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ABSTRACT

Secure Multi-Party Computation (MPC) is continuously becoming
more and more practical. Many optimizations have been introduced,
making MPC protocols more suitable for solving real-world prob-
lems. However, the MPC protocols and optimizations are usually
implemented as a standalone proof of concept or in an MPC frame-
work and are tightly coupled with special-purpose circuit formats,
such as Bristol Format. This makes it very hard and time-consuming
to re-use algorithmic advances and implemented applications in a
different context. Developing generic algorithmic optimizations is
exceptionally hard because the available MPC tools and formats
are not generic and do not provide the necessary infrastructure.

In this paper, we present FUSE: A Framework for Unifying and
Optimizing Secure Multi-Party Computation Implementations with
Efficient Circuit Storage. FUSE provides a flexible intermediate rep-
resentation (FUSE IR) that can be used across different platforms
and in different programming languages, including C/C++, Java,
Rust, and Python. We aim at making MPC tools more interopera-
ble, removing the tight coupling between high-level compilers for
MPC and specific MPC protocol engines, thus driving knowledge
transfer. Our framework is inspired by the widely known LLVM
compiler framework. FUSE is portable, extensible, and it provides
implementation-agnostic optimizations.

As frontends, we implement HyCC (CCS’18), the Bristol circuit
format, and MOTION (TOPS’22), meaning that these can be au-
tomatically converted to FUSE IR. We implement several generic
optimization passes, such as automatic subgraph replacement and
vectorization, to showcase the utility and efficiency of our frame-
work. Finally, we implement as backends MOTION and MP-SPDZ
(CCS’20), so that FUSE IR can be run by these frameworks in an
MPC protocol, as well as other useful backends for JSON output
and the DOT language for graph visualization. With FUSE, it is
possible to use any implemented frontend with any implemented
backend and vice-versa. FUSE IR is not only efficient to work on
and much more generic than any other format so far — supporting,
e.g., function calls, hybrid MPC protocols as well as user-defined
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building blocks, and annotations — while maintaining backwards-
compatibility, but also compact, with smaller storage size than even
minimalistic formats such as Bristol already for a few hundred
operations.

1 INTRODUCTION

In Secure Multi-Party Computation (MPC), two or more distrusting
parties jointly compute a public function on their private inputs,
such that nothing beyond the output data is revealed. In recent years,
researchers suggested a range of applications for MPC, such as
privacy-preserving machine learning [MZ17], avoiding satellite col-
lisions [HLOWI16], or secure auctions [BDJ*06]. In addition to the
theoretical foundations starting in the 1980s [BOGW88, CCD88],
several MPC frameworks have been developed. Since the devel-
opment of the first MPC framework, Fairplay [MNPS04], many
MPC frameworks have been introduced for running MPC protocols
(e.g., [BDST22, BCS21, DSZ15, Kel20, ACC*21, HEKM11, KMSB13,
DSZ15, Mal11, HKoS*10], but also for generating efficient circuits
for MPC from high-level languages (e.g., [MNPS04, BDNP08, Ebr15,
LWN™*15, DDK*15, BDK*18, PSSY21]). An overview on different
state-of-the-art MPC frameworks is provided by [HHNZ19].
Currently, the MPC research intensively works on optimizing
MPC techniques and protocols, especially for reducing the com-
munication (e.g., [CRR21]). But the practical part of MPC becomes
increasingly important, since MPC gets to the point where it is de-
ployed for real-world applications [ABL*18]. However, most MPC
implementations are stand-alone and use their own internal rep-
resentation for the functionality that is to be securely computed.
A number of high-level languages are available that make express-
ing these functionalities accessible for developers with little to no
knowledge about MPC protocols. These include domain specific lan-
guages, e.g., Secure Function Definition Language (SFDL) [MNPS04,
BDNP08] and MAMBA [ACC*21], and even subsets of common pro-
gramming languages like C [FHK* 14, BDK* 18] and Python [HKoS™ 10,
Kel20]. As there are no MPC protocols available for all high-level
constructs that are available in common programming languages,
these functionalities have to be compiled down to less expressive
internal circuit formats that effectively describe data-flows. Ex-
amples of the most popular circuit formats are shown in Table 1.



Table 1: Overview of existing functionality description formats for MPC.
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Bristol Format [ST19] [DSZ15, BDST22, Kel20, ACC*21, BDK*18, BCM*19, WMK16, HST*21] X v X v X X X X X X
Bristol Fashion [AAL*19] [DSZ15, BDST22, Kel20, ACC*21, BDK*18, BCM*19, WMK16] X v v v X X (v/) MAND X X X
SHDL [MNPS04, BDNP08] [MNPS04, BDNP08] X v X X X X X X X X
BMR circuit format [RJHK19] [RJHK19] X 4 v v X X X X X X
SCD format [BHKR13, Ebr15] [BHKR13, Ebr15] X v X v X X X X X X
PCF [KMSB13] [KMSB13] X v X X v/ X X X X v/
Frigate circuit format [MGC*16] [MGC*16] X v X X v X X X X X
MP-SPDZ bytecode [Kel20] [Kel20] X v v X v v v X X 4
HyCC circuit format [BDK*18, FHK*14] [BDK*18, FHK* 14, BDST22, DSZ15] [BDK*18] v v X v v X X X X
FUSE IR (this work) [BDST22, Kel20] FUSE (this work) v/ v /(§A) v v v v v X

These low-level formats are much simpler than the high-level lan-
guages and were mostly developed alongside the corresponding
high-level compilers [MNPS04, BDNP08, BDK*18, ACC*21, Ebr15,
Kel20, MGC*16]. These circuit formats are used in state-of-the-art
MPC compilers that execute the described functionality with MPC
protocols [DSZ15, ACC*21, Kel20, BCS21, BDST22, Ebr15].

Currently, most of these circuit formats only support Boolean
circuits. But the advances of protocol mixing [IMZ19, BDK*18,
FBL*22] suggest to make use of both Boolean and arithmetic pro-
tocols for efficient MPC. Languages like [AAL*19, ST19, MNPS04,
BK13] do not support modular descriptions via function calls. This
makes the description of realistic functionalities memory-consuming.
For example, a single instantiation of the SHA-256 compression
function in the Bristol Fashion format [AAL*19] takes 3.5 MB of
disk-space, whereas with preserving the structure in FUSE IR, our
implementation only uses 1.1 MB of disk-space. Since the formats
have been developed alongside the MPC frameworks, they suffice
for the purposes of the target framework, but are often poorly docu-
mented and not extensible. Our proposed format, FUSE IR, supports
both Boolean and arithmetic operations, as well as describing cus-
tom building blocks and annotations, which makes it flexible and
extensible by design. It is not restricted to any number of parties,
in fact, the parties do not need to be described as FUSE IR only
captures the computation. It supports function calls to keep the
representation compact and can be viewed through DOT graph
backends.

Having so many stand-alone frameworks and formats makes
problems in developing algorithmic optimizations and applications
in MPC: There are many tools for both high-level compilation and
compilation for MPC that are tightly coupled with each other be-
cause they share the same representation, but none of the other
tools do. This leads to recurrent efforts made in each high-level com-
piler, where researchers have to reimplement MPC-independent
optimizations like dead code elimination or constant folding. Be-
sides that, this tight coupling also renders it impossible to reuse
implementations across different frameworks or compare their effi-
ciency without lots of developmental efforts.

Our Contributions. Our main contribution is the design and im-
plementation of FUSE IR, a flexible intermediate representation to
express functionalities for MPC that can be easily extended and
is independent of any specific MPC protocol implementation. By
utilizing a state-of-the-art serialization framework, FUSE IR is ef-
ficiently storable and remains compact when loaded to memory.
It is cross-platform and usable in different common programming

languages like C/C++, Python, Java, and Rust. With that, it is pos-
sible to generate and optimize FUSE IR inside one language, store
it, and afterwards use it inside applications that are developed in
other languages. We have implemented a user-friendly library that
enables developers to implement their own passes, i.e., analyses
and optimizations. By using this library ourselves, we have imple-
mented numerous example passes which also serve as examples
for implementing new ones. To optimize generated FUSE IR, we
have implemented the common data-flow optimizations Constant
Folding and Dead Code Elimination. Our Frequent Subcircuit Re-
placement optimization pass tackles the problem that data-flow
optimizations may get very large due to loop unrolling and func-
tion inlining performed by high-level compilers [BDK"18]. Our
Instruction Vectorization pass transfers multiple identical Single
Instruction Single Data (SISD) gates to a Single Instruction Multiple
Data (SIMD) gate, which reduces the memory foot-print and the
computation time in MPC [SZ13].

We also provide implementations of frontends and backends

of a subset of popular MPC frameworks and circuit formats. Cur-
rently, FUSE IR can be generated from Boolean circuits in Bristol
Format [ST19], mixed (arithmetic/Boolean) circuits compiled with
HyCC [BDK™"18], and mixed circuits in MOTION [BDST22]. FUSE
IR can be executed with the state-of-the-art MPC frameworks MO-
TION [BCS21, BDST22] and MP-SPDZ [Kel20]. FUSE contains a
Graphviz DOT backend to generate a human-readable version of
our binary format. We also conduct performance analyses of mem-
ory, storage, and runtime efficiency of the FUSE framework, as
well as runtime efficiency of MOTION [BDST22] when evaluat-
ing our optimized circuits. We achieve 15X faster runtimes when
evaluating the Keccak_f permutation with the BMR protocol in
MOTION [BDST22] and 6x less in-memory usage for our format
compared to HyCC [BDK*18]. The source code of FUSE with all
our benchmarks are publicly available!. The full version of this
paper is available on ePrint [BHK"23b].
Outline. The rest of this paper is structured as follows. We intro-
duce preliminary information and terminology in §2 and present
the design of FUSE IR along with the architecture of our framework
in §3. In §4, we present our experimental results and discuss related
work in §5. We discuss future work in §6.

2 PRELIMINARIES

In this section, we present preliminary terminology and informa-
tion.

!https://encrypto.de/code/FUSE
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2.1 Secure Multi-Party Computation

In Secure Multi-Party Computation (MPC), two or more parties
want to jointly compute a functionality without revealing their
private inputs to the other parties. Trivially, this can be done by
sending the inputs to a trusted third party and letting the trusted
third party perform the computation. However, MPC enables the
set of parties to carry out the computation of the functionality
amongst themselves, even if such a trusted party does not exist.
This process of computation is called a protocol and means that
the parties compute parts locally and send messages to each other.
After following the protocol, because of the properties of MPC, the
parties retrieve the output but will learn nothing about the inputs
of the others except what was already inferable from the output
itself. There exist MPC protocols for different numbers of parties
and different security models, e.g., a passive adversary is assumed
to strictly follow the protocol, and an active adversary may deviate
arbitrarily from the protocol specification. Many MPC protocols use
Boolean, arithmetic, or mixed circuits to describe the functionality.

2.2 Circuit Compilation and Data Serialization

Generating a description suitable for MPC protocols like Boolean
or arithmetic circuits by hand does not scale well. Hence, special
compilers for MPC have been developed for a functionality de-
scription written in a domain-specific language [MNPS04, BDNPO0S,
RHH14, ARG'21, LWN*15, BSM*21, MGC*16, KMSB13, SKM11]
or general-purpose language like C or Python [FHK*14, Kel20,
ZE15]. From that, a target representation is generated and securely
evaluated by the target MPC framework during runtime. However,
this compilation process is not trivial, so repeatedly running the
same compilation is undesirable. To run the compilation only once,
the compiled representation needs to be stored on disk and loaded
later whenever that functionality is securely evaluated with MPC.
These storing and loading processes are called data serialization
and deserialization.

Data serialization describes the process of storing structured
data that has been computed in a persistent way, such that it is
restorable at a later time, preserving structure and content. Restor-
ing the structured data with the same structure and content is called
deserialization. Usually this means that structured data is stored into
a stream of bytes during serialization, and deserialization restores
that data with the same structure and content. We also refer to se-
rialization as packing, and to deserialization as unpacking, because
this is the common terminology used by the FlatBuffers [vO14]
serialization framework, which we use in this work.

2.3 FlatBuffers

Coming up with an own method of serializing data efficiently is very
tedious and error-prone, e.g., developers need to be careful with
very low-level details like byte-endianness. Additionally, a custom
solution is most likely only implemented inside one programming
language. To support the custom serialization method in multiple
projects, developers would have to rewrite parsers and generators
for the programming language of their choice, which is undesirable.
For these reasons, FUSE uses FlatBuffers, an open-source serializa-
tion framework maintained by Google [vO14]. FlatBuffers supports
many popular programming languages, such as C/C++, Go, Java,

Rust, and Python. The most popular examples of projects that use
FlatBuffers is the popular Cocos2d-x? mobile game engine and Face-
book’s Android client?, where Facebook improved the performance
of their client drastically by changing JSON serialization to Flat-
Buffers. The main performance improvement lies in the so-called
zero-copy overhead: FlatBuffers allows to read serialized data with-
out parsing or unpacking it into custom data structures, making
the process of reading serialized data extremely efficient.

Serialized data is called a FlatBuffer which essentially is a binary
buffer that consists of nested objects like vectors and structs. These
objects are organized with offsets, which enables random access to
the elements inside a FlatBuffer. The structure, from which the off-
sets are derived, is described in a so-called schema file. The schemas
describe the types used inside the buffer. Since all the values inside
the buffer are strictly typed, the binary data is traversable in-place,
which in turn makes read access very efficient. FlatBuffers defines
strict alignment and endianness rules for in-memory data, making
the serialized data cross-platform.

Given the schema, the flatc compiler generates special code
that handles the read access to the binary buffer, which we will
refer to as accessor code. The compiler generates this code for all
the supported programming languages. With this, developers only
need to define the schema once, and the compiler will generate all
the necessary implementations for the given serialization schema. It
also supports a restricted form of format evolution. This means that
the structure of the binary defined by the schema may be extended,
and the resulting code will still be able to handle binaries that have
been produced before the schema evolution.

3 THE FUSE FRAMEWORK

This chapter presents the design and implementation of our FUSE
framework. We first discuss the motivation behind the design of our
intermediate representation FUSE IR together with the syntactic
aspects of the language and explain the intended semantics behind
them (§3.1). Building on top of this language, we present the sys-
tem architecture of the whole FUSE framework (§3.2) and present
frontends (§3.4), backends (§3.5), and optimization passes (§3.6).

3.1 FUSE Intermediate Representation (IR)

FUSE IR decouples MPC-specific details from the actual functional-
ity that is computed. For example, to describe a functionality with
Boolean operations, we can omit naming a specific protocol for
every operation. If the exact protocol needs to be stored, our format
supports custom annotations at every description level.

The main considerations behind FUSE IR are:

o FUSE IR only allows describing data oblivious programs. Be-
cause of that, it allows describing Boolean and arithmetic op-
erations and loops with a public number of iterations, but no
control-flow elements like if-else statements.

e It is a modular representation with support for function defini-
tions and calls, as well as loops with public number of iterations.

e FUSE IR is extensible, meaning that its specification can be
easily adapted to support new operations. When extending

Zhttps://github.com/cocos2d/cocos2d-x
Shttps://engineering.fb.com/2015/07/31/android/improving-facebook-s-
performance-on-android-with-flatbuffers/
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the specification with new operations, FUSE will still support
previously compiled FUSE IR with no adaptions needed.

e To make the representation more flexible, we allow describing
custom operations and optional custom annotations at every
level. This enables MPC developers to adapt FUSE IR to their
needs and still use it within the whole FUSE framework.

Figure 1 shows the definition of FUSE IR as FlatBuffers [vO14,
vO17] schemas. This is both a description of what elements can be
used to define a program in FUSE IR and how the representation
is stored when serialized. We present an example FUSE IR module
in §E
Modules. In FUSE IR, a module is the top-level entity of description.
It contains a list of circuits and may declare one of these as the entry
point for computation. The entry point marks the circuit which
shall be executed when the whole module is executed. The list of
circuits are then used to resolve function calls during execution.
This is similar to the Executable and Linking Format (ELF), which
also allows to dynamically resolve procedure calls. A circuit in turn
has a name which identifies it inside the module, and holds a list of
nodes which describe the computation.

Nodes. Each node has a unique identifier, so the circuit uses the
identifiers of the nodes to mark global input and output nodes of
the circuit, together with the types of inputs of outputs. A node also
defines its input nodes, the operation it performs on the inputs, and
the number of outputs with their data types. For the inputs, a node
lists all identifiers of its inputs and can also define offsets to select a
specific output of a node. This is important whenever nodes produce
more than one output. The operation that is performed on the inputs
is stored in the operation field, where all currently supported
operations are listed in the PrimitiveOperation enumeration,
which can be expanded in the future. Alternatively, the Custom
operation type can be used in connection with an annotation.

Schema Details. The main elements of descriptions are
the schemas for ModuleTable, CircuitTable, NodeTable, and
DataTypeTable. These are so-called FlatBuffers tables which de-
scribe objects in FlatBuffers, and consist of a list of fields with
the corresponding data types. For example, the ModuleTable
schema declares the three fields circuits which holds a list of
CircuitTableBuffer, entry_point which is of type string, and
module_annotations which is also of type string. We emphasize
that an instance of this table does not need to define all of these
fields, in which case they will not be stored in the binary. Addition-
ally, as schemas can always be safely extended with more fields, we
can add more descriptive fields to the schema and the whole serial-
ization and deserialization process will remain intact. Of course, in
some cases the code will still need adaptions for new description
elements; however, it does not entail low-level implementations for
serialization, so researchers can instead focus on the functionality
of their frameworks. Between the description of a module and a
circuit, there is a special CircuitTableBuffer table that stores
already serialized circuits. This implements an indirection mecha-
nism that enables us to define and store circuits that are not part of a
module. Otherwise, a circuit would always have to be stored inside
amodule, even if it would be the only one inside there. Additionally,
this indirection allows us to deserialize only selected circuits. For
our use case, this allows us to keep the memory footprint as small

as possible when we optimize only a subset of circuits inside a
module, so the unmutated circuits can remain serialized and we
only unpack the circuits to be optimized. This table is shown here
for the sake of completeness, but this indirection is taken care of
internally, without direct exposure to developers.

Annotations. As different tools may have the need for more de-
scription in the functionality which can be unsuited to add to the
description of FUSE IR, each table defines an optional annotation
field, where developers can store such additional descriptions. How-
ever, these are not necessary inside the FUSE infrastructure and
are ignored during optimizations.

3.2 FUSE Architecture

FUSE IR is the heart of our FUSE framework which is built around
it. The components and structure of FUSE are visually depicted in
Figure 2. The box “FlatBuffers schemas of FUSE IR” in the top left of
the figure refers to the schema definitions from Figure 1. These are
compiled via the flatc compiler to C++ accessor code for reading
and generating FUSE IR in C++. This accessor code handles reading
and writing the binary buffers.

FUSE Core (§3.3). Because the accessor code is automatically gen-
erated, we introduce an abstraction layer, called the FUSE Core, in
between the definition of FUSE IR and the actual frontends, opti-
mization passes and backends for FUSE IR. It defines a user-friendly
application programming interface (API) to read, mutate, and write
FUSE IR compactly without worrying about the serialization details
of FlatBuffers. Additionally, if in the future the schema definitions
of FUSE IR change, the accessor code will change as well, so the
FUSE Core would be the only part that needs to adapt while keeping
the API for the rest of the framework as similar as possible.

FUSE Frontends (§3.4). We implement frontends to generate
FUSE IR from other circuit descriptions. Currently, there is a fron-
tend for the textual Bristol Format [ST19] (§3.4.1), the hybrid
compiler HyCC [BDK*18] (§3.4.2), and mixed-circuits from MO-
TION [BDST22] (§3.4.3)).

FUSE Backends (§3.5). The FUSE Backends export our interme-
diary language FUSE IR to other representations, or evaluate it,
either in plaintext or with the state-of-the-art MPC frameworks
MOTION [BDST22, BCS21] (§3.5.1) and MP-SPDZ [Kel20] (§3.5.2).
FUSE Optimization Passes (§3.6). As tutorial examples, we have
implemented several optimizations available for FUSE IR, which are
currently the general-purpose data-flow optimizations Constant
Folding and Dead Code Elimination (§3.6.1), as well as the more
MPC-specific optimizations Instruction Vectorization (§3.6.2) and
Frequent Subcircuit Replacement (§3.6.3).

3.3 FUSE Core

The FUSE Core serves two main purposes: Firstly, it removes the
coupling between frontends, passes, and backends of FUSE and the
generated accessor code from FlatBuffers [vO14]. If the schemas
for FUSE IR change, the generated code will change as well and
might result in breaking the complete code base. Now, with schema
changes only the FUSE Core has to be adapted, which can be done
in a way that does affect nothing or fewer parts of the entire code
base. Secondly, the C++ API for FlatBuffers contains many details
about the serialization process that need to be kept in mind when
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CircuitTable

name : string (required)

circuits :

entry point : string inputs : [ulong]

module_annotations : string input_datatypes : [DataTypeTable]
l outputs : [ulong]
CircuitTableBuffer output_datatypes : [DataTypeTable]
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. . Loop, /7 (5)
operation : PrimitiveOperation
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custom_op_name : string
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subcircuit_name : string
= Input, Output, // (8)
load : byt flexbuff
payloa: [ubyte] (flexbuffer) Coa, /7 (9)
num_of outputs : uint = 1 Mux, /7 (10)
output datatypes : [DataTypeTable] SelectOffset, // (11)
node_annotations : [string]

Figure 1: FUSE IR as FlatBuffers [vO14, vO17] schema description.
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Figure 2: System architecture of the FUSE framework.

using as a developer. For example, when serializing an object, we
have to serialize all the object’s field and then call the serialization
routine for the whole object. For larger data structures, especially
in our case, this makes the whole process too confusing and thus,
impossible to use. To make the FUSE library more flexible and
easy to use, we introduce an additional level of abstraction that is
agnostic to which representation is used underneath, e.g., if internal
FlatBuffers types are used or C++ native types.

Moreover, the Builder API in FUSE Core can also be used to
programmatically create a program in FUSE IR directly instead of
converting it from a different representation via a Frontend.

Since the FUSE Core layer has been implemented in C++, its
abstractions from FlatBuffers are not available in other program-
ming languages. However, it makes sense for developers to write
optimizations in C++ using the abstraction layer and only parts that
have to be implemented in the other programming language with

the generated accessor code for that language to read the optimized
FUSE IR. In that case, it is important to keep in mind that the code
parts with dependencies on the generated FlatBuffers API may be
subject to change.

In §2.3, we have introduced the notion of serialized and unpacked
data. Serialized data refers to binary data containing the FlatBuffers
data, whereas unpacked data refers to the same data parsed into spe-
cial data structures, in our case C++ objects. Unpacking is needed
if we want to do complex mutations on our binary FUSE IR data.
Simple cases, e.g., changing the value of an integer, can be realized
in the binary directly, if the field was present in the binary before.
However, this case might not work if the field was missing before
because it might not have been explicitly stored in the binary. Es-
pecially when we want to change more than a single integer field,
e.g., performing optimizations on FUSE IR, working on the binary
data is insufficient. For these cases, we unpack the serialized data
into C++ objects with data structures that are also automatically
generated by FlatBuffers. To keep the treatment of the data as sim-
ilar as possible, the FUSE Core also defines an interface to both
serialized and unpacked data. This is useful for analysis passes and
backends, as these only require read access to FUSE IR, so they can
technically work with both serialized and unpacked data. Without
that interface, developers would need to rewrite the analysis or
backend for both types of data, which we clearly omit.

To summarize, the FUSE Core contains: (1) A Builder for gen-
erating FUSE IR. (2) Wrappers that unify read access to serialized
and unpacked data and simplify mutating FUSE IR. (3) A Context
that is responsible for handling serialized and unpacked data, as
well as coordinating serialization and deserialization. (4) C++ type
traits and policies for many of the supported operations to simplify
template programming with FUSE IR.

3.4 FUSE Frontends

A frontend reads a functionality description in the source format
and generates an equivalent version in FUSE IR. By implementing
frontends for other formats, they can be used with the rich infras-
tructure of the FUSE framework: The functionality can be executed



with the available MPC backends (§3.5), and optimizations (§3.6)
can be applied that might be unavailable for the source format.

3.4.1 Bristol Frontend. Bristol Format [ST19] is a human-readable,
text-based file format which describes a stand-alone Boolean circuit
inside a single file. It describes two-party computation, but was
extended to an arbitrary number of parties in the very similar Bristol
Fashion [AAL*19]. A file in Bristol Format consists of a header that
defines the circuit interface, and the actual functionality description
that lists all the gates and their wiring in the circuit. The format
supports the Boolean AND, XOR, and INV operation, which we can
directly translate to FUSE IR. While this translation can increase
the size of the representation, it enables us to perform analyses,
optimizations, and use the complete FUSE toolchain for the circuit
description originally provided in Bristol Format.

3.4.2 HyCC Frontend. HyCC [BDK"18] is a high-level compiler
that compiles ANSI C code to hybrid circuits with both Boolean and
arithmetic gates and support for function calls. The circuit descrip-
tion is stored in the custom hand-crafted binary .circ file format,
which is optimized for space-efficiency. HyCC provides tools to
read them directly into their own in-memory representation in C++,
but the format itself is only documented inside the source code*: A
format header describes the circuit interface, with declarations for
input/output variables and function call interfaces. It is followed
by the wiring of the circuit with gate definitions, output variables,
and inputs for function calls. We translate the HyCC format into
a single FUSE IR module, that contains all translated circuits. For
function calls, we first translate the called subcircuit (if not already
done) and then reference it with a call node in the FUSE IR.

3.4.3 MOTION Frontend. MOTION [BDST22, BCS21] is a generic
C++ framework for efficient mixed-protocol MPC and designed to
be extensible with more MPC protocols in the future. Currently, sev-
eral multi-party protocols with passive security are available inside
the framework, including arithmetic and Boolean GMW [GMW87],
constant-round BMR [BMR90], and protocol conversions. In MO-
TION, the functionality is described by gates that also encode the un-
derlying protocol to execute that gate. The resulting secret-shared
values of the computation are stored in wire objects.

Gates and wires are implemented as C++ classes for each combi-
nation of protocol and supported gate type. So, every gate describes
an operation and provides output wires and most of the gates addi-
tionally contain inputs. An exception are constant gates that only
produce a constant output wire. Hereby, each gate translates to a
computational node in FUSE IR with the same operation as the gate.
To correctly connect the nodes in FUSE IR, each wire in MOTION
is mapped to the output of a node in FUSE IR. A node output can be
described by a pair (Identifier, Offset). The Identifier refers
uniquely to the specific node and the Offset refers to one of the
node’s outputs. For example, the second output of the node with
Identifier 4 is represented by (4,1).

One additional feature that MOTION has compared to the pre-
vious formats are Single Instruction Multiple Data (SIMD) values.
These are used to compute a single gate with multiple values in
parallel, which improves communication and computation time
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significantly in MOTION [BDST22]. SIMD values are realized in-
side wires, which means that a single wire stores one or multiple
values. The values can either be initialized inside input gates or
using specific Simdify gates which construct SIMD values from
single values. To read a single values from a SIMDifled value, special
Unsimdify gates have to split the SIMD values into single values.
This means that during translation, we have to keep track of the
amount of SIMD values during initialization by storing the size of
the SIMD value into the input node. For Simdify and Unsimdify
gates, we introduce corresponding custom nodes.

Note that custom nodes cannot be used outside the context they
were introduced in, unless there are translations for this specific
instruction available. However, this case is justified by the fact that
SIMD values are not necessarily implemented by all the frameworks
that FUSE supports and might support in the future.

3.5 FUSE Backends

To generate other data or formats from a given FUSE IR descrip-
tion, we have implemented several backends for FUSE IR. We iden-
tify two different types of backends. (1) Interpreter backends, that
evaluate the circuit described in FUSE IR either in plaintext or by
using MPC protocols. (2) Code Generation backends, that generate
another kind of structured data out of FUSE IR. Due to space re-
strictions, we describe the implemented FUSE backends related to
usability in §A.

3.5.1 MOTION Interpreter. To execute FUSE IR with state-of-the-
art MPC protocols, our MOTION backend evaluates the described
functionality in FUSE IR with the passively secure MOTION frame-
work [BDST22, BCS21]. It works similar to the plaintext interpreter
described in §A, except that it is evaluated on MOTION shares in-
stead of plaintext values. These shares come with a handy wrapper
that enables writing this backend in an interpreter fashion without
worrying about the specific MPC protocol. MOTION share wrap-
pers implement C++ operators for the operation to be executed,
such as addition of shares via the +-operator. Internally, MOTION
resolves these operations by executing them with the corresponding
protocol that is used for MPC at runtime.

3.5.2 MP-SPDZ Code Generation. Another way to securely exe-
cute FUSE IR is the state-of-the-art MP-SPDZ framework [Kel20]
which includes actively secure MPC protocols. MP-SPDZ defines
two interfaces, a high-level one in Python and a low-level one in
C++. The Python interface provides custom data types like secure
integers and defines operations on those similar to the MOTION
share wrappers. The low-level interface handles the execution of
the underlying protocol and must be used with care. This makes
the C++ interface difficult to use, and its usage is not recommended
by its developers. As we implement the backend with the Python
interface of MP-SPDZ, we have no access to our C++ wrappers that
we have carefully designed and implemented in FUSE Core (see
§3.3). Instead, we compile and use FlatBuffers accessor code for
Python from our FlatBuffers schemas (§1). Consequently, this is the
only part of the FUSE framework that directly exposes FlatBuffers
outside the FUSE Core. This is justified because the MP-SPDZ back-
end represents a relatively small part of the whole FUSE framework.
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Accessing the C++ code directly from Python would have compli-
cated the implementation, so exposing FlatBuffers turned out to be
the most user-friendly possibility.

We implement an import functionality for FUSE IR inside MP-
SPDZ, similar to its circuit import functionality for Bristol Fash-
ion [AAL¥19] circuits. For this, we create a new FuseCircuit class
that extends the existing Circuit class in MP-SPDZ. FUSE IR can
then be imported into MP-SPDZ code and run on data that is de-
clared inside the framework. Running a circuit on the input data
starts the interpretation, whereas a module forwards the inputs to
the entry circuit and then runs it. Then, the circuit is evaluated by
reading and adding mappings from node identifiers to MP-SPDZ
values. To utilize the secure types of MP-SPDZ, the Python code
must be set up accordingly. Given this setup, FUSE IR can be used
easily inside MP-SPDZ programs.

3.6 FUSE Optimization Passes

The FUSE framework provides a rich infrastructure for MPC, in-
cluding an expressive intermediate representation and many circuit
optimizations. Besides domain-independent optimizations such as
Dead Code Elimination and Constant Folding [ALSU06], we have
developed two optimizations specifically tailored to MPC: Instruc-
tion Vectorization (§3.6.2) and Frequent Subcircuit Replacement

(§3.6.3).

Listing 1: Dead Code Elimination on FUSE IR Example in
C++. The data structures marked in purple and the functions
marked in sand color are defined in the FUSE Core (§3.3).

#include <IR.h>

void visit(fuse::core::NodeObjectWrapper& node,
std::unordered_set<uint64_t>& liveNodes) {
for (auto inputNodeID : node.getInputNodeIDs()) {

// check if nodes were already visited and marked

if (!liveNodes.contains(inputNodeID)){
liveNodes.insert(inputNodeID);
visit(inputNode, liveNodes);

}
void eliminateDeadCode(fuse::core::CircuitObjectWrapper& circuit) {

// mark live nodes
std::unordered_set<uint64_t> liveNodes;

for (auto outputNodeID : circuit.getOutputNodeIDs()) {
liveNodes.insert(outputNodeID);
auto outputNode = circuit.getNodeWithID(outputNodeID);

visit(outputNode, liveNodes);
}
// delete nodes that have not been marked as live
// -> considered dead nodes
circuit.removeNodesNotContainedIn(liveNodes);

¥

int main(void) {
fuse::core::ir::CircuitContext ctx;
ctx.readCircuitFromFile("path/to/circ");

fuse::core::CircuitObjectWrapper circuit = ctx.getMutableCircuitWrapper();

auto before = circuit.getNumberOfNodes();

eliminateDeadCode (circuit);

auto after = circuit.getNumberOfNodes();

std::cout << "Eliminated: " << (before - after) << " nodes from circuit "
<< circuit.getName() << std::endl;

return 0;

3.6.1 Tutorial Pass - Dead Code Elimination. To showcase how to
implement passes using FUSE Core (§3.3), we provide an example
implementation for Dead Code Elimination on FUSE IR. Listing 1
shows the C++ code of executing a dead code elimination pass.
The main function starts with reading a FUSE IR circuit from a
file and creating a mutable circuit object, since the optimization will
mutate the circuit in-place. Then the eliminateDeadCode function

is called which starts marking all output nodes of the circuit as live
and then traverses the circuit backwards with the visit function.
The visit function marks all input nodes as live - as they reach a
live output node - if they have not been marked already and visits
them. After the marking phase, the set containing the identifiers of
all live nodes is passed over to the removeNodesNotContainedIn
library function, which is defined as a part of the FUSE Core (§3.3).
This function is responsible for deleting all the nodes whose identi-
fiers are not inside the 1iveNodes set, which in this context means
removing all dead nodes.

We stress that writing this pass takes less than 30 lines of C++
code and is completely oblivious about the serialization details of
FUSE IR, because of the abstractions provided by FUSE Core (§3.3).

3.6.2 Instruction Vectorization. Instruction Vectorization (IV) re-
places multiple identical subcircuits operating on single values
with a subcircuit that operates on vectors of values. This can
greatly improve the overall computation time and the memory
footprint [SZ13].

The process of Instruction Vectorization assumes that multiple
identical SISD-gates (Single Instruction Single Data) can be executed
faster in-parallel and thus, only groups of gates that implement
the same operation and lay “close” in the circuit are suitable. Our
Instruction Vectorization uses two kinds of depth information to
approximate the distance between gates, and to replace suitable
groups of gates with a single vectorized gate. We give the full details
of our Instruction Vectorization in Appendix §C.

3.6.3  Frequent Subcircuit Replacement. Many MPC circuit descrip-
tions, such as Bristol Format [ST19, AAL*19] and the Secure Hard-
ware Definition Language (SHDL) [MNPS04, BDNP08], do not sup-
port subroutines. These formats store reoccurring instruction se-
quences redundantly for every occurrence. Consequently, the de-
scription lacks memory-efficiency and hierarchical structure. In
contrast, FUSE IR stores reoccurring instruction sequences in a
single subcircuit and uses subroutine calls to make the intermediate
representation more memory-efficient for frequently reoccurring
sequences.

The FUSE framework provides frontends that translate a vari-
ety of circuit descriptions into the intermediary language (§3.4).
However, if we translate a description format that does not sup-
port subroutine calls, we cannot directly make use of subroutines
because the reoccurring instruction sequences lack annotation:
We first need to locate the occurrences before we can create sub-
routines and insert subroutine calls. For this, we implement the
Frequent Subcircuit Replacement (FSR) optimization that detects
all occurrences of frequent instruction sequences in the circuit
and replaces each sequence by a subroutine call. We transform
a large non-modular circuit into a smaller representation that ef-
fectively uses the modular capabilities of FUSE IR. For this, we
utilize the state-of-the-art Frequent Subgraph Mining algorithm
DistGraph [TZ16]. Both stages of this algorithm are described in
more detail in §D. Note that Frequent Subcircuit Replacement might
also reveal unknown patterns in the MPC circuit.



4 EVALUATION

We evaluate our framework on two servers, each equipped with an
Intel Core 17-4790 processor and 32 GB RAM, connected via a 10
Gbps network. We compare FUSE IR against other MPC file formats
and demonstrate the usefulness of our unique optimization passes
(§3.6). We have chosen Bristol Format (§4.1) as a simple textual
format for Boolean circuits and the binary HyCC circuit format
(§4.2) for hybrid circuits to compare FUSE IR against different types
of formats. We also showcase how the MOTION [BDST22, BCS21]
framework profits from our vectorization optimization (§4.3). Be-
cause FUSE can be easily extended to support more MPC backends,
these results are not limited to MOTION only.

4.1 Disk Usage for Boolean Circuits

We compare the textual Bristol Format [ST19] with FUSE IR. For
the details on Bristol Format, see §3.4.1. FUSE IR is more expressive
than Bristol Format, because it supports more operators with no
limitations on the number of inputs and outputs, as well as a modu-
lar description. While Bristol Format, being a text-based format, is
human-readable by design, FUSE IR offers through its DOT backend
(§A) more visual information on the structure of the circuit besides
the node operations. Thus, it is easier to visually spot the structure
of a circuit than with text-based information only.

Table 2: File sizes of circuits in Bristol Format [ST19] and
their translations to FUSE IR.

. Zipped Zipped Zipped
Circuit 53“5“’1 PUSEIR  pritol  FUSEIR ~ mProvement p . ovement
ize (KB)  Size (KB) Size (KB)  Size (KB) Factor Factor
int_add8 0.6 3.8 0.2 1.1 0.2 0.2
int_mul8 2.4 9.1 0.7 2.3 0.3 0.3
int_add64 6.1 30.9 1.6 7.4 0.2 0.2
int_mul64 264.9 627.4 72.2 137.3 0.4 0.5
aes_128 906.9 1918.7  239.6 421.5 0.5 0.6
aes_256 1266.9 2650.2  336.1 586.0 0.5 0.6
sha_256 3557.0 70850 925.2 1576.5 0.5 0.6
sha_256_fuse’ 3557.0 1107.0 9252 191.2 3.2 4.8

T This row compares our implementation of SHA-256 directly in FUSE IR with
the circuit file in Bristol Format.

As both formats aim to offer a compact description of circuits,
we compare the file sizes of a given Bristol Format circuit and
the file size of FUSE IR which was generated using the frontend
for Bristol Format (§3.4.1). The results are shown in Table 2. The
first two columns correspond to the file sizes of the given Bristol
Format circuit and its FUSE IR translated version. The following
two columns show the file sizes of both files compressed with gzip.
The final two columns depict the ratio of the FUSE IR file size to the
Bristol Format file size. For both compressed and uncompressed files,
we observe that Bristol Format files are more compact than FUSE
IR, however, the overhead of FUSE IR decreases with larger circuit
sizes. Both formats use integers to describe gate/node identifiers.
The Bristol Format encodes them using a decimal reprensentation
in ASCII, whereas FUSE IR uses binary 64-bit integers. Hence, the
Bristol Format version of describing gate identifiers uses up more
space, the larger the circuits get, because the gate identifiers get
longer, and Bristol includes whitespace to make it human-readable.

The last row of Table 2 shows the sizes of the SHA-256 compres-
sion function, that we have manually implemented in FUSE IR using
the Builder API in FUSE Core. For our manual implementation, we
have used mixed Boolean and arithmetic operations and realized
shifts and rotations as subroutines. When compared to Bristol For-
mat, that only uses Boolean operations and no subroutines, our
format is over 3x more compact, despite the directly translated file
being up to 2x larger. This result highlights the relevance to use
FUSE IR for compact representation of larger functionalities.
Improve Storage with Frequent Subcircuit Replacement. To
improve the storage efficiency for FUSE IR, we use our Frequent
Subcircuit Replacement (§3.6.3) optimization. We measured the
number of nodes before and after applying FSR to the circuit, as
well as the file sizes of the stored FUSE IR before and after the
optimization. The results are shown in Table 3. Although all of the
circuits get nodes replaced, which is indicated by the last column
that shows an improvement for every circuit, this does not imply
that the storage usage decreases as well. There are two reasons
for this: (1) For small circuits (< 1000 nodes), creating a subcircuit
that is called only once or twice does not make up for the storage
imposed by that subcircuit. The subcircuit created is typically larger,
i.e., contains more nodes, than the pattern it replaces, because
it contains additional input and output nodes. See §3.6.3 for the
implementation details.

Table 3: Size Impact and replaced number of nodes with FSR.

Creut  Sme(®) smeqamy [ Nodes  Nodes  EEE ID

before FSR  after FSR Factor Factor
int_add8 3.9 8.0 58 37 0.5 1.6
int_mul8 9.2 10.2 160 115 0.9 1.4
int_add64 31.0 28.7 506 316 1.1 1.6
int_mul64 627.4 485.3 11976 7756 1.3 1.5
aes_128 1918.8 1544.2 37047 23481 1.2 1.6
aes_256 2650.2 2132.0 51178 32485 1.2 1.6

sha_256 7085.1 5661.1 136097 81089 1.3 1.7

Table 4: Size Impact and replaced number of nodes with IV.

#
Creuit S (kD) Smeqay Nodes  odes LU [
before IV after IV Factor Factor
int_add8 3.8 4.2 58 45 0.9 1.3
int_mul8 9.1 7.2 160 58 1.3 2.8
int_add64 30.9 33.5 506 381 0.9 1.3
int_mul64 627.4 317.2 11976 562 2.0 21.3
aes_128 1918.7 910.5 37047 825 2.1 44.9
aes_256 2650.2 1255.6 51178 1118 2.1 45.8

sha_256 7085.0 3682.0 136097 9417 1.9 14.5
Keccak_f 9924.0 4471.7 195286 3416 2.2 57.2
sha_512 18292.3 9251.6 351665 18721 2.0 18.8

Improve Storage with Instruction Vectorization. Another pos-
sible way to reduce the stored circuit size is by vectorizing as many



nodes as possible in a circuit using our Instruction Vectorization op-
timization (§3.6.2). This reduces the metadata that needs to be stored
for each node by grouping as many single nodes together as possible.
We compare the file sizes and number of nodes inside the circuits
before and after applying Instruction Vectorization. The results are
shown in Table 4. Since we perform a greedy optimization, meaning
that we vectorize all nodes with the same operation in the same
layer of that operation (see §3.6.2 for details), the number of nodes
in the circuits decrease drastically, with Keccak_f having 57X less
nodes than before. The storage usage of the circuits improve for
circuits that contained more than 600 nodes before vectorization.
Smaller circuits use up to 10% more storage because vectorized
nodes add a small description overhead which is visible in these
cases. The overhead stems from introducing offsets to address the
correct output in the vectorized node, and these offsets introduce a
slight memory overhead. However, as is visible for larger circuits,
this overhead is still surpassed by the enormous reduction in the
number of nodes in the circuit after the optimization.

4.2 Memory Usage for Hybrid Circuits

Table 5: Upper bounds for the peak heap usage in KB mea-
sured with massif.

Circuit HyCC FUSE IR Imp;;’cvf;?em
biomatch1k <15289 <6388 2.39
biomatch4k <28405 <6388 4.45
tutorial_euclidean_distance < 37702 <12684 2.97
gauss <58939 <12684 2.33
kmeans <73621 <25267 2.91
cryptonets <182384 <50433 3.62
mnist <298062 <50433 5.91

In this section, we compare FUSE IR with circuits generated
by the HyCC [BDK*18] compiler for hybrid circuits. We translate
hybrid circuits generated by HyCC to FUSE IR using our HyCC
frontend (§3.4.2), and measure how compact each representation is
when loaded into memory.

We use the massif heap profiler® to estimate memory usage of
both formats. Table 5 shows the sizes of each in-memory repre-
sentation. As massif measures the size of the padded heap instead
of the actually allocated amount of Bytes, the numbers represent
upper bounds on the actual memory that needs to be allocated for
each circuit. Although the numbers do not depict the exact memory
used up by the in-memory representation, measuring the peak heap
usage gives a good estimate on how much RAM will be at least
needed to read in the circuit and thus, use it for application. Table 5
shows the results of our measurements.

Similar to Bristol Format (see §4.1), we observed that FUSE IR
circuits that were generated using the HyCC frontend (§3.4.2) result
in larger files. HyCC only supports low-level operations which
make the file format very compact, so we expect that manually
written FUSE IR with high-level constructs will also result in more
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compact files. Despite that, the in-memory representation of FUSE is
2 to 6X more compact than the HyCC circuits, making it the more
memory-efficient choice for use within MPC. The FUSE description
could be drastically improved when higher-level operations such as
vector/matrix operations are supported directly. Since we generate
FUSE IR from HyCC which in turn only uses binary Boolean and
arithmetic gates (see §3.4.2 for details), we do not exploit all the
possibilities to make the description more compact.

4.3 Performance Improvements due to
Instruction Vectorization

To demonstrate the possible runtime effects of our Instruction Vec-
torization pass (§3.6.2), we evaluate the runtimes before and after
applying the optimization with the MOTION framework [BDST22].
As the circuits we use for this experiment are Boolean circuits, we
evaluate the impact of our pass with the MOTION implementations
of the BMR and Boolean GMW protocols.

For BMR, we compare the runtimes from the original circuits
with the greedily vectorized variants from Table 4. The results
are shown in Table 6. For smaller circuits (< 1000 nodes before
vectorization), the runtime slightly increases after vectorization,
because SIMD evaluation in MOTION incurs an extra overhead
during the circuit evaluation. However, for larger candidates we
can see drastic performance improvements of up to 15x for Kec-
cak_f after applying Instruction Vectorization, as this performance
overhead is overthrown by the high degree of vectorization.

Table 6: Runtimes (ms) of the BMR protocol before and after
vectorizing (§3.6.2) the circuits. The runtimes are averaged
over 16 runs and the maximum runtime of both parties taken.

Circuit Evaluation  Circuit Evaluation
Improvement

Circuit Time (ms) b.efore Time (n*.As) after Factor
Vectorization Vectorization

int_add8 151.2 150.3 1.0
int_mul8 139.3 148.8 0.9
int_add64 130.7 156.1 0.8
int_mul64 859.7 203.8 4.2
aes_128 2131.1 254.7 8.4
aes_256 2959.3 289.7 10.2
sha_256 7422.8 1572.9 4.7
Keccak_f 11065.9 740.3 15.0
sha_512 19149.7 3117.4 6.1

For Boolean GMW, we observed during our experimentation that
simply applying vectorization in a greedy manner does not lead to
performance improvements. Instead, the vectorization needs to be
performed locally. This means that the nodes inside the circuit need
to have the same depth +1 inside the circuit. So if two nodes were
vectorizable in theory but have five layers of other nodes in between
them, they will not be considered during vectorization. We have
observed that these settings lead to better runtime performances
than with greedy vectorization. But for the sake of completeness,
we also include the runtimes after performing greedy vectoriza-
tion.Table 7 shows the resulting runtimes for the different settings
of vectorization. For the addition and multiplication circuits, the
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runtimes do not change much. For AES and SHA, the runtimes in-
crease for all settings, where the higher the batch size is, the lower
the runime gets. Keccak_f is the only circuit, where vectorization
improves the runtimes of the circuit by up to 10x.

5 RELATED WORK

In this chapter, we review related work to FUSE. We start with dis-
cussing compilers and frameworks for MPC (§5.1) and file formats
for MPC (§5.2). Then, we summarize optimizations for MPC (§5.3).
In the appendix, we discuss works from other domains: serialization
frameworks (§B.2) and intermediate representations (§B.1).

5.1

The domain of applied MPC was pioneered by the Fairplay frame-
work [MNPS04] which delivered a first implementation of Yao’s gar-
bled circuits (GC) protocol for two parties [Yao86]. It was extended
to the multi-party BMR protocol [BMR90] in FairplayMP [BDNP08].
In addition to the implementation of MPC protocols, these tools also
provided compilers for the high-level Secure Function Definition
Language (SFDL) which generates the Secure Hardware Definition
Language (SHDL) to describe the circuits. In a similar fashion, the
frameworks Sharemind [BJL12], Frigate [MGC*16, KNR*17], Obliv-
C [ZE15], ObliVM [LWN*15], and TASTY [HKoS*10] have been
developed, each with different compiler frontend languages and
MPC protocols for executing the program securely. The Sharemind
framework [BLW08, BJL12] compiles the domain-specific language
(DSL) SecreC for evaluation with their three-party hybrid protocol
using additive secret sharing. Frigate [MGC*16] compiles a C-like
language to a custom Boolean circuit representation, the Frigate
circuit format, and evaluates it with the maliciously secure Du-
plo [KNR*17] GC protocol for two parties. Both Obliv-C [ZE15] and
ObliVM [LWN*15] implement semi-honest two-party GC in their
frameworks. Obliv-C [ZE15] extends the C language with the obliv
keyword for secure computation, whereas ObliVM [LWN™15] com-
piles a Java-like DSL, ObliVM-lang, into a custom circuit represen-
tation for the ObliVM-GC backend. TASTY [HKoS*10] is the first
framework that mixes multiple MPC protocols, Yao’s GC [Yao86]
with homomorphic encryption, and compiles from a subset of
Python called TASTYL.

Ever since then, practical MPC has divided into two main areas:
(1) Developing highly scalable and performant implementation of
MPC protocols, e.g., [DSZ15, MR18, WMK16, BCM™*19, BHKR13,
Ebr15, RJHK19, Ale22, BDST22, ACC*21, Kel20, BLW08, HKoS* 10,
HEKM11, DGKNO09, Sch18, HS13], and (2) compiling high-level
function representations into optimized lower-level representa-
tions for efficient execution with MPC protocols, e.g., [FHK* 14,
RHH14, RSH19, ARG*21, BSM*21]. As research has shown that
mixed-protocol MPC is significantly more efficient than single-
protocol MPC [DSZ15, HKoS*10, BDST22, Kel20, ACC*21], a new
line of research emerged with the goal to partition a program into
different parts, such that each part is executed under the most
efficient protocol [BDK*18, CGR*19, FBL*22, IMZ19].

In the area of MPC, the work that is most closely related to our
paper is the HACCLE framework [BSM*21]. HACCLE uses the
meta-programming techniques in Scala to compile the high-level
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DSL Harpoon to the lower-level HACCLE Intermediate Represen-
tation (HIR), which is also a DSL programmed in Scala. For eval-
uating HIR, the framework supports SCALE-MAMBA [ACC*21]
and HoneyBadgerMPC [LYK*19] for protocols based on homomor-
phic encryption and Obliv-C [ZE15] for garbled circuits. Similar
to FUSE IR, HIR serves as an intermediate representation between
the Harpoon DSL and several backends for evaluation with MPC
protocols. However, FUSE also decouples high-level compilers from
the whole tool chain by introducing several frontends to FUSE IR
(83.4), which is not the case for HACCLE. The FUSE Core (§3.3)
was designed to facilitate developing further frontends, backends,
and passes in the future, so the extensibility of FUSE was part of
its development. As we have pointed out in §3.1, FUSE IR supports
extensions to the language by either providing annotations at all
levels of the representations, i.e., modules, circuits, nodes, or by
extending the FlatBuffers schemas that define FUSE IR (§1). Since
HIR was developed as a Scala DSL, it is not serializable out-of-the-
box and thus, not directly usable in frameworks written in other
languages, which is the main feature of FUSE. However, FUSE does
not yet provide an own frontend language, and especially does not
yet implement automatic circuit conversions, where, e.g., arithmetic
operations would be translated to Boolean operations. These are
implemented in HACCLE and left for future work in FUSE.
Baghery et al. [BGO"21] introduce a theoretical notion of gener-
alized function representations in MPC and ZKP based on a syntax
to modify a state machine, called M-Circuits. An M-Circuit hereby
maintains a machine state, and computes on non-sensitive and
sensitive variables, which can either describe values or memory
addresses. It operates on an ordered list of instructions, which
contain either assignments of arithmetic expressions to variables,
accessing a correlated randomness source, calling a "gadget", de-
classification of values, and terminating the program. A gadget
hereby refers to an abstract function, where the function is not
necessarily realized as an M-Circuit itself. In addition, the authors
show under which assumptions the compilation of a function into
an M-Circuit is secure and then use this to derive the security of
the compiled circuit, which then impacts the security of any pro-
tocol which executes the said M-Circuit. The authors moreover
demonstrate that the bytecodes for expressing secure computations
in MP-SPDZ [Kel20] and SCALE-MAMBA [ACC*21] satisfy the
M-Circuits notion. The motivation of both M-Circuits and FUSE IR
are similar, since both work towards unifying representation of
functions for MPC. However, M-Circuits are a theoretical concept
defining generalized functions which is used to prove security of
MPC protocols. In contrast, FUSE IR provides a unifying program-
ming framework through the unified serialization of circuits with
FlatBuffers [vO14] inside an LLVM-like toolchain [LA04]. On a lan-
guage level, the major distinction is that M-Circuits, as well as the
bytecodes of MP-SPDZ [Kel20] and SCALE [ACC*21], manipulate
a state-machine where variables can be overwritten, which in turn
enables naturally realizing loops and function calls with a program
counter variable as in assembly code. FUSE IR does not have this
strong expressiveness and currently captures more a circuit-like
representation of a function in which variables cannot be reassigned
and without maintaining state of any kind. Moreover, M-Circuits
provide an explicit "declassification" operator to expose declassi-
fication of secret values to the programmers, which in FUSE IR



Table 7: Runtimes (ms) of the GMW protocol before and after vectorizing (§3.6.2) the circuits. The runtimes are averaged over
16 runs and the maximum runtime of both parties is taken. The batch size for n-batch vectorization refers to the minimum size

of a vectorized value.

Circuit (];er.cu.tim? before Executior} af?er EXECUtiOlil afFer Execution. aft.er Executionv at}?r Execution. aftgr Imgfsiiel:ixeem
ptimization (ms)  Greedy Vectorization (ms)  8-batch Vectorization (ms)  16-batch Vectorization (ms) ~ 32-batch Vectorization (ms)  64-batch Vectorization (ms) Factor
int_add8 212.3 483.1 211.5 208.7 211.6 206.0 1.0
int_mul8 151.8 593.9 181.0 163.3 171.3 140.7 1.1
int_addé64 139.5 2734.8 137.2 129.9 144.4 135.6 1.1
int_mul64 588.9 5559.1 515.3 534.7 521.0 582.2 1.1
aes_128 1031.2 4569.6 2165.8 1999.5 1727.1 1562.6 0.7
aes_256 1648.1 6214.1 2138.4 2389.7 2060.8 2163.0 0.8
sha_256 2234.0 151 956.0 114 977.0 17 798.9 6703.8 4017.4 0.6
Keccak_f 5872.8 603.7 587.5 614.4 558.8 546.5 10.8

would have to be done either implicitly when evaluating output
nodes or explicitly through custom nodes. Also, it is technically
possible to explicitly describe public and secret values in FUSE IR
(see the security_level field inside DataTypeTable in Figure 1),
however adding a corresponding type checker is out of scope of
this paper and thus left for the future. As M-Circuits provide a very
powerful and expressive definition to represent functions for MPC,
an extension of FUSE IR to also cover M-Circuits and unify several
MPC representations would be of both theoretical and practical
interest.

5.2 File Formats for MPC
Compiling a high-level program into a highly optimized representa-
tion suitable for MPC makes the compilation process very expensive
(§2.2). For this reason, several file formats have been developed to
store the produced circuits persistently. Bristol Format [ST19] is
the most commonly known text-based file format to store Boolean
circuits for Secure Two-Party Computation (2PC). Because of its
restriction to the two party setting, Bristol Fashion [AAL*19] was
developed afterwards that makes small changes to support an ar-
bitrary number of parties. Extended Bristol Fashion [AAL*19] is
an additional extension to Bristol Fashion that introduces special
AND gates with multiple inputs and multiple outputs, MAND gates,
to describe vectorized AND gates. Bristol Format and Bristol Fash-
ion are widely used in MPC frameworks [DSZ15, BDST22, Kel20,
ACC*21, BDK"18, BCM*19, WMK16] because of their simplicity.
The Fairplay and FairplayMP frameworks [MNPS04, BDNP08]
introduce the Secure Hardware Definition Language (SHDL) to
describe Boolean circuits where gates are described with truth ta-
bles of arbitrary arities, meaning that gate can have two or more
inputs. The BMR circuit format MPCircuits [RJHK19] supports the
description of Boolean circuits with truth tables for MPC. How-
ever, it is restricted to gates that have exactly two inputs and pro-
duce one output. Similarly, the Simple Circuit Description (SCD)
format [Ebr15, BHKR13] defines Boolean circuits with truth ta-
bles where each gate has two input wires. This makes describing
unary functions like negation unintuitive. The Portable Circuit
Format (PCF) [KMSB13] for 2PC supports Boolean circuits with
function calls and a compact loop representation. Even though
FUSE IR makes it possible to describe loops syntactically, the rest
of the framework does not support it yet. Frigate [MGC*16] also

has a Boolean circuit format for MPC that supports function calls.
HyCC [BDK*18] is a compiler for MPC that compiles C to hybrid
circuits consisting of both Boolean and arithmetic operations. It de-
fines a custom binary format for 2PC, the . circ file format, which
we have discussed in §3.4.2.

5.3 Optimizations for MPC

The Sharemind framework [BLW08, BJL12] for Secure Three-Party
Computation demonstrated substantial performance gains by in-
troducing Instruction Vectorization (§3.6.2). By replacing multiple
identical subcircuits on single bits with one n-bit subcircuit, the
overall computation time and memory footprint are reduced signif-
icantly [SZ13]. With these results, state-of-the-art frameworks for
MPC support Single Instruction Multiple Data (SIMD) gates for vec-
torization [BDST22, Kel20, BCS21, DSZ15, GIP15, KSS13, BGJK21,
ZDC*21]. However, using SIMD gates requires an expert to search
for suitable instructions in a large circuit, which is a tedious and la-
borious process. The idea for automatically vectorizing instructions
inside a single circuit was suggested by [BK15] and is similar to our
Instruction Vectorization algorithm (§3.6.2). GraphSC [NWI*15]
introduces programming abstractions for parallelization, namely
the Scatter and Gather functionalities to automatically detect paral-
lelization.

The most recent work on vectorization was presented by Levy et
al. [LSI*23] in parallel and independent work. The authors present a
compiler framework that takes a Python-like routine and produces
vectorized MOTION [BDST22] code. For this, the authors introduce
the MPC Source intermediate language, which is a Python DSL. The
vectorization uses scalar expansion and loop vectorization to pro-
duce optimized code for MOTION. This approach is orthogonal to
our vectorization presented in §3.6.2, as FUSE does not perform vec-
torization on any high-level language, but on the generated FUSE
IR directly. With FUSE, it is possible to vectorize circuits after they
have already been generated, such as Bristol Format circuits [ST19].
However, since FUSE IR is a more low-level language than MPC
Source, it would make sense to implement a FUSE frontend for
optimized MPC Source and use the already existing FUSE backends
(§3.5) and optimization passes (§3.6).

Orthogonal to the works on vectorization, expression localiza-
tion reduces the amount of expressions that have to be computed
with MPC [HEKM11, Ker11, Ker13]. [HEKM11] first recognized



and manually applied localization, which was automatized by Ker-
schbaum in [Ker11, Ker13]. In [Ker11], the author presents a com-
piler optimization that infers program variables that can always be
learnt from the input and output. Essentially, the optimization la-
bels each program variable with the parties that know the variable’s
value. If a variable is known to both parties, there is no need for
executing MPC protocols, so the computation can be done in plain-
text which is more efficient. Building up on these results, [Ker13]
presents expression rewriting rules for more efficient protocols.

In [MSY21], the authors demonstrated that optimizations are not
only possible on software, but also on the hardware layer. Using
Vectorized AES (VAES) instructions led to drastic performance
improvements for the MPC frameworks ABY [DSZ15] and EMP-
AGMPC [WMK16].

6 FUTURE WORK

Serialization Frameworks. FlatBuffers [vO14] has a size-limit for
every binary buffer of around 2 GB due to implementation details.
In our case, this means we cannot describe very large circuits that
are larger than 2 GB. There are two ways to approach this problem:
The first one is to partition large circuits such that each partition
is serializable within a single FlatBuffer. This will need careful
adaptions to our framework. To keep the implementation as simple
as possible, the second approach is to implement FUSE IR on top
of a different serialization framework. Apache Arrow [RCC*22]
might be a good candidate as it allows partitioning data that is
too large for memory out-of-the-box and is already used in large
data-analysis projects. We discuss alternative frameworks in §B.2.
Extensions to FUSE IR. The PCF circuit format [KMSB13] pro-
poses loop building blocks. FUSE IR theoretically supports describ-
ing loops, but there is no implementation inside the FUSE frame-
work yet that supports them. An idea could be to encapsulate the
loop body and store the number of iterations in the loop node that
calls the loop body. Additionally, we could support more operations,
such as operators seen in neural networks like ReLU.
Optimization Passes. In general, MPC protocols do not sup-
port all the operations that FUSE IR allows to describe. E.g., Yao’s
GC [Yao86] that only supports Boolean operators cannot evaluate
additions out-of-the-box. For this, we could implement a specific
pass that takes in a subset of operations and expresses other op-
erators with the supported ones. Although this does not work for
all possible operator subsets, it will still enhance interoperability
of MPC tools using FUSE. To support more general code optimiza-
tions without re-implementing them, FUSE could use the LLVM
infrastructure by implementing both a front- and backend to LLVM
IR. For this, we could develop a target architecture in LLVM that
describes FUSE IR, s.t. LLVM does not generate any unsupported
operations.
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A USABILITY FUSE BACKENDS

Plaintext Interpreter. To check if a functionality in FUSE IR describes
the correct semantics, it can be tested by evaluation on plaintext
values. Our plaintext interpreter backend evaluates the functional-
ity on given input values and returns the results of the computation.
Given the input values for all input nodes of the circuit, the circuit
is evaluated node-by-node in topological order. The result of this
computation is stored in a map that maps node identifiers to each
node’s output values. We refer to this special mapping as the evalu-
ation environment of the circuit. These environments are also used
to evaluate calls: Whenever a call node occurs, a new environment
is created for the callee circuit and the callee is evaluated under
this new environment. In the end, the mappings for all the output
nodes are gathered and yield the output value of the circuit.

DOT Code Generation for Plotting Circuits. As FUSE IR is built as
a binary format, it is not human-readable by design. However, to
introduce some form of human-readability, we have implemented
a backend for the Graphviz DOT [GN00] language that can be
fed into tools like Graphviz to generate a visual representation of
FUSE IR. Additionally, paired with a FUSE frontend, this enables
translating a language without a human-readable export function
to FUSE IR to look at the functionality in a human-readable way.
This way, even formats that are no longer maintained actively
like HyCC [BDK*18] can get a human-readable representation
through FUSE IR. In addition to viewing FUSE IR via the DOT
format, it would be possible to implement a Ul for editing FUSE IR
by extending a DOT format editor such as [JR18] and re-importing
the result via a FUSE frontend for DOT format. We leave such an
extension as future work.

B ADDITIONAL RELATED WORK

B.1 Intermediate Representations

In the domain of general-purpose programming languages, the
widely known LLVM project [LA04] provides the LLVM Intermedi-
ate Representation (LLVM IR) which is a generalized Static Single-
Assignment (SSA) assembler language with a rich instruction set.
LLVM decouples high-level programming languages from the tar-
get CPU architecture and was mainly designed for the C/C++ pro-
gramming languages, but there are multiple frontends available,
including Haskell, Go, and Rust. LLVM provides a rich toolchain to
implement and execute analysis and optimization passes on LLVM
IR, which depend on the SSA form. In [HST*21], the authors have
used LLVM to automate circuit compilation for MPC with an opti-
mizer suite the produce optimized circuits. However, the problem
with using LLVM IR as an IR for MPC is that the language is too ex-
pressive, such that the generated intermediate representation from
high-level code like C/C++ can hardly be used directly in MPC con-
texts. Similarly to LLVM IR, [DKS*21] presents a graph-based IR for
MPC that is implemented as a new stage between HyCC [BDK*18]
circuits and the optimization phase of HyCC. The main difference
between FUSE and [HST*21, DKS*21] is that FUSE does not only
design an IR for MPC, but also a file format and a rich toolchain to
operate on the format.

Open Neural Network Exchange (ONNX) Standard [BLZ*19] rep-
resents machine learning models and is used in the MPC framework

MOTION2NX [BCS21]. It also defines an underlying file format
which is implemented using Google Protocol Buffers.® As opposed
to FlatBuffers, Protocol Buffers always need to be unpacked before
usage, making them less memory-efficient.

In the domain of Zero Knowledge (ZK) proofs, the CirC compiler
infrastructure [OBW20, OBW22] implements a shared infrastruc-
ture for compiling to special constraints in the form of existentially
quantified circuits. These are used to generate both proofs for Satis-
fiability Modulo Theories (SMT) and ZK. The computation format
CirC-IR describes stateless, non-deterministic, and non-uniform
computation. However, it has a more abstract view on functionali-
ties, such that the gap between CirC-IR and MPC targets is larger
than what we aim for in FUSE. However, similar to the case of
LLVM [LA04], we could benefit from this work by providing trans-
lations to and from FUSE IR.

B.2 Serialization Frameworks

Google Protocol Buffers® (protobuf) is very similar to FlatBuffers
(§2.3) and used in numerous projects, such as ONNX [BLZ*19] and
envoy proxy’. It also uses schemas to define the data types inside
the serialized binary and both frameworks do not incur extra space
for optional fields that have not been assigned a value. Every field
in a protobuf schema must have a unique identifier that cannot be
changed once set, making schema description and evolution more
complicated for users. Protobufs must be unpacked before access,
even if the access is read-only.

Another schema-based serialization framework with support for
schema evolution and zero-copy reads is Cap’n Proto [V*]. It was
built to be used in Sandstorm® and is used in Cloudflare Workers®.
When serializing data with Cap’n Proto, the order in which the
parts of the data is serialized does not matter, which is the case for
FlatBuffers. However, fields that are not set do impose an additional
memory-overhead, making the generated binaries with Cap’n Proto
larger than with FlatBuffers if there are unused fields.

Apache Arrow [RCC*22] is a columnar memory format for both
flat and hierarchical data that is specially organized for efficient
analytical operations on modern hardware. It also has numerous
use cases, such as Apache Spark, the FPGA-framework Fletcher!?,
and the pandas!! data analysis framework. Because it uses Flat-
Buffers [vO14] under the hood, it also provides read-access to seri-
alized data without unpacking. It provides more mechanisms built
on top of FlatBuffers like null values to abstract over values that are
not present in the FlatBuffer’s virtual table. Apache Arrow does not
fix a schema and adhere to it, but generates a FlatBuffer schema on
the fly for the serialized data to ensure fast serialization and zero-
copy reads. These techniques are likely to introduce an additional
memory-overhead for the generated binaries which is why we have
decided to directly work with FlatBuffers for the choice of our seri-
alization framework. However, unlike FlatBuffers, Apache Arrows
provides data streaming out of the box and was built specifically
with large-scale data processing in mind.

®https://developers.google.com/protocol-buffers
"https://github.com/envoyproxy/envoy
8https://github.com/sandstorm-io/sandstorm
“https://developers.cloudflare.com/workers/
Ohttps://github.com/abs-tudelft/fletcher
https://github.com/pandas-dev/pandas
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C INSTRUCTION VECTORIZATION

Our Algorithm. The instruction depth of gate g for operation o is
the maximum number of 0-gates from any input gate to g. We first
group gates of a particular operation o by their instruction depth
to identify suitable candidate lists for vectorization. This method
of candidate selection ensures that no output-input relation exists
between two vectorized gates, as such gates could not be executed in
parallel. Indeed, if two o-gates have the same instruction depth for o,
they cannot have an output-input relationship. Further, we consider
only candidate lists with equal to or more than Min_Gates entries
for vectorization because it might not be beneficial to vectorize
fewer than Min_Gates gates.

The general depth of gate g is the maximum number of gates
from any input gate to g. We use the general depth to estimate
how far two gates are apart in each candidate list, and exclude
distant candidates, which would cause a significant delay when
executed in parallel. Indeed, we calculate the general depth median
of each list, and prune gates with a difference to the median greater
than Max_Distance. Finally, the candidate lists are transformed
into SIMD gates.

FUSE offers Instruction Vectorization for one specific operation
and for all operations simultaneously. It generates a report that
contains the total number of replaced gates per operation. The
parameters Min_Gates and Max_Distance can be set by users of
the optimization pass.

D FREQUENT SUBCIRCUIT ANALYSIS
COMPUTATION STAGES

Stage 1 - Frequent Subgraph Mining. Frequent Subcircuit Replace-
ment is a two-stage process that first identifies patterns, i.e., the
same instruction sequence at different positions in the circuit, and
subsequently replaces each occurrence by a call node. For the first
stage, we transform the MPC circuit into a graph format and apply
an algorithm from the domain of Frequent Subgraph Mining, which
enumerates all subgraphs that repeatedly occur with a frequency
above some minimum threshold. Every node in the graph corre-
sponds to a node in the circuit, and every edge corresponds to a
successor relationship between two nodes.

DistGraph [TZ16] is a state-of-the-art Frequent Subgraph Mining
algorithm that supports sequential, thread-parallel and distributed
modes of operation.

It can operate on graphs that would otherwise be too large to
fit in the memory of a single compute node by partitioning the
input graph into different segments. In this context, DistGraph can
handle massive networks with over a billion vertices and four bil-
lion edges [TZ16], and offers a scalable and flexible solution for the
first stage of our optimization. Different Frequent Subgraph Mining
algorithms [EASK14, RK07, TFS*15] further restrict the modes of
operation or assume that the input graph fits into the memory of
a single compute node. FUSE currently supports sequential Dist-
Graph execution, which does not segment the input graph. The run-
time of DistGraph, the size and the amount of identified patterns is
highly dependent on the user-provided parameter Min_Frequency,
i.e., the minimum frequency of a subgraph to be considered by
the algorithm. A larger value generally implies smaller, identified
patterns and a smaller DistGraph runtime because the search space

can be efficiently pruned during the calculation. We found in our
experiments that even for small fluctuations in the parameter value,
the runtime and the output might change significantly - result-
ing in infeasible runtimes or tiny patterns. Thus, it is essential to
simplify the parameter selection of a ’good’ Min_Frequency in the
FUSE framework.

DistGraph is supposed to identify frequent patterns that, when
replaced, improve the memory footprint of the circuit. Surprisingly,
we found that for large patterns, the replacement often produces
circuits with an increased memory-footprint compared to the orig-
inal circuit. This is most likely due to the overhead of the newly
created subcircuit, and the fewer occurrences of larger patterns: A
minimum amount of calls is required to compensate the overhead.
Small patterns also increase the memory-footprint because call
nodes are more memory consuming than standard gates. During
experiments, we found that both too large and too small patterns do
not improve memory efficiency of the circuit, thus, we want to iden-
tify and replace medium-sized patterns to achieve an improvement
in memory consumption.

We provide an automatic time-based parameter search that
searches for an optimal Min_Frequency € [2, numGates] via binary
search, where numGates is the number of gates in the MPC circuit.
We observed that DistGraph terminates within a small timeout for
parameters that produce small- and medium-sized patterns. Thus,
our parameter search returns a parameter, s.t. DistGraph terminates
in a feasible time, and finds medium-sized patterns. Furthermore,
we provide the option to further post-process the DistGraph out-
put to include the largest (Mode=0), the second largest (Mode=1), or
the third largest (Mode=2) patterns. In some cases, this produces
different results with respect to the number and locations of re-
placements. The automatic parameter search for Min_Frequency
can also search for the best Mode parameter (Try_Modes>1).

Stage 2 - Finding Subgraph Isomorphisms. The first stage of the
Frequent Subcircuit Replacement optimization identifies frequent
patterns in the circuit. In the second stage, we create a subroutine
for every pattern and replace its embeddings in the circuit by sub-
routine calls. To identify the embeddings, we apply an algorithm
for finding Subgraph Isomorphisms, i.e., finding a small pattern
graph inside a larger target graph or determining its non-existence.
The result is a set of mappings from the vertices of the pattern
graph to the vertices of the target graph [MPT20]. Subgraph Iso-
morphism algorithms can be classified into the following categories:
backtracking- and connectivity-based algorithms [BG17, CFSV18],
and those based upon constraint programming [Sol10, MPT20].

While the constraint programming-based algorithms provide
better performance on hard instances, backtrackers will generally
run faster and with less memory footprint on easy instances due to
lower overheads and faster startup costs [Sol19, MPT20]. Constraint
programming adds additional implied constraints that can speed up
the solving process, such as filtering nodes by their neighborhood
before considering an embedding [MPT20]. The Glasgow Subgraph
Solver [MPT20] uses a constraint programming-based approach
and performs best on hard instances [Sol19]. We use the sequential
algorithms provided by the Glasgow Subgraph Solver to gracefully
cover hard instances in our optimization.
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Figure 3: Example Module in FUSE IR for Logistic Regression Inference.

We subsequently filter the output of the Glasgow Solver to ex-
clude invalid embeddings before the replacement. (1) Overlapping
Embeddings: Two embeddings contain the same node, which can
only be replaced once by a subroutine call. (2) Cyclic Embeddings:
A cyclic embedding contains outputs that feed into the inputs of the
subcircuit. However, during a call to a subcircuit, all input values
need to be concrete, which is not the case for such circular depen-
dencies. We perform a pruned depth-first search at every output
node to identify and exclude circular embeddings. FUSE generates
a report for the Frequent Subcircuit Replacement optimization that
summarizes the number of replaced embeddings for each pattern.

E FUSE IR EXAMPLE: LOGISTIC REGRESSION

In Figure 3 we present an example FUSE IR module that describes
Logistic Regression inference for an already trained Logistic Re-
gression model. The module contains three functions, of which the

main function marks the entry point for execution. The main func-
tion takes in a 4 X 4 float matrix, calls the logistic_inference
function and returns a float matrix of the same dimensions. In
logistic_inference, the weights and bias matrices are constants,
since we initially assumed that the model was trained already. In
our example, the weights vector contains the values [1.0, 0.3,
7.2, 3.3] which are stored inside the payload field of the node.

Since matrix multiplication has special protocols, e.g., in [MR18,
MZ17], we can describe this with a custom node with the operation
name MatMul. The output of this matrix multiplication is given to
the logistic_function, which in this example is implemented
as a Boolean circuit. This assumption is justified, since in MPC
non-linear function are often more efficient in the Boolean than
in the Arithmetic world. To do that, the matrix values are split
into Boolean wires and in the end merged together to produce the
output matrix.
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