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ABSTRACT
Cache side-channel attack is a common threat in cloud environ-
ments where caches are shared across co-located tenants. Detection
of such attacks in real-time before the attack procedure is com-
pleted can enable cloud users to come up with a countermeasure
and protect their privacy against these kinds of vulnerabilities. In
this work, a real-time cache side-channel attack detection system
for cloud systems is presented which leverages hardware perfor-
mance counters. The combination of two neural networks is trained
with long-term time sequences collected via hardware performance
counters to learn the normal behavior of benign applications so
that anomalies caused by attackers can be detected. This paper
primarily examines the selection of best fit hardware performance
counters for this purpose. Initial experiments are performed and
time series feature extraction and selection methods are applied to
preliminary results for the analysis.
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1 INTRODUCTION
Cache is one of the side channels which can be leveraged by mea-
suring and evaluating the time of memory accesses to get some
information about the utilization of the shared cache. A cache side-
channel attack is one of the most well-known threats that can be
performed in cloud systems aswell as non-virtualized environments.
Since the attacker does not need to access the device physically to
conduct this type of attack, the cache can be used as the source
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of vulnerability when co-residency is achieved in a multi-tenant
cloud system. In several prior researches such as [1, 12, 14, 24]; it
is proved that cache side-channel attacks are practically applicable
across virtual machine (VM) boundaries. Therefore it is crucial to
develop powerful detection systems to make cloud environments
more secure.

The main challenge of a detection system against cache side-
channel attacks is to be capable of detecting all attack types includ-
ing the ones not yet discovered. Besides the core challenges of cache
side-channel attacks, additional constraints specific to cloud envi-
ronments should also be considered to propose a practical detection
system for cloud systems.

In the scope of this work, a real-time anomaly-based detection
system is proposed for cross-VM cache side-channel attacks. Any
type ofmalicious activity in cache side-channel attacks leaves abnor-
mal alteration in the exploited shared resources. Therefore anomaly-
based detection techniques can be applied to the data collected
by monitoring the victim VM’s own cache utilization instead of
co-located VMs. Hardware performance counters exposed by the
Performance Monitor Unit in many modern processors can be used
to monitor changes on the victim VM over time. The anomaly-based
detection technique will be developed by combining Convolutional
Neural Network (CNN) and Long-Short Term Memory (LSTM) net-
work because of their capabilities at feature extraction and temporal
modeling respectively [20]. A unified neural network will be trained
with time-based benign execution patterns collected via hardware
events. In summary, the contribution of the proposed system can
be listed as follows:

• The first usage of the unified architecture of CNN and LSTM
network in the detection of cross-VM cache side-channel
attacks

• Detection of all types of cache side-channel attacks in real-
time

• Diversity in scenarios including both virtualized and non-
virtualized environments

In the proposed detection system, a unified network model is
trained after determining best fit hardware performance counters
and collecting a sufficient number of benign execution patterns
in the format of time series data. This paper primarily focuses
on the selection of hardware performance counters that yield the
most useful results for the proposed anomaly detection system. The
motivation of the paper is to study the characteristics of hardware
performance counters with respect to time during the execution of
comprehensive scenarios.

17

https://doi.org/10.1145/3579988.3585052
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3579988.3585052
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579988.3585052&domain=pdf&date_stamp=2023-04-24


SaT-CPS ’23, April 26, 2023, Charlotte, NC, USA Melis Kapotoglu Koc and Deniz Turgay Altilar

2 BACKGROUND
In this section cache side-channel attacks and hardware perfor-
mance counters are introduced for a better understanding of the
proposed system.

2.1 Cache Side-Channel Attacks
The adversary tries to extract sensitive information such as the
secret key in a cryptographic application, by peeking at shared
CPU caches in the cache side-channel attacks. Several techniques
supported by most modern CPUs for optimization purposes such
as hierarchical cache, memory deduplication, Intel TSX, etc. are
leveraged by the attacker to manipulate the cached data. Data flows
or control flows that can reveal secrecy-related information are
monitored with the help of cache use patterns. Two common cache
manipulation techniques for side-channel attacks are Prime-Probe
and Flush-Reload attacks which are explained as follows:

• Prime-Probe Attack: First proposal of this attack is seen
in [19]. In the beginning, an array of memory blocks corre-
sponding to the concerned cache sets are allocated by the
adversary. Then execution of the attack phases starts. In the
PRIME phase, allocated memory blocks are accessed to be
placed in the cache. In this way, memory blocks which be-
long to the victim are evicted from the cache. The adversary
becomes idle for some time interval after PRIME phase to let
the victim perform sensitive operations using cache. Then
PROBE phase is executed in which the memory blocks allo-
cated in the beginning are read again to measure the time
needed for accessing them. If the accessed memory block is
residing in the cache, the required time to read it should be
shorter as a result of the cache hit. If the measured time is
longer, the cache has been filled by the victim during the idle
period of the adversary. These operations are repeated until
an amount of meaningful execution traces are collected.

• Flush-Reload Attack: This attack is first proposed in [9]
and assumes that the victim and adversary share the same
cache lines. This actually means that the samememory pages
should be shared by different parties. This assumption can be
met with the existence of memory deduplication technique.
Critical memory blocks from shared pages are determined
by the adversary as the initialization of this attack. In the
FLUSH phase, selected memory blocks are removed from
cache memory with the help of clflush[18] instruction. Simi-
lar to the previous attack, the adversary waits for some time
to have the victim perform sensitive operations using the
cache. Then RELOAD phase is executed in which selected
memory blocks are read again to measure the access time. If
the access time is short because of a cache hit, this means
the memory block has been used by the victim in the idle
time of the adversary.

2.2 Hardware Performance Counters
Hardware performance counters (HPCs) are special registers avail-
able in most modern processors aiming to monitor certain events
primarily for the purpose of software debugging, system perfor-
mance analysis, and tuning [11]. In addition to the main purposes,

they are also being used for intrusion detection with negligible per-
formance overhead in recent researches. It is possible to program
HPCs according to the needs with the help of the Performance
Monitor Unit (PMU). While measurable events seem to provide
simple data, valuable information can be obtained with the right
combination of different performance counters assuming that the
processor supports multiple counters running simultaneously.

3 RELATEDWORK
There are various studies on cache side-channel attack detection in
the literature. However, in this paper, we consider it appropriate to
mention a few studies that provide comparable information about
their feature selection methods.

CacheShield [2] is an anomaly-based side-channel attack detec-
tion tool for cloud systems, in which a self-monitoring mechanism
is applied similar to our system. CacheShield proposes an unsuper-
vised detection algorithm using Cumulative Sum (CUSUM) detec-
tion [17] to make the system adaptive for different attack patterns.
The use of different machine learning algorithms in the detection
of various types of cache side-channel attacks is commonly seen
in recent researches [5, 16, 21]. In [4], three methods, two of them
based on machine learning, are introduced to detect a spy process
conducting a cache side-channel attack. The strengths and weak-
nesses of each are discussed in real-world scenarios. As a different
approach, CloudRadar [23] proposes a real-time cache side-channel
attack detection and mitigation system for multi-tenant cloud sys-
tems, combining two detection techniques, namely signature-based
detection and anomaly-based detection. Signature-based detection
is used to recognize the execution pattern of sensitive applications
running in the victim VM and anomaly-based detection is used
to detect anomalous cache use patterns of co-located VMs as is
typically seen during cache side-channel attacks. The authors build
their detection system on the premise that consecutive occurrence
of cryptographic application execution on the victim VM and ab-
normal cache usage on co-located VMs is an important indicator of
side-channel attacks.

In FortuneTeller [10], authors use the LSTM network and Gated
Recurrent Unit (GRU) network individually tomodel time-dependent
behaviors of benign applications to detect microarchitectural at-
tacks in real-world environments. Both network models are trained
in an unsupervised way with long sequences of data. In this work,
authors feed the LSTM network model with raw time series data.
Therefore, the shortcoming of their system is the lack of tempo-
ral representation of input data. Their system can be improved
by adding a feature extraction layer before the LSTM network. In
our research, this issue is resolved by combining CNN and LSTM
networks.

In all of the aforementioned studies, HPCs are leveraged to mon-
itor certain hardware events in the detection of cache side-channel
attacks. However, they use different methods to determine optimal
HPCs for similar purposes. Table 1 shows experiment parameters
and selected events in these studies. In our opinion, it would be
more effective to select best fit HPCs by applying a feature extrac-
tion method which evaluates temporal aspects since studied data
consists of a sequence of data points collected over an interval of
time.
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Table 1: State-of-the-art Researches on HPC Selection for Cache Side-Channel Attack Detection

Name Algorithm Sampling Number of HPCs Sample Size Chosen HPCs
Interval

CloudRadar [23] Fisher Score [7] 100 𝜇s 16 15000 Branch instructions
(in signature-based detection)

CacheShield [2] Relief Algorithm [13] 100 𝜇s 30 1 million L3 Cache Misses

NIGHTs-WATCH [16] No specific algorithm N/A 12 Unknown number Branch Miss-Predictions
(Empirically determined) of samples collected Total Execution Cycles

through 15000 RSA L1 Instruction Cache Misses
encryption rounds L3 Instruction Cache Accesses

HybridShield [21] Greedy Forward Selection [3] 50 𝜇s 16 N/A L1 Cache Hits
Pearson Correlation

Cho et al. [5] No specific algorithm N/A N/A N/A L1 Cache Misses
(Empirically determined) L2 Cache Misses

L3 Cache Misses
Speculative and Retired Branches
Instruction Per Cycle

Chiappetta et al. [4] No specific algorithm N/A N/A N/A Total Instructions
(Empirically determined) Total CPU Cycles

L2 Cache Hits
L3 Cache Misses
L3 Cache Accesses

FortuneTeller [10] LSTM [8] 1 ms 36 N/A L1 Instruction Misses
L1 Instruction Hits
L3 Cache Misses

4 DETECTION SYSTEM
In this section, we propose a real-time cross-VM cache side-channel
attack detection system that monitors the anomalies in the val-
ues of HPCs. Since cache side-channel attacks cause deviations in
the cache usage of the victim’s execution, detection can be accom-
plished by monitoring the HPCs on the victim’s own VM, instead
of those of co-located VMs. Figure 1 illustrates the architecture dia-
gram of the proposed system. The initial component of the system
architecture consists of an offline phase, during which a time series
feature extraction and selection method is applied to data gathered
from various scenario settings to determine the best fit HPCs. For
this purpose, the output of the HPCs is leveraged to describe the
execution traces of a benign VM in the presence or absence of an
attack in the cloud system. Once the best fit HPCs are determined, a
network model that combines a CNN and LSTM network is trained
using the supervised data collected in the first step from selected
HPCs of several benign applications.

The proposed model utilizes the capability of CNN to extract
local features by examining the time series of simultaneous read-
ings from potentially multiple HPCs selected in the previous step.
Subsequently, the extracted features are processed through the pool-
ing procedure to diminish dimensionality within the convolution
layer. An LSTM layer which is a modified version of Recurrent
Neural Networks (RNN) is employed after the convolution layer to
enable learning of long-term temporal relationships in sequential
data through its internal memory. The dropout layer follows both
the convolution and LSTM layers during the training phase of the
model to reduce overfitting by randomly deactivating some of the
neurons in the network. The fully connected layer, situated at the

end of the network just before the output layer, functions to connect
and integrate all neurons derived from the preceding layer, thereby
generating a binary output that indicates the presence or absence
of an attack. Once the proposed hybrid model is trained with the
supervised HPC dataset in time series format, it can be employed in
the online phase to monitor real-time execution traces of a victim
VM to detect any cache side-channel attacks.

Architectures designed for defeating side-channel attacks in the
cloud mostly require modifications in the hardware, hypervisors, or
guest VMs. However, alterations in the underlying infrastructure
are unacceptable for already-built cloud systems. This kind of limi-
tation becomes the main obstacle against most existing detection
mechanisms for not being adopted in cloud systems. Therefore the
proposed system is designed so as not to require any modification
in the underlying hardware, hypervisor, or guest operating systems.
It can be run by cloud users individually without any need from the
hypervisor except access permission to performance counters. Vic-
tim VM can activate the detection system when needed (e.g. in the
execution of a sensitive operation) so that performance overhead
can be minimized.

There are over one hundred HPCs available, which can vary
based on the processor architecture. Additionally, the number of
HPCs that can be simultaneously read is also dependent on the
processor architecture. Thus, when selecting the best fit HPCs for
the proposed system, both their availability and the number that can
be read simultaneously should be carefully considered since these
constraints have a direct impact on the success of the proposed
system.

19



SaT-CPS ’23, April 26, 2023, Charlotte, NC, USA Melis Kapotoglu Koc and Deniz Turgay Altilar

Monitoring
Process

Benign
Process
....

LSTM
Layer

Attack
Exists!

Selection of
Best Fit HPCs

Computer Architecture

HypervisorAPI

Offline Phase 1:
Feature Selection

HPC values

Main Memory

LLC

L2 L2

....L1-D L1-I L1-D L1-I

Core Core

Host OSPMU Kernel
Feature Vector

Supervised dataset
in time series

format
Online Phase

Offline Phase 2: Training CNN+LSTM Network Model

Trained
CNN+LSTM

Network Model

<Selected HPCs>

Convolution
Layer

Input
Layer

<Selected HPCs>

DropoutDropout
Fully

Connected
Layer

....

Output

HPC values

Monitoring
Process

Benign
Process

Figure 1: The architecture diagram of the proposed cache side-channel attack detection system. The red and blue circles on top
of the hypervisor indicate benign and attacker VMs, respectively, which are co-located on the same physical cloud server. In
the first step of the offline phase, HPC values are collected in various scenarios and the best fit HPCs are selected. The collected
data of the selected HPCs are used to train a CNN+LSTM network model. In the online phase, the trained model is used to
monitor the executions of victim VMs and detect cache side-channel attacks in real time.

5 EXPERIMENTS
The first step in building the proposed system is the determination
of best fit HPCs. Therefore, experiments should be performed to
collect data and implement a suitable approach for feature selection.
In this section, the experimental setup and scenarios are explained
and then preliminary results are analyzed.

5.1 Experimental Setup
The experiments are performed on a computer equipped with an
Intel(R) Core(TM) i7-11800H CPU having 16 cores, a 24 MB 12-way
set associative non-inclusive L3 cache, and 16GB of RAM. The oper-
ating system is Ubuntu 20.04 LTS. PAPI (Performance Application
Programming Interface) [15] is used as a profiling tool to configure
and read HPCs. A data collection framework is developed on top of
PAPI to gather data from HPCs. Additional supplementary libraries,
namely OpenSSL for including full-featured implementations of
common cryptographic algorithms and Mastik [22] for running
practical implementation of micro-architectural side-channel at-
tacks are integrated into the data collection framework. For the

analysis of initial experiments, tsfresh [6] which is a Python pack-
age providing several time series characterization methods, is used
to apply feature extraction and selection techniques to the collected
data.

5.2 Scenarios
In order to select the most suitable HPCs for the proposed detection
system, it is required to have a clear understanding of how counter
values change while cache attacks are being conducted. Therefore,
HPC data should be collected for various real-world scenarios. Ini-
tially, two basic categories are determined: No-attack and Attack
scenarios. One benign application and one monitoring process run
in No-attack scenario. While benign application executes an opera-
tion, monitoring process periodically reads counter values which
are specifically registered for the benign process. In Attack scenario,
there should be an extra process running simultaneously along with
the others and conducting cache side-channel attack against the
benign application.

Table 2: Top five HPCs having the highest F-Scores and corresponding extraction methods

Name Description F-Score Method

UNHALTED_CORE_CYCLES Number of core clock cycles in unhalted state 0.937491 absolute_maximum
INSTRUCTION_RETIRED Number of instructions at retirement 0.921544 absolute_maximum
UNHALTED_REFERENCE_CYCLES Number of reference clock cycles (fixed frequency) 0.897037 mean
BRANCH_INSTRUCTIONS_RETIRED Number of branch instructions at retirement 0.852241 absolute_maximum
LLC_REFERENCES Number of each request to reference a cache line in LLC 0.805889 root_mean_square
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Figure 2: Change of values of top five HPCs over time for prime number calculation (top left), file operation (top
right), and AES-128’s t-table execution (bottom). Topmost of each subfigure: 0 for No-attack and 1 for Attack scenarios.
HPCs from top to bottom: UNHALTED_CORE_CYCLES, INSTRUCTION_RETIRED, UNHALTED_REFERENCE_CYCLES,
BRANCH_INSTRUCTIONS_RETIRED, and LLC_REFERENCES.

Three types of benign applications and one cache side-channel
attack are selected for the experiments. Benign applications are:

• a computation-intensive application calculating the total
number of prime numbers up to a big integer value,

• a file-based operation which reads the content of a text file,
• a cryptographic application that runs AES-128’s t-table im-
plementation in OpenSSL.

In Attack scenario set, a Flush-Reload attack is performed against
each benign application. In this way, the changes in HPC values
can be observed in multiple scenarios. For example, in the Attack
scenario of the prime calculator application, the attacker fails to
obtain any sensitive information. On the other hand, it is possible
to leak critical information in the Attack scenario of file-based
operation and cryptographic application.
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5.3 Preliminary Results
The monitoring, attacker, and benign processes are run simultane-
ously on the same operating system without any virtualization in
the given scenarios. Each benign application is executed individu-
ally and the monitoring process is attached to the benign process
(not the attacker) since our purpose is to catch the anomalies in the
normal execution behavior of benign applications as explained in
the system architecture. The total number of HPCs observed during
experiments is 37. The sampling interval of the monitoring appli-
cation is 100 𝜇s. 1000 samples in time series format are collected
for each HPC in every scenario which means the total sample size
gathered in the given six scenario variations (Attack and No-attack
scenarios with three benign applications) is more than 200000.

In the analysis of our data, we apply the rolling mechanism in
tsfresh package before feature extraction to create multiple con-
secutive sub-time series from a big single time series by sliding a
window over it. In this way, it is possible to evaluate smaller time
series data within a specified window size. Then feature extraction
is applied by using several operations such as sum, median, absolute
maximum, and variance. Eventually, the feature selection module
of tsfresh (which operates on p-values) is used to decide the most
relevant features based on the importance of extracted features.

The presented results in Table 2 show the top five HPCs that
yield the highest F-scores, along with the corresponding extraction
methods. Here a basic classifier based on a decision tree is used to
evaluate the results. Figure 2 illustrates how the values of the top
five HPCs change over time for the given three benign applications
underAttack andNo-attack scenarios. The results are shown side by
side for Attack and No-attack scenarios, highlighting the differences
in values between the two scenarios. In our experiments, time
measurement is converted to index numbers for simplicity since it
does not hold any meaning beyond representing the data sequence.

6 CONCLUSION AND FUTUREWORK
In this work, an anomaly-based real-time detection system is in-
troduced for cross-VM cache side-channel attacks. Before training
the proposed model that combines CNN and LSTM networks, best
fit HPCs providing the most useful data for our purpose should
be determined. In this paper, preliminary experimental results for
determining the best fit HPCs are analyzed. A feature extraction
method evaluating temporal aspects is executed on time series data
collected from multiple scenario variations. Since the selection of
best fit HPCs is so crucial for the success of the proposed detection
system, our plan is to enhance scenario variations, especially by
including cloud scenarios. A comparison of the experimental results
in virtualized and non-virtualized environments is our future work.

Upon completing the proposed detection system, an evaluation
of the proposed detection system will be conducted based on signif-
icant criteria such as detection latency, the accuracy of attack detec-
tion, and performance overhead on the monitored VM. Moreover, a
comparison will be performed with a state-of-the-art research that
uses a similar approach, such as FortuneTeller, with respect to these
criteria. Our objective with the proposed detection system is to
demonstrate that it is possible to construct more secure cloud plat-
forms with robust security mechanisms and minimal performance
overhead.
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