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ABSTRACT

Hardware peripherals such as GPUs and FPGAs are commonly
available in server-grade computing to accelerate specific compute
tasks, from database queries to machine learning. CSPs have inte-
grated these accelerators into their infrastructure and let tenants
combine and configure these components flexibly, based on their
needs. Securing I/O interfaces is critical to ensure proper isolation
between tenants in these highly complex, heterogeneous, yet shared
server systems, especially in the cloud, where some peripherals
may be under control of a malicious tenant.

In this work, we investigate the interfaces that connect periph-
eral hardware components to each other and the rest of the system.
We show that the /O memory management units ((OMMUs) — in-
tended to ensure proper isolation of peripherals — are the source of
a new attack surface: the I/O translation look-aside buffer (IOTLB).
We show that by using an FPGA accelerator card one can gain pre-
cise information over IOTLB activity. That information can be used
for covert communication between peripherals without bothering
CPU or to directly extract leakage from neighboring accelerated
compute jobs such as GPU-accelerated databases. We present the
first qualitative and quantitative analysis of this newly uncovered
attack surface before fine-grained channels become widely viable
with the introduction of CXL and PCle 5.0. In addition, we propose
possible countermeasures that software developers, hardware de-
signers, and system administrators can use to suppress the observed
side-channel leakages and analyze their implicit costs.

CCS CONCEPTS

« Security and privacy — Systems security; Side-channel anal-
ysis and countermeasures; - Computer systems organization
— Heterogeneous (hybrid) systems.
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1 INTRODUCTION

Modern server-grade computing infrastructures are becoming more
heterogeneous: computational needs are spread over fast and flex-
ible CPUs as well as powerful peripherals such as smart storage,
GPUs, smart NICs and FPGAs. Major cloud service providers (CSPs)
have started to shift tasks such as networking, memory manage-
ment and VM management into more specialized hardware pe-
ripherals [2, 5, 14], freeing up precious CPU time that is rented to
more tenants who share the same hardware. These multi-tenant,
peripheral-heavy cloud systems rely on increasingly interlinked
memory systems to provide high throughput for shared, scalable
and parallelized cloud infrastructure. Technologies like VT-d, DDIO,
and CXL allow peripherals to not only directly read and write to
the memory of a virtual machine, but to also use a CPU’s shared
cache to speed up repeated reads and writes.

On a logic layer, input-output memory management units (IOM-
MUs) enforce memory isolation between these peripherals and
guest VMs running on CPUs, making IOMMUs a key component
for ensuring security of the cloud infrastructure [6, 28, 37]. The
IOMMU ensures that accesses to virtual memory spaces are isolated
and appropriately virtualized: e.g., devices may handle only I/O-
specific virtual addresses and not the CPU-side virtual addresses
or the underlying system’s physical addresses; in addition, devices
may only access memory with the appropriate permissions set.

However, when many tenants share the same hardware, side ef-
fects in these complex shared memory systems weaken the security
promises of virtualization that make highly scalable multi-tenant
cloud computing possible. These side effects of shared hardware are
exploited by microarchitectural attacks, most prominently cache
attacks. Cache attacks exploit the measurable difference in access
times to the many tiers of modern caches to overcome the sophisti-
cated memory isolation mechanisms that protect tenants’ data and
computation from each other. Besides cache attacks, which have
been successfully applied in commercial cloud settings [25, 38],
microarchitectural attacks like Meltdown [34] and related MDS
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attacks [10, 56, 62] as well as Rowhammer attacks pose a real threat
in shared cloud environments. One malicious tenant may, after
successful co-location [54, 68], use these microarchitectural side
effects to glean sensitive information from co-located VMs.

While Meltdown and other MDS-style attacks have mostly been
patched with microcode updates [39, 40], they often also require
CSPs to disable simultaneous multi-threading between separate
security domains for full protection. Rowhammer attacks are signif-
icantly mitigated by usage of ECC memory and newer DDR4 and
DDRS5 architectures, even though vulnerability of both older ECC
memory modules and newer ECC-free DDR4 memory to Rowham-
mer has been practically verified [12, 16, 50].

Cache attacks, however, are much more difficult to prevent, as
the contention and timing differences that enable attacks such
as Prime+Probe are inherent to modern cache architecture [46].
Many system-level solutions like cache partitioning have been
proposed [55, 67], but have not been widely implemented in hard-
ware and are costly in performance to implement in firmware or
hypervisors. The most common way to prevent these attacks is
through constant-time implementation of security-critical code;
that is, rather than removing the leakage channel inherent to the
cloud architecture, software developers must make sure their code
does not leak sensitive data on timing-based channels [3, 8, 9, 65].

While most research in microarchitectural attacks has focused on
attacks from core to core on CPUs, caches are no longer only acces-
sible by CPUs. Intel’s DDIO technology, present on all recent Intel
server architectures, allows high speed peripherals to directly ac-
cess a CPU’s shared cache without interrupting CPU execution [26].
Cloud users may rent peripherals such as purpose-specific GPU or
FPGA cloud instances for higher performance in particular work-
loads. In such heterogeneous compute environments, security is
even more challenging, as tenants are no longer confined to virtual
machines (VMs) on the CPU, but may additionally have control
over peripherals. With CSPs renting instances that grant tenants
full access to FPGAs designed specifically for heterogeneous com-
putation [1, 4, 17], it becomes trivial for attackers to gain sufficient
control over peripherals in the cloud that are more than capable of
exploiting microarchitectural vulnerabilities.

First works have used peripherals like network cards [32] and
FPGAs [52, 64] to target CPU caches as a powerful shared resource
that is accessible by VMs and peripherals alike. These works indicate
that not only are cache attacks mounted from peripherals possible;
they can leak information about the private operations of both
CPUs and peripherals. Furthermore, classical cache attack methods
can become more powerful when the attacker controls peripherals
in addition to a VM on the same machine. As of now, several other
components that are also shared by peripherals such as the IOMMU,
which is the main line of defense against compromised peripherals,
remain unstudied and may open up new attack surfaces.

Our Contribution. This work exposes a vulnerability in an over-
looked attack surface present in multi-tenant, peripheral-heavy
cloud systems: the microarchitecture of the I/O Memory Manage-
ment Unit IOMMU). Knowing that the IOMMUs in modern CPUs
have translation look-aside buffers (IOTLBs) to speed up repeated
translations [6, 28, 43], we present a hardware design for an FPGA
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acceleration card that uses memory access timing to reliably iden-
tify whether or not a translation is present in an IOTLB. With
that design, we propose and evaluate an algorithm for IOTLB evic-
tion set finding. With those eviction sets, we demonstrate the first
two IOTLB-based covert channels. We use the FPGA to collect
side-channel IOTLB traces from two other peripheral devices and
analyze the viability and threat models of a full side-channel attack.

We show that the IOTLB is the source of side-channel vulnera-
bility that CSPs are currently not aware of and thus do not protect
against. We show that the IOTLB is an excellent source for con-
structing covert channels between co-located peripherals and can
also be abused to extract information from neighboring peripherals
such as GPU-accelerated databases. We provide comprehensive
threat analysis of this vulnerability, in both the present and the
near future, and present viable defenses and countermeasures. In
summary, our main contributions are:

e We demonstrate a previously ignored IOTLB timing side-
channel against PCle peripherals before technologies such
as CXL and PCle 5.0 gain widespread adoption, and fine-
grained attacks become viable on a large installation base.

e We develop a new algorithm that finds eviction sets without
any prior assumptions of organization and demonstrate its
advantages in finding IOTLB eviction sets over a similar
eviction set finding algorithm.

e We use a custom FPGA hardware function to exploit the
IOTLB timing side-channel and study traces collected from
an SQL database acceleration library for a GPU.

e We leak IOTLB timing side-channel traces from a GPU-
accelerated SQL database library and analyze the vulner-
ability of the library to a practical attack.

e We demonstrate the first two IOTLB covert channels, in-
cluding a peripheral-to-peripheral channel with a generic
application as the sender and our custom FPGA function as
the receiver.

e We propose countermeasures for applications, cloud systems,
and IOMMU implementations to counter the side-channel
we identified.

2 BACKGROUND

When multiple hardware resources share data, it is often desirable
to have direct memory access (DMA) from one resource to another.
However, simply allowing any peripheral to read or write a host
CPU’s memory would be disastrous for security, especially in virtu-
alized environments with multiple users sharing the CPU. AMD’s
AMD-Vi and Intel’s VT-d features (present on both companies’ per-
formance desktop and server processors for the better part of a
decade) allow for virtualized DMA with IOMMUs that dynamically
map and translate virtual addresses used specifically by peripherals
to access CPU memory. To speed up repeated access to the same
memory location, IOMMUs often include translation look-aside
buffers (TLBs, or IOTLBs when they are in IOMMUs) which cache
recently translated I/O virtual addresses and their corresponding
physical addresses to avoid the slow page-table walks otherwise re-
quired for translation. Like CPU caches and TLBs, which perform a
similar function for CPU memory accesses and address translations,
IOTLBs introduce a timing-based side-channel vulnerability.
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2.1 Caches and TLBs

A cache stores data for faster access. A translation look-aside buffer
(TLB) is technically just another cache, though rather than caching
the data or instructions stored at an address, it caches an address
translation. However, throughout this paper we will refer to mem-
ory caches as simply “caches”. Intel’s documentation[27] and sev-
eral works reverse-engineering cache architectures [23, 29, 36, 45]
and TLB architectures [18, 61] reveal that TLBs on modern Intel
CPUs are organized very similarly to modern CPU memory caches.
Modern TLBs and caches are typically organized into sets and
ways. The number of ways is the number of entries each set can
contain. For TLBs, each virtual address is mapped to one set, but
can occupy any way within that set. When a set is full, old entries
may be evicted to make room for new ones. A set of addresses
which reliably causes the eviction of all other entries in a set when
accessed is called an eviction set. A minimal eviction set contains
as many addresses as there are ways in the cache/TLB and therefore
fills an entire cache set when accessed [63].

2.2 Side-Channel Attacks

Timing side-channel attacks against the CPU’s cache are widely
studied and well understood: researchers have crafted several vari-
ants [13, 21, 36, 51, 66], used them as part of more complicated
microarchitectural attacks [31, 34], and built defenses against them
[20, 35, 67]. There are many cache side-channel strategies that work
in different memory-sharing scenarios and have quite varied tem-
poral and address resolutions. These are two of the most common
and useful attack techniques:

Flush+Reload (F+R) [66] requires shared memory between the
attacker and the victim and has three steps: 1) The attacker flushes
the cache line of interest. 2) She then waits for the victim to execute.
Later, 3) she reloads the flushed line and measures the reload latency.
If the latency is low, the cache line was served from the cache
hierarchy, so the cache line was accessed by the victim.

Prime+Probe (P+P) does not require shared memory at the cost
of a lower temporal resolution than F+R since the attacker checks
the status of the cache by probing a whole cache set rather than
flushing or reloading a single line. P+P has three steps: 1) The
attacker primes the cache set under surveillance with dummy data
by accessing a proper eviction set, 2) she waits for the victim to
execute, 3) she accesses the eviction set again and measures the
access latency (probing). If the latency is above a certain threshold,
some parts of the eviction set were evicted by the victim process,
meaning that the victim accessed cache lines belonging to the cache
set under surveillance [36].

2.3 Attacks on TLBs

In 1995, Silbert et al. remarked in a security analysis of Intel CPU
architectures that "all 80x86 [now more commonly called x86]
processors have a translation look-aside buffer (TLB) that [...]
has potential for use as a covert timing channel” [59]. In 2013,
Hund et al. [23] demonstrated that a TLB timing side-channel on
then-modern Intel CPUs could reveal if a page was mapped by
the operating system even if the user does not have permission to
access the page directly. They demonstrated that this exploit could
be used to identify the pages used by the kernel, even when the
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addresses of the pages were randomized (a common defense against
side-channel attacks of many types). In 2017, Gras et al. crafted an
attack that uses a cache side-channel to identify TLB evictions. This
was a robust attack that can be mounted even from JavaScript to
de-randomize kernel pages [19]. Gras et als “TLBleed” in 2018 [18]
showed that TLBs in modern Intel CPUs were vulnerable to timing
side-channel attacks of the sort that are typically used on CPU
memory caches, and can be used for similarly complex attacks:
with the help of some machine learning, the TLB side-channels on
Skylake, Broadwell, and Coffeelake CPUs can be used to recover a
key from an Edward-curve cryptographic function.

2.4 PCle

Peripheral Component Interconnect Express (PCle) [47] is the back-
bone of modern desktop and server systems. While often referred
to as a bus, PCle uses a high-speed point-to-point topology with de-
vices being connected to switches or directly to a root port via serial
links. The root complex connects the PCle network to the CPU and
the main memory. On a PCle network, all devices can send mem-
ory requests to each other and to the main memory. An IOMMU
can be used to virtualize addresses used by PCle devices and to
implement access restrictions. If supported, each root port of a root
complex may define access rules for inter-device communication
and implement them in the PCle switches.

Two recent works [30, 60] describe covert- and side-channel
attacks that rely on PCle bus contention. A preliminary is that
the two devices involved share the same PCle switch. In contrast,
our work assumes the two devices to share a PCle root port. Our
assumption is less restrictive as any two PCle devices sharing a
switch share a root port, but devices sharing a root port do not
necessarily share a switch, as root ports can have many lanes to
support multiple devices without sharing a physical bus [47].

Currently, PCle 3.0 is the prevailing PCle specification for com-
modity hardware. After a short period of CPUs supporting PCle
4.0, PCle specification 5.0 is the upcoming standard for the next
generations of server-grade CPUs. CPUs supporting PCle 5.0 are
scheduled for November 2022 and January 2023, respectively [7, 58].
PCle 5.0 doubles transfer rates compared to PCle 4.0, making the
interconnect compete with main memory speeds. As a result, PCle
5.0 physical layer is also used by a new protocol named Compute
eXpress Link (CXL) [57]. CXL supports three sub-protocols: CXL.io
is based on PCle and enables CXL devices to share the PCle in-
frastructure with PCle devices unaware of CXL. With CXL.cache,
devices are enabled to cache data from main memory while main-
taining coherency between the main memory, the CPU caches and
the accelerator cached copy. CXL.mem is used by a host CPU to
access CXL device memory and manage its coherent usage.

2.5 IOMMUs

Input-Output Memory Management Units IOMMUs) are located
between PCle devices and the main memory. Usually, they are
implemented as part of the root complex. Modern server systems
feature one IOMMU per root port. Similar to MMUs in the CPU,
IOMMUs provide address translation and protection for memory
regions that are made accessible to PCle devices [6, 28]. Address
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virtualization allows to isolate or virtualize such devices. Also, it
allows 32-bit peripherals to use memory regions above 4 GB.

The translation process of the IOMMU works very similar to
the process in a CPU’s MMU. Modern IOMMUs map PCle devices
to IOMMU groups or domains. The operating system, hypervisor,
or VMM maintains a page table with all address mappings per
group/domain. The page table is organized in a tree structure. Its
depth depends on the width of the I/O virtual addresses (IOVAs)
supported by the IOMMU. For IOVAs referencing 4 KB pages, the
12 least significant address bits (page offset) remain untranslated.
Accordingly, the 21/30 least significant bits of IOVAs pointing to
2 MB/1 GB pages remain untranslated.

IOVAs are translated to physical addresses (PAs) by the IOMMU
performing a page table walk. Since this is quite time consum-
ing, modern IOMMUs feature a translation look-aside buffer called
IOTLB. This cache is used to store translated IOVA—PA mappings
and is shared by all devices managed by the IOMMU.

2.5.1 Attacks on IOMMUs. In the past, several attacks have been
shown that circumvent the IOMMU to gain direct memory access
or use the misconfiguration of the IOMMU to exploit device drivers
through code injection or control-flow hijacking. However, the root
cause always was a misconfigured IOMMU or a software vulner-
ability. We are not aware of any attacks that were made possible
solely by the IOMMU hardware.

For example, a malicious peripheral can bypass the IOMMU by
adding appropriate entries to the page table on startup before the
IOMMU is activated by the BIOS [41, 42], or by exploiting PCle
address translation services (ATS), which allows a peripheral to
mark any memory request as “translated” and bypass IOMMU
translation and isolation [37]. Malicious devices may also exploit
vulnerabilities in the kernel or device drivers. IOMMU address
translation only works on a page-granular level, so memory that
was never intended to be shared might be allocated to a shared
page, leaking secret data or enabling code injection attacks that can
compromise the whole system [37].

3 IDENTIFYING IOTLB SIDE-CHANNELS

In this section, we demonstrate two fundamental techniques for
implementing IOTLB side-channel attacks on these or similar sys-
tems. We measure the latency difference between DMA accesses to
addresses with cached and uncached translations in the IOMMU.
We also demonstrate a new algorithm for reliably finding IOTLB
eviction sets with no prior assumptions about size or organization.
We have access to three different system setups that we will inves-
tigate throughout this work. Table 1 summarizes the key features
of each. A detailed description of the setups is given next.

3.1 System Setup

For our experiments, we rely on three systems that are represen-
tative of modern cloud services featuring FPGA resources. The
systems feature recent server-grade CPUs as well as FPGA exten-
sion cards based on Intel FPGAs. The FPGAs are managed by the
Intel Acceleration Stack (IAS) which is designed to ease manage-
ment of cloud deployments. The first system, a10l, is a system we
have physical and administrative access to. The other two systems
al0v and s10v are cloud-like systems that are accessible through
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Table 1: Overview of the system setups used in this work

Name alol alov s10v

CPU 2 Xeon Silver 2 Xeon Plat- 2 Xeon Plat-
4114 inum 8180 inum 8280

#PCle RP 4 per CPU 4 per CPU 4 per CPU

#IOMMUs 4 per CPU 4 per CPU 4 per CPU

FPGA PAC Arria 10 Arria 10 Stratix 10

OPAE ver. 1.1.2-1 2020-01-01 2020-01-01

Bitstream ver. 1.2.3 1.1.3 2.0.3

Root/phys. yes no no

access

the Intel Labs (IL) Academic Compute Environment (ACE)'. We
operate the two IL ACE systems with user privileges only. This is
why we evaluate our eviction set finding algorithm on all three
systems but rely solely on a10l for the side- and covert channel
experiments. More detailed information about the different systems
is given in Table 1 and in the following paragraphs.

al0l: As our local setup, we use a Dell PowerEdge R740 server
with two Intel Xeon Silver 4114 CPUs. Each CPU reports 4 PCle
root bridges with one IOMMU per root port. The system contains a
Realtek PClIe ethernet network interface card (NIC). It is assigned
to a dedicated IOMMU group. The NIC is passed-through to a
virtual machine (VM) on the server. An ethernet cable connects
the NIC with one of the on-board NICs. An NVIDIA Tesla T4 GPU
is assigned to another dedicate IOMMU group that is managed
by a different IOMMU than the NIC. Therefore, the NIC and the
GPU do not share an IOTLB. An Intel Programmable Acceleration
Card (PAC) with Intel Arria 10 GX FPGA shares the IOTLB with
the NIC or the T4, depending on the experiment, by connecting
it to PCle slots that are managed by the IOMMU also managing
the NIC or the GPU respectively. All other PCle devices like the
on-board NICs, memory controllers, etc. are connected to different
IOMMUs and therefore cannot interfere with our measurements.
The system has IAS 1.2 installed which contains OPAE version 1.1.2-
1. Running fpgainfo reports bitstream id 0x123000200000185 and
bitstream version 1. 2. 3. We execute the GPU-accelerated database
OmniSciDB? in version 5.10., which is the latest version at the time
of writing. Additionally, CUDA version 11.4 and GPU driver version
470.57.02 are installed. The database consists of one table filled with
the Meta Kaggle data set>. We have root access to this machine.

al0v: The IL ACE contains servers with two Intel Xeon Platinum
8180 CPUs. Each CPU reports 4 PCle root bridges with IOMMU per
root port. Two PCle PACs with Arria 10 GX FPGAs are managed
by two separate IOMMUs. All other PCle devices are managed by
other IOMMU . The servers use IAS 1.1 and OPAE was installed
on 01/01/2020 from the Git repository. Running fpgainfo reports
bitstream id 0x113000200000177 and bitstream version 1.1.3. We
operate these machines with user privileges only.

s10v: The IL ACE features servers with two Intel Xeon Platinum
8280 CPUs. Each CPU reports 4 PCIe root bridges with one IOMMU

!https://wiki.intel-research.net/
Zhttps://docs.omnisci.com/overview/overview#omniscidb
3https://www.kaggle.com/kaggle/meta-kaggle
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per root port. An Intel FPGA PAC D5005 is connected via PCle. All
other PCle devices are managed by other IOMMUs than the one
managing the PAC. The servers use IAS 2.0 and OPAE was installed
on 01/01/2020 from the Git repository. Running fpgainfo reports
bitstream version 2. 0. 3 and bitstream id 0x203000200000339. We
operate these machines with user privileges only.

3.2 IOTLBs Cause Timing Behavior

During their PCle performance benchmarking, Neugebauer et al.
[43] found that an IOTLB miss results in a latency increase of
330 ns. Since the FPGAs in our systems are clocked at 200 MHz,
the expected difference between fast and slow accesses is 66 clock
cycles. Peglow’s [49] work matches our expectation. With disabled
IOMMU, the memory read latency for any address in main memory
is distributed around 160 and 185 cycles. When the system is con-
figured to use the IOMMU, this distribution shifts to 225 and 270
cycles for addresses that are accessed for the first time. Access times
for subsequent accesses are distributed similarly to access times
measured without IOMMU. Thus the measurable latency difference
between accesses to addresses where the translation is present in
or absent from the IOTLB lies between 65 and 85 clock cycles. We
reproduced all values for the a10l system. On the IL ACE systems
al0v and s10v, the latency difference between first accesses and
subsequent accesses lies in the expected range. However, we cannot
disable the IOMMU on the IL ACE systems to check whether the
latency difference disappears.

3.3 Tools for Testing IOMMU Behavior

The IOMMU translates addresses for peripherals. Therefore, the
CPU alone can only interact with the IOMMU in limited ways; we
have to rely on a peripheral device to perform the experiments. For
this purpose we used the PCle PACs with DMA capabilities. We
implement a hardware function for the FPGA that is programmable
from software to capture the required measurements.

3.3.1 IOTLB Control from the CPU. To assist with these experi-
ments, we also develop a kernel module that enables a program
on the CPU to flush all entries from the IOTLB of a given IOMMU.
When loaded, the kernel module uses a variety of functions and
structures from the Linux kernel source, including those found in
<linux/pci.h>, <linux/iommu.h>, and <linux/dmar.h> to find
a PCle device structure based on its vendor and device IDs, and
from there find the device structure corresponding to the IOMMU
that manages that PCle device. That IOMMU device structure al-
ready contains a pointer to a function for flushing the IOMMU, so
that function merely needs to be called. The kernel module uses a
character file and ioctl as an interface by which user programs can
call for the kernel module to flush the IOMMU. However, it takes
root access to load a kernel module, since the module must read
and write kernel memory. Therefore, we only tested algorithm 1
with the optional flush on our local system a10L

3.3.2 Hardware Design. Our iotlb_pnp hardware module is de-
signed against the Intel Acceleration Stack as would be the case
in a cloud environment. The module is capable of performing
memory accesses and timing the access latency. iotlb_pnp can be
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(a) Model 1u. Side-channel at-
tacker with user privilege.
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tacker with kernel module.
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(c) Model 2u. Covert channel
with user privilege.

(d) Model 2k. Covert channel
with kernel module.

Figure 1: Comparison of threat models. Dark red fills indi-
cate functional units controlled by a malicious actor, and
light green fills indicate functional units controlled by a vic-
tim. Diagonal lines indicate functional units that are only
under coarse or indirect control, e.g., a simple network in-
terface card or an accelerator that assists with certain appli-
cations but is not directly programmable. The dashed arrows
indicate the flow of data through the channel.

programmed with up to 7 instructions. Currently, the design sup-
ports 5 instructions: evset_prime, evset_probe, target_prime,
target_probe, and wait. Configuration and programming of the
hardware module is performed via MMIO through OPAE. The prime
instructions make the hardware module access a configured ad-
dress (target) or set of addresses (eviction set). Probe instructions
behave in the same way as the prime instructions but additionally
count clock cycles. When probing an eviction set, the module can
be configured to either measure the overall execution time of the
instruction or time each memory access individually. The eviction
sets used during priming and probing can be configured indepen-
dent from each other, as is the case for the target instructions. The
wait instruction simply makes the hardware module do nothing for
a configured number of clock cycles.

3.3.3 Software. The software counterpart to the hardware module
uses the OPAE C library to interact with the hardware design on the
FPGA. This library allows us to control and observe the operation
of the hardware module with memory-mapped I/O (MMIO) as well
as — crucially for the work that this module must do — allocate
shared pages of the system’s main memory that the FPGA as well
as the CPU can read and write.

3.4 Threat Models

We consider two general threat models with two variants each,
as illustrated in Fig. 1. All four threat models include a malicious
actor that can program and control a fast and programmable PCle
device (referred to in this section as the monitoring device) with
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direct memory access (such as an FPGA or GPU) and an IOMMU
providing address translation services for that device. Each model
also includes a second peripheral (referred to in this section as the
sending device) which also uses the same IOMMU for DMA address
translation but does not need to be fast or directly programmable as
part of the threat model. The monitoring device must be capable of
timing memory accesses and reliably differentiate IOTLB hits from
misses. The attacker must further be able to program the monitoring
device directly to find eviction sets and execute Prime+Probes. The
sending device only needs to have memory access patterns that
can be triggered by a user, either by direct control, or triggerable
through an application or system interface.

Models 1k and 1u are adversarial threat models for a side-channel
attack, where a malicious user in control of the monitoring device
exploits IOTLB contention to gain secret information from another
user’s application that triggers memory accesses in the sending
device. Models 2k and 2u outline the requirements for a covert
channel with cooperative sending and monitoring devices, where
colluding malicious users in control of applications in separate
security domains uses the IOTLB to transmit data covertly across
the two devices. Models ending in k include kernel access alongside
the monitoring device, and models ending in u do not. Kernel access
is necessary to implement an IOTLB flush through a custom kernel
module as outlined in Sec. 3.3. In Sec. 4 we show how fine-grained
flushing control allows for more reliable eviction set construction.
However, eviction set construction and Prime+Probe-based IOTLB
side-channel attacks are still possible without flushing capabilities.

Whereas some side-channel attacks can be carried out with
JavaScript from a web browser against a personal computer, we
consider cloud environments as the primary site of IOTLB attacks,
since the attacker must already have control of a peripheral. Renting
a single GPU or FPGA in a cloud environment is easy; the primary
logistical challenge of setting up a practical IOTLB side-channel
or covert channel is IOMMU co-location — that is, ensuring that
the monitoring device shares an IOMMU (and IOTLB) with the
sending device. However, research into similar problems, like co-
locating cloud instances for cache attacks, has yielded strategies
for co-location that can be adapted to the IOTLB channel. Inci et
al. [24] demonstrated two reliable co-location techniques for last-
level caches that rely only on basic cache contention and so could
be adapted to the IOTLB relatively easily. In a cooperative (covert
channel) scenario, the sender instance sends a predetermined signal
and the receiving instance searches the channel for a signal and
attempts to match it with the agreed-upon signal. In an adversarial
(attack) scenario, the attacker first chooses a target program and
profiles it locally to learn to identify the traces it leaves. Then the
attacker searches for such traces. For cache profiling, co-location is
not necessary; the target program can be profiled within a single
instance. In the case of IOTLB profiling, covert channel co-location
may be used to first co-locate the cloud instance controlling the
monitoring peripheral with another cloud instance that runs the
target program which relies on a sending peripheral.

4 CONSTRUCTING EVICTION SETS

Initially, we hypothesized that the IOTLB would be organized like
the CPU TLBs reverse-engineered in [18], with 2% sets where s is
an integer, some small number of ways per set, and a set mapping
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Table 2: Notation used in algorithms

Symbol

A« B  Agets the value of B

A «—¢ B A chosen randomly from B

A «—, B Badded to the set A

A «—_ B Bremoved from the set A
A«,B Elements in B removed from A

Meaning

1 Function evicts(target, evset)
input  :target — address to be evicted
evset — eviction set used for eviction attempt
output :True, if 100 eviction attempts are successful
False, otherwise
count <— 0 // # of contentions
for 0 < i < 100 do
flush IOTLB // optional
target_prime()
evset_prime()
time «— target_probe()
if time > threshold then
L count < count + 1

C % N A U R W N

10 return count == 100

Algorithm 1: The algorithm tests whether a given evic-
tion set evicts a given target address from the IOTLB.
The target_prime and evset_prime function calls have
the FPGA access the respective set of addresses. The func-
tion call target_probe has the FPGA time the access time
to the target address.

algorithm wherein the lowest s bits of the page address select the
set number or some other combination of various bits of the page
address forms the set number that the page is associated with.
However, as we describe in Sec. A.1 in the appendix, this turned
out to be false. So we set out to construct eviction sets for IOTLBs
with an unknown architecture.

4.1 A New Approach to Eviction Set
Construction

We developed a novel and platform-independent algorithm for
finding eviction sets for any TLB or cache where the timing dif-
ference between a present entry and an evicted entry is known
and measurable. Our approach is inspired by the baseline reduction
algorithm in [63], which only reduces an already existing eviction
set to its minimum necessary size, and the grow-split eviction set
construction approach of Algorithm 1 in [36].

Like [36], our algorithm constructs eviction sets from a large pool
of addresses by gathering candidates for an eviction set and then
systematically discarding unnecessary ones; addresses not present
in candidate eviction sets are used as test targets. The grow-split
algorithm in [36] is specifically designed for a partitioned cache: it
first constructs an eviction set for the entire cache, and then splits
it into separate sets for each of the partitions. Our grow-reduce
algorithm makes no assumption about cache organization, and uses
a more generalized approach of building one eviction set at a time
by adding addresses until evictions are reliable and then testing
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1 Function constructEvset (target, pool)

input  :target - target address to be evicted
pool — address pool

output :evset — an eviction set for target

2 evset < 0
3 count «— 0 // # of contentions
// Grow
4 while count < 50 and |pool| > 0 do
5 page < pool; evset <, page; pool «—_ page
6 if evicts(target, evset) then
7 L count < count + 1
// Reduce
8 foreach page in evset do
9 evset «—_ page
10 if not evicts(target, evset) then
11 L evset «—, page
12 | return evset

Algorithm 2: The algorithm constructs an IOTLB evic-
tion set for a given target address. The addresses for the
eviction set are chosen from the given address pool.

1 Function evsetFinding(poolSize)
input  :poolSize - number of addresses to be allocated
output :evsets — Eviction sets for the IOTLB
pool « alloc(poolSize)
targets «— 0
evsets « 0
while poolSize > 0 do
target «—¢ pool // Random page as target
pool «_ target
if evsets do not evict target then
L targets «—, target

e ® N @ R W N

evsets <, constructEvset(target, pool)
pool < evsets

12 poolSize « size(pool);

13 return evsets

Algorithm 3: This algorithm constructs as many eviction
sets as needed to evict any target address from the IOTLB.
The algorithm takes an integer as input that indicated
the size of the address pool that is used to construct the
eviction sets. A pool size of 4096 was used for the tests in
this paper.

which addresses can be discarded without losing reliability. It aims
to create an exhaustive set of eviction sets by searching the entire
address pool; redundant sets are avoided by ensuring that potential
test targets are not already reliably evicted by another set.
4.1.1 Grow-Reduce Algorithm.

The most basic function in our algorithm tests whether or not
a hypothetical eviction set evicts a given target address (see algo-
rithm 1). The software uses the hardware module described previ-
ously to perform a prime and probe test. First, the FPGA accesses
the target followed by an access to each address in the eviction set.
Then the target is accessed again and the access latency is measured.
We define that an eviction set evicts a target if the latency of the
second access to the target is above a certain threshold. We choose
the threshold in the middle of the observed latency gap between
fast and slow accesses observed on the different systems. Before
each prime and probe test, we optionally cleared the IOTLB.

The construction of an eviction set for a fixed target address is
given in algorithm 2. It takes a target address and a pool of addresses

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

as inputs. The eviction set is initialized as an empty set. During
the "grow" step random addresses are chosen from the address
pool and added to the eviction set until the eviction set contains
enough addresses to evict the target. Obviously, the eviction set
may contain unnecessary addresses at this point. This is why a
reduction step follows where each address is tested for its necessity.
If an address is not needed, it is removed from the eviction set and
put back in the address pool.

At the highest level, our algorithm shown in algorithm 3 automat-
ically constructs as many eviction sets as it can find. The program
first allocates a pool of memory pages. For our experiments we
used a pool size of 4096 addresses. The algorithm manages two sets:
The targets set is used to store the different target addresses used
during eviction set construction. The evsets set stores all eviction
sets constructed by the algorithm. After this initialization step, the
algorithm picks a random target address from the pool and removes
it from the pool. If evsets does not contain an eviction set for the
target address yet, a new eviction set is constructed. The target
address and the new eviction set are added to their corresponding
sets. All addresses in the newly constructed eviction set are then
removed from the pool. This procedure is repeated until the pool
does not contain any addresses anymore.

4.1.2  Evaluation of New Eviction Set Algorithm. We found that the
optional flushing of the IOTLB has an impact on the size and relia-
bility of IOTLB eviction sets. * The major differences are laid out in
Table 3, which enumerates general performance metrics of eviction
sets constructed with our grow-reduce algorithm and [36]’s grow-
split algorithm both with and without flushing. Enabling IOTLB
flushes before the Prime+Probe step will make both algorithms
return a single eviction set containing 118 addresses. The success
rate of such eviction sets is 100% in every case we observed.

Without IOTLB flushes, neither algorithm produces such consis-
tently sized or reliable eviction sets. This is likely due to a replace-
ment policy that we were unable to deduce. In this scenario we can
better see the advantage of our grow-reduce algorithm. It produces
eviction sets that are both smaller and twice as reliable than those
produced by the grow-split algorithm.

Fig. 2 visualizes in detail the results of further experimenta-
tion with small implementation tweaks in our algorithm. In these
experiments we found that the size and number of eviction sets
constructed were very similar on all tested systems, a10l, a10v, and
s10v. We thus conclude that the IOTLB architecture on all tested
systems is very similar in terms of IOTLB size, organization and
replacement policy.

5 ANALYSIS OF SIDE-CHANNEL LEAKAGES

We now use the constructed eviction sets to further investigate the
amount of leakage from PCle devices observable in the IOMMU.
Though we use the FPGA for channel monitoring outside of a
virtualized environment for simplicity’s sake, this channel still
poses a threat from one virtual environment to another or from
a virtual environment to hypervisor. Major cloud platforms like
AWS and Alibaba Cloud now allow users to rent direct access to
FPGAs with DMA capabilities, meaning that malicious tenants

4Flushing the IOTLB requires kernel access; see threat models 1k and 2k in Sec. 3.4.
For this reason, Table 3 contains data only from experiments on the a10! system.



ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia Tiemann et al.
Table 3: Comparison of eviction set finding algorithms on the IOTLB of the a10l test system. All tests were conducted on the
a10l system using pools of 4096 addresses, and repeated 40 times. Eviction set orders were randomized between prime and
probe steps during testing,.

Flush Algorithm Number of sets  Set size  Useful sets per target Average best eviction rate
enabled Grow-Reduce (this work) 1.00  118.00 1.00 100.00 %
Grow-Split ([36]) 1.00  118.00 1.00 100.00 %
disabled Grow-Reduce (this work) 32.08  110.05 0.98 82.23%
Grow-Split ([36]) 1070 50.69 0.98 28.00%
Distributions of Number of Eviction Sets Distributions of Size of Eviction Sets
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Figure 2: Number of eviction sets and the size of each constructed set needed to evict any target IOVA after running algorithm 3
for 100 times each. During eviction set construction, randomization of the eviction set was turned off for measurements (a)
and (c) and turned on for (b) and (d). For measurements (c) and (d), the algorithm waited 100 ns between each eviction test. For
measurements (a) and (b) this was not the case. If the order of accesses during the evset_prime() is static throughout one run of
algorithm 3, the resulting eviction sets contain 20 to 25 addresses each. The average success rate is slightly below the average
success rate of eviction sets constructed with randomized access order during evset_prime(). In turn, randomizing the access
order yields on average slightly less but bigger sets. The success rate of these sets, with or without randomized access order,
evict a target with probabilities above 90%.

could easily run hardware designs that monitor the IOMMU side- applications | Omnisci DB Receiver App Test App
channel without root privileges. Any other PCle devices that are co- drivers cuda intel-foga-pci F—
located on the IOMMU with a malicious FPGA and using translated

DMA (most modern devices use DMA, and virtualized DMA always A ACPU ¢
requires translation if the IOMMU is shared) are sources of leakage internal hardware st 0 : U

and therefore potential attack targets. We focus our analysis on an X I\fv[ A UL
in-memory SQL database accelerated by a graphics card. PCl-e linkage 9 9

peripheral devices | NVIDIA T4 GPU [WNGERINLE)N

5.1 GPU-Accelerated SQL Database Leakage

We now inspect the amount of IOTLB leakage observable from the
FPGA when it is co-located with a GPU that runs an SQL database.
For our tests, we co-locate the FPGA with an NVIDIA Tesla T4 GPU
that runs the OmniSci SQL server on it. We wish to understand the
data leakage patterns of the GPU-accelerated database application,
so for these experiments we consider threat model 1k, where the

Figure 3: Stack diagram of the CPU to peripheral and periph-
eral to peripheral covert channel and side-channel tests.

attacker has the most precise control over the channel. Fig. 3 shows a
stack diagram of the setup on our a10! platform. The test application
interacts with our hardware module on the FPGA to construct,
prime and probe an eviction set for the IOTLB. Additionally, the
application can issue SQL queries to the database which computes
the result on the GPU.

After constructing an eviction set for the IOTLB, the test app
primes the IOTLB. During the waiting phase, the app runs an SQL
query on the GPU. The tested queries differ (significantly) in the
size of the returned results. After the SQL result is returned to the
test application, the FPGA probes the IOTLB and reports the access
latency back to the application.
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Figure 4: Measurements for the conducted experiments with
the SQL database. During measurement (a), the test app did
not run any query. The queries run in measurements (b) - (d)
returned no, one and 409600 rows of data from the database.
It is clearly visible that the SQL queries leave a footprint in
the IOTLB.

Fig. 4 (b) - (d) show probe measurements for queries returning
no, one and 409,600 rows® of data from the database. During the
measurement shown in Fig. 4 (a), no query was executed on the
GPU. The separate access times for each eviction set address are
plotted along the x-axis. The y-axis shows the measured latency for
this address. Clearly, the GPU leaves a footprint in the IOTLB when
it computes an SQL query. But, there is no measurable difference
between the queries even if their results significantly differ in size.

Changing the test app to probe the eviction set while the SQL
query executes on the GPU shows that the observable activity in
the IOTLB is similar for all queries over time, besides the fact that
queries with larger results produce longer traces as it takes longer to
compute the result. Interestingly, the activity in the IOTLB happens
towards the beginning of the query’s computation. At the time
where the computed result is sent back to the CPU, there is no
activity in the IOTLB. This is easily explained by the way CUDA
realizes the data transfer of the result from the GPU to the CPU:
it uses MMIO® instead of DMA’. We verified the explanation by
inspecting the PCle performance counters with the PCM tools®.
The performance counters showed an increased amount of MMIO
read requests that in total match the size of the returned result.

5.2 Side-Channel Impact

So far, the observed leakage introduced by the IOTLB is mostly
limited to a single bit describing whether a neighboring accelerator
is in use or not. This is caused by two facts:

(a) Controlling an accelerator via MMIO rather than through
DMA is a common usage model and limits the attack surface for
IOTLB-based side-channel attacks because the CPU performs the
address translation in the CPU’s MMU instead of the GPU translat-
ing addresses via the IOMMU.

(b) Current PCle devices usually perform DMA as bulk transfers,
thereby limiting the overall PCle protocol overhead. Loading data in
a bulk transfer into device memory, computing on the data locally

5One row in our case contains 36 bytes of data.
The CPU initializes the data transfer.

"The peripheral initializes the transfer.
8pcm-pcie - https://github.com/opcm/pem
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and eventually transferring the result back to the main memory
in a bulk transfer means that no data-dependent access patterns —
which would leak information — are observable in general.

The two facts mentioned will likely change in the near future
as PCle 5.0 is rolled-out and Compute eXpress Link (CXL) is in-
troduced. ° PCle 5.0 reaches transfer speeds that are comparable
with CPU main memory accesses. This may lead device developers
to include smaller memory on their devices and in turn access the
main memory more often. Furthermore, CXL features a coherency
protocol that streamlines caching between main memory and PCle
device memory. Again, this will lead device and driver developers
to change from bulk transfers to more fine-grained data-dependent
DMA accesses.

In addition, FPGA vendors keep pushing for FPGA devices being
the first-class compute device in a system while the CPU is merely
used to manage the system and provide the FPGA with (increasingly
sensitive) data. Therefore, while the described side-channel is not
yet very dangerous at the time of writing, it will become important
in the near future. We highlight the side-channels existence and
relevance before widespread deployment of CXL and PCle 5.

6 COVERT CHANNELS

After identifying the IOTLB leakage and different ways to trigger
and observe it, we now use our knowledge to construct two covert
channels to prove the practicality of the channel with threat models
2u and 2k. The first channel is constructed between two peripher-
als and requires user privileges and DMA access to pages in main
memory (model 2u). This channel could be implemented between
two virtual machines, each with control of a DMA-enabled periph-
eral, such as Amazon’s F1 FPGA instances or various GPU-enabled
EC2 instances, as long as the two instances’ peripherals share an
IOMMU. The performance of the covert channel can be improved
if the receiver has root access on the host. The second channel is
unidirectional from CPU to peripheral and requires the sender to
have root access to the host machine (model 2k), thereby mostly
serving as a proof of concept. For both channels, the receiver must
be able to measure time, e. g. through precise internal timers or
high-speed network connection with external timers. This is the
case for, e. g. GPUs [15], NICs and FPGAs. All experiments in this
section were run on the a10l system.

6.1 Covert Channel between Peripherals

Another research question is whether two peripherals can use the
IOTLB to construct a covert channel between each other. To answer
this question, we co-locate the Arria 10 with the Tesla T4. Our
goal is to use the footprint that an SQL query computed on the
GPU leaves in the IOTLB to send information to the FPGA. Such a
covert channel exists in a scenario where the sender uses a website
that, depending on the actions performed on the website, runs SQL
queries on a GPU-accelerated database. The sender can then exploit
the website to send information to the co-located FPGA.

We prepare al0l as shown in Fig. 3. The sender encodes a one
into running an SQL query and running no query encodes a zero.
The receiver uses the iotlb_pnp hardware function on the FPGA
to monitor the IOTLB using the Prime+Probe technique. Each SQL

9 AMD CPUs and Intel FPGAs supporting CXL are already available. Intel plans rolling
out compatible CPUs in the beginning of 2023 [7, 58].
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Table 4: Throughput and error rate for the covert channels tested on the a10l system. For the peripheral-peripheral chan-
nel, sender and receiver are perfectly synchronous. The channel itself is very reliable which leads to nearly no errors. The
throughput depends on the number of 1-bits in the message as each 1-bit is encoded into running a SQL-query on the sender
peripheral which takes a rather long time of 0.3 seconds. For the CPU-peripheral channel, sender and receiver are not per-
fectly synchronous which leads to the rather high error rate. The throughput is limited by the speed of the CPU flushing the

IOTLB. For both channels, plain bits were sent without encoding.

Sender Receiver ~ Method Environment Throughput Error rate Content of message
3.4 bps 0% All1ls
. 6.65 bps 0% Even mix of 1s and 0s
Sec. 6.1 Peripheral Peripheral Prime+Probe Bare metal (cf. Fig. 3
¢ enphe erphe e+Probe  Bare metal (cf. Fig. 3) 246.15 bps 0.1% All 0s
7.58 bps 0% ASCIl-encoded text
Sec.6.2 CPU Peripheral Flush+Reload Bare metal (cf. Fig. 3) 15023 bps 30.09% Performance not depen-
dent on content
| | \ \ | | -
" applications Omnisci, DB Receiver
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s 20 drivers in VM cuda intel-fpga-pci
m
g 0l hypervisor KVM KVM
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(a) Scenario as in Fig. 3; big endian transmission. The FPGA PCI-e linkage ;

uses an eviction set that was constructed using IOTLB flushes.
This results in very reliable eviction sets and in turn a reliable

transmission.
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(b) Scenario as in Fig. 6; little endian transmission. The FPGA
uses eviction sets constructed without IOTLB flushes. TEven
though the transmission is free of errors, buit turns out to be
more noisy.

Figure 5: Peripheral to peripheral covert channel transmis-
sions of t. The message “Hello” was sent in big endian for-
mat.

query evicts 18-20 entries of the receiver’s eviction set (cf. Fig. 4
(b) - (d)). A plot of the number of IOTLB misses measured during
message transmission is given in Fig. 5a. We found that basically no
errors occur if sender and receiver are synchronized. This means
that the channel is nearly free of bit-flip errors. If perfect synchro-
nization is not achievable, the channel suffers from insertion and
deletion errors. In this case techniques from [38] can be applied to
overcome these errors. The channel’s throughput highly depends

10
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Figure 6: Stack diagram of the GPU accelerated SQL database
covert channel across virtual machines.

on the number of one bits in the message. This is because the exe-
cution time of a single SQL query takes about 0.3 seconds. Table 4
shows more detailed measurements for different 0-1-ratios in the
message that is transferred over the covert channel. Of course, a
GPU application optimized for acting as a sender in this scenario
would allow us to increase the bandwidth of the channel.

For the previous test, the eviction set used by the FPGA was
constructed with IOTLB flushes to work with eviction sets of opti-
mal reliability. As mentioned earlier, IOTLB flushes require kernel
privileges on commodity host Linux systems. User-level receivers
or receivers located in virtual machines have to use the less reliable
eviction sets constructed without IOTLB flushes. As can be seen in
Fig. 5b, this results in more noise in the measurements. The depicted
transmission is still free of errors but some bits are at the edge of
being falsely classified. To overcome potential bitflip errors, error
detection mechanisms like CRC codes or error correction codes like
Hadamard codes can be applied [38]. The presented covert chan-
nel works between any two peripherals that use DMA to access
the main memory. For the receiver, the accessible memory region
needs to be sufficiently large to allow for eviction set construc-
tion. Additionally, the receiver needs a mechanism to measure the
memory access latency. Programmable or configurable peripherals
like FPGAs or GPUs will meet both receiver requirements even
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in the most stringent cloud environments if bare metal instances
are available for rent. An FPGA or GPU sender has fine-grained
control of the channel, but a more opaque sender like a smart NIC
or PCle-enabled storage device could work as a sender, albeit more
likely to be noisy or unreliable.

Peripherals that manage secrets and perform DMAs depending
on the value of the secret must be aware that neighboring devices
connected to the same IOMMU may be able to observe their access
patterns. This is especially true for peripherals where the program-
ming model assumes unified memory that abstracts separate physi-
cal memory locations like device and system memory away from
the developer as in this case the leaking DMA may occur without
the knowledge of the developer. As of today, data-dependent DMA
is used seldomly due to the overhead that renders it inefficient. But
we expect this behavior to change with the introduction of PCle
5.0 and CXL as mentioned in earlier sections.

6.2 Covert Channel from CPU to Peripheral

The CPU is very limited in interacting with the IOTLB directly.
Because the IOMMU translates addresses for peripherals only, mem-
ory accesses from the CPU do not interfere with the IOTLB. The
only way for the CPU to interfere with the IOTLB is by changing
page table entries or instructing the IOMMU to flush certain (or
all) entries in the IOTLB. Usually, only the OS, hypervisor or VMM
issues page table changes or IOTLB flushes, which is why the Linux
kernel does not provide an interface for flushing the IOTLB to user-
land. To overcome this problem, we load a self-developed kernel
module that exposes a IOTLB flush API to our test application. An
overview of our system setup for this covert channel is given in
Fig. 3.

Since a peripheral can distinguish IOTLB hits from misses, flush-
ing the IOTLB allows the CPU to send information covertly to
peripherals. A global IOTLB flush takes 17 ys on average. Flush-
ing all entries from the IOTLB encodes a 1 and sleeping for 17 us
encodes a 0. As the receiver we use the iotlb_pnp hardware mod-
ule described in Sec. 3.3.2. The hardware function is programmed
to continuously probe a fixed target address. Whenever a probe
reports a slow access, a 1 is received. Otherwise, the hardware
receives a 0. We implement the covert channel in a trivial way
without applying any encoding for error correction or synchroniza-
tion. Because a memory access from the FPGA running at 200 MHz
only takes around 1 s we roughly synchronize the FPGA with the
CPU by making the FPGA wait for a certain amount of cycles. We
determined the number of cycles to wait by repeatedly flushing
the IOTLB and increasing the number of wait cycles until all FPGA
memory accesses are slow. After this very rough synchronization
step, a message of 21¢ — 1 bits generated by a linear feedback-shift
register is transmitted to measure throughput and error rates. The
result is given in Table 4. As can be seen, this basic covert chan-
nel without further optimizations already achieves a throughput of
around 15 kBit/s. The error rate is 30% which can be improved signif-
icantly by applying error-correction and error-handling techniques
as e. g. described in [38].

Because so far the covert channel only offers communication in
one direction, we tried to improve the channel to offer bi-directional
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message transfer. To do so we checked the timing behavior of flush-
ing the IOTLB. The c1flush instruction on x86 CPUs has a data-
dependent execution time [21]. In our case, a data-dependency of
the flush time on IOTLB entries would allow us to construct the
reverse covert channel. However, our experiments show no measur-
able timing behavior of the flush that can be related to the usage of
the IOTLB; an IOTLB flush takes around 17 us independent of FPGA
memory accesses before or even during the flush. The latency is also
independent from whether only addresses of a certain peripheral or
all entries of the IOTLB are flushed. However, peripheral-to-CPU
covert channels based on the CPU cache do exist [64].

The demonstrated covert channel is reliable without applying
special synchronization, error-correction, or error-detection tech-
niques. However, only peripherals can act as the receiver while the
CPU is limited to the role of the sender. Also, with the standard
IOMMU drivers in Linux, the sending process is required to run
kernel-level code to perform IOTLB flushes. A privileged device
driver that flushes the IOTLB under certain circumstances may ex-
pose this flushing capability to an unprivileged user. Device drivers
that make extensive use of IOTLB flushes may also be vulnerable
to a side-channel attack from an untrusted peripheral device that
monitors the IOTLB for flushes. For example, a driver developer
may chose to include IOTLB flushes to remove traces of a trusted pe-
ripheral’s activity for security; however, the timing between flushes
could leak information about the operation of an application using

that peripheral.
7 COUNTERMEASURES

Like many microarchitectural attacks, there are a variety of defenses
against IOTLB side-channels that can be implemented at nearly any
level of a system. We first present immediately available actions
that can be taken by system administrators and cloud application
developers, and then discuss defenses that can be built into future
IOMMU architectures.

7.1 Securing Existing Systems

In cases where multiple users who do not trust each other may use
the same machine, ensuring that no two users (or no one user and
the hypervisor) have access to peripherals on the same IOMMU
hardware is sufficient to protect against IOTLB side-channel attacks.
On a Linux host, /sys/class/iommu/ provides information on a
system’s IOMMU devices and the PCle devices that use them [53].
Typically, systems have several IOMMU devices, each of which
is linked to a few PCle endpoints, which may be internal PCle
devices or external devices plugged into PCle slots on the mother-
board. Endpoints cannot be reassigned to new IOMMUS, so ensuring
full isolation may limit scaling capacity.For example, a CSP could
not use a motherboard with eight full-size, full-speed PCle slots
managed in pairs by four IOMMUs to provide eight fully isolated
single-GPU cloud instances, even though eight GPUs fit in the PCle
slots of the system.

On the application level, code and hardware involved in data
dependent computation can rely on constant time algorithms with
constant memory access patterns, so no information about the
operations is leaked through the IOTLB. For cryptographic im-
plementations this is a common technique but for database sys-
tems constant memory access patterns and timings are not easily
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achieved. Private Information Retrieval (PIR) protocols [11, 33] can
be a solution, but modern implementations'® usually only support
index queries. Recent attempts [22] to also support range queries
may still leak information about the response size.

A hypervisor can enable Address Translation Services (ATS) [48]
for a peripheral to remove all of its traces from its IOTLB. Address
Translation Services (ATS) allows a device to maintain and use a
local on-device TLB for address translation and selectively bypass
IOMMU translation. Since locally-translated requests are not trans-
lated by the IOMMU, they do not leave any trace in the IOTLB.
However, devices must specifically support ATS to use it, and fur-
thermore, allowing ATS for untrusted devices is not advisable. ATS
allows a device to provide any physical address as part of a DMA
request and mark it as “translated”. Malicious devices may exploit
ATS for unrestricted physical memory access [37]. Therefore, ATS
must only be allowed for trusted devices.

Hypervisors can also achieve a separation of the IOTLB be-
tween mutually untrusted tenants by IOTLB partitioning. For
set-associative IOTLBs, set partitioning can be done by the hy-
pervisor in software by only allocating I/O virtual addresses of sets
to each tenant [67]. However, set-based partitioning may not work
with peripherals that rely on the address space being contiguous.

7.2 Securing Future IOMMUs

If hardware modifications are a viable option to implement counter-
measures, then way-based partitioning is another option. It needs
to be supported by the IOMMU hardware so that the hypervisor
can map each address of a thread to a fixed number of ways like is
possible with Intel CAT [35, 44] for CPU-internal caches.

Future IOMMUs could include support for flagging a page trans-
lation as uncacheable. This would ensure that it is never stored
in the IOTLB and that the use of that page would never affect the
IOTLB state, so it would be invisible to any side-channel attack.
However, all accesses to that page would be as slow as IOTLB misses,
increasing latency and likely reducing maximum throughput.

8 CONCLUSION

State-of-the-art cloud environments use direct memory access man-
aged by IOMMUs to offer high speed, low latency, and isolated
memory access to an increasingly wide variety of peripherals. These
peripherals support and accelerate many types of applications and
virtual hardware functions, including those that perform secure
operations or handle sensitive data. In this paper we demonstrated
a new side-channel attack against IOTLBs in such IOMMUs that
works across virtual environments and threatens cloud tenants. We
developed a new eviction set finding algorithm that works without
prior assumptions of cache or TLB organization and a hardware
module for an FPGA that implements the fundamentals necessary to
exploit the IOTLB side-channel. We used these tools to record a side-
channel trace from a GPU running a database acceleration library.
The results prove that the IOTLB can be used as a side-channel to
spy on co-located devices. We highlight this fact by showing a very
reliable covert channel from the GPU to the FPGA where we use the
database application running on the GPU to encode messages into
the GPU’s system memory access patterns. While we acknowledge

¢, g. https://github.com/ReverseControl/MuchPIR

12

Tiemann et al.

the limitations of the IOTLB channel with current hardware and
applications, we argue that with the upcoming PCle 5.0 and CXL
standards, IOMMU usage patterns will change and fine-grained
IOTLB side-channel attacks will become practical. To overcome the
threat of the side-channel, we suggest a variety of countermeasures
that can be implemented on different system levels ranging from
hardware modifications up to the implementation of applications.
Many of these countermeasures fully eliminate the threat of IOTLB
side-channels, but at the same time reduce the speed of peripherals
or scalability of the systems that host them. Therefore, when de-
signing or choosing hardware for large-scale, high-performance,
secure services, IOTLB threats must be acknowledged and IOTLB
isolation measures must be carefully considered for the specific
needs of the system. Furthermore, when designing security-critical
peripherals or security-critical software or firmware that makes use
of peripherals, timing leakages from peripheral memory accesses
must be addressed with constant-time design practices.
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Figure 7: Stack diagram of the network card side-channel
test. The Realtek network interface card (NIC) is "passed
through" to a virtual machine with the VFIO driver. The test
application exchanges packets with the TCP server in the
virtual machine over the ethernet connection between the
two network cards; meanwhile, the FPGA (connected to the
same IOMMU as the VM’s network card) probes the IOTLB
for traces of network activity.
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Tenant Side-Channel Attacks in PaaS Clouds. In CCS. ACM, 990-1003.

A APPENDIX

A.1 Initial IOTLB Organization Hypothesis

Initially, we hypothesized that the IOTLB would be organized like
the CPU TLBs reverse-engineered in [18], with 2% sets where s is
an integer, some small number of ways per set, and a set mapping
algorithm wherein the lowest s bits of the page address select the
set number or some other combination of various bits of the page
address forms the set number that the page is associated with. Initial
experiments on all three systems showed that 128-address eviction
sets of any randomly allocated pages reliably evicted any other
single page, so we hypothesized that the IOTLB was organized with
128 sets and 1 way. We tested this hypothesized eviction set archi-
tecture in a scenario on al0l where the FPGA used Prime+Probe to
monitor an IOTLB that it shared with a network card.

Fig. 7 shows the hardware and software setup for this test, an
example of threat model 1u. A virtual machine is configured with
the IOMMU in a pass-through mode (Virtual Function I/O or VFIO)
to allow a Realtek 8168 NIC direct access to the virtual environment,
where it uses the standard r8169 drivers. The test application runs
directly on the host, and uses the Broadcom BCM57416 NIC to
exchange packets with the Realtek NIC over ethernet. The test
application also manages our Prime+Probe hardware on the Arria
10 GX FPGA and uses it to collect IOTLB side-channel traces while
the network is active. The eviction sets used in the Prime+Probe
tests are constructed under the assumption that the IOTLB contains
128 sets of one way each.
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Evictions in IOTLB During Network Test

Evicted During Network Activity

Evicted Regardless

| | | | | |
16 32 48 64 80 96 112

Hypothesized Set Number

Per-Reboot Probability of
Prime+Probe Causing Eviction

128

Figure 8: Behavior is consistent after a reboot of the virtual
machine shown in Fig. 7, but inconsistent between reboots;
this graph shows the likelihood that an IOTLB entry will be
consistently evicted by a Prime+Probe after a reboot of the
system. Entries marked in red are evicted whether or not
there is network activity and do not vary between reboots;
entries in blue are those that are evicted when there is net-
work activity but not when there is no activity and vary sig-
nificantly.

Prime+Probe data from this experiment are visualized in Fig. 8.
There was substantial variation of IOTLB activity after a reboot of
the virtual machine operating the Realtek NIC, so results are plot-
ted as means across many reboots. More evictions were detected
in the probes of the Prime+Probe while the network was active,
indicating a side-channel leakage in the IOTLB that originated from
the Realtek NIC. There are two other phenomena of note that are
observable in the data from this experiment. First, the excess evic-
tions caused by the network activity (shown in blue in the figure)
varied substantially in the number of sets they occupied. Whenever
the virtual machine was rebooted, the number of sets that were
evicted during network activity changed, but there were always
evictions in one set (set 11). After examining the network driver
source code, we found that it allocates the transaction buffers used
by the network card by calling a kernel function dma_map_single
on startup, and we verified that by unloading and reloading the
network driver, we could reproduce the randomizing effect of re-
booting the virtual machine. Second, sets 1-10 and 126-128 were
always evicted in the probe, even absent any network activity or
with the network drivers unloaded. This showed that the 128-page
eviction sets, while effective in evicting IOTLB entries, were ac-
tually bigger than necessary, since they were evicting their own
members.
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