021.
12Lazy-SMA: http://users.ecs.soton.ac.uk/gp4/cseq/fmcad16.zip.
13CPA-Seq-v2.0: https://gitlab.com/sosy-lab/sv-comp/archives-2021/raw/svcomp21/2021/cpa-seq.zip.
14Dartagnan-v2.0.7: https://gitlab.com/sosy-lab/sv-comp/archives-2021/raw/svcomp21/2021/dartagnan.zip.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

https://thufv.github.io/research/zord.html
https://sv-comp.sosy-lab.org/2020/
https://github.com/diffblue/cbmc/releases/tag/cbmc-5.52.0
https://github.com/omainv/cseq/releases/tag/SVCOMP2021
http://users.ecs.soton.ac.uk/gp4/cseq/fmcad16.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2021/raw/svcomp21/2021/cpa-seq.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2021/raw/svcomp21/2021/dartagnan.zip

6:24 H. Fan et al.

Table 1. Results on 1,061 SV-COMP Benchmarks under SC

Tool #Solved

#Both-solved

Num True False
CPU_time (s) Memory (GB)

(-/Zord) (-/Zord)
Zord 1,051 - - - - -
CBMC 1,013 1,013 224 789 3,091/1,255 7.87/6.21
CPA-Seq 932 930 165 765 33,771/363 1,321.46/5.41
Dartagnan 154 154 130 24 6,572/51 72.33/0.69
Lazy-CSeq 1,057 1,050 248 802 14,066/1,943 115.45/6.55

Table 2. Results on 163 SV-COMP Benchmarks under SC

(i.e., with wmm Sub-category Excluded)

Tool #Solved

#Both-solved

Num True False
CPU_time (s) Memory (GB)

(-/Zord) (-/Zord)
Zord 153 - - - - -
CBMC 115 115 80 35 2,731/989 1.94/1.53
CPA-Seq 40 38 23 15 1,135/102 30.03/0.77
Dartagnan 31 31 7 24 2,968/21 54.77/0.23
Lazy-CSeq 159 152 104 48 10,528/1,693 72.64/1.66

programs. Table 2 lists the summary results with wmm sub-category excluded. In total, Zord solves
38, 113, and 122 more cases than CBMC, CPA-Seq, and Dartagnan, respectively, and 6 less cases
than Lazy-CSeq. Counting on the both-solved non-wmm cases, Zord is 2.76×, 11.06×, 157.47×,
and 6.24× faster and uses 21.5%, 97.5%, 99.6%, and 97.7% less memory than CBMC, CPA-Seq,
Dartagnan, and Lazy-CSeq, respectively.

Figure 10 compares Zord with CBMC on the CPU time of each verification task. A point below
(or above) the diagonal represents a case that Zord is superior (inferior) to CBMC. Programs in wmm
sub-category are all simple, so their accumulated CPU time by Zord and CBMC are 269 s and 338 s,
respectively; we only draw a single point in the figure to represent the whole wmm sub-category.
There is a cluster of points at the bottom left of Figure 10, which indicates that these cases are
solved extremely fast by both tools, and CBMC even solves slightly faster on some tasks. This is
because either these tasks are trivial or counterexamples occur at a low depth. When the cases
become complex, our method starts to show its strength.

Figures 11 and 12 compare Zord with Lazy-CSeq, and Zord with CPA-Seq (blue points) and
Dartagnan (orange points) on each case, respectively. These results conform to those in Table 1.
Zord is remarkably superior to these three tools in most cases. Among all cases, Zord outperforms
Dartagnan. Only in 14 and 3 cases is Zord inferior to Lazy-CSeq and CPA-Seq, respectively.

Results under TSO and PSO. Because CPA-Seq has no configuration for weak memory mod-
els, we compare Zord with CBMC, Dartagnan, and Lazy-SMA. The experimental results under
TSO and PSO are summarized in Tables 3 and 4, respectively. The meaning of each column is the
same as Table 1.

In TSO, Zord solves 47 more cases than CBMC, 925 more cases than Dartagnan, and 533 more
cases than Lazy-SMA. Note that the number of cases Lazy-SMA solves under the weak memory
model is much less than Lazy-CSeq under SC. This is because Lazy-CSeq’s support for the weak
memory model (called Lazy-SMA) has not been updated and maintained in the follow-up, and
the performance is worse than the competition version (for SC). Considering both-solved cases,
Zord is 2.47×, 174.18×, and 4.49× faster than CBMC, Dartagnan, and Lazy-SMA, respectively.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:25

Fig. 10. Zord vs. CBMC in SC. Fig. 11. Zord vs. Lazy-CSeq in SC.

Table 3. Summary Results on 1,061 SV-COMP Benchmarks under TSO

Tool #Solved

#Both-solved (TSO)

(TSO) Num True False
CPU_time (s) Memory (GB)

(-/Zord) (-/Zord)
Zord 1,048 - - - - -
CBMC 1,001 1,000 217 783 3,428/1,387 13.55/9.27
Dartagnan 123 123 92 31 5,946/37 88.34/1.69
Lazy-SMA 515 515 153 362 992/219 32.53/2.42

Table 4. Summary Results on 1,061 SV-COMP Benchmarks under PSO

Tool #Solved

#Both-solved (PSO)

(PSO) Num True False
CPU_time (s) Memory (GB)

(-/Zord) (-/Zord)
Zord 1,049 - - - - -
CBMC 999 998 97 901 4,576/1,877 11.44/7.93
Dartagnan 159 159 15 144 7,689/48 87.63/1.56
Lazy-SMA 776 776 57 719 2,741/245 28.66/1.98

Meanwhile, Zord uses 31.8%, 98.2%, and 92.6% less memory than CBMC, Dartagnan, and Lazy-
SMA, respectively.

In PSO, Zord solves 50, 890, and 273 more cases than CBMC, Dartagnan, and Lazy-SMA, re-
spectively. Considering both-solved cases, Zord is 2.44×, 163.43×, and 11.29× faster than CBMC,
Dartagnan, and Lazy-SMA, respectively. Meanwhile, Zord uses 31.0%, 98.4%, and 93.2% less mem-
ory than CBMC, Dartagnan, and Lazy-SMA, respectively.

From the statistics in Tables 3 and 4, as the memory model changes from SC to TSO and PSO, all
the false tasks in SC are still false in TSO and PSO, whereas some true tasks flip to false. From the
experimental results, relaxing some ordering constraints in TSO and PSO causes more safety prop-
erty violations, especially when allowing the reordering of two write events that access different
addresses.

Tables 5 and 6 list the summary results with wmm sub-category excluded under TSO and PSO,
respectively. In total, Zord solves 33, 114, and 111 more cases in TSO, and 44, 121, and 111 more
cases in PSO, than CBMC, Dartagnan, and Lazy-SMA, respectively. Counting on both-solved
cases, in TSO, our approach is 2.77×, 211.80×, faster and consumes 53.5%, 98.2% less memory than

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:26 H. Fan et al.

Fig. 12. Zord vs. CPA-Seq (blue) and Dartagnan

(orange) in SC.

Fig. 13. Zord vs. CBMC under TSO (blue) and PSO

(orange).

Table 5. Summary Results on 163 SV-COMP Benchmarks under TSO

(with wmm Sub-category Excluded)

Tool #Solved

#Both-solved (TSO)

(TSO) Num True False
CPU_time (s) Memory (GB)

(-/Zord) (-/Zord)
Zord 150 - - - - -
CBMC 117 116 73 43 3,121/1,119 3.893/1.82
Dartagnan 36 36 15 21 3,155/16 68.79/0.55
Lazy-SMA 39 39 27 12 22/29 11.21/0.26

Table 6. Summary Results on 163 SV-COMP Benchmarks under PSO

(with wmm Sub-category Excluded)

Tool #Solved

#Both-solved (PSO)

(PSO) Num True False
CPU_time (s) Memory (GB)

(-/Zord) (-/Zord)
Zord 151 - - - - -
CBMC 107 106 54 52 4,339/1,608 1.74/1.60
Dartagnan 30 30 15 15 7,656/46 62.88/0.34
Lazy-SMA 40 40 21 19 18/25 9.20/0.21

CBMC and Dartagnan; in PSO, our approach runs 2.71×, 212.28× faster and consumes 8.0%, 99.4%
less memory than CBMC and Dartagnan. Once we exclude the programs in wmm sub-category,
Lazy-SMA only solves—39 simple cases in TSO and 40 simple cases in PSO. Considering these
both-solved cases , Zord is slightly inferior to Lazy-SMA. However, Zord consumes 97.6% and
97.8% less memory than Lazy-SMA.

Figure 13 compares Zord with CBMC on the CPU time of each verification task under TSO
(blue) and PSO (orange). A point below (or above) the diagonal represents a case that Zord is
superior (inferior) to CBMC. Similar to Figure 10, programs in wmm sub-category are all simple so
their accumulated CPU time by Zord and CBMC are—278 s and 333 s in TSO, 272 s and 306 s in
PSO, respectively; we only draw a single point for each memory model in the figure to represent
the whole wmm sub-category. From Figure 13, our approach is superior to CBMC in most cases,
since most of the points are below the diagonal.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:27

Fig. 14. Zord vs. Dartagnan under TSO (blue) and

PSO (orange).

Fig. 15. Zord vs. Lazy-SMA under TSO (blue) and

PSO (orange).

Table 7. Summary Results of FR Propagation

Tool #Solved
#Both-solved

Num Total_time (s) Encoding_time (s) SMT_size (GB) Solving_time (s)

Zord− 1,049 1,049 3,090.5 642.0 6.53 2,448.4
Zord 1,051 1,049 2,040.5 491.9 2.28 1,548.6
Ratio - - 1.52× 1.31× 2.86× 1.58×

Figures 14 and 15 compare Zord with Dartagnan and Lazy-SMA on each case under TSO (blue)
and PSO (orange). These results are consistent with those in Tables 3 and 4. Zord significantly
outperforms Dartagnan among all cases and is superior to Lazy-SMA in most cases. In only 7
and 5 cases is Zord inferior to Lazy-SMA under TSO and PSO, respectively.

6.3 Experiment on Strategies of Tord-solver

This experiment evaluates strategies of Tord-solver by testing their effects on the whole perfor-
mance of program verification. Experiment settings are identical to 6.2, and we set the memory
model to SC for brevity.

Effects of FR Propagation. This experiment compares the effect of the front-end FR con-
straints propagation. Zord does not encode FR constraints into the SMT formula. Instead, the
Tord-solver conducts the derivation of FR constraints. An alternative strategy, called Zord−, forces
the front-end to encode all FR constraints into the SMT formula and lets Tord-solver skip their
derivation.

Figure 16 shows the time comparison between Zord− and Zord on each verification task. In
most cases, Zord is more efficient than Zord−. Table 7 summarizes the comparison result of Zord−

and Zord. The columns Total_time, Encoding_time, and Solving_time show the total CPU time,
encoding time, and constraint solving time, respectively. The column SMT_size lists the size of the
generated SMT formulas. In the Ratio row, we compute the ratio of Zord− to Zord: A ratio greater
than 1.0 indicates Zord outperforming Zord− on the selected measurement.

Among 1,061 available cases, Zord solves 1,051 cases, and Zord− solves 1,049 cases. Zord−

has two more timeout cases, whereas Zord solves them within 95.4 s and 248.3 s, respectively. On
1,049 both-solved cases, Zord− spends 3,090.5 s while Zord spends 2,040.5 s—these cases only take
Zord 66.0% time as much as Zord−. Since Zord ignores FR constraints when generating the SMT
formula, Zord encodes a smaller formula than Zord−. The size of the encoding formula of Zord−

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:28 H. Fan et al.

Fig. 16. Zord vs. Zord−. Fig. 17. Zord vs. Zord
′
.

and Zord is 6.53 GB and 2.28 GB, respectively—a 65.1% reduction for Zord over Zord−. In more
detail, in 439 of 1,061 available cases, the size of generated encoding formula by Zord is less than
60% of that by Zord−. Besides, Zord reduces the encoding time by 150.1 s compared to Zord−.

Note that the encoding time of Zord− and Zord only accounts for 20.8% and 24.1% of total time,
respectively. In contrast, constraint solving takes up most of the verification time. Compared to
Zord−, Zord reduces the solving time by 899.8 s; Zord shows promising improvement in con-
straints solving. In more detail, Zord− uses unit clause propagation at the SAT level to assign FR

constraints, whereas Tord-solver performs from-read propagation on the event graph to derive FR

constraints with O (1) complexity—our application of the from-read axiom is more efficient than
Zord−. The statistics in Table 7 also show that the overall efficiency improvement mainly comes
from the FR axiom in constraint solving, not just from the simplified encoding. In summary, it
is more efficient to pass the derivation of FR constraints to Tord-solver than to encode all FR con-
straints into the SMT formula.

Effects of Unit-edge Propagation. This experiment evaluates the effect of unit-edge propaga-

tion. Unit-edge propagation enables Tord-solver to search for unit edges and propagate their deriva-

tion reasons to false as many as possible. Note that unit-edge propagation only affects the efficiency
of theory propagation but not its correctness.

An alternative strategy is to disable unit-edge propagation, signed as Zord
′
. Figure 17 shows

time comparison between Zord and Zord
′
on each verification task. Among 1,061 available cases,

Zord
′
verifies 1,048 cases correctly, and Zord succeeds in 1,051 cases—by applying unit-edge propa-

gation, we solve 3 more cases within 93.0 s, 606.3 s, and 245.0 s, respectively. On 1,048 both-solved
cases, Zord

′
spends 1590.2 s and Zord spends 1389.3 s—the time reduction is 12.6%. Moreover,

compared to Zord
′
, Zord reduces memory consumption, the number of decisions, propagations,

and conflicts to 97.5%, 84.4%, 90.1%, and 79.0%, respectively. Zord reports 15.6% fewer decisions and
21% fewer conflicts than Zord

′
. Therefore, we confirm that unit-edge propagation helps DPLL(T)

avoid possible cycles in advance and make fewer decisions to reduce the search space. In summary,
unit-edge propagation is an obvious optimization for Tord-solver.

Effects of ICD Algorithm. We also implement Tarjan’s non-incremental cycle detection algo-
rithm in our Tord-solver and compare it with the ICD algorithm. Figure 18 shows the CPU time
of SMT solving with these two algorithms on each verification task. In small cases (<1 s), the per-
formance is similar, whereas in most complicated cases, the ICD algorithm is more efficient than
Tarjan’s algorithm. Considering both-solved cases, the total CPU time with Tarjan’s algorithm is

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:29

Fig. 18. ICD vs. Tarjan’s algorithm.

4813 s, and that with ICD is 2368 s—SMT solving with the ICD algorithm is 2.03× times faster than
that with Tarjan’s algorithm. For an event graph with n nodes and m edges, the complexity of

Tarjan’s’ algorithm is O (m × (n + m)) and that of ICD is O (m × min{n 2
3 ,m

1
2 }). Generally,

the event graph of a multi-threaded program is sparse (m << n2). As programs become complex,
incremental cycle detection starts to show its efficacy.

6.4 Comparison with Stateless Model Checking

Stateless model checking (SMC) [29] is another successful technique for multi-threaded program
verification. It systematically explores all interleaving traces of the concurrent program. Mean-
while, various partial order reduction techniques [1, 16, 35, 62] are developed to alleviate the path
space explosion problem. In this experiment, we compare Zord with two state-of-the-art SMC
tools:

• Nidhugg15: an SMC tool that implements the reads-from equivalence exploration algo-
rithm [4] in SC (rfsc) and supports various weak memory models [2, 3].
• GenMC16: an SMC tool that implements an optimal algorithm to build execution graphs

dynamically [40]. GenMC supports various access modes in Repaired C/C++11 memory

model (RC11) [39].

Originally, we wanted to perform this experiment on SV-COMP benchmarks. However, Nidhugg
and GenMC currently do not support many library functions used in SV-COMP benchmarks, e.g.,
abort(), strcmp(), strcpy(), and some of __VERIFIER_*. As a result, among the 1,061 SV-COMP
verification tasks, Nidhugg and GenMC only solve 45 and 38 cases, respectively.

Therefore, we decide to use benchmarks from Nidhugg.17 The original benchmark set contains
83 multi-threaded C programs, many of which do not contain assertions, since they are prepared
for testing Partial Order Reduction (POR) techniques [1, 2]. We select benchmarks using the
following rules: (1) gcc-compilable, (2) contain at least one assertion, (3) parameterizable, and
(4) verifiable by Nidhugg.

Finally, we get nine examples with parameter N :

• CO-2+2W(N) and float_r(N) are two examples that check the safety of atomic read and
atomic write in a multi-threaded environment with N threads.

15Nidhugg-rfsc: https://github.com/nidhugg/nidhugg/tree/master/benchmarks.
16GenMC v8.0 https://github.com/MPI-SWS/genmc/releases/tag/v0.8.
17Nidhugg benchmarks: https://github.com/nidhugg/nidhugg/tree/master/benchmarks,commit6af46b8.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

https://github.com/nidhugg/nidhugg/tree/master/benchmarks
https://github.com/MPI-SWS/genmc/releases/tag/v0.8
https://github.com/nidhugg/nidhugg/tree/master/benchmarks, commit 6af46b8

6:30 H. Fan et al.

• airline(N) implements a ticket sale example from Reference [35], where N is the number
threads.
• fib_bench(N) implements a concurrent version of Fibonacci number; szymanski(N) im-

plements Szymaski’s critical section algorithm; lamport(N) implements the Lamport’s al-
gorithm; cir_buf(N) implements a circular buffer. The above all four programs using two
threads, where N determines their unrolling bound of loops.
• parker(N) implements the Parker lock algorithm using one thread. N is used in a assume

statement.
• account(N) depicts a bank account system [35]. It contains N deposit threads and one

withdraw thread.

Given that Zord is implemented on top of CBMC, we also make a comparison with CBMC on
Nidhugg benchmarks. In general, we compare Zord with CBMC and Nidhugg under SC, TSO,
and PSO, respectively. Moreover, since GenMC does not currently support TSO and PSO, we make
a comparison with GenMC18 under SC.

Results. Table 8 details the experimental results, where the Traces column lists the number of
traces explored by GenMC. There is an obvious positive correlation between the time efficiency of
stateless model checking tool and the number of program paths it searches. If a verification result
is returned within 900 seconds, then the number reported in Traces is a measurement of the size
of the trace space. For each verification tool (e.g., Nidhugg), we show its verification time under
SC, TSO, and PSO, respectively. The abbreviation TO means timeout, i.e., no verification result
returned within 900 seconds.

In CO-2+2W(N) and float_r(N), there is no branching statement; the main thread contains
only one read event; and each child thread contains one visible atomic write. As a result, the
number of traces in each program is equal (or nearly equal) to the number of child threads (i.e.,
N). Compared to SMC tools, Nidhugg is efficient under SC, since it employs the rfsc strategy to
reduce equivalent traces. However, as N increases, Nidhugg fails to verify these programs under
TSO and PSO. In contrast, Zord is obviously faster than Nidhugg under TSO and PSO. GenMC
verifies these programs within a few tenths of a second. This is understandable, since the largest
float_r(100) contains 101 traces only. GenMC only explores N + c (c is a non-negative integer
and c � N) traces and returns instantly. The time consumption of CBMC and Zord increase
gradually on the increment of N because the size of the encoding formula grows accordingly.
However, Zord is obviously faster than CBMC under both SC, TSO, and PSO. Our ordering theory
and elaborated theory solver help Zord achieve higher efficiency.
Airline(N), fib_bench(N), and szymanski(N) contain branching statements, with N rep-

resenting either the number of threads or the unrolling bound of loops. As N increases, Nidhugg
and GenMC slow down rapidly. Basically, the verification time of Nidhugg and GenMC is pro-
portional to the number of traces in the program. From Table 8, Zord is significantly superior to
CBMC, Nidhugg, and GenMC.

In lamport(N) and cir_buffer(N), Zord is slightly inferior to Nidhugg and GenMC. The
main reason is that these two examples contain numerous array operations. As a result, the array
theory solver is involved in SMT solving, which is not as efficient as the bit-vector solver. Never-
theless, Zord is the only tool that solves cir_buffer(13) under SC.

In parker(N), a _parker procedure is invoked N times. As N increases, Nidhugg and GenMC
slow down rapidly, in line with the fast growth of traces. In contrast, Zord verifies each program

18GenMC has two configurations: modification order (MO) and writes-before (WB). The latter is much superior to the
former [40]. In our experiments, GenMC is configured using WB.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:31

Table 8. Experiment Results on Nidhugg Benchmarks

Files Traces
Nidhugg GenMC CBMC Zord

SC TSO PSO SC SC TSO PSO SC TSO PSO

CO-2+2W(5) 5 0.10 13.22 13.86 0.02 0.35 6.04 5.89 0.31 0.22 0.17
CO-2+2W(15) 15 0.12 TO TO 0.03 33.89 494.10 557.24 1.35 1.35 1.34
CO-2+2W(25) 25 0.10 TO TO 0.04 322.61 TO TO 6.57 7.31 7.29

float_r(10) 11 0.08 TO TO 0.03 3.182 287.63 344.37 0.21 0.18 0.14
float_r(50) 51 0.11 TO TO 0.04 TO TO TO 1.68 2.12 2.44
float_r(100) 101 0.30 TO TO 0.10 TO TO TO 4.90 TO TO

airline(3) 27 0.09 2.23 2.36 0.03 0.19 0.21 0.21 0.22 0.22 0.22
airline(7) 8.2 × 105 161.21 TO TO 28.03 3.73 51.56 40.32 0.32 0.36 0.24
airline(9) - TO TO TO TO 20.03 245.40 114.06 0.51 0.41 0.25

fib_bench(4) 3.4 × 104 2.74 1.18 1.59 0.72 31.02 112.36 121.62 0.35 0.35 0.38
fib_bench(5) 5.3 × 105 37.53 21.21 18.80 12.98 88.29 558.70 511.04 0.82 0.61 1.17
fib_bench(6) 8.1 × 106 537.98 283.31 242.18 264.65 TO TO TO 1.53 1.66 1.55

szymanski(2) - 4.07 2.96 2.73 TO 15.41 13.13 7.81 1.69 1.38 1.29
szymanski(4) - 153.92 106.65 92.96 TO 258.15 29.65 16.62 6.14 5.11 4.77
szymanski(6) - TO TO TO TO 792.42 63.34 61.62 12.52 7.89 8.63

lamport(2) 1.7 × 104 2.46 3.82 3.48 1.18 TO TO TO 4.15 2.09 1.33
lamport(6) 1.3 × 106 282.10 286.89 256.74 65.42 TO TO TO 379.21 163.39 139.99
lamport(10) - TO TO TO TO TO TO TO TO TO TO

cir_buf(5) 252 0.19 0.16 0.18 0.06 11.19 27.97 35.78 1.70 0.17 0.18
cir_buf(9) 4.9 × 104 25.90 16.69 18.33 11.84 176.43 213.89 TO 52.73 69.10 62.54
cir_buf(13) - TO TO TO TO TO TO TO 897.44 TO TO

parker(12) 7.0 × 104 2.94 2.05 1.99 15.58 114.63 125.47 114.41 0.33 0.35 0.32
parker(20) 4.8 × 105 19.21 11.75 10.98 89.56 TO TO TO 0.36 0.35 0.37
parker(28) 1.7 × 106 52.60 38.21 36.50 458.29 TO TO TO 0.38 0.37 0.36

account(5) 1 0.01 0.01 0.09 0.01 0.67 0.72 0.66 0.25 3.34 0.05
account(15) 1 0.01 0.09 0.09 0.02 87.14 688.33 843.31 43.30 98.28 6.44
account(25) 1 0.13 0.34 0.08 0.04 TO TO TO TO TO TO

in less than 0.4 second, and the time does not notably change as N increases. The main reasons
are: (1) this example contains only one thread, and (2) Zord encodes the path condition of each
memory event into the SMT formula. As a result, increasing N has no influence on the size of the
SMT formula. Moreover, Zord significantly outperforms CBMC under three memory models.

In program account(N), Nidhugg obviously outperforms others. Note that all variations of
this example are buggy. It happens that Nidhugg finds the safety violation by exploring one trace.
In account(5), the performance of Zord, CBMC, and GenMC is similar; but as N increases to 15,
Zord is obviously faster than CBMC and GenMC.

Summary. First, as N increases, Zord outperforms CBMC significantly, demonstrating the effi-
ciency of our Tord-theory solver. Second, SMC is suitable for programs with simple branches, while
Zord is more suitable for complex programs. Third, arrays and complex data structures can slow
down the SMT solving. In general, as the scale (measured by the number of traces) of the program
increases, our approach is superior to these tools in most cases.

6.5 Threats to Validity and Limitations

The main threats to validity are whether the performance improvements are due to our tactic and
whether our implementation and experiments are credible.

First, since we added support for Tord in CBMC and elaborated on its theory solver in Z3, we
compare Zord with them instantly. The improvements over CBMC must come from our tactic.
Second, the experimental results of from-read generation and unit-edge propagation are consistent
with the theoretical analysis, which confirms that the improvements are indeed from these

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:32 H. Fan et al.

strategies. Third, we compare the ICD algorithm to Tarjan’s SCC algorithm during theory solving.
The above three aspects show that the performance improvements are due to our tactic.

Implementation of Tord in CBMC is simple and clear, and the implementation of Tord-solver is
loosely coupled with the overall framework of Z3. Benchmarks are collected from the Concur-
rencySafety category of SV-COMP 2020 and Nidhugg. Many studies perform their experiments
on these benchmarks to demonstrate the effectiveness of their method. Finally, we performed an
extensive comparison with CBMC, Lazy-CSeq, Lazy-SMA, CPA-Seq, Dartagnan, and two SMC
techniques implemented in Nidhugg and GenMC. The detailed results and analysis of these tools
show that Zord is correct and competitive. We are thus confident in the effectiveness of Zord.

Another threat to the validity is whether our approach can be generalized to other SMT solvers
than Z3. We model multi-threaded programs and encode them into SMT formulas, which are in-
dependent of the SMT solver. If we follow the axioms of multi-threaded program verification and
implement these rules into other SMT solvers, then they are also suitable for solving these SMT
formulas. Therefore, our approach can be implemented in other DPLL(T)-based SMT solvers.

The main limitations of our approach are summarized below. First, our method is designed
for verifying safety properties. We need to support more modeling techniques and elaborate on
domain-specific solving strategies for other concurrent verification problems (e.g., data race detec-
tion). Second, our method can not handle the different memory order modes for atomic access and
acquire/release operations. Third, our method only supports SC, TSO, and PSO memory models.
Other mainstream weak memory models with richer semantics and operations need to be sup-
ported in the future. Finally, we use CBMC’s original pointer analysis component. It is developed
based on the classical Steensgaard-style algorithm [52], which is flow-insensitive and is applicable
for symbolic encoding in TSO and PSO. However, the may-alias analysis in handling pointers may
cause spurious counterexamples. Therefore, more advanced strategies are required for analyzing
pointers in multi-threaded programs.

7 RELATED WORK

There is much research on improving the availability and efficiency of multi-threaded program
verification by constraint solving. In this section, we discuss representative and related techniques
in recent years.

Multi-threaded program verification has been comprehensively studied in recent years. Alglave
et al. [9, 10] use a partial order relation on memory events to represent possible executions caused
by thread interleaving. All partial order constraints are encoded into a formula. If no counterex-
ample is found, then the multi-threaded program is safe. Otherwise, we need to check that the
counterexample is not spurious, i.e., that the corresponding execution does not form a cycle. The
above technique inspires our method. We propose a new theory to denote order constraints of
memory events. Then, we elaborate on the theory solver of Tord in Z3 [21]. It can benefit from op-
timizations of Z3 inherently and is fully compatible with DPLL(T) framework. By utilizing axioms
of Tord, Tord-solver is responsible for verifying whether the current order constraints are valid, i.e.,
whether the current order is acyclic. In general, we develop a new partial order theory to extend
the basic idea of References [9, 10] with SMT-based constraint solving.

Horn et al. [33, 34] provide a different approach for representing and solving partial order con-
straints. They propose a novel partial-string theory where order constraints are represented as
partial strings and operators on partial strings are defined accordingly.
Tord-solver’s decision procedure is closely related to incremental cycle detection (ICD), a ma-

ture algorithm with a long research history. Based on online topological ordering [41], research
on ICD begins with Reference [43]. When an edge is inserted, it considers updating the topolog-
ical order by reusing the previous order instead of calculating a new one. The authors propose a

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

Satisfiability Modulo Ordering Consistency Theory 6:33

method that takes amortized O (n) time for each edge insertion in a graph with n nodes, faster than
the O (n +m) offline algorithm (with m representing the number of edges). Later works cited in
References [6, 7, 12, 31, 38, 48] aim at proposing new cycle detection algorithms; some work better
on sparse graphs (assumingm = O (n)) and some better on dense graphs (assumingm = O (n2)).

To the best of our knowledge, the fastest algorithms are proposed by Bender et al. [12]. They
propose two O (min{m1/2, n2/3}m) algorithms for sparse graphs and one O (n2loд(n)) algorithm
for dense graphs. Among them, we apply the two-way-search algorithm for sparse graphs using
pseudo-topological order in our approach. This algorithm achieves O (min{m1/2,n2/3}) for each
edge insertion by using pseudo-topological order and setting a well-designed limit to the order.
However, it can only find a strongly connected component when a cycle occurs. Therefore, we
extend the algorithm to search for all critical cycles with the shortest width.

Nieuwenhuis et al. [46] design an SMT implementation of difference logic, where literal x − y ≤
k is represented with an edge from x to y with weight k and x − y < k represented with an edge
with weight k − ϵ where ϵ = 1 in integer difference logic and ϵ can be computed in linear time
in real difference logic [49]. After adding an edge from x to y, a traverse of outgoing edges from
y and a traverse of incoming edges from x are performed to check whether this edge addition
forms a cycle. If a cycle on which weights of edges sum negative is found, then an inconsistency
occurs. Their difference logic solver’s behavior after each edge addition is similar to ours but far
from incremental. It does not maintain a topological order, so it cannot make use of previous
information. Thus, each traverse is exhaustive and takes O (n +m) time in a graph with n nodes
andm edges.

Ge et al. [28] propose another method to solve order constraints. They only define one sort of
partial order relation, i.e., the “happens-before” relation, and unite other sorts of partial order rela-
tions to “happens-before.” Then, they check if there is a cycle among ordering constraints. In this
manner, their theory cannot handle the intricate relation between different sorts of partial orders
for concurrent program verification, which, in our understanding, is very important for the effi-
ciency of SMT solving. In comparison, our method can model various order relations to formulate
a multi-threaded program’s possible executions. After each edge addition, their method calls Tar-
jan’s algorithm to find cycles. We notice the high frequency of edge addition and deletion while
solving an SMT formula with order constraints. Instead, we develop a new ordering consistency

(OC) theory specifically for multi-threaded program verification and elaborate on its theory solver
with incremental cycle detection to achieve higher efficiency. Using incremental cycle detection,

m additions in a graph with n nodes take only O (m × min{n 2
3 ,m

1
2 }) time, better than Tarjan’s

algorithm that spends O (m × (n +m)).
Multi-threaded program verification is complicated because of the uncertainty caused by thread

interleaving. Too many possible execution paths may result in the state explosion problem. The
most efficient techniques to alleviate this problem include but are not limited to bounded model
checking [15, 17, 25, 27, 55], partial order reduction [1, 24, 57], abstraction refinement [23, 30, 51],
and stateless model checking [2, 3, 39].

Moreover, to improve the availability of multi-threaded program verification, many researchers
combine BMC with other techniques. Inverso et al. [37] propose a new approach named Lazy

Sequentialization, which transforms a multi-threaded program into a sequential program under
a specific unrolling bound and execution round. This method simulates thread interactions and
is efficient in bug-finding. Yin et al. [59, 61] develop a SAT-based verification framework called
scheduling constraints-based abstraction refinement (SCAR) for verifying multi-threaded
programs under several memory models. They ignore the order constraints at first; instead, they
add conflict clauses in the iterations of abstraction refinement to enhance the formula. They use

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

6:34 H. Fan et al.

the transitive closure to check the consistency of order relation, which achieves high efficiency.
Cordeiro et al. [18] combine BMC with Satisfiable Modulo Theory (SMT). They encode all pos-
sible executions and utilize theory conflict to abstract thread interleaving. They implemented their
tactics in ESCBMC, an SMT-based verification tool.

Stateless model checking (SMC) [29] checks correctness by enumerating all possible execu-
tion traces. Since thread interleaving results in numerous traces, traces inducing the same order
between conflicting events are sorted into an equivalence class, namely, a Mazurkiewicz trace [44].
Mazurkiewicz traces can be further weakened to equivalence classes of traces with identical read-
from relations [4]. Efficient traversal algorithms are developed to discover all Mazurkiewicz traces
consistent with the memory model and prune inconsistent ones. Popular stateless model checkers,
e.g., Nidhugg [2], GenMC [40], RCMC [39], DC-DPOR [16], are based on this technique.

Weak memory models are another issue for multi-threaded program verification, since they
bring intra-threaded uncertainty, making concurrent program verification even harder. Lots
of groundbreaking research extends their approach designed for SC to weak memory models.
Tomasco [54] extends Lazy Sequentialization to TSO and PSO (called Lazy-SMA). They replace
memory access with operations on a shared memory abstraction and verify their validity under
SC. Yin [60] extends their SCAR technique under SC to TSO and PSO by relaxing ordering con-
straints between neighboring events. Gavrilenko et al. [27] combine BMC with relation analysis
and employ the backend SMT solver to verify concurrent programs under weak memory models.
In this article, we propose a new modeling technique and extend our Tord-theory and Tord-solver
to weak memory models (e.g., TSO, PSO). We performed extensive experiments with CBMC, Lazy-
SMA, Dartagnan, and several state-of-the-art SMC tools (e.g., Nidhugg, GenMC) under various
memory models. The experimental results illustrate that our approach is competitive and efficient.

8 CONCLUSION AND FUTURE WORK

In this article, we presented a novel SMT-based approach for verifying multi-threaded programs.
We proposed a dedicated ordering consistency theory for multi-threaded program verification un-
der SC, TSO, and PSO. We also elaborated on its theory solver, which realizes incremental consis-
tency checking, minimal conflict clause generation, and specialized theory propagation to improve
the efficiency of SMT solving. We implemented our techniques on top of CBMC and Z3 and con-
ducted experiments on SV-COMP benchmarks and Nidhugg benchmarks to evaluate its effectiveness
and efficiency. The experimental results show that our approach has significant improvements over
the state-of-the-art verification techniques.

Our approach is designed for multi-threaded program verification using SMT. We are planning
to extend our approach to SAT-based framework in the future.

REFERENCES

[1] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014. Optimal dynamic partial order reduc-
tion. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’14).
Association for Computing Machinery, New York, NY, 373–384. DOI:https://doi.org/10.1145/2535838.2535845

[2] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos
Sagonas. 2015. Stateless model checking for TSO and PSO. In Tools and Algorithms for the Construction and Analysis

of Systems, Christel Baier and Cesare Tinelli (Eds.). Springer Berlin, 353–367. DOI:https://doi.org/10.1007/978-3-662-
46681-0_28

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl Leonardsson. 2016. Stateless model checking
for POWER. In Computer Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International
Publishing, Cham, 134–156. DOI:https://doi.org/10.1007/978-3-319-41540-6_8

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lång, Tuan Phong Ngo, and Konstantinos Sag-
onas. 2019. Optimal stateless model checking for reads-from equivalence under sequential consistency. Proc. ACM

Program. Lang. 3, OOPSLA (Oct. 2019), 29 pages. DOI:https://doi.org/10.1145/3360576

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1145/3360576

Satisfiability Modulo Ordering Consistency Theory 6:35

[5] Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared memory consistency models: A tutorial. Computer 29,
12 (1996), 66–76. DOI:https://doi.org/10.1109/2.546611

[6] Deepak Ajwani and Tobias Friedrich. 2007. Average-case analysis of online topological ordering. In Proceedings of the

18th International Conference on Algorithms and Computation (ISAAC’07). Springer-Verlag, Berlin, 464–475. DOI:https:
//doi.org/10.1007/978-3-540-77120-3_41

[7] Deepak Ajwani, Tobias Friedrich, and Ulrich Meyer. 2008. An O(N2.75) algorithm for incremental topological ordering.
ACM Trans. Algor. 4, 4 (Aug. 2008). DOI:https://doi.org/10.1145/1383369.1383370

[8] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2014. Don’t sit on the fence. In Computer Aided

Verification, Armin Biere and Roderick Bloem (Eds.). Springer International Publishing, Cham, 508–524. DOI:https:
//doi.org/10.1007/978-3-319-08867-9_33

[9] Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial orders for efficient bounded model checking
of concurrent software. In Computer Aided Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin,
141–157. DOI:https://doi.org/10.1007/978-3-642-39799-8_9

[10] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences in weak memory models. In Computer

Aided Verification, Tayssir Touili, Byron Cook, and Paul Jackson (Eds.). Springer Berlin, 258–272. DOI:https://doi.org/
10.1007/978-3-642-14295-6_25

[11] Clark Barrett and Cesare Tinelli. 2018. Satisfiability Modulo Theories. Springer International Publishing, Cham, 305–
343. DOI:https://doi.org/10.1007/978-3-319-10575-8_11

[12] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert E. Tarjan. 2015. A new approach to incremental cycle
detection and related problems. ACM Trans. Algor. 12, 2 (Dec. 2015). DOI:https://doi.org/10.1145/2756553

[13] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. 2007. Configurable software verification: Concretizing
the convergence of model checking and program analysis. In Computer Aided Verification, Werner Damm and Holger
Hermanns (Eds.). Springer Berlin, 504–518. DOI:https://doi.org/10.1007/978-3-540-73368-3_51

[14] Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A tool for configurable software verification. In Computer

Aided Verification, Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer Berlin, 184–190. DOI:https://doi.org/10.
1007/978-3-642-22110-1_16

[15] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999. Symbolic model checking without BDDs.
In Tools and Algorithms for the Construction and Analysis of Systems, W. Rance Cleaveland (Ed.). Springer Berlin, 193–
207. DOI:https://doi.org/10.1007/3-540-49059-0_14

[16] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and Kapil Vaidya. 2017. Data-centric
dynamic partial order reduction. Proc. ACM Program. Lang. 2, POPL (Dec. 2017). DOI:https://doi.org/10.1145/3158119

[17] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001. Bounded model checking using satisfiability
solving. Form. Methods Syst. Des. 19, 1 (July 2001), 7–34. DOI:https://doi.org/10.1023/A:1011276507260

[18] Lucas Cordeiro and Bernd Fischer. 2011. Verifying multi-threaded software using SMT-based context-bounded model
checking. In Proceedings of the 33rd International Conference on Software Engineering (ICSE’11). Association for Com-
puting Machinery, New York, NY, 331–340. DOI:https://doi.org/10.1145/1985793.1985839

[19] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently computing
static single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13 (1991), 451–490.
DOI:https://doi.org/10.1145/115372.115320

[20] Martin Davis, George Logemann, and Donald Loveland. 1962. A machine program for theorem-proving. Commun.

ACM 5, 7 (July 1962), 394–397. DOI:https://doi.org/10.1145/368273.368557
[21] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction

and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin, 337–340. DOI:https://doi.org/10.
1007/978-3-540-78800-3_24

[22] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo theories: Introduction and applications. Commun.

ACM 54, 9 (Sept. 2011), 69–77. DOI:https://doi.org/10.1145/1995376.1995394
[23] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent

abstract predicates. In ECOOP 2010—Object-Oriented Programming, Theo D’Hondt (Ed.). Springer Berlin, 504–528.
DOI:https://doi.org/10.1007/978-3-642-14107-2_24

[24] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order reduction for model checking software. In Pro-

ceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’05). Associa-
tion for Computing Machinery, New York, NY, 110–121. DOI:https://doi.org/10.1145/1040305.1040315

[25] Malay K. Ganai and Aarti Gupta. 2008. Efficient modeling of concurrent systems in BMC. In Model Checking Software,
Klaus Havelund, Rupak Majumdar, and Jens Palsberg (Eds.). Springer Berlin, 114–133. DOI:https://doi.org/10.1007/978-
3-540-85114-1_10

[26] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. 2004. DPLL(T): Fast deci-
sion procedures. In Computer Aided Verification, Rajeev Alur and Doron A. Peled (Eds.). Springer Berlin, 175–188.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

https://doi.org/10.1109/2.546611
https://doi.org/10.1007/978-3-540-77120-3_41
https://doi.org/10.1145/1383369.1383370
https://doi.org/10.1007/978-3-319-08867-9_33
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1145/2756553
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1145/3158119
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1007/978-3-540-85114-1_10

6:36 H. Fan et al.

[27] Natalia Gavrilenko, Hernán Ponce-de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. 2019. BMC for weak
memory models: Relation analysis for compact SMT encodings. In Computer Aided Verification, Isil Dillig and Serdar
Tasiran (Eds.). Springer International Publishing, Cham, 355–365. DOI:https://doi.org/10.1007/978-3-030-25540-4_19

[28] Cunjing Ge, Feifei Ma, Jeff Huang, and Jian Zhang. 2016. SMT solving for the theory of ordering constraints. In
Languages and Compilers for Parallel Computing, Xipeng Shen, Frank Mueller, and James Tuck (Eds.). Springer Inter-
national Publishing, Cham, 287–302. DOI:https://doi.org/10.1007/978-3-319-29778-1_18

[29] Patrice Godefroid. 1997. Model checking for programming languages using VeriSoft. In Proceedings of the 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’97). Association for Computing Machin-
ery, New York, NY, 174–186. DOI:https://doi.org/10.1145/263699.263717

[30] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. 2011. Predicate abstraction and refinement for veri-
fying multi-threaded programs. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL’11). Association for Computing Machinery, New York, NY, 331–344. DOI:https:
//doi.org/10.1145/1926385.1926424

[31] Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew, Siddhartha Sen, and Robert E. Tarjan. 2012. Incremental cycle
detection, topological ordering, and strong component maintenance. ACM Trans. Algor. 8, 1 (Jan. 2012). DOI:https:
//doi.org/10.1145/2071379.2071382

[32] Fei He, Zhihang Sun, and Hongyu Fan. 2021. Satisfiability modulo ordering consistency theory for multi-threaded
program verification. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language

Design and Implementation (PLDI’21). Association for Computing Machinery, New York, NY, 1264–1279. DOI:https:
//doi.org/10.1145/3453483.3454108

[33] Alex Horn and Jade Alglave. 2014. Concurrent Kleene Algebra of Partial Strings. arXiv:1407.0385 [cs.LO].
[34] Alex Horn and Daniel Kroening. 2015. On Partial Order Semantics for SAT/SMT-based Symbolic Encodings of Weak

Memory Concurrency. arXiv:1504.00037 [cs.LO].
[35] Jeff Huang. 2015. Stateless model checking concurrent programs with maximal causality reduction. In Proceedings of

the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’15). Association for
Computing Machinery, New York, NY, 165–174. DOI:https://doi.org/10.1145/2737924.2737975

[36] Omar Inverso, Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato. 2015. Lazy-CSeq: A context-
bounded model checking tool for multi-threaded C-Programs. In Proceedings of the 30th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE’15). IEEE Press, 807–812. DOI:https://doi.org/10.1109/ASE.2015.108
[37] Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato. 2014. Bounded model

checking of multi-threaded C programs via lazy sequentialization. In Computer Aided Verification, Armin Biere and
Roderick Bloem (Eds.). Springer International Publishing, Cham, 585–602. DOI:https://doi.org/10.1007/978-3-319-
08867-9_39

[38] Irit Katriel and Hans L. Bodlaender. 2006. Online topological ordering. ACM Trans. Algor. 2, 3 (July 2006), 364–379.
DOI:https://doi.org/10.1145/1159892.1159896

[39] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2017. Effective stateless model
checking for C/C++ concurrency. Proc. ACM Program. Lang. 2, POPL (Dec. 2017). DOI:https://doi.org/10.1145/3158105

[40] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model checking for weakly consistent libraries.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’19).
Association for Computing Machinery, New York, NY, 96–110. DOI:https://doi.org/10.1145/3314221.3314609

[41] Daniel Kroening and Michael Tautschnig. 2014. CBMC—C bounded model checker. In Tools and Algorithms for the

Construction and Analysis of Systems, Erika Ábrahám and Klaus Havelund (Eds.). Springer Berlin, 389–391. DOI:https:
//doi.org/10.1007/978-3-642-54862-8_26

[42] Leslie Lamport. 1979. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE

Comput. Archit. Lett. 28, 9 (1979), 690–691. DOI:http://doi.org/10.1109/TC.1979.1675439
[43] Alberto Marchetti-Spaccamela, Umberto Nanni, and Hans Rohnert. 1996. Maintaining a topological order under edge

insertions. Inform. Process. Lett. 59, 1 (1996), 53–58. DOI:https://doi.org/10.1016/0020-0190(96)00075-0
[44] Antoni Mazurkiewicz. 1987. Trace theory. In Petri Nets: Applications and Relationships to Other Models of Concurrency,

W. Brauer, W. Reisig, and G. Rozenberg (Eds.). Springer Berlin, 278–324.
[45] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. 2001. Chaff: Engineering

an efficient SAT solver. In Proceedings of the 38th Annual Design Automation Conference (DAC’01). Association for
Computing Machinery, New York, NY, 530–535. DOI:https://doi.org/10.1145/378239.379017

[46] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. 2006. Solving SAT and SAT modulo theories: From an
abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53, 6 (Nov. 2006), 937–977. DOI:https:
//doi.org/10.1145/1217856.1217859

[47] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better X86 memory model: X86-TSO. In Proceedings of the 22nd

International Conference on Theorem Proving in Higher Order Logics (TPHOLs’09). Springer-Verlag, Berlin, 391–407.
DOI:https://doi.org/10.1007/978-3-642-03359-9_27

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-319-29778-1_18
https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/1926385.1926424
https://doi.org/10.1145/2071379.2071382
https://doi.org/10.1145/3453483.3454108
http://arxiv.org/abs/1407.0385
http://arxiv.org/abs/1504.00037
https://doi.org/10.1145/2737924.2737975
https://doi.org/10.1109/ASE.2015.108
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.1145/1159892.1159896
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-642-54862-8_26
http://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1016/0020-0190(96)00075-0
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1007/978-3-642-03359-9_27

Satisfiability Modulo Ordering Consistency Theory 6:37

[48] David J. Pearce and Paul H. J. Kelly. 2007. A dynamic topological sort algorithm for directed acyclic graphs. ACM J.

Exp. Algor. 11 (Feb. 2007), 1.7–es. DOI:https://doi.org/10.1145/1187436.1210590
[49] Alexander Schrijver. 1986. Theory of Linear and Integer Programming. John Wiley & Sons, Inc..
[50] Dennis Shasha and Marc Snir. 1988. Efficient and correct execution of parallel programs that share memory. ACM

Trans. Program. Lang. Syst. 10, 2 (Apr. 1988), 282–312. DOI:https://doi.org/10.1145/42190.42277
[51] Nishant Sinha and Chao Wang. 2011. On interference abstractions. In Proceedings of the 38th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL’11). Association for Computing Machinery, New
York, NY, 423–434. DOI:https://doi.org/10.1145/1926385.1926433

[52] Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In Proceedings of the 23rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL’96). Association for Computing Machinery, New York, NY,
32–41. DOI:https://doi.org/10.1145/237721.237727

[53] R. Tarjan. 1971. Depth-first search and linear graph algorithms. In Proceedings of the 12th Annual Symposium on

Switching and Automata Theory (SWAT’71). 114–121. DOI:https://doi.org/10.1109/SWAT.1971.10
[54] Ermenegildo Tomasco, Truc L. Nguyen, Omar Inverso, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato. 2016.

Lazy sequentialization for TSO and PSO via shared memory abstractions. In Proceedings of the Conference on Formal

Methods in Computer-Aided Design (FMCAD’16). 193–200. DOI:https://doi.org/10.1109/FMCAD.2016.7886679
[55] Chao Wang, HoonSang Jin, Gary D. Hachtel, and Fabio Somenzi. 2004. Refining the SAT decision ordering for bounded

model checking. In Proceedings of the 41st Annual Design Automation Conference (DAC’04). Association for Computing
Machinery, New York, NY, 535–538. DOI:https://doi.org/10.1145/996566.996713

[56] Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta. 2009. Symbolic predictive analysis for concurrent pro-
grams. In FM 2009: Formal Methods, Ana Cavalcanti and Dennis R. Dams (Eds.). Springer Berlin, 256–272. DOI:https:
//doi.org/10.1007/978-3-642-05089-3_17

[57] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. 2008. Peephole partial order reduction. In Tools and Al-

gorithms for the Construction and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin,
382–396. DOI:https://doi.org/10.1007/978-3-540-78800-3_29

[58] CORPORATE SPARC International, Inc. 1994. The SPARC Architecture Manual (Version 9). Prentice-Hall, Inc.
https://doi.org/10.5555/174556.

[59] Liangze Yin, Wei Dong, Wanwei Liu, Yunchou Li, and Ji Wang. 2018. YOGAR-CBMC: CBMC with scheduling con-
straint based abstraction refinement. In Tools and Algorithms for the Construction and Analysis of Systems, Dirk Beyer
and Marieke Huisman (Eds.). Springer International Publishing, Cham, 422–426. DOI:https://doi.org/10.1007/978-3-
319-89963-3_25

[60] Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. 2018. Scheduling constraint based abstraction refinement for
weak memory models. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineer-

ing (ASE’18). Association for Computing Machinery, New York, NY, 645–655. DOI:https://doi.org/10.1145/3238147.
3238223

[61] L. Yin, W. Dong, W. Liu, and J. Wang. 2020. On scheduling constraint abstraction for multi-threaded program verifi-
cation. IEEE Trans. Softw. Eng. 46, 5 (May 2020), 549–565. DOI:https://doi.org/10.1109/TSE.2018.2864122

[62] Naling Zhang, Markus Kusano, and Chao Wang. 2015. Dynamic partial order reduction for relaxed memory models.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’15).
Association for Computing Machinery, New York, NY, 250–259. DOI:https://doi.org/10.1145/2737924.2737956

Received 24 October 2021; revised 17 October 2022; accepted 2 December 2022

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 6. Pub. date: March 2023.

https://doi.org/10.1145/1187436.1210590
https://doi.org/10.1145/42190.42277
https://doi.org/10.1145/1926385.1926433
https://doi.org/10.1145/237721.237727
https://doi.org/10.1109/SWAT.1971.10
https://doi.org/10.1109/FMCAD.2016.7886679
https://doi.org/10.1145/996566.996713
https://doi.org/10.1007/978-3-642-05089-3_17
https://doi.org/10.1007/978-3-540-78800-3_29
https://doi.org/10.5555/174556
https://doi.org/10.1007/978-3-319-89963-3_25
https://doi.org/10.1145/3238147.3238223
https://doi.org/10.1109/TSE.2018.2864122
https://doi.org/10.1145/2737924.2737956

