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While JavaScript established itself as a cornerstone of the modern web, it also constitutes a major tracking and
security vector, thus raising critical privacy and security concerns. In this context, some browser extensions
propose to systematically block scripts reported by crowdsourced trackers lists. However, this solution heavily
depends on the quality of these built-in lists, which may be deprecated or incomplete, thus exposing the
visitor to unknown trackers. In this paper, we explore a different strategy, by investigating the benefits of
disabling JavaScript in the browser. More specifically, by adopting such a strict policy, we aim to quantify the
JavaScript addiction of web elements composing a web page, through the observation of web breakages. As
there is no standard mechanism for detecting such breakages, we introduce a framework to inspect several
page features when blocking JavaScript, that we deploy to analyze 6,384 pages, including landing and internal
web pages. We discover that 43 % of web pages are not strictly dependent on JavaScript and that more than
67 % of pages are likely to be usable as long as the visitor only requires the content from the main section of
the page, for which the user most likely reached the page, while reducing the number of tracking requests
by 85 % on average. Finally, we discuss the viability of currently browsing the web without JavaScript and
detail multiple incentives for websites to be kept usable without JavaScript.
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1 INTRODUCTION

JavaScript has contributed to the development of web tracking and advertisement technologies
for more than two decades. Tracking techniques have become more and more complex: simple,
cookie-based tracking continues to exist, but new tracking strategies have emerged, leveraging the
always-increasing complexity of the web, from browsers to server-side infrastructure. In response,
many countermeasures have been investigated and deployed, embedded into browsers or delivered
as extensions. They usually either try to prevent the browser feature from being used for tracking, for
instance using site isolation [28, 31, 33], user permission requests [6] or data randomization [51, 52],
or try to selectively block resources implementing user tracking features, while keeping the site
functionality [7].

Blocking such tracking resources—i.e., scripts in most cases—usually relies on blocklists, which
consist of rules matching requests to block. Blocklists are a simple and efficient privacy mechanism,
but are well known for suffering from several limitations. Being maintained by humans, they tend
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to be limited to geographical regions and languages with enough list maintainers [54]. They are
also likely to be lagging behind, as trackers try to escape the blocklists [55]. There have been efforts
to automate blocklist generation [23], but blocklists are also often technically limited by the type
of resources they can block: aiming to selectively block the requests, they can only rely on the
URLs pointing to these resources, which can be circumvented by inlining the scripts directly in the
HTML document or by using an always-changing, hard-to-match URL [16].

JavaScript being the most powerful tracking vector, it would make it much more difficult for
trackers to operate if JavaScript was simply completely blocked in the browser. However, JavaScript
has also many legitimate uses, and blocking it is bound to break at least some features of many
websites. Still, it is not clear whether these broken features would actually be needed by the user on
most of their visits: they may be optional features which are not required at all to read or interact
with the page the way the user intended to when reaching the page.

On top of this, there is no standard interface to detect whether a page element is broken, and
the definition and criteria of breakage would anyway depend on its potential causes, e.g., blocking
JavaScript.

This work looks at the problem of measuring web page breakage induced by JavaScript blocking
through the following contributions:

(1) documenting HTML code and elements that require JavaScript to work properly,

(2) introducing a heuristic-based framework aimed at detecting potential functionality breakage
introduced by blocking JavaScript, based on limited information,

(3) performing a large-scale crawl of popular web pages, including internal pages, quantifying
how badly these pages are broken when JavaScript is blocked,

(4) semi-manually classifying page screenshots based on visual comparison,

(5) measuring the difference in request count, especially of tracking requests, when blocking
JavaScript.

After covering some background about web tracking and advertisement relying on JavaScript
and existing tooling related to this work, we introduce our bottom-up measurement approach,
detailing the page features we measure and how they can be broken without JavaScript. Then, we
present our web crawling methodology and the results of measuring the dependency on JavaScript
of 6,384 pages. Finally, we detail some methodology limitations, discuss some misconceptions and
incentives for websites to decrease their reliance on JavaScript and conclude this work.

2 BACKGROUND

In this section, we first discuss previous work that motivates the need for reducing the amount of
JavaScript allowed client-side, then existing tooling that analyzes the usefulness of scripts sent to
the user.

2.1 JavaScript for Advertisement and Tracking

Previous work has shown extensively how JavaScript is commonly used for advertisement and
tracking, employing different techniques, both stateful and stateless. In particular, JavaScript is
commonly used to handle cookies, localStorage, and IndexedDB, which do have many legitimate
uses but are also notably adopted for tracking [5, 31], being standard, easy-to-use client-side storage
technologies.

JavaScript is also one of the core components of browser fingerprinting [18, 30, 35-37, 41, 49, 69],
a technique used to collect many different browser properties and generate a distinctive fingerprint.
It can recognize the browser across sessions while storing no data on the client side, provided the
fingerprint does not vary too much [38]. JavaScript also makes it easier to exploit the browser caches
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for fingerprinting [32, 56]. Various security attacks targeting the browser, including timing-based
attacks, are able to leak data from other processes by leveraging JavaScript for their exploitation [39],
even though it is not strictly required [53].

Many defenses have been deployed in popular browsers over the past few years, but there still
is an ongoing arms race between browser vendors and trackers. Even when a countermeasure
is implemented, some future change can make the browser exploitable again, as highlighted by
JavaScript timing exploitation in [50].

In addition, advertisement delivery heavily relies on JavaScript [19], for instance to try to
circumvent adblockers [72]. One can therefore observe that JavaScript is a known vector threatening
user privacy, but that existing countermeasures keep failing at proposing a sustainable solution to
preserve JavaScript from undesirable exploitations.

2.2 Automatic JavaScript Removal

To the best of our knowledge, this is the first work to detect the dependency on JavaScript of web
elements based on markup alone—without a differential analysis with the original page. Some
previous works have investigated the selective removal of JavaScript, especially for performance
purpose: Chagfeh et al. have investigated the removal and replacement of non-essential JavaScript,
with the aim of improving performance on low-end devices [15]. The system acts as a rewriting
proxy, modifying pages to remove or replace non-essential JavaScript. The proxy does load the
whole page in the first place, including all scripts, and can thus benefit from a better understanding
of the page to make informed decisions. However, this also means that running this proxy locally
would bring no privacy improvement. Other works that classify JavaScript usefulness based on the
whole page [14] suffer from the same issues for this use case.

3 PAGE FEATURE BREAKAGE

In this section, we introduce our bottom-up analysis approach and detail the heuristics developed
to measure the reliance of web page elements on JavaScript.

3.1 Breakage Detection

To investigate the reliance of web elements on JavaScript, we introduce a client-side measurement
framework aimed at detecting potential functionality breakage when blocking JavaScript, relying
only on the DOM state after the initial page load. This measurement framework is heavily unit-
tested and is then used to measure the reliance of web page elements on JavaScript.

3.1.1 Limited Information Available. We aim to be able to detect web elements present on the
page that rely on JavaScript to function. This is ultimately useful for users willing to browse with
minimal JavaScript, to locate broken or incomplete page features, which may not always be easily
spotted visually. Thus, the detection mechanisms are restricted to inspecting the Document Object
Model (DOM) state obtained after the page is fully loaded, with scripts completely blocked—i.e.,
the markup received from the server. Since we must only rely on the markup of the page visited
by the user, we cannot compare a possibly broken version of the page (with JavaScript blocked)
with a supposedly working one (with JavaScript loaded), be it using DOM or visual analysis, since
the scripts would then need to be downloaded and executed, defeating the privacy and security
benefits. In this setup, there is no way of knowing, from the markup alone, whether a script is
meant to attach an event listener to an element (e.g., a button) to handle its possible action.

As no programming interface is available to detect breakage of web elements caused by JavaScript
blocking and based on this set of restricted information, we develop a framework of heuristics,
embedded in a browser extension, that detects page features of interest and classifies them as being
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either working or broken. We refrain from making any network request and from modifying the
inspected page, to make it as less intrusive as possible.

Future extensions may also leverage this framework to detect and fix broken page features
required by the user.

3.1.2  Bottom-up Approach: Detecting Broken Elements to Detect Broken Features. HTML documents
are built as a combination of basic HTML elements. Some of them—like <div>—are not meant to
be interactive elements, some others—like <a>—have a native, fully functioning behavior without
JavaScript, while others—like <canvas>—always require JavaScript to be useful. These basic HTML
elements are then combined to provide page features desired by the website developers, such as
dropdown menus and accordions. In doing so, non-interactive elements are often used or misused
to provide the desired interactive, complex page features (such as using a <div> for a button). This
makes it much harder to detect broken page features.

Adding to this impediment, there is also no general interface to detect whether basic HTML
elements are functionally broken, mostly because the definition and possible symptoms of breakage
depend not only on the causes (e.g., blocking JavaScript), but also on the user preferences and
tolerance to partial breakage. This means that custom heuristics, tailored to detect breakage induced
by blocking JavaScript, are required to detect broken features. In this work, we adopt a bottom-up
approach where, in place of trying to define possible symptoms of page breakage, we instead focus
on detecting breakage of web elements, or combination of elements, when blocking JavaScript.
Thus, breakage does not need to be defined on the whole page, only on individual web elements.

To identify possible breakage of individual web elements and of complex page features, we
carried out a comprehensive analysis of standard HTML elements, which can be found in Table 4 in
the appendix, and of popular web component libraries (in Table 5), aided by the Web Accessibility
Initiative — Accessible Rich Internet Applications (WAI-ARIA) widget list [65] and manual brows-
ing. We identified their respective potential reliance on JavaScript, based on standard definitions
and documentation, in-the-wild observations and common knowledge of the field regarding bad
practices, and derived the custom breakage detection heuristics from this analysis. We do not
have to handle user interactions separately, as they are already part of the expected behavior of
individual elements, and thus are already covered by our heuristics.

The remainder of this section details the most relevant page features and the basics of the
breakage detection heuristics.

Images. Standard <img> and <picture> elements do not require JavaScript to work properly.
The browser renders them by directly downloading the source images from the src and srcset
attributes. We can therefore objectively define the breakage of an image element as:

User-perceived breakage symptoms
Image is not rendered or a low-resolution placeholder is displayed instead.

Nonetheless, some websites implement image lazy loading in JavaScript. Instead of using the
standard source attributes, they store the image source URLs in other attributes, often using custom
data-= attributes [9, 66], accessible with the dataset IDL attribute. Then, when the image comes
close enough to the viewport, some JavaScript logic copies the URL to the appropriate src/srcset
attribute to load the image as detailed in Listing 1, effectively deferring fetching the image until it
is actually needed, making the initial page load faster. In this scenario, if JavaScript is blocked, no
image will be rendered.

However, this behavior does not need to be implemented in JavaScript anymore since the
introduction of the "lazy" value of the <img> loading attribute in 2019-2020 [43], which is
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<img class="lazyload" data-src="image_js.jpg" alt="Image" width="300" height="90">
<script>
const lazyImageObserver = new IntersectionObserver ((entries) => {
entries.forEach(entry => {
if (entry.isIntersecting) {
const lazyImage = entry.target;
lazyImage.src = lazyImage.dataset.src;
lazyImage.classList.remove("lazyload");
lazyImageObserver.unobserve (lazyImage);
3
b;
DN

Array.from(document.querySelectorAll ("img.lazyload"))
.forEach(lazyImage => lazyImageObserver.observe(lazyImage));
</script>

Listing (1) Lazy loading images with JavaScript

<img src="image_nojs.jpg" alt="Image" loading="lazy" width="300" height="90">

Listing (2) Lazy loading images without JavaScript

Fig. 1. Lazy loading images

gradually getting adopted [9] and implements native image lazy-loading, as shown in Listing 2.
This native behavior of the browser is disabled when JavaScript is disabled, to prevent tracking of
the scroll position [43].

Moreover, many websites implementing image lazy loading with JavaScript use a placeholder
image until the real image is loaded. This placeholder image is often a 1 X 1 px base64-encoded GIF
image supplied inline using the data scheme, thus requiring no extra request, while other websites
use a lower-resolution image and a CSS unblurring animation when the full-resolution image is
loaded.

Finally, it should be noted that some websites implementing image lazy loading with JavaScript
also provide noscript fallbacks, using the <noscript> elements, which are only interpreted when
JavaScript is disabled in the browser, allowing the image to load if JavaScript is blocked.

We consider as large images all images whose height and width are both greater than or equal to
100 px.

Forms. Forms are one of the few interactive mechanisms able to operate without JavaScript when
implemented properly, by relying on server cooperation.

In this work, we call forms document sections delimited by <form> elements, containing form
controls. Forms are meant to collect data input by the user and to send them to a remote server
when the form is submitted. Various form controls that dictate the structure and logic of the form
are available, most of them implemented as a type of the <input> element, the others as separate
elements, namely <button>, <textarea> and <select>.

User-perceived breakage symptoms
Form cannot be submitted to the server, is not submitted to the intended API endpoint,
or some form values are not submitted.

To submit the form, the browser builds an HTTP request of the type defined by the method
form attribute (GET by default), using the URL specified as the action form attribute (the current
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page’s URL by default) and the values of form controls having a name, then sends this request to
the server. For the Listing 3, typing “test” into the search field and checking the checkbox, then
clicking the Search button, will result in a GET request with the URL ending with the following
query parameters: /search?g=test&check=on. This means that, if a form control has no name,
its value will not be sent; a form with at least one control having no name necessarily requires
JavaScript to handle the form, using another reference than their name to access the form controls
and to either modify the page accordingly or send a request to the server.

Unfortunately, one cannot guarantee that the server will take the request into account, be it a
GET or POST request. The absence of the action attribute cannot even be used to presume of the
non-handling of the form by the server, as some websites—mostly search engines—do intend to
submit these requests to the form page’s URL, which is the default when the action attribute is
absent.

Furthermore, the form submission itself can be broken without JavaScript. Indeed, two separate
mechanisms allow to submit a form: dedicated submission form controls and the implicit submission
mechanism. When some form controls (<button type="submit">, <input type="submit">,
<image type="image">) are part of a form, they will submit the form when activated. However, a
form can still be activated when none of these form controls are included in the form, using implicit
submission. Implicit submission allows to submit a form by hitting a key (usually “enter”) when a
text control is focused and the form has at most one single-line text control [67].

Otherwise, if the form cannot be natively submitted, JavaScript is required to either modify the
page according to the form data, to trigger the form submission, or to manually send a request
accordingly.

<form action="/search">
<input type="search" name="q">

<label>Check:
<input type="checkbox" name="check">
</label>
<button>Search</button>
</form>

Listing 3. A valid form

Lone Controls. In this work, we call lone controls all form controls that have no form owner—i.e.,
that are not children of any <form>, nor are associated to a form using their form attribute.

User-perceived breakage symptoms
Activating the control does not trigger the intended behavior.

Most of these lone controls require JavaScript to be useful: to attach an event listener to them or
to read their value. The only lone controls not necessarily requiring JavaScript are the stateful ones,
<input type="checkbox">and <input type="radio">, because their state can be accessed from
CSS with the : checked pseudo-class, see the Disclosure Buttons feature and Listing 5 for details.

Empty Anchor Buttons. An <a> anchor button represents a hyperlink to a destination page or a
section within a page. In this work, we call empty anchor buttons all <a> elements that either:

e have no href, name or id HTML attribute?,
e have an href attribute set to the empty string,
e have an href attribute set to "#",

1 An <a> element with no href but with a name is an obsolete, HTML4 way of marking a destination for another anchor [64].
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e have a javascript: pseudo-protocol href that is a no-operation, see Listing 4.

They are very often used in a discouraged way to make buttons that look like other links on the
page, with the drawback that they do not convey appropriate semantics.

User-perceived breakage symptoms
Activating the anchor does not redirect to a different URL, scroll the page to the indicated
part of the document or trigger the intended custom behavior.

This means they require JavaScript in the same way a <button> element does (see Lone Controls),
except when these empty anchor buttons are actually used as standard-compliant go-to-top buttons.
HTMLS has indeed standardized the use of the empty URL fragment and the top fragment as a
way to ask the browser to jump to the top of the page [68].

Some empty anchor buttons are also not used as buttons, but only for appearance consistency in
a list of anchors, where this anchor has no target URL.

<a href="#">Button #0</a>
<a href="javascript:void(®);">Button #1l</a>

Listing 4. Empty anchor buttons

Mislinked Fragment Anchors. Similarly, we define mislinked fragment anchors as all <a> elements
whose fragment is not the empty fragment but targets an element that is not found in the page—i.e.,
no element has the fragment as id.

User-perceived breakage symptoms
Activating the anchor does not scroll the page to the indicated part of the document or
trigger the intended custom behavior.

Some of these elements are used as buttons, in the same way as empty anchor buttons, others
are of no actual use, and would not trigger any action, even with JavaScript.

Disclosure Buttons. The constructs discussed above consist of a single HTML element, whose
intended use is standardized. Here, we discuss more complex page features, combining several
HTML elements.

We call disclosure buttons elements having a button appearance and intended to reveal and/or hide
other elements when actioned, possibly concealing information to the user if broken. Disclosure
buttons include accordion buttons and dropdown menu buttons, see Figure 2. They are very
common features, part of most popular component libraries but are also often custom components,
specifically designed for the website.

User-perceived breakage symptoms
Activating the disclosure button does not reveal/hide the associated element.

Both accordions and dropdown menus can be built without JavaScript, but popular component
libraries do require JavaScript for these features to work [57, 59]: an event listener is attached to the
disclosure button that shows/hides the associated disclosable element when the button is activated.

A great diversity of custom implementations can be observed in the wild, using various elements
for the disclosure button (usually a <button>, <a>, <label> or <div>) as well as different positions
of the disclosable element relatively to the disclosure button in the DOM tree (most of the time
found as the next sibling). Disclosable elements are most often a <ul> (especially for dropdown
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Accordion Item #1 ~
Dropdown button ~
This is the first item's accordion body. It is shown by default, until the collapse plugin adds

the appropriate classes that we use to style each element. These classes control the overall
appearance, as well as the showing and hiding via CSS transitions. You can modify any of .
this with custom CSS or overriding our default variables. It's also worth noting that just Action
about any HTML can go within the . accordion-body, though the transition does limit
overflow.

Another action

Accordion ltem #2 v

Something else here

Accordion Item #3 v

Fig. 2. Examples of disclosure buttons (from the Bootstrap 5 documentation [57, 59])

menus) or a <div>; they are sometimes dynamically inserted in JavaScript and thus can be missing
from the initial DOM tree.

Accordions and other disclosure elements can also be created without JavaScript, using a <label>
as a button toggling an <input type="checkbox">, whose checked value can be used in a CSS
selector to show the disclosable element using the : checked pseudo-class, as shown in Listing 5.

<div class="accordion">
<input id="checkbox0" type=checkbox style="position:absolute;opacity:0">
<label class="accordion-header" for="checkbox®">Header</label>
<div id="body®" class="accordion-collapse">Body</div>
</div>
<style>
.accordion-collapse {
display: none;
}
#checkbox®:checked ~ #body® {
display: block;
}
</style>

Listing 5. Accordion working without JavaScript

A simple disclosure element can also use the native element pair <details> and <summary>,
see Listing 6: elements in the <details> are hidden by default, while the <summary> element is
shown and adjoined by an arrow suggesting some content is hidden; when clicking the <summary>
element, the hidden content visibility is toggled.

<details>
<summary>Some question</summary>
Some detailed answer that is hidden by default
and toggled by clicking the summary element.
</details>

Listing 6. Native disclosure element

The diversity of implementations and the use of non-semantic elements make it a challenge to
reliably detect all disclosure buttons while minimizing the number of false positives. Using the CSS
class names can sometimes help to refine the classification, especially when these are from the
most popular component libraries (like . dropdown-toggle and .dropdown-menu), but this is no
silver bullet, some websites using class names in the website’s language, while others obfuscate the
class names.
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Protected E-Mails.

User-perceived breakage symptoms
E-mail addresses (and sometimes, other strings with an at sign) are replaced by [email
protected].

Some websites try to prevent mass harvesting of e-mail addresses by requiring JavaScript. They
embed the encoded address, often visually replaced by [email protected], which is then decoded
and displayed in place of this message. This is an example of a feature that deliberately relies on
JavaScript.

Loader Overlays. Some pages display an overlay that covers the entirety of the page until the page
is loaded. We call them loader overlays (they are also referenced as AJAX loaders or preloaders).

User-perceived breakage symptoms
The actual page content is hidden behind an overlay, which usually features a loading
spinner.

Besides going against the flow of best practices, especially progressive loading, these overlay
elements are only removed with JavaScript when the page is done loading, meaning that, when
JavaScript is disabled, the overlay is never hidden and makes it impossible to read the page content,
actually often properly loaded, even without JavaScript.

Loader overlays usually appear as a <div> and as a direct child of the <body> element (often
being its first child) and have the id "preloader" or a class containing the word "preloader".

Page Text.

User-perceived breakage symptoms
The page has no text content.

This heuristic checks whether the <body> has some text content (using the textContent and
innerHTML properties), other than whitespace.

This is particularly useful when the page is a full-page app. Full-page apps are websites where
the whole page is nested in a single element that is completely populated in JavaScript. Without
JavaScript, the page is left blank and broken.

This heuristic applies to the whole page and is an all-or-nothing heuristic.

Stylesheets Loaded.

User-perceived breakage symptoms
The page has no style loaded.

Finally, this heuristic detects if the page has at least some basic stylesheet loaded by checking
font styles of a few elements, especially headers, which are almost always changed by websites.
This heuristic applies to the whole page and is an all-or-nothing heuristic as well.
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Header

Main
section

Sidebar

Footer

Fig. 3. Common page structure (the sidebar can be on either side of the page)

3.2 Page Feature Relevance

A web page is composed of different sections with each their own purposes, as can be seen in
Figure 3. The header is often used to guide the navigation on a site whereas the main section offers
the bulk of the site content. In order to provide a more focused analysis of page breakage, we look
to identify these sections in the pages that we crawled.

These sections can be inferred from the DOM tree, using tag names, element ids, and class names.
In particular, HTMLS5 provides semantic elements for these sections: <header>, <footer>, <aside>,
and <main>. Not all websites use these semantic elements, but many do mark these sections with
a combination of non-obfuscated ids and class names, which makes it possible to classify page
elements according to their position and intended purpose.

In addition, some page features may never be accepted by the user, especially tracking and
advertisement features, which do require JavaScript most of the time.

4 DATA COLLECTION

This section details the crawling methodology we implemented to measure the dependency of web
page elements on JavaScript at scale.

4.1 Crawled Websites and Pages

We used a subset of the Hispar list [12], which provides a list of popular webpage URLs, including
landing and internal ones. The Hispar list is built using the Alexa Top 1M domain list, querying the
paid API of Google Search with the query site:w for each domain w and storing the first 50 search
results along with their ranking, stopping as soon as the final list has 100,000 URLs. The user’s
location is set to the United States and results are limited to pages in English. We used the most
recent list that was released at the end of January 2021 [13], and focused on the first three URLs
(based on Google Search rankings) of each domain, which usually include the landing page and
two internal pages. We limit the crawl to two internal pages because pages of lower ranks are very
often of the same type—e.g., product pages of a shopping website. This makes up for 6,384 pages to
crawl, from 3,774 domains (2,136 Alexa base domains). Visiting internal pages is very important in
this study, since page features may be drastically different between the landing page and internal
ones—e.g., the website could feature a carousel on the landing page and forms in the internal pages.
We implemented the breakage detection heuristics detailed in subsection 3.1 as a JavaScript
library intended to be used as part of a browser WebExtensions extension. This library detects page
elements matching features of interest and classifies them as either being working or broken.
Web crawling is then automated with Puppeteer, using Firefox Nightly 88.0a1, required for
Puppeteer compatibility. The crawl uses two instances of Firefox running at the same time, with
the breakage-detection extension loaded: one is using default preferences while the other has
javascript.enabled set to false, which disables JavaScript globally for this instance, as depicted
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‘Web crawl
e, 5241 screenshots

. 5741 pages
| (breakage count)
100k URLs 6384 URLs | | |
e ||  [Re
Hispar list (top 3 URLs ! ! 8 (itferentia
. i | analysis breakage
of each domain) ! ! S -
! ! (heuristics) analysis
3 3 5966 pages
) NoJS | (breakage count)
! Browser 3

,,,,,,,,,,,,, 5610 screenshots

Fig. 4. Dataflow diagram

in Figure 4. For each page URL to crawl, the page is requested in a new tab in each browser instance
at the same time and the following steps are followed:

(1) load the web page (with a 30 s timeout) then wait for 3 s,
(2) inspect the loaded web page for feature breakage,
(3) save a page screenshot and the current DOM state as HTML.

The browser tab is then closed and the crawl moves to the next page URL as soon as both instances
are done with the current one. We have checked, with the help of the generated screenshots,
that 3 s were enough for lazy-loaded content to be loaded. The crawl was run from our campus
network, from 2021-03-26 to 2021-03-28. If the DOMContentLoaded event (indicating the initial
HTML document has been loaded) is not fired after 10 s, the URL is skipped for this instance; if the
load event is not fired after 30 s, the URL is skipped as well. The crawl waits for 3 s to leave enough
time for asynchronous content to load, especially stylesheets and lazy-loaded images. Finally, the
extension is given 60 s for the breakage-detection inspection.

The crawl with default preferences is hereafter referred to as [plainl], while the one with
JavaScript disabled as [nojs]. For both these crawls and for each page, the following data are
collected:

e counts of broken and working elements for each page feature, in the main section and in the
whole page, and whether these elements are visible or not, forming a JSON feature report,

o a page screenshot for further, manual analysis,

o the page DOM, as an HTML file.

4.2 Collection of Website Categories

To discover and highlight breakage disparities between website categories, we adopted the classifi-
cation from OpenDNS [46], which uses a crowdsourcing system to attribute categories to domains.
Registered users can propose domains and vote on categories. To the best of our knowledge, it is
the only website classification service that provides definitions of categories (as this is required for
crowdsourcing, definitions are available at [47]) and that can attribute several categories to each
website—i.e., categories are not disjoint. This comes with the drawback that only about 66 % of
domains from the dataset are covered. Some highly correlated categories are merged into new ones
to improve readability.
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Fig. 5. Speedup when blocking JavaScript

5 RESULTS

In this section, we report the results of crawling the subset of the Hispar list built above: 6,384 pages
from 3,774 domains (2,136 Alexa base domains).

5.1 Dataset Description

Table 1 presents the data collected during the crawl, and the result of each crawl step. Out of the
6,384 pages crawled, 5,827 pages were successfully loaded, feature breakage data was collected for
5,695 pages and the HTML was saved for 4,911 pages for the same crawl URL for both [plain] and
[nojs] crawls.

Table 1. Success statistics for each crawl step

Crawl type [plain] [nojs] both

Page

Crawled 6384 6384 6384
Loaded (1) 5875 (92%) 6119 (96 %) 5827 (91%)

Inspected (2) 5741 (90%) 5966 (93%) 5695 (89 %)
HTML saved (3) 5241 (82%) 5610 (88%) 4911 (77 %)

Inability to load and process some of the pages can be attributed to various factors, including
region-based blocking [62], possibly outdated URLs of the Hispar list at the time of crawl or load
and processing timeouts due to long synchronous JavaScript rendering times and heavy page
JavaScript processing.

5.2 Effect on Page Load Time

Blocking JavaScript brings up a significant page load speedup for most pages, as shown in Figure 5.
In our dataset, the median load time with JavaScript enabled is 3,173 ms, while it is reduced to
1,582 ms when disabling JavaScript. This can be attributed to JavaScript files not being downloaded,
parsed and executed, and to some content not being loaded by JavaScript, especially lazy-loaded
images that do not provide a fallback.

Some pages are however slower to load, because of the event we used to detect the page load
completion. The load event is fired by the browser as soon as the whole page is loaded, but this
does not account for content downloaded in JavaScript, such as lazy-loaded images or font files.
Moreover, as image lazy loading is not possible when JavaScript is disabled in the browser (the
loading="lazy" standard behavior is disabled by the browser to prevent tracking), image load
time is then included in this 1load event, explaining the higher load times measured when JavaScript
is disabled.
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Table 2. Ratios of pages where the following CSS selectors match at least one element

Selector Page count  Ratio (%)
main 1557 27.6
main, #main, .main 2128 37.8
main, header, footer 3653 64.8
main, header, footer, aside, nav, section, article 4097 72.7
main, #main, .main, header, #header, .header, footer, #footer, .footer 4311 76.5

5.3 Page Section Classification

In this section, we validate the possibility of discovering the different sections of a page from the
standard, semantic metadata built in the HTML document. Notably, we look for either explicit
HTML elements, ids, or classes that relate to the structure of a page.

Table 2 details the distribution of pages from the dataset for which we were able to identify
at least one of the specified selectors (element, #id, .class). The ratio of pages having a <main>
element matches 2021 HTTP Archive’s findings very well [11]. Around 37 % of pages have clearly
identifiable main sections, while more than 76 % of pages mark the main section, header or footer
of the page, making it possible to recover the remaining main section. In the following, when the
main section cannot be determined, the whole page is considered as being the main section.

5.4 Page Feature Breakage

Then, we report about page dependency on JavaScript and we detail observed feature breakage
when disabling JavaScript.

We start by introducing the quantities used to quantify feature breakage when blocking Java-
Script. First, the differential breakage (DBR) of a page feature is the difference between the counts
of broken elements with JavaScript disabled and with JavaScript enabled :

DBRyeat,.. = BrokenCount!"**)  — BrokenCount 2™ (1)

page featpage featpage

A high, positive DBR denotes that the page has many more broken elements (of the relevant
feature) when blocking JavaScript than with JavaScript enabled. The differential breakage can
become negative when the [nojs] page has less elements detected as broken than the [plain]
page. This may happen in different scenarios, including when:

e clements that are considered as broken are dynamically added in JavaScript (e.g., in single-
page applications) and are thus not present in the [nojs] page,

e elements are hidden and only become visible with JavaScript (if the differential breakage is
restricted to visible elements only),

e the page provides noscript fallbacks which are detected as working while the [plain] page
has elements that cannot be detected as working or are actually broken.

Then, since elements are labeled as either broken or working, the total count of a feature is the
sum of their counts:

TotalCountt"™?? = BrokenCountt"! + WorkingCount!"°3% 2)

featpage featpag featpage
Finally, the normalized differential breakage (DBRn) can be derived from these two quantities:
DBRfeatpage . '
Ttpng if TotalCountt"7*? 0

. Lnojs] feat,
DBRnfeatpage — Tota‘ICountfcatpage page (3)
0 otherwise
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Fig. 6. Color represents the gpth percentile of differential breakage of visible elements in the main section.
Lighter shades denote higher differential breakage. Only categories with more than 50 pages in the dataset

are plotted, to improve readability. This highlights the disparity of breakage across website categories.

5.4.1 Aggregated Features. To ease the interpretation of elementary page features, we define two
aggregate features as the following unions:

Interactive features = { Lone Controls, Forms, Empty Anchor Buttons, Mislinked Fragment
Anchors, Disclosure Buttons }

and

Main features = { Page Text, Stylesheets Loaded, Interactive features, Large Images, Loader
Overlays }.

As not all the features included in the Main features have the same weight (the fact that no large
image is broken does not matter if the page has no text content), the maximum of each metric is
taken when aggregating, so that the Main features feature gives the more reasonable classification
of whether the page is broken or not.

5.4.2 Disparity Across Website Categories. Figure 6 reports on the 90" percentile of differential

breakage of visible elements from the main section for each feature and across page website categories.
This figure highlights the disparity of breakage observed in the main section across website
categories. In particular, e-shopping pages have more broken interactive features in the main
section than blogs have, mostly because they contain more interactive elements in this section
(25.5 interactive elements for [plain] e-shopping pages and 8.5 interactive elements for plain
blogs on average, in the main section): e-shopping pages can have an order form and other interactive
elements (to build light boxes for example) on a product page, for instance. Figure 9 from the
appendix takes into account the whole page for comparison.

5.4.3 Dependency of Main Page Features on JavaScript.

Reliance on JavaScript. Every crawled page has at least one <script>with type text/javascript.
The page with the highest count of these tags has almost 300 of them.

Feature Breakage Report. Figure 7 reports on the proportions of pages for each page feature
possible status, indicating if these features are broken or working, or if there are no elements
matching this feature (which is thus not broken). It can be seen that 67 % of pages have all their
main features from the main section working, which means they are likely to be useful to the user,
even with JavaScript disabled. Even when taking the whole page into account, 43 % of pages have all
their main features still working, meaning that the whole page is likely working as intended, when
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Fig. 7. Shares of pages for each page feature status; when present, a feature can either be working in the
whole page, only in the main section or broken in the main section

blocking JavaScript. This difference between the main section and the whole page is easily explained
by the fact that, on many pages, interactive features are used around the main section—e.g., for
navigation— not in the actual content, as quantified in Figure 7. However, it should also be noted
that for around 25 % of pages, at least one element from an interactive feature found in the main
section is broken, which could impede the user from using the page as intended.

Feature Implementation Consistency. Figure 8 depicts the normalized differential breakage (DBRn)
of visible elements of the main section, a high DBRn meaning that most of the elements matching
a feature are broken. Figure 8 highlights that, when an elementary interactive feature is at least
partially broken on a page, it is actually completely broken most of the time (short transitions
between 0 % and 100 % DBRn)—i.e., all elements of this feature are broken. Beyond the fact that
the main section usually contains few interactive elements, this can be attributed to the fact that
the implementation of the different elements of a feature on a given page is likely to be the same,
especially when the page is using a Ul framework (e.g., Bootstrap [60]), that standardizes the
implementation. In other words, for a given feature, it is very unlikely that a given page has
elements that require JavaScript while others do not.
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Fig. 8. Normalized differential breakage (DBRn) of visible elements of the main section; negative normalized
differential breakage is not shown for readability

6 LIMITATIONS

In this section, we detail the limitations of the heuristic framework and of our crawling methodology.

6.1 Measurement Framework Limitations

6.1.1 Limited Information Available. Since our heuristic-based measurement is intended to only
rely on information available when no JavaScript is loaded, it is limited to what is discoverable
based on the initial state of the DOM only. It is thus unable to detect the reliance on JavaScript of
elements whose such reliance cannot be derived form the markup, mostly some cases of misuse of
non-semantic elements, e.g., <div>s used to build buttons.

6.1.2  User Expected Feature Granularity. The heuristics that comprise the measurement framework
are derived from basic HTML elements and common components, following a bottom-up approach
to detect the reliance of web elements on JavaScript. In some cases, this might not match the
level of granularity of features expected by users, the framework being in those cases more fine-
grained—e.g., only buttons of a modal would be reported broken, not the modal itself. This limitation
results from the limited information available and from the web platform, since the relationship
between elements is usually not automatically discoverable based on static analysis—e.g., it is
usually impossible to discover that a button is used to close a modal, based on markup alone.

6.2 Crawl Limitations

The measurement crawl is limited to three URLs per domain, which does not cover the whole site,
but we believe this still provides reasonable insight about reliance on JavaScript, especially because
many webpages from a website actually follow the exact same template. In addition, the crawl
is run from a single location, from a single device, on desktop, but we expect few differences on
mobile since the usage of JavaScript is similar [10], except for components only shown on mobile,
such as hamburger menus. We also expect very few differences between browsers and devices,
since we browse without JavaScript, the interface of the web platform being very similar when
JavaScript is not enabled.
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7 DISCUSSION

In this section, we discuss some misconceptions about current reliance on JavaScript, the viability
of JavaScript blocking, and incentives for website owners for making their websites usable without
JavaScript.

7.1 Manual Visual Analysis of Screenshots

To back up these results, which can seem to go against the common assumption that web pages
are utterly broken without JavaScript, we manually labeled page full-page screenshots collected
during the crawls, according to their breakage seriousness.

To this end, we first automatically compared all [plain] and [nojs] page full-page screenshots
pixel-to-pixel, automatically detecting and disregarding most of the differences due to vertical shift
of content between the two versions. Screenshots were then put into 10 %-wide bins according to
their pixel-to-pixel difference percentage. As pixel-to-pixel difference would greatly overestimate
the actual, user-perceived page difference, and, in some cases, underestimate the user-perceived
difference on pages where the background takes the most room, one of the author manually labeled
150 random samples in each of the four bins with the smallest difference, according to the amount
of information lost to the user when disabling JavaScript, by visual comparison only. Missing
advertisements, cookie banners or presentational-only images (not bringing specific information)
are not considered information loss, while missing information-heavy images or substantial layout
breakage are.

Based on the labeling we conducted and using the pixel-to-pixel difference bins previously
constructed, we concluded that at least 50 % of pages feature no substantial amount of information
loss—such as missing content text or figure that could mislead the user—when blocking JavaScript.
This lower bound is negatively impacted by page differences resulting in a significant pixel-to-pixel
difference percentage while actually making the page more usable when blocking JavaScript, a
major example being semi-transparent cookie-consent overlays that cover the entire viewport,
which do not appear when blocking JavaScript.

7.2 JavaScript Reliance of Most Visited Websites and Component Framework Trends

The common assumption that web pages heavily depend on JavaScript may stem from the fact
that most visited websites do heavily rely on JavaScript. For instance, YouTube and other Google
products, Twitter and Instagram are largely unusable when JavaScript is blocked: e.g., the YouTube
landing page displays only loading placeholders in that case.

Moreover, deployment of relatively recent JavaScript client-side component frameworks such
as React or Vue.JS, which may result in a blank page without JavaScript, is misrepresented by
developer trends. These projects are indeed among the top 10 repositories on GitHub based on
star rankings [34], but constitute only a very small share of websites actually deployed, React and
VueJS accounting respectively for less than 3 % and 1 % of websites monitored by W3Techs [48].

7.3 Benefits and Viability of Aggressive JavaScript Blocking

On top of the numerous privacy and security benefits introduced in Section 1 and Section 2,
disabling JavaScript brings additional changes of different natures.

7.3.1 Tracking Reduction Benefits. To understand the impact of disabling JavaScript on a user’s
online footprint, we performed a new crawl on the same set of URLs where we logged the number
of requests triggered by each web page. We leverage the onBeforeRequest handler [44] of Firefox
to classify each URL in real-time. The classification relies on Firefox Enhanced Tracking Protection
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Table 3. Mean request count and standard deviation for each request type with JavaScript enabled and
disabled

[plain] [nojs] Mean change (%)
M SD M SD
Request count

All 72.6 59.1 28.3 34.0 -61.0
— Non-tracking 509 44.1 25.1 33.0 -50.7
— Tracking 21.7 298 33 8.1 -85.0
First party 27.7 313 164 245 -40.8
— Image 133 217 123 222 -7.6
— Stylesheet 26 50 24 46 -6.2
— Font 1.5 26 13 24 -10.2
— Script 7.1 114 0.0 0.0 -100.0
— XHR 25 57 01 07 -97.6
Third party 449 496 119 264 -73.4
— Image 158 264 85 247 -46.3
— Stylesheet 21 36 14 35 -30.5
— Font 23 37 14 26 -38.2
— Script 16.8 19.7 0.0 0.0 -100.0
— XHR 55 86 00 0.2 -99.8

and the built-in Disconnect lists [7] to indicate if a URL is either first or third party and whether it
is involved in tracking or not.

Table 3 details the result of this new crawl. Considering all types of requests, blocking JavaScript
presents a mean reduction of 61 % and this percentage is even higher at 85 % for tracking requests.
This shows how beneficial disabling JavaScript can be when it comes to tracking. Looking at the
difference between first and third party requests, we can notice a difference in the type of loaded
resources. While images and stylesheets are mostly loaded in a first party context, scripts mostly
come from third parties and blocking JavaScript here has a drastic impact, as these are never
loaded in the browser. Some XHRs are also preloaded using <link rel="preload" as="fetch"
src=". . . ">, which explains why a few XHRs are still detected with JavaScript disabled.

7.3.2 Browsing Comfort. In the case where the page is usable enough without JavaScript, having it
disabled can actually improve the browsing experience by reducing the amount of aggressive page
behaviors, such as pop-up advertisements, newsletter forms or unexpected animations, resulting in
less obstructed browsing. In particular, cookie banners, that ask for user consent, are usually not
shown in this scenario since they are often completely managed with JavaScript cookie consent
frameworks, that set the cookies in JavaScript.

7.3.3 Reduced Data Size. Since external scripts are not loaded when JavaScript is disabled, this
can result in a sizable reduction of transferred data; the HTTP Archive reporting a median size of
444 kB of JavaScript per page [8].

Reducing the amount of transferred data has several benefits, including faster page loads for
most pages (see subsection 5.2), reduced connection-related energy consumption, especially on
mobile devices, and reduced cost for users with a data cap on their mobile plan. However, in some
cases, disabling JavaScript could actually result in higher bandwidth usage, as it would prevent
loading some pieces of content only when actually needed, as with lazy-loaded images. For instance,
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since all images would be loaded disregarding of the scroll position, it could happen that the user
would actually leave the page without ever reaching its bottom where images would have been
needlessly downloaded.

7.3.4  Reduced Client-Side Processing Load. Reducing the amount of scripts processed on the client
side also reduces the processing stress on the end device. This results in a lower consumption
which, especially on mobile devices, can increase battery life and device life span due to reduced
heating and battery stress, reducing e-waste. Varvello and Livshits have tested 15 Android browsers
and found that ad blocking can offer between 20 % to 40 % of battery savings with an additional
10 % when dark mode is enabled [63].

7.3.5 Impediments to Non-JavaScript Browsing. Despite all these benefits and while around two
thirds of web pages are likely to be satisfactorily usable, it is currently hard to recommend browsing
the web with JavaScript disabled for all websites, as it would still significantly reduce the number
of websites the user could satisfactorily browse, besides the fact that the user may be required to
use some websites (e.g., work-related or government websites) that do require JavaScript.
Browser extensions such as uBlock Origin [27], NoScript [40] and the unmaintained uMatrix [26],
allow users to selectively enable or disable JavaScript for each domain (and even in a more fine-
grained way for some of them), but they require manual action for each visited site, technical
knowledge from the user and may not be easily usable on mobile because of reduced screen size.

7.4 Website Usage of JavaScript Features With No Fallback
7.4.1  Negative Impact of Ul Frameworks.

Minimum Developer Boilerplate. The fact that some interactive components are not usable without
JavaScript is often due to them not being written from scratch specifically for the page where
they will be used, but instead coming from a UI framework, be it an open-source or an in-house
one. To make them easy to use, these Ul frameworks rely on a set of CSS classes to apply on
elements to style and define their behavior. For instance, Bootstrap only requires a couple of classes
(.dropdown-toggle and .dropdown-menu) and a few attributes to be added to a button and a list
so that they behave as a dropdown list [59]. Unlike the implementation from Listing 5, there is
no need for the developer to manually insert an extra <input> to keep state, since the toggle
behavior is entirely handled in JavaScript, thus requiring minimum manual boilerplate. Bootstrap
explicitly documents that its components do not fall back gracefully without JavaScript, and leaves
the implementation of noscript fallbacks to the developer [61], only hinting at displaying a noscript
warning to tell the user that JavaScript is required. The same strategy is followed by other Ul
frameworks, such as ZURB Foundation [70] or Semantic UI [1].

Front-End Frameworks. This trend is exacerbated by the use of front-end frameworks, which
require client-side JavaScript to deliver a significant part of the user interface. When using frame-
works such as React [29], Vue.JS [71], Angular]S [20], or Svelte [4], which all, by default, rely on
client-side JavaScript to build interface components, it may be tempting not to provide any fallbacks
since the website is very likely to be significantly broken anyway, regardless of best practices,
especially Progressive Enhancement [22], which recommends separating page semantics from
interactivity, while making the former as robust and accessible as possible.

Server-Side Rendering/Static Site Generation. Some of these frameworks can be used as part of an
SSR stack, such as Next.js [45] (for React) or Nuxt]S [3] (for Vue.JS), able to render the page on the
server, before sending it to the client, sparing it from the rendering burden and dependency on
JavaScript for rendering the components. SSG can also sometimes be used to render pages ahead of
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time, when they do not depend on user data, thus reducing the server load. However, this plays no
role in providing client-side fallbacks for interactive elements, such as dropdowns, accordions, or
forms.

7.4.2  Search Engine Optimization Motivation. A point of interest for websites to provide JavaScript
fallbacks, at least for basic content, is to improve their ranking on search engines. Because it is an
expensive operation, many search engines and social media crawlers do not execute JavaScript at
all [17, 24], possibly completely missing the page content if it is not rendered without JavaScript,
thus reducing the chance for the page to be properly indexed by the search engine. Some of the
most popular search engines do run JavaScript, like Google Search (since at least 2014) [21, 25].

8 CONCLUSION

In this paper, we performed a crawl on 6,384 pages and quantified the use and reliance on JavaScript
of websites to provide content and features that the user was likely to expect when reaching
the page. We found that 43 % of pages were very likely to be completely working with JavaScript
disabled and that more than 67 % were likely to be usable enough, when potentially broken elements
were not part of the main section. We also observed that reliance on JavaScript was dependent on
the website category, and that it could be really low for some categories, that do not rely much on
interactive features. We finally detailed reasons for why it would be beneficial for websites to be
non-JavaScript friendly and focused on possible reasons for which websites may not currently be
supporting non-JavaScript users. Based on these findings, we suggest that future work explores
solutions to ease adoption of non-JavaScript friendly implementations of interface features, when
it is possible, in accordance with Progressive Enhancement principles.
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We make available the complete crawl infrastructure and all breakage detection heuristics at
https://archive.softwareheritage.org/browse/origin/https://gitlab.inria.fr/Spirals/breaking-bad.git.
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APPENDIX

Table 4. JavaScript reliance of standard HTML elements [42].

(0) does not require JavaScript based on the standard, and is very unlikely to require JavaScript in the wild,
(1) does not require JavaScript based on the standard, but sometimes legitimately uses JavaScript in the wild,
for additional features,

(11) does not require JavaScript based on the standard, but sometimes uses JavaScript in the wild, in a
non-semantic manner,

(2) does not require JavaScript based on the standard, but requires JavaScript in some use cases,

(2*) does not require JavaScript based on the standard, but often requires JavaScript when used outside a
form,

(3) always requires JavaScript based on the standard.

Element JavaScript JavaScript use cases
reliance
Main root
<html> (0)
Document metadata
<base> (0)
<head> (0)
<link> (1) Asynchronous loading
<meta> (0)
<style> (0)
<title> (0)
Sectioning root
<body> (0)
Content sectioning
<address> (0)
<article> (0)
<aside> (0)
<footer> (0)
<header> (0)
<h1>, <h2> <h3> <h4> (0)
<h5>, <h6>
<main> (0)
<nav> (0)
<section> (0)

Text content

<blockquote> (0)
<dd> (0)
<div> (1) Non-semantic button
<dl> (0)
<dt> (0)
<figcaption> (0)
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Element JavaScript JavaScript use cases
reliance
<figure> (0)
<hr> (0)
<li> (0)
<ol> (0)
<p> (0)
<pre> (0)
<ul> (0)
Table content
<caption> (0)
<col> (0)
<colgroup> (0)
<table> (0)
<tbody> (0)
<td> (0)
<tfoot> (0)
<th> (0)
<thead> (0)
<tr> (0)
Demarcating edits
<del> (0)
<ins> (0)

Inline text semantics

<a> (1) Non-semantic button
<abbr> (0)
<b> (0)
<bdi> (0)
<bdo> (0)
<br> (0)
<cite> (0)
<code> (0)
<data> (0)
<dfn> (0)
<em> (0)
<i> (0)
<kbd> (0)
<mark> (0)
<o> (0)
<rp> (0)
<rt> (0)
<ruby> (0)
<s> (0)
<samp> (0)
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Element JavaScript JavaScript use cases
reliance

<small> (0)

<span> (11) Non-semantic button

<strong> (0)

<sub> (0)

<sup> (0)

<time> (0)

<u> (0)

<var> (0)

<wbr> (0)

Image and multimedia

<area> (0)

<audio> (1) Custom controls

<img> (1) Lazy-loading

<map> (0)

<track> (0)

<video> (1) Custom controls

Embedded content

<embed> (0)

<iframe> (0)

<object> (0)

<param> (0)

<picture> (0)

<portal> (0)

<source> (1) Lazy-loading

SVG and MathML

<svg> (1) Embedded JavaScript

<math> (0)

Scripting

<canvas> (3)

<noscript> (0)

<script> (2) May embed a script or a data block

Forms

<button> 2%

<datalist> 2%

<fieldset> (0)

<form> (2) Requires JavaScript when the form

or its values cannot be submitted

<input> (2

<label> (0)

<legend> (0)

<meter> (2%
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Element JavaScript JavaScript use cases
reliance

<optgroup> (2"

<option> (2%)

<progress> (2%)

<select> (2%

<textarea> (2%

Table 5. JavaScript reliance of common Ul framework components, based on their documentations and
manual testing.

(0) does not require JavaScript,

(0™) does not require JavaScript in the documentation, but is likely to be used with JavaScript in the wild,
(1) does not require JavaScript to be displayed but requires JavaScript to be dismissed, or is used to display
transient state, mainly useful with JavaScript,

(1*) does not require JavaScript based on the standard, but requires JavaScript in some use cases (mostly
when used outside a form),

(2) does not require JavaScript to be displayed, but requires JavaScript for interactive behavior,

(3) requires JavaScript and displays nothing otherwise.

Component Bootstrap 5 [58] Foundation 6 [70] Tailwind El- Semantic UI [1]
ements [2]
Accordion (2) 2 @ (2)
Advertisement N/A N/A N/A (0)
Alerts/Message/Callout (1) 1™ @ (1)
Badge(s) (0) 0) (0)/(1) N/A
Breadcrumb(s) (0) ) (0) (0)
Button(s) (1%) N/A (1%) (1%)
Button group (0) N/A (0) (0)
Card(s) (0) 0) (0) (0)
Carousel/Orbit (2) (2) (09 N/A
Charts N/A N/A (3) N/A
Chips N/A N/A (1) N/A
Checkbox/Checks (1%) N/A N/A (1%)
Close button (2) (2) N/A N/A
Collapse (2) N/A N/A N/A
Comment N/A N/A N/A (1)
Container N/A N/A N/A (0)
Datepicker N/A N/A  (3) N/A
Dimmer N/A N/A N/A (1)
Divider N/A N/A N/A (0)
Drilldow menu N/A (2) N/A N/A
Dropdown(s) (2) 2 @ (2)
Embed N/A N/A N/A (0)
Feed N/A N/A N/A (0)
File input N/A N/A (0) N/A
Flag N/A N/A N/A (0)
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Component Bootstrap 5 Foundation 6 Tailwind El- Semantic UI
ements

Floating labels (0) N/A N/A N/A
Footer N/A N/A (0) N/A
Form validation 0)/(2) N/A  (0) (3)
Input group, Layout/- N/A 0) (19 (1)
Form(s)
Gallery N/A N/A (0) N/A
Grid N/A N/A N/A (0)
Headings/Header N/A N/A (0) (0)
Image(s) N/A N/A  (0) (0)
Icon N/A N/A N/A 0)
Item N/A N/A N/A (0)
Form controls/Input(s) N/A N/A (1%) (1)
Label N/A (0) N/A (0)
List group/List (0) N/A  (0) (0)
Menu N/A (0) N/A 0)
Media N/A (0) N/A N/A
Modal/Reveal (2) 2) () (2)
Multiselect N/A N/A (1%) N/A
Navs & tabs/Tab(s)/Pills (2) 2 @ (2)
Navbar/Topbar (0) 0) (0) N/A
Offcanvas/Sidebar (2) (2) N/A (2)
Pagination (0) 0) (0) N/A
Placeholder(s) (0) N/A N/A (1)
Popover(s)/Popup (2) N/A (2) (2)
Progress/Progress Bar (1) 1 @ (3)
Radios (1%) N/A (1%) N/A
Rail N/A N/A N/A (0)
Rating N/A N/A  (0) (3)
Range/Slider (17%) (2) () N/A
Responsive Accordion N/A (2) N/A N/A
Tabs
Responsive Embed N/A (0) N/A N/A
Responsive Navigation N/A (2) N/A N/A
Reveal N/A N/A N/A (0)
Scrollspy/Magellan (2) (2) N/A N/A
Search(s) N/A N/A (1%) N/A
Select (1) N/A (1%) N/A
Segment N/A N/A N/A 0)/(1)
Shape N/A N/A N/A (3)
Sidenav N/A N/A (0) N/A
Spinners/Loader (1) N/A (1) (1)
Statistic N/A N/A N/A (0)
Sticky N/A N/A N/A (2)
Switch N/A 1" (19/(2) N/A
Stepper/Step N/A N/A (0) (0)
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Component Bootstrap 5 Foundation 6 Tailwind El- Semantic UI
ements
Table(s) N/A 0) (0) (0)
Thumbnail N/A (0) N/A N/A
Textarea N/A N/A (1%) N/A
Timepicker N/A N/A (1%) N/A
Toast(s) (1) N/A (1) N/A
Tooltip(s) (2) 2 (@ N/A
Forms - 10
Lone Controls
Empty -8
Anchor Buttons
Disclosure Buttons
Large Images 6
Interactive features —
Main features — - - 4
I I I | I | I
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Fig. 9. Color represents the gpth percentile of differential breakage of visible elements in the whole page.

Lighter shades denote higher differential breakage. Only categories with more than 50 pages in the dataset
are plotted, to improve readability. This highlights the disparity of breakage across website categories.
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