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ABSTRACT

Several applications require counting the number of distinct items in the data, which is known as the
cardinality counting problem. Example applications include health applications such as rare disease
patients counting for adequate awareness and funding, and counting the number of cases of a new
disease for outbreak detection, marketing applications such as counting the visibility reached for a
new product, and cybersecurity applications such as tracking the number of unique views of social
media posts. The data needed for the counting is however often personal and sensitive, and need
to be processed using privacy-preserving techniques. The quality of data in different databases, for
example typos, errors and variations, poses additional challenges for accurate cardinality estimation.
While privacy-preserving cardinality counting has gained much attention in the recent times and a
few privacy-preserving algorithms have been developed for cardinality estimation, no work has so
far been done on privacy-preserving cardinality counting using record linkage techniques with fuzzy
matching and provable privacy guarantees. We propose a novel privacy-preserving record linkage
algorithm using unsupervised clustering techniques to link and count the cardinality of individuals in
multiple datasets without compromising their privacy or identity. In addition, existing Elbow methods
to find the optimal number of clusters as the cardinality are far from accurate as they do not take into
account the purity and completeness of generated clusters. We propose a novel method to find the
optimal number of clusters in unsupervised learning. Our experimental results on real and synthetic
datasets are highly promising in terms of significantly smaller error rate of less than 0.1 with a privacy
budget € = 1.0 compared to the state-of-the-art fuzzy matching and clustering method.

Keywords Probabilistic counting, distinct-counting, fuzzy matching, Bloom filters, unsupervised learning, Differential
privacy

1 Introduction

Cardinality counting problem has become of tremendous interest in many different applications to enable a variety of
analytics of dispersed data. However, the privacy concerns of sharing or revealing individuals’ data containing personal
information for analytics purposes require privacy-preserving processing of counting. In most cases, the records of the
same individual in different databases do not contain a unique identifier and and the quasi identifiers in the records,
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such as names, addresses, and ages, are often prone to data errors, inconsistencies and variations. Accurately estimating
the cardinality of individuals or items represented by records in multiple different databases without compromising the
privacy of the individuals is hence a challenging research problem.

Gaining insight into the number of unique records from multiple data sources is crucial in many applications. A
promising real-world application is rare disease patients counting. Rare diseases in general do not receive sufficient
funding for treatment Sakate et al.| (2018])) and this disparity is created in part because funders measure the impact of
their investments based on the size of patient population affected by a given disease. Unfortunately, for a majority
of rare diseases, this data is at best a wild guess and at worst non-existent. Another example in the health domain is
disease outbreak detection where the number of unique cases of a new disease needs to be continuously monitored from
multiple different hospitals and clinics to predict the likelihood of an outbreak and to make preventive measures.

Similarly, national security or cybersecurity applications monitor the number of views of videos or posts in online or
social media in order to predict the potential threats of any video/post that becomes viral within a short time period
(for example, fake news with phishing links [Shao et al.|(2017)) and make any timely decision. Online businesses need
to monitor the number of unique views by customers of a new product in order to make decisions on the marketing
strategies to manage the marketing costs. Web search log analysis may require calculating the number of distinct
queries in a list of queries from many users (e.g., the number of distinct queries made to a search engine over a week)
to improve the performance of the search engine in terms of estimating the selectivity of queries and designing good
strategies for executing a query Jansen| (2006)); Whang et al.|(1990); |Bar- Yossef et al.|(2002). Social game industry
and e-commerce applications use count distinct metrics, such as the daily active users (DAU) and monthly active
users (MAU) metrics Wang et al.|(2017), to estimate the workload for those online applications. In all these example
applications, the data needed to derive such insights is personal and sensitive, and must be processed private.

While there have been several methods proposed for the cardinality counting problem in general |Golov et al.|(2019);
Flajolet et al.| (2007); |[Bar- Yossef et al.| (2002); |Chabchoub and Hébrail| (2010); Heule et al.|(2013)); [Ertl{ (2017), privacy
aspects of cardinality counting have only recently received attention in the research literature. Some recent works
developed privacy-preserving algorithms for cardinality counting using different probabilistic data structures (KMYV,
FM-Sketch, or HyperLogLog) [Stanojevic et al.| (2017); |Sparka et al.| (2018]); [von Voigt and Tschorsch| (2019). A
recent study has shown that probabilistic cardinality estimators like HyperLogl.og do not preserve privacy as achieving
accurate and private cardinality estimation is impossible, and therefore they can be sensitive as raw data Desfontaines
et al.[(2019). In addition, they are not robust or tolerant to errors and variations in data. Privacy-preserving record
linkage is hence required to link or de-duplicate records corresponding to the same individual based on fuzzy matching
of personal identifying information (PII) contained in the quasi-identifiers (e.g. names and addresses) to count the
cardinality of individuals.

In this work, we propose a novel privacy-preserving record linkage algorithm for linking and counting unique individuals
or items from multiple databases using a combination of Bloom filter encoding, local Differential privacy, and machine
learning techniques. Specifically, the database owners locally encode and perturb the PII in their records using Bloom
filters and local Differential privacy. The encoded and perturbed records from all the databases are then input to a
clustering algorithm that aims to link and group records corresponding to the same individual/item into the same cluster
and different individuals/item into different clusters.

The optimal number of clusters is then computed to calculate the cardinality of records. Since ground-truth data is not
available in real applications and is not trivial to manually label data due to privacy and confidentiality concerns, finding
the optimal number of clusters for such unsupervised machine learning tasks is highly challenging. Existing Elbow
methods based on metrics like silhoutte coefficient and Calinski-Harabasz score measure the inter and intra cluster
distances to find the optimal number of clusters [Rousseeuw|(1987); Dinh et al.[(2019); (Calinski and Harabasz (1974);
Wang and Xu/(2019). However, they are not accurate and optimal, especially for linking or deduplicating records, and
thereby counting the correct cardinality. The main limitation is that they do not account for the purity and completeness
of clusters which are necessary for accurate record linkage. Hence, we calculate the optimal number of clusters or
cardinality by proposing a novel method to measure the purity and completeness of generated clusters. While we
propose an algorithm for the distinct-counting problem, our proposed method for finding the optimal number of clusters
can be used with any unsupervised clustering techniques that do not have labelled data for fine-tuning and/or evaluation.

The main contributions of this paper are:
1. We study the problem of privacy-preserving cardinality counting of individuals or items from multiple different
databases in the presence of data errors and variations.

2. We introduce a novel privacy-preserving record linkage algorithm for cardinality counting with provable
privacy guarantees. Our algorithm uses Bloom filter encoding and local Differential privacy for data encoding
and unsupervised clustering on the encoded data to estimate the cardinality.
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3. We propose a novel clustering algorithm to find the optimal number of clusters in the absence of labelled data
to predict the accurate cardinality. We develop two variations of our clustering method and evaluate their
accuracies for cardinality estimation.

4. We provide formal proof of privacy guarantees of our proposed method and theoretical analysis of utility of
our proposed method.

5. We conduct experimental evaluation on real and synthetic North Carolina voter registration (NCVR) datasets
to validate the accuracy of our method. Since existing cardinality estimators do not allow fuzzy matching
for cardinality counting, we compare only with a state-of-the-art baseline method for fuzzy matching and
clustering Rousseeuw| (1987) to provide a fair comparison. The experimental results show that our methods
can achieve a very small error rate closer to 0.0 with a small privacy budget of e = 1.0 or ¢ = 2.0 even on
highly corrupted datasets, and significantly outperform the existing methods.

Outline: We provide preliminaries in the following section and describe our methodology in Section[3] In Section i we
present the results of our experimental study and in Section[5] we review the literature of privacy-preserving counting
techniques. Finally we summarise, discuss limitations, and provide directions to future research in Section [6}

2 Background

In this section, we describe the preliminaries of this work. We first provide preliminaries for the Bloom filter encoding
in Section[2.1] We then describe the system architecture and threat model of the research problem we address in this
paper in Section and finally we describe Differential privacy in Section
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Figure 1: Bloom filter encoding of string values (left) and numerical values (right)|Schnell| (2016); [Vatsalan and Christen
(2016), and fuzzy matching using Dice-coefficient similarity function, as described in Section [2.1|

2.1 Bloom filter encoding

Bloom filters are probabilistic data structures that are highly efficient for storing, processing, and computation.
Essentially, Bloom filters are bit vectors that initially contain 0 in all the bit positions. k independent hash functions
h;(-) (with 1 <4 < k) are used to hash-map an element x by setting the corresponding bit positions in the Bloom
filter b to 1 (i.e. ¥; b[h;(x)] = 1). A Bloom filter allows a tunable false positive rate fpr so that a query returns either
“definitely not” (with no error), or “probably yes” (with probability fpr of being wrong). The lower fpr is, the better
utility is, but the more space the filter requires. The false positive probability for encoding n elements into a Bloom filter
of length ¢ bits using  hash functions is fpr = (1 — e~¥"/£)¥ which is controllable by tuning the parameters & and .

The main feature of Bloom filter encoding that makes it applicable to efficient fuzzy matching of encoded records is
that it preserves the similarity/distance between records in the Bloom filter space (with a negligible utility loss) Schnell
(2016); |Vatsalan and Christen| (2016)). For example, with string values the g-grams (sub-strings of length ¢) of string
values can be hash-mapped into the Bloom filter bf using k independent hash functions [Schnelll (2016), while for
numerical values, the neighbouring values (within a certain interval to allow fuzzy matching) of values can be hash-
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Figure 2: An outline of our system model for privacy-preserving cardinality estimation.

mapped into the Bloom filter [Vatsalan and Christen| (2016). Fig. [Tillustrates an example of fuzzy matching of string
and numerical values using Bloom filters [Schnell| (2016); Vatsalan and Christen| (2016)).

The matching of Bloom filters can be determined by calculating the similarity value using a token-based similarity

function, such as Jaccard, Dice, or Hamming|Vatsalan et al.|(2013). For example, Dice-coefficient similarity metric is

calculated for the example pairs of Bloom filter encoded strings and integers in Fig. as 2 x %, where

bf1 and b fs are the two Bloom filters. Collision of different elements being mapped to the same bit position can occur
during the hash-mapping (depending on the parameter setting), resulting in false positives with matching Bloom filter
encoded records. However, with appropriate parameter settings, Bloom filters have shown to be successful in providing
high matching results while being highly efficient Schnell| (2016); Randall et al.|(2014); [Vatsalan and Christen| (2016).

2.2 System architecture and threat model

The system architecture of our proposed method for privacy-preserving cardinality counting is illustrated in Fig.[2} At
each data owner side, the PII in records are encoded into Bloom filters first and then perturbed using local Differential
Privacy. The encoded and perturbed records from multiple different data owners are sent to a linkage unit that applies
our proposed clustering algorithm on the Bloom filters such that similar Bloom filters corresponding to the same
individual/patient are grouped into one cluster. The optimal number of clusters is estimated as the cardinality of records
from multiple databases and reported.

Only the Bloom filters are shared with the linkage unit. Bloom filter encoding does provide some inherent privacy
guarantees due to the collision of different elements being hash-mapped to same bits in the Bloom filters, providing
uncertainty in decoding. However, as shown in the recent research, Bloom filters can be vulnerable to cryptanalysis
attacks that map bits to g-grams or elements based on the frequency of bits or bit patterns [Christen et al.| (2018blal).
As another layer of privacy to provide provable privacy guarantees, we combine Bloom filter encoding with local
Differential privacy. Differential privacy noise is added to the Bloom filters using the randomised response technique,
as will be described in detail in the following sub-section, in order to make the bits in the Bloom filters Differentially
private so that bits cannot be distinguished based on their presence or frequency information.

2.3 Differential Privacy

Differential privacy [Dwork] (2006 2008); [Dwork et al| (2010) guarantees for each individual in a dataset that any

information that could be discovered about an individual with their data in the dataset could also, with high probability,
be discovered without their data in the dataset. That is, the output of any query f performed on dataset x will be
indistinguishable from the output of the same query f performed on dataset y, where y differs from x by at most one
record (the record of any individual). Moreover, it promises that any supplementary data an adversary might have about
the individual is irrelevant; the adversary is unable to identify any additional information about an individual from the
data regardless of the auxiliary knowledge about the individual with a high probability.
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Algorithm 1 Privacy-preserving Bloom filter encoding with e-local Differential Privacy

1: Inputs:
Raw dataset from one data provider: D,
Privacy budget: €

2: Outputs:
Perturbed Bloom filters: B’

3: Initialize:

B +®
4: fori=1,--- ,np do > Do for each record in raw dataset
5: bf; = encode(record;), record;, € D
6: forj=1,---,4do > For each bit in the Bloom filter
7: bfl « ¢
8: = e
9: p = random]|0, 1]
10: if p < 7 then > flip b; with probability 7
11: b; = bj
12: else
13: b;- =b,d1
14: end if
15: bfi =bfi UV
16: end for
17: B’ = BUbf!
18: end for

Definition 1 (Differential Privacy Dwork]| (2006)) A randomized function A (i.e. a function with a randomized com-
ponent) is e-Differentially private if for all outputs y C Range(A) and for all data x, x’ € D™ such that ||z —z'||; < 1:

Pr(A(z) = y) < e x Pr(A(a) = y). (1)

Local Differential Privacy (LDP) is a Differential privacy model developed specifically to provide guarantees such that
even if an adversary has access to the personal responses of an individual in the dataset, the adversary is still unable to
learn additional information about the individual from the personal data with high probability Evfimievski et al.| (2003).
LDP has become the de-facto privacy standard around the world in recent years, with the technology companies Google
and Apple implementing LDP in their latest operating systems and applications [Erlingsson et al.|(2014); |Apple| (2017);
Greenberg| (2016).

A widely used mechanism specifically for designing LDP algorithms is the randomized response technique Warner
(1965). The primary idea is that the data owners respond to binary questions (e.g. 0 or 1) in a randomized manner. We
use randomised response technique to add noise to Bloom filters such that the Bloom filters are Differentially private
and robust against cryptanalysis attacks that exploit the presence or frequency of bits in the Bloom filters.

3 Methodology

In this section, we describe our proposed method for privacy-preserving distinct-counting of individuals/entities from
multiple different databases. Our method consists of two main modules: 1) data encoding and 2) linkage and clustering.
The former is conducted at the local data owner side, and the latter is conducted by the central linkage unit.

3.1 Data encoding

Data providers encode their datasets into Bloom filters, one Bloom filter per record. The PII in each of the records
are hash-mapped into one record-level Bloom filter per record, as described in Section[2.1] Then, the Bloom filters
are perturbed using the randomised response method to make the Bloom filters Differentially private. Randomized
response method is utilized to provide e-local Differential privacy (LDP) guarantees by flipping each bit in the Bloom
filter of encoded records locally by the data providers with probability n = H% Then, the perturbed Bloom filters are
sent to the linkage unit for linking and clustering.

Definition 2 (Adjacent Bloom filters) Adjacent Bloom filters are two Bloom filters bf and bf’ of length £ bits that
differ by only one bit position, i.e. ¥; 1<i<t and ijbi = b; and b; # /.
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Lemma 1 (e-LDP for Bloom filters) Flipping the bits in Bloom filters with H% probability makes the bits in the
Bloom filters e-local Differentially private.

Proof 1 Let us assume two adjacent Bloom filters bf and bf' of two records, each containing £ bits that differ in only
one bit position j. Let A : {0,1}* — {0, 1} be a random noise function such that A(i) = i with probability %, and
A(i) = 1 — i with probability H-%’ where i € {0,1}.

This gives us the expression:

PriA(bf,e) =] ﬁ Pr[A(b:;) = 4]

PrlA(bf",e) = 7] @

Note that any two adjacent Bloom filters bf, bf" € {0, 1}5 can only differ in one bit position. Without loss of generality,

let us assume that the differing bit position is the first bit position (j = 1) in the two Bloom filters, i.e. by # b} and
by = b, with2 <i </

This simplifies the ratio in (2)) by considering only the first bit position.

<

PriA(bf’,e) =93] PrlA(b;) = v;]’

Pr{A(bf,e) = 7] PrlA(b;) = v;] 3)

Il
<)

where j = 1. This ratio is maximised when j*" bit position is flipped in only one of the two Bloom filters (maximum
ratio).

e

—e < PrlA(bf,e) = 7] < THer

< €
S PrlAGf, =1 - i = © @
Bounding the above ratio, we get
PriA(bf,e) = 7] )
—e < <
=i (Pr[A(bfxa =i]) = ©

By making the bits in the Bloom filters Differentially private, we make them robust against cryptanalysis attacks based
on sensitive bits|Christen et al.|(2018a). The Bloom filter encoding function with local Differential privacy is outlined in
Algorithm ([T} The local Differentially private Bloom filters of records are then sent to the linkage unit for clustering and
calculating the unique individual counts based on the number of clusters. At the linkage unit, clustering algorithm is
used, as will be described in detail in the following sub-section, to link and group records which are likely to correspond
to the same entity into the same cluster. The number of clusters is the number of unique individuals across multiple
datasets from different data providers.

The perturbed Bloom filters are generated by randomly flipping each bit in the Bloom filters with the probability
n= H% The Euclidean distance between an original Bloom filter bf and its perturbed Bloom filter bf” is:

L

Ibf,bf l2 = | D_(bi = b})2, 6)

i=1

where / is the length of a Bloom filter, b; is the i*" bit in original Bloom filter bf and ¥/, is the 7*" bit in its perturbed
Bloom filter bf’. The value of ||bf,bf’||3 follows Normal Distribution with a large number of ¢ and a probability 1,
lbf, 0f"||3 =~ N(u,0), p = €n, o = \/fn(1 — n). Assume if the Euclidean distance ||bf, bf’||2 is less than a constant
integer value (threshold) r € [0, £], then the original Bloom filter and the perturbed Bloom filter are grouped into same
cluster. The probability of bf and b’ being classified as the same entity is:
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Figure 3: Probability of bf and bf’ being grouped into the same cluster versus privacy budget ¢ in Equation , with
cluster size r € [0.005,0.010,0.015, 0.020, 0.025, 0.030], and ¢ = 200.

Figure 4: Bloom filters belonging to the same entity being grouped into the same cluster versus privacy budget ¢, with
cluster size r € [0.005,0.030, 0.040], and ¢ = 200.
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As shown in Fig.[3] with the increasing privacy budget ¢, the probability to flip bits 1 decreases (less noise) and thus the
probability of bf and bf’ being grouped into the same cluster increases. With a larger value of threshold r, a smaller
value of privacy budget is required to keep bf and bf’ in the same cluster. There is a trade-off between privacy budget e
and distance between Bloom filters b f; and b fs from two unique person as illustrated in Fig. |4} If € is too small, for
example € < 2, bf] and bf} are grouped into same cluster. If r is too large, the outlayers of bf; and b are overlapped.
Therefore, it is a challenge to group Bloom filters from the same entity into unique clusters while to ensure Bloom
filters from different entities are grouped into different clusters.
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Figure 5: Minimum inter-cluster distance of Bloom filters versus privacy budget €, £ = 200

3.2 Unsupervised clustering

With the noisy encoded Bloom filter files from different data providers as input to the linkage unit, a clustering algorithm
is used to group similar Bloom filters into clusters. Due to privacy constraints, it is not trivial to generate labelled data
to train a supervised machine learning algorithm for cardinality estimation in the privacy-preserving context. Hence
an unsupervised clustering algorithm is used to do the clustering without training labels, such as k-means clustering
or Hierarchical clustering. In addition, Elbow methods with inter and/or intra-cluster distance metrics like Silhouette
Score and Calinski-Harabasz score are used in the literature to find the optimal number of clusters k in k-means
clustering Rousseeuw| (1987); [Dinh et al.| (2019)); |Calinski and Harabasz| (1974)); Wang and Xu|(2019). However, the
traditional Elbow methods are far from accurate due to the limitation of data distribution, impurity, incompleteness and
uncertainty of generated clusters. Therefore, we propose a new algorithm to find the optimal & value in the unsupervised
k-means clustering.

A set of reference Bloom filters with known training labels is generated to evaluate the clustering performance. Our
proposed clustering algorithm first generates random Bloom filters or randomly selects a subset of Bloom filters as
reference Bloom filters and then generates corresponding dummy Bloom filters for each reference Bloom filter. The
reference Bloom filters can be generated in two methods:

* Method A: randomly creates a number of fake Bloom filters

* Method B: selects a subset of all Bloom filters from different data providers.

As shown in Fig. 5] the reference Bloom filters are designed to be distinguishable from original encoded Bloom filters.
It is noted that when private budget is too small € < 1.0, the data distribution of encoded Bloom filters with LDP noise
applied is similar to pure noise as reference Bloom filters with Method A.

For each reference Bloom filter b f.¢, a number of dummy Bloom filters bref dum,» ¢ € [1, Ngum| are then generated by
randomly flipping each bit in reference Bloom filter b f,.; with the flipping probability pyip.

The aim of these reference and dummy Bloom filters is to provide some form of labelled data to fine-tune and evaluate
unsupervised clustering techniques. In real applications, like rare disease patient records linking, ground-truth data
is not available and/or accessible due to privacy constraints. Current methods to evaluate and choose the optimal
number of clusters k in unsupervised clustering techniques, like k-means clustering, are based on the inter and intra
similarities/distances between generated clusters, which do not provide an accurate method to evaluate how pure and
complete are the generated clusters.

Our proposed method checks whether the reference Bloom filters are grouped with their corresponding dummy Bloom
filters to evaluate the optimal k in the k-means clustering algorithm. Each Bloom filter is classified into a cluster with a
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Algorithm 2 Linking and clustering records for cardinality counting

1: Inputs:
Encoded noisy datasets from A/ multiple data providers: Bj, i € [1,N],
Flipping probability for generating dummy records for reference Bloom filters: pg;p
2: Outputs:
K*
3: Obtain nret
4: fori = 17 ,nrefdo
5 Create a reference Bloom filter b fret; > obtained from either Method A or Method B
6 Bref - Bref U bfref,i
7: Obtain the number of dummy records required for reference Bloom filter net qum
8.
9
10

forj =1, - Ngefdum do
Create dummy record b fref,qum,j
: Bref.dum = Bref,dum U bfref,dum.j

11: end for
12: end for
13: X = Bret + Brefaum + Zf/ B; > X is the training dataset
14: fork=1,--- ,np| do
15: k, X — k — means and train
16: Obtain purity;, Vi € [1,-- - , net] by Equation
17: Purityr, = Y™ purity;
18: end for

19: K* = arg maXeqy,.. Purityx

]

label ¢ € [0, k — 1]. In order to evaluate the clustering quality and find the best optimal &, we introduce a new purity
function for each reference Bloom filter ¢ at cluster c:

. i, dum,c
purity; = , (3
N4, dum +ne — 1-— N4, dum,c

where 7; qum, 1s the number of dummy records for ith reference Bloom filter that are grouped in the same cluster with
label ¢, n is the number of Bloom filters that are grouped in to the cluster with label ¢, n; qum is the total number of
dummy records for i*" reference Bloom filter. This purity function measures how accurate the clustering is in terms of
grouping all the dummy Bloom filters of each reference Bloom filter in to the same cluster as the reference Bloom filter.

Based on this purity function, we calculate the purity of all reference Bloom filters with different values of k, and
then find the optimal k as similar to the current Elbow methods with silhoutte score |[Rousseeuw| (1987)) or Calinski-
Harabasz |Calinski and Harabasz|(1974)). Our proposed clustering method is outlined in Algorithm E}

The optimal clustering outcome is subject to:

||bf1>bfj||2 > T7Vi>j € [17 7n|D\}7i ;é] (10)

where n|p| is the size of all input datasets, bf; and b f; belong to any two unique entities in the dataset, and bf; and b f;
belong to the same individual in the dataset. In the ideal case, the Bloom filters corresponding to the same individual
are grouped into the same cluster, while the Bloom filters corresponding to two different individuals are grouped into
different clusters.

4 Experimental Evaluation
In this section we present and discuss the results of experimental study of our proposed method.

Datasets: We used three sets of datasets extracted from the North Carolina Voter Registration (NCVR) database '] This
database contains records of voters in the North Carolina State, USA. Ground-truth is available based on the voter

! Available from http://dl.ncsbe.gov/data/
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registration identifiers to evaluate the accuracy of our proposed cardinality estimator in our experiments. We used given
name (string), surname (string), suburb (string), postcode (string), and gender (categorical) attributes as PII for the
linkage. The ground-truth cardinality is 171 in all three sets of datasets, i.e. the datasets contain records corresponding

to 171 unique voters.
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Figure 6: Estimated cardinality (k value) of Method A and Method B with different flipping probabilities compared with the baseline
method Rousseeuw| (1987) on the clean datasets with € = [1.0,2.0, 3.0, 4.0, 5.0, 10.0]. The reference Bloom filters pick ratio is 0.1
and dummy Bloom filters ratio is 0.1 in these experiments.
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Figure 7: Error rate of cardinality estimation of Method A and Method B with different flipping probabilities compared with the
baseline method Rousseeuw| (1987) on the clean datasets with e = [1.0, 2.0, 3.0, 4.0, 5.0, 10.0]. The reference Bloom filters pick
ratio is 0.1 and dummy Bloom filters ratio is 0.1 in these experiments.

The first set contains duplicate records of the same person with no modified or corrupted PII values. The second set
contains duplicate records with modified or corrupted PII values (20% of records) to reflect real-world data errors and
variations, while the third set contains highly corrupted PII values (40% of records) to evaluate how real data errors
impact the accuracy of cardinality estimation. We used the GeCo tool to generate the synthetically
corrupted/modified duplicate records. We applied various corruption functions from the GeCo tool
on randomly selected attribute values, including character edit operations (insertions, deletions, substitutions, and
transpositions), and optical character recognition and phonetic modifications based on look-up tables and corruption
rules (Tran et al.| (2013). We implemented the prototype of our proposed algorithm in Python 3.5.2, and ran all
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experiments on a server with four 2-core 64-bit Intel Core 17 2.6 GHz CPUs, 8 GBytes of memory and running Ubuntu

16.04. The programs and test datasets are available from the authors.
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Figure 8: Estimated cardinality (k value) of Method A and Method B with different flipping probabilities compared with the baseline
method (1987) on the corrupted datasets with e = [1.0, 2.0, 3.0, 4.0, 5.0, 10.0]. The reference Bloom filters pick ratio is

0.1 and dummy Bloom filters ratio is 0.1 in these experiments.
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Figure 9: Error rate of cardinality estimation of Method A and Method B with different flipping probabilities compared with the
baseline method [Rousseeuw| (1987) on the corrupted datasets with e = [1.0,2.0, 3.0, 4.0, 5.0, 10.0]. The reference Bloom filters

pick ratio is 0.1 and dummy Bloom filters ratio is 0.1 in these experiments.

Baseline method: We compare our methods with the baseline Elbow method that uses the silhoutte coefficient
metric Rousseeuw| (1987) to find the optimal number of clusters. We do not compare with other existing cardinality
estimators as they do not allow fuzzy matching for counting the cardinality and hence do not provide a fair comparison.
The accuracy of count estimation is measured using the estimation error and error rate, i.e. the difference between true
count and estimated count and rate of error. Privacy is measured using the privacy budget e.

Parameter setting: Default parameter setting for the Bloom filter encoding is ¢ = 2 for strings, length of Bloom
filters is £ = 200, and the number of hash functions is 20. Privacy budgets used are ¢ = [1.0, 2.0, 3.0, 4.0, 5.0, 10.0].
It is important to note that, unlike with central Differential privacy, with local Differential privacy achieving a high
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utility with a very

small privacy budget (< 1) is non-trivial. When € = 0.1, almost 50% of the bits in the Bloom

filters need to be flipped, which makes the Bloom filters completely non-informative. Other local Differential privacy
algorithms proposed, for example by Google for RAPPOR statistics and Apple for mobile usage statistics

let al{(2014); Apple,

2017), also use e in the range of € = [1.0,2.0,4.0,6.0,8.0]. € = 10.0 is used as a baseline with no

privacy guarantees.

For the clustering algorithm, the default reference Bloom filters pick ratio used is 0.1, the default

dummy/noisy Bloom filter ratio is set to 0.1, and the flipping probability for the dummy/noisy Bloom filters is used in
the range [0.10 — 0.30], with a step of 0.01. We vary the flipping probabilities in the dummy Bloom filters and evaluate
the k£ value and error rate as it impacts the quality of clustering depending on the data quality and privacy budget.
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Figure 10: Estimate

d cardinality (k value) of Method A and Method B with different flipping probabilities compared with the

baseline method [Rousseeuw| (1987) on the highly corrupted datasets with € = [1.0,2.0, 3.0, 4.0, 5.0, 10.0]. The reference Bloom

filters pick ratio is 0.1

and dummy Bloom filters ratio is 0.1 in these experiments.
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Figure 11: Error rate of cardinality estimation of Method A and Method B with different flipping probabilities compared with the
baseline method [Rousseeuw| (1987) on the highly corrupted datasets with € = [1.0,2.0, 3.0, 4.0, 5.0, 10.0]. The reference Bloom

filters pick ratio is 0.1

and dummy Bloom filters ratio is 0.1 in these experiments.

Discussion: We first compare the optimal &k value provided by our algorithm with the ground-truth cardinality and
evaluate the error in estimation with different flipping probabilities used in the clustering algorithm on the records
encoded with different privacy budgets. The results of our methods (Method A and Method B) compared with the
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baseline method on the clean dataset are shown in Fig.[6] As shown, the ground-truth cardinality is 171. When € = 1.0,
26% of bits are flipped in the Bloom filters, which means 50 out of 200 bits are flipped making most of the Bloom
filters unique. Hence, the estimated cardinality by Method A is 200, leading to an error of 29. Even when the flipping
probability in dummy Bloom filters reduces to 0.0, the estimated cardinality remains constantly as 200 with Method A.
Compared to Method A, Method B has better performance in terms of smaller error of 7. The reason is that Method B
selects a subset of real Bloom filters from all data providers as the reference Bloom filters, whereas Method A randomly
generates fake Bloom filters as reference Bloom filters.

With privacy budgets larger than 1.0 the error in estimation becomes 0.0, i.e. the optimal £ becomes equal to the
ground-truth with both our methods. With increasing ¢, zero or smaller error can be achieved even with larger flipping
probabilities. When € = 10.0, zero error is achieved with the estimation for flipping probabilities up to 0.15. However,
as can be seen, the baseline method’s estimated cardinality (optimal k) is far from the ground truth value with all privacy
budgets, even with larger e. Our methods significantly outperform the baseline method by providing the optimal % value
equal or closer to the ground truth value leading to smaller or zero error rate on all datasets. Error rates are shown in
Fig.[7} These results show the accuracy of our methods compared to the baseline method.

Given the global and distributed nature of the data provider network, we expect inconsistencies in the PII attributes
among others. We hence evaluate our proposed methods on corrupted datasets to validate the effectiveness of our
methods with inconsistent and low quality data. The estimated cardinalities of Method A and Method B for different
flipping probabilities and different privacy budgets compared with the baseline method on corrupted datasets are shown
in Fig.[§] and the error rates in estimations are shown in Fig.[9} Both Method A and Method B perform mostly similar
on this dataset and achieved similar error rates in cardinality estimation. Since the datasets are already corrupted,
random generation of reference Bloom filters and sampling a subset of corrupted records’ Bloom filters do not make
significant difference with these datasets. As can be seen in the results, optimal k with a very small error rate closer to
0.0 can be found with both methods, and with increasing ¢, optimal error rates of 0.0 (for smaller flipping probabilities)
are achieved. We can observe that achieving a high utility in terms of lower error rate with a small budget becomes
challenging with data with errors and variations compared to clean datasets. However, our methods significantly
outperform the baseline method and still be able to achieve a small optimal error rate < 0.02. For example, when
€ = 3.0, our methods have an optimal error rate of 0.02 when the flipping probabilities are less than 0.175, while the
Elbow method with silhoutte coefficient metric has an error rate of 0.26.

Generally, as expected for larger € (e.g. € > 3.0), with increasing flipping probabilities the error rate increases as well.
On the other hand, with smaller € (< 2.0), more Differential privacy noise is added to Bloom filters, and hence, larger
flipping probabilities might mean that the added noise in the Bloom filters is reduced, leading to smaller error rate with
larger flipping probabilities. This is especially the case with corrupted datasets. Hence, depending on the data quality
level and privacy budget, an appropriate flipping probability can be chosen to get the best performance. Optimising the
flipping probability based on the privacy and data quality constraints is left as a future work.

We finally evaluate the performances on highly corrupted datasets. The results for Method A and Method B are shown
in Fig.[I0]and Fig.[T1] Similar to corrupted datasets, both methods provide similar error rates with Method B being
slightly better in terms of achieving optimal lower error rates for smaller € than Method A. As can be seen, achieving a
small error rate is even more challenging with these highly corrupted datasets compared to corrupted datasets. Our
methods still achieve a small error rate, for example less than 0.05 with ¢ = 3.0 in the presence of data errors and
variations, whereas the baseline Elbow method achieves 0.8 error rate. Providing a higher error rate even when no
Differential privacy noise (¢ = 10.0) is added indicates the ineffectiveness of the baseline method. Our methods can
achieve a very small error rate even with a small privacy budget and on highly corrupted datasets by fine-tuning the
flipping probability parameter depending on the privacy and data quality constraints.

5 Related Work

Different approaches have been proposed to estimate the cardinality of multiple sets, as surveyed in [Harmouch and
Naumann|(2017). The naive approach of using a bitmap of size of the universe, where all the bit positions are initialized
to 0 and each item is assigned with a number and therefore corresponding bit position in the bitmap is set to 1 whenever
an item is observed, is not feasible. Sorting is used as another traditional method where the items are sorted to eliminate
duplicates in the sets Whang et al.|(1990). However, sorting is an expensive operation for large sets. Hashing allows
de-duplication of sets in one pass over the sets without sorting them, however, it requires more memory space.

While these methods allow calculating the exact cardinality of sets, they are not only expensive in terms of both memory
size and runtime, but also are not effective with real data that contain data errors, typos, and variations. Fuzzy matching
for record linkage methods have been investigated (Christen| (2012). A Bloom filter is a probabilistic data structure
used for efficiently checking set membership Bloom| (1970). This can be used for fuzzy matching problem |Kumar
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et al.| (2000); |Vatsalan et al.| (201 1)) effectively with appropriate parameter settings for the Bloom filter |Schnell| (2016);
Randall et al.[|(2014); Vatsalan and Christen|(2016). Another general approach is sampling |Haas et al.| (1995));/Gibbons
(2001); [Flajolet (1990) which assumes that the sample generally reflects the properties of the whole. Ensuring true
randomness is a difficult task, so the success of random sampling may be limited by the selection process and/or the
properties of the data itself. Haas et al.|Haas et al.[|(1995) showed that almost all the data need to be sampled in order to
bound the estimation error within a small constant, which reflects the problem with sampling-based approaches.

Employing other types of probabilistic data structures, such as Sketches and HyperLogLog, is used as an efficient and
effective method in several cardinality estimation algorithms. A family of such algorithms are developed by Flajolet
and Martin Gibbons|(2016). HyperLogLog is one of these algorithms that have widely been used in many applications
and research (Chen et al.| (2016)); |Su et al.| (2016)); [Balasubramaniam and Nandhini| (2019)). Several recent works have
studied privacy-preserving cardinality estimators using probabilistic data structures combined with Differential privacy.
Randomized response-based Differentially private algorithms for Bloom filters Stanojevic et al.| (2017), FM-sketch [von
Voigt and Tschorsch|(2019), and K Minimum Values (KMV)-based sketch|Sparka et al.|(2018) have been developed. A
recent work has shown that cardinality estimators, such as HyperLogLog and Sketches, do not preserve privacy without
impacting the utility to a significant level |Desfontaines et al|(2019). Further, none of these works allow fuzzy matching
to count the cardinalities, making the cardinality estimators not robust or tolerant to data errors and variations in the
duplicate records.

A long line of research has been conducted in privacy-preserving fuzzy matching and linkage over the past three decades,
as surveyed in|Vatsalan et al.| (2013); [Vatsalan and Christen| (2017));|Gkoulalas-Divanis et al.|(2021). While machine
learning-based techniques show promising results in terms of high linkage quality, these are often supervised, i.e they
are dependant on significantly large training data and the existence of ground-truth labels. Only few unsupervised
techniques have been developed for linkage Cohen and Richman| (2002); Hassanzadeh et al.|(2009)); Saeedi et al.| (2018);
Vatsalan et al.| (2020). However, most of these techniques either do not consider privacy constraints or are not capable
of fine-tuning/optimising the clustering performance due to no labelled data.

6 Discussion, Limitations and Future Work

In this paper we have addressed the problem of privacy-preserving cardinality estimation of individuals/entities
represented by records from multiple databases. Our proposed method uses Bloom filter encoding with local Differential
privacy to encode the data and unsupervised clustering to fuzzy link records and calculate the optimal number of clusters
as the cardinality of unique individuals. We propose a novel method to calculate the optimal number of clusters in the
absence of ground-truth labels of matching and non-matching records, which is often the case with privacy-preserving
applications. Our experimental results show that, compared to the baseline Elbow method, our method can achieve a
high accuracy of cardinality estimation even on corrupted records with a small privacy budget.

In the future, we aim to apply our proposed algorithm for the rare disease patient counting application. Rare disease
patient counting application involves small-scale datasets as the number of patients with rare disease is generally small -
most rare diseases often have 10, 100 or just 1000 patients spread across the world. However, experimenting on large
datasets for other applications of cardinality estimation and improving the scalability to large databases is one important
future work. Moreover, optimising the flipping probability constrained on the level of data quality and privacy budget is
yet to be investigated and implemented in our algorithm. Finally, facilitating real-time counting and efficient dynamic
updates without requiring to re-do clustering is an important yet challenging research direction.
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