
Performance Analysis and Optimal Node-Aware Communication for
Enlarged Conjugate Gradient Methods

SHELBY LOCKHART, University of Illinois at Urbana-Champaign, USA

AMANDA BIENZ, University of New Mexico, USA

WILLIAM GROPP, University of Illinois at Urbana-Champaign, USA

LUKE OLSON, University of Illinois at Urbana-Champaign, USA

Krylov methods are a key way of solving large sparse linear systems of equations, but suffer from poor strong scalabilty on
distributed memory machines. This is due to high synchronization costs from large numbers of collective communication
calls alongside a low computational workload. Enlarged Krylov methods address this issue by decreasing the total iterations
to convergence, an artifact of splitting the initial residual and resulting in operations on block vectors. In this paper, we
present a performance study of an Enlarged Krylov Method, Enlarged Conjugate Gradients (ECG), noting the impact of block
vectors on parallel performance at scale. Most notably, we observe the increased overhead of point-to-point communication
as a result of denser messages in the sparse matrix-block vector multiplication kernel. Additionally, we present models
to analyze expected performance of ECG, as well as, motivate design decisions. Most importantly, we introduce a new
point-to-point communication approach based on node-aware communication techniques that increases efficiency of the
method at scale.

CCS Concepts: •Mathematics of computing→Mathematical software performance; Solvers; •Computingmethod-
ologies→ Distributed algorithms.

Additional Key Words and Phrases: parallel, communication, sparse matrix, collectives

1 INTRODUCTION

A significant performance limitation for sparse solvers on large scale parallel computers is the lack of compu-
tational work compared to the communication overhead [21]. The iterative solution to large, sparse linear
systems of the form 𝐴𝑥 = 𝑏 often requires many sparse matrix-vector multiplications and costly collective
communication in the form of inner products; this is the case with the conjugate gradient (CG) method, and
with Krylov methods in general. In this paper, we consider so-called enlarged Krylov methods [15], wherein
block vectors are introduced to improve convergence, thereby reducing the amount of collective communica-
tion in exchange for denser point-to-point communication in the sparse matrix-block vector multiplication.
We analyze the associated performance expectations and introduce efficient communication methods that
render this class of methods more efficient at scale.

There have been a number of suggested algorithms for addressing the imbalance in computation and commu-
nication within Krylov methods, including communication avoidance [8, 19], overlapping communication and
computation [10], and delaying communication at the cost of performing more computation [9]. Most recently,
there has been work on reducing iterations to convergence via increasing the amount of computation per
iteration, and ultimately, the amount of data communicated [14, 22, 23]. These approaches have been successful

Authors’ addresses: Shelby Lockhart, sll2@illinois.edu, University of Illinois at Urbana-Champaign, Department of Computer Science, Urbana,
Illinois, 61801, USA; Amanda Bienz, bienz@unm.edu, University of New Mexico, Department of Computer Science, Albuquerque, New Mexico,
87131, USA; William Gropp, wgropp@illinois.edu, University of Illinois at Urbana-Champaign, Department of Computer Science, Urbana,
Illinois, 61801, USA; Luke Olson, lukeo@illinois.edu, University of Illinois at Urbana-Champaign, Department of Computer Science, Urbana,
Illinois, 61801, USA.

1

ar
X

iv
:2

20
3.

06
14

4v
1

 [
cs

.D
C

]
 1

1
M

ar
 2

02
2

HTTPS://ORCID.ORG/0000-0003-4938-6111
HTTPS://ORCID.ORG/0000-0002-8891-934X
HTTPS://ORCID.ORG/0000-0003-2905-3029
HTTPS://ORCID.ORG/0000-0002-5283-6104
https://orcid.org/0000-0003-4938-6111
https://orcid.org/0000-0002-8891-934X
https://orcid.org/0000-0003-2905-3029
https://orcid.org/0000-0002-5283-6104

2 Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson

in reducing the number of global synchronization points; the current work is considered complementary in
that the goal is reduction of the total amount of communication.

In addition to reducing synchronization points, Enlarged Krylov methods such as enlarged conjugate
gradient (ECG) reduce the number of sparse matrix-vector multiplications by improving the convergence of the
method through an increase in the amount of computation per iteration. This is accomplished by using block
vectors, which results in both an increase in (local) computational work, but also an increase in inter-process
communication per iteration. Consequently, the focus of this paper is on analyzing the effects of block vectors
on the performance of ECG and proposing optimal strategies to address the communication imbalances they
introduce.

There are two key contributions made in this paper.

(1) A performance study and analysis of an enlarged Krylov method based on ECG, with an emphasis on
the communication and computation of block vectors. Specifically, we note how they re-balance the
point-to-point and collective communication within a single iteration of ECG, shifting the performance
bottleneck to the point-to-point communication.

(2) The development of a new communication technique for blocked data based on node-aware communi-
cation techniques that have shown to reduce time spent in communication within the context of sparse
matrix-vector multiplication and algebraic multigrid [3, 5]. This new communication technique exhibits
speedups as high as 60x for various large-scale test matrices on two different supercomputer systems,
as well as, reduces the point-to-point communication bottleneck in ECG.

These contributions are presented in Section 3 and Section 4, respectively.

2 BACKGROUND

The conjugate gradient (CG) method for solving a system of equations,𝐴𝑥 = 𝑏, exhibits poor parallel scalability
in many situations [8, 13, 19, 20]. In particular, the strong scalability is limited due to the high volume
of collective communication relative to the low computational requirements of the method. The enlarged
conjugate gradient (ECG) method has a lower volume of collective communication and higher computational
requirements per iteration compared to CG, thus exhibiting better strong scalability. In this section, we detail
the basic structure of ECG, briefly outlining the method in terms of mathematical operations and highlighting
the key differences from standard CG. A key computation kernel in both Krylov and enlarged Krylov methods
is that of a sparse matrix-vector multiplication; we discuss node-aware communication techniques for this
operation in Section 2.2.

Throughout this section and the remainder of the paper, ECG performance is analyzed with respect to the
problem described in Example 2.1.

Example 2.1. In this example, we consider a discontinuous Galerkin finite element discretization of the Laplace

equation, −Δ𝑢 = 1 on a unit square, with homogeneous Dirichlet boundary conditions. The problem is generated

using MFEM [2] and the resulting sparse matrix consists of 1 310 720 rows and 104 529 920 nonzero entries. Graph

partitioning is not used to reorder the entries, unless stated.

2.1 Enlarged Krylov Subspace Methods

Similar to CG, ECG begins with an initial guess 𝑥0 and seeks an update as a solution to the problem 𝐴𝑥 = 𝑏,
with the initial residual given by 𝑟0 = 𝑏 −𝐴𝑥0. Unlike CG, which considers updates of the form 𝑥𝑘 ∈ 𝑥0 + K𝑘 ,

Performance Analysis and Optimal Communication for ECG 3

where K𝑘 is the Krylov subspace defined as

K𝑘 = span{𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, . . . , 𝐴

𝑘−1𝑟0}, (2.1)

ECG targets 𝑥𝑘 ∈ 𝑥0 + K𝑘,𝑡 where K𝑘,𝑡 is the enlarged Krylov space defined as

K𝑘,𝑡 = span{𝑇𝑟0,𝑡 , 𝐴𝑇𝑟0,𝑡 , 𝐴
2𝑇𝑟0,𝑡 , . . . , 𝐴

𝑘−1𝑇𝑟0,𝑡 }, (2.2)

with 𝑇𝑟,𝑡 representing a projection of the residual 𝑟 (defined next). Notably, the enlarged Krylov subspace
contains the traditional Krylov subspace: K𝑘 ⊂ K𝑘,𝑡 [14].

In (2.2), 𝑇𝑟,𝑡 defines a projection of the residual 𝑟 (normally the initial residual 𝑟0) from R𝑛 → R𝑛×𝑡 , by
splitting 𝑟 across 𝑡 subdomains. The projection may be defined in a number of ways, with the caveat that the
resulting columns of 𝑇𝑟,𝑡 are linearly independent and preserve the row-sum:

𝑟 =

𝑡∑︁
𝑖=0
(𝑇𝑟,𝑡)𝑖 , (2.3)

where we denote the 𝑖th column of 𝑇 as (𝑇)𝑖 . An illustration of multiple permissible splittings is shown
in Figure 2.1.

𝑟 → 𝑇𝑟,3 𝑟 → 𝑇𝑟,3 𝑟 → 𝑇𝑟,3

Fig. 2.1. Three examples of𝑇𝑟,𝑡 , with 𝑡 = 3. In each case, 𝑟 is a vector of length 12, decomposed into 12 × 3 block vector. The
colors represent a case of four processors: orange, green, red, and blue.

Increasing the number of subdomains, 𝑡 , increases computation from single vector updates to block vector
updates of size 𝑛×𝑡 . Additional uses of block vectors within ECG are outlined in detail in Algorithm 1. On Line 5
a (small) linear system is solved to generate the 𝑡 search directions. In addition, the sparse matrix-block vector
product (SpMBV) 𝐴𝑃𝑘 is performed at each iteration. The number of iterations to convergence is generally
reduced from that required by CG, but the algorithm does not eliminate the communication overhead when
the algorithm is performed at scale. Unlike CG, where the performance bottleneck is caused by the load
imbalance incurred from each inner product in the iteration, ECG sees communication overhead at scale due
to the communication associated with the SpMBV kernel (see Figure 3.3 in Section 3). We introduce a new
communication method in Section 4 to improve this performance.

4 Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson

Algorithm 1: Enlarged Conjugate Gradient
1 𝑟 := 𝑏 −𝐴𝑥
2 𝑃 := 0, 𝑅 := 𝑇𝑟,𝑡 , 𝑍 := 𝑅

3 while not converged
4 𝑃old := 𝑃

5 𝑃 := 𝑍 (𝑍𝑇𝐴𝑍)− 1
2

6 𝑐 := 𝑃𝑇𝑅

7 𝑋 := 𝑋 + 𝑃𝑐
8 𝑅 := 𝑅 −𝐴𝑃𝑐
9 if ∥∑𝑡

𝑖=1 (𝑅)𝑖 ∥ < tolerance
10 break

11 𝑑 := (𝐴𝑃)𝑇 (𝐴𝑃)
12 𝑑old := (𝐴𝑃old)𝑇 (𝐴𝑃)
13 𝑍 := 𝐴𝑃 − 𝑃𝑑 − 𝑃old𝑑old

14 𝑥 :=
∑𝑡
𝑖=1 (𝑋)𝑖

2.2 Node-Aware Communication Techniques

Sparse matrix-vector multiplication (SpMV), defined as

𝐴 · 𝑣 → 𝑤 (2.4)

with 𝐴 ∈ R𝑚×𝑛 and 𝑣 , 𝑤 ∈ R𝑛 , is a common kernel in sparse iterative methods. It is known to lack strong
scalability in a distributed memory parallel environment, a problem stemming from low computational
requirements and the communication overhead associated with applying standard communication techniques
to sparse matrix operations.

Generally, 𝐴, 𝑣 , and 𝑤 are partitioned row-wise across 𝑝 processes with contiguous rows stored on each
process (see Figure 2.2). In addition, we split the rows of 𝐴 on each process into 2 blocks, namely on-process
and off-process. The on-process block is the diagonal block of columns corresponding to the on-process portion
of rows in 𝑣 and 𝑤 , and the off-process block contains the matrix 𝐴’s nonzero values correlating to non-local
rows of 𝑣 and 𝑤 stored off-process. This splitting is common practice, as it differentiates between the portions
of a SpMV that require communication with other processes.

A common approach to a SpMV is to compute the local portion of the SpMV with the on-process block of
𝐴 while messages are exchanged to attain the off-process portions of 𝑣 necessary for the local update of 𝑤 .
While this allows for the overlap of some communication and computation, it requires the exchange of many
point-to-point messages, which still creates a large communication overhead (see Figure 2.3).

The inefficiency of this standard approach is attributed to two redundancies shown in Figure 2.4. First,
many messages are injected into the network from each node. Some nodes are sending multiple messages
to a single destination process on a separate node, creating a redundancy of messages. Secondly, processes
send the necessary values from their local portion of 𝑣 to any other process requiring that information for its
local computation of 𝑤 . However, the same information may already be available and received by a separate
process on the same node, creating a redundancy of data being sent through the network.

Node-aware communication techniques [3, 5] mitigate these issues by considering node topology to further
break down the off-process block into vector values of 𝑣 that require on- or off-node communication; this

Performance Analysis and Optimal Communication for ECG 5

𝐴 ∗ 𝑣 → 𝑤

no
de

0
no

de
1

p0

p1

p2

p3

Fig. 2.2. Communication and partitioning of a SpMV, 𝐴 · 𝑣 → 𝑤. With 𝑛 = 12, matrix 𝐴 and vectors 𝑣 and 𝑤 are partitioned
across two nodes and four processors (p0, p1, p2, and p3), indicated by the colors orange, green, red, and blue. A solid
block, , represents the portion of the SpMV requiring only on-process values from 𝑣. A shaded block, , represents the
portion of the SpMV requiring on-node but off-process communication of values from 𝑣, and the outlined blocks, , require
values of 𝑣 from processors off-node.

256 512 1024 2048 4096 8192
Number of Processors

0.000

0.002

0.004

0.006

0.008

Ti
m

e
(s

)

Communication

Computation

Fig. 2.3. The time required for a single SpMV, split into communication and computation, for Example 2.1 run on Blue
Waters with 16 processes per node.

P0 P1

P2 P3

Node 0

P4 P5

P6 P7

Node 1

Sending multiple messages to Node 1

P0 P1

P2 P3

Node 0

P4 P5

P6 P7

Node 1

Sending duplicate data to Node 1

Fig. 2.4. Standard communication. On the left, Node 0 injects multiple messages into the network, all to P6 on Node 1. On
the right, P1 sends multiple messages containing the same data to each process on Node 1, resulting in "duplicate" data
being sent across the network.

decomposition is shown in Figure 2.2. As a result, costly redundant messages are traded for faster, on-node
communication, resulting in 2 different multi-step schemes, namely 3-step and 2-step.

6 Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson

3-step Node-Aware Communication. 3-step node-aware communication eliminates both redundancies in stan-
dard communication by gathering all necessary data to be sent off-node in a single buffer. Efficient implemen-
tation of this method relies on pairing all processes with a receiving process on distinct nodes – ensuring that
every process remains active throughout the entire communication scheme.

First, all data to be sent to a separate node are gathered in a buffer by the single process paired with that
node. Secondly, this process sends the data buffer to the paired process on the receiving node. Thirdly, the
paired process on the receiving node redistributes the data locally to the correct destination processes on-node.
An example of these steps is outlined in Figure 2.5.

St
ep

1

P0 P1

P2 P3

Node 0

P4 P5

P6 P7

Node 1

St
ep

2

P0 P1

P2 P3

Node 0

P4 P5

P6 P7

Node 1

St
ep

3

P0 P1

P2 P3

Node 0

P4 P5

P6 P7

Node 1

Fig. 2.5. 3-step node-aware. In Step 1, all the data on Node 0 that needs to be sent to Node 1 is collected in a buffer on
P0, the process paired to send and receive from Node 1. In Step 2, P0 sends this buffer from Node 0 to P7, to the receiving
process on Node 1. In Step 3, P7 redistributes the data to the correct receiving processes on Node 1.

2-Step Node-Aware Communication. 2-step node-aware communication eliminates the redundancy of sending
duplicate data from standard communication and decreases the number of inter-node messages, but not to
the same degree as 3-step communication. In this case, each process exchanges the information needed by
the receiving node with their paired process directly. Then the receiving node redistributes the messages
on-node as shown in Figure 2.6. While multiple messages are sent to the same node, the duplicate data being
sent through the network is eliminated. Hence, the number of bytes communicated with 3-step and 2-step

Performance Analysis and Optimal Communication for ECG 7

parameter description first use
𝑝 number of processes §2.2
nnz number of nonzeros in 𝐴 §3
𝛼 network latency (2.5)
𝑠 maximum number of bytes sent by a process (2.5)
𝑚 maximum number of messages sent by a process (2.5)
ppn processes per node (2.5)
𝑅𝑁 network injection rate (B/s) (2.5)
𝑅𝑏 network rate (B/s) (2.5)
𝑠proc maximum number of bytes sent by a process (2.8)
𝑠node maximum number of bytes injected by a node (2.8)
𝑚proc→node maximum number of nodes to which a processor sends (2.8)
𝑚node→node maximum number of messages between two nodes (2.7)
𝑠node→node maximum size of a message between two nodes (2.7)

Table 1. Modeling parameters.

node-aware schemes is the same, and often yields a significant reduction over the amount of data being sent
through the network with standard communication.

Step 1

P0 P1

P2 P3

Node 0

P4 P5

P6 P7

Node 1

Step 2

P0 P1

P2 P3

Node 0

P4 P5

P6 P7

Node 1

Fig. 2.6. 2-Step node-aware. Each process on Node 0 is paired with a receiving process on Node 1. In Step 1, each process
on Node 0 sends the data needed by any process on Node 1 to its paired process on Node 1. Here, P0 is sending to P4, P1 to
P5, P2 to P6, and P3 to P7. In Step 2, each process on Node 1 redistributes the data received from Node 0 to the destination
on on Node 1.

2.2.1 Node-Aware Communication Models. The max-rate model [16] is used to quantify the efficiency of
node-aware communication throughout the remainder of Sections 2 and 3. For clarity, all modeling parameters
referenced throughout the remainder of the paper are defined in Table 1. The max-rate model is an improvement
to the standard postal model of communication, accounting for injection limits into the network. The cost of
sending messages from a symmetric multiprocessing (SMP) node is modeled as

𝑇 = 𝛼 ·𝑚 +max
(
ppn · 𝑠
𝑅𝑁

,
𝑠

𝑅𝑏

)
(2.5)

where 𝛼 is the latency, 𝑚 is the number of messages sent by a single process on a given node, 𝑠 is the number
of bytes sent by a single process on a given SMP node, ppn is the number of processes per node, 𝑅𝑁 is the rate
at which a network interface card (NIC) can inject data into the network, and 𝑅𝑏 is the rate at which a process
can transport data.

8 Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson

In the case of on-node messages, the injection rate is not present and the max-rate model reduces to the
standard postal model for communication

𝑇 = 𝛼ℓ ·𝑚 + 𝑠

𝑅𝑏,ℓ
, (2.6)

where 𝛼ℓ is the local or on-node latency and 𝑅𝑏,ℓ is the rate of sending a message on-node.
In [5], the max-rate model is extended to 2-step and 3-step communication by splitting the model into

inter-node and intra-node components. For 3-step, the communication model becomes

𝑇total = 𝛼 · 𝑚node→node
ppn

+max
(
𝑠node
𝑅𝑁

,
𝑠proc
𝑅𝑏

)
︸ ︷︷ ︸

inter-node

+ 2 ·
(
𝛼ℓ · (ppn − 1) + 𝑠node→node

𝑅𝑏,ℓ

)
︸ ︷︷ ︸

intra-node

(2.7)

where𝑚node→node is the maximum number of messages communicated between any two nodes and 𝑠node→node
is the size of messages communicated between any two nodes.

For 2-step, this results in

𝑇total = 𝛼 ·𝑚proc→node +max
(
𝑠node
𝑅𝑁

,
𝑠proc
𝑅𝑏

)
︸ ︷︷ ︸

inter-node

+𝛼ℓ · (ppn − 1) + 𝑠proc
𝑅𝑏,ℓ︸ ︷︷ ︸

intra-node

(2.8)

where 𝑠node and 𝑠proc represent the maximum number of bytes injected by a single NIC and communicated
by a single process from an SMP node, respectively, and𝑚proc→node is the maximum number of nodes with
which any process communicates.

The latency to communicate between nodes, 𝛼 , is often much higher than the intra-node latency, 𝛼ℓ ,
thus motivating a multi-step communication approach. In a 2-step method, having every process on-node
communicate data minimizes the constant factor max

(
𝑠node
𝑅𝑁

,
𝑠proc
𝑅𝑏

)
, which depends on the maximum amount

of data being communicated to a separate node by a single process. In practice, a 3-step method often yields
the best performance for a parallel SpMV since the amount of data being communicated by a single process is
often small. As a result moving the data to be communicated off-node into a single buffer minimizes the first
term in (2.7). These multi-step communication techniques minimize the amount of time spent in inter-node
communication. We extend this idea to the block vector operation in Section 4.1.

3 PERFORMANCE STUDY OF ENLARGED CONJUGATE GRADIENT

In this section we detail the per-iteration performance and performance modeling of ECG. A communication
efficient version of Algorithm 1 is implemented in Raptor [6] and is based on the work in [15]. Throughout
this section and the remainder of the paper, we assume an 𝑛 × 𝑛 matrix 𝐴 with nnz nonzeros is partitioned
row-wise across a set of 𝑝 processes. Each process contains at most 𝑛

𝑝 contiguous rows of the matrix 𝐴. In the
modeling that follows, we assume a equal number of nonzeros per partition. In addition, each block vector
in Algorithm 1 — 𝑅, 𝑋 , 𝑍 , 𝐴𝑍 , 𝑃 , and 𝐴𝑃 — is partitioned row-wise, and with the same row distribution as
𝐴. The variables 𝑐 , 𝑑 , and 𝑑old are size 𝑡 × 𝑡 and a copy of each is stored locally on each process. Tests were
performed on the Blue Waters Cray XE/XK machine at the National Center for Supercomputing Applications
(NCSA) at University of Illinois. Blue Waters [7, 18] contains a 3D torus Gemini interconnect; each Gemini
consists of two nodes. The complete system contains 22 636 XE compute nodes; each with two AMD 6276
Interlagos processors, and additional XK compute nodes unused in these tests.

Performance Analysis and Optimal Communication for ECG 9

3.1 Implementation

The scalability of a direct implementation of Algorithm 1 is limited [15], however, this is improved by fusing
communication and by executing the system solve in Line 5 in Algorithm 1 on each process. This is accomplished
in [15] by decomposing the computation of 𝑃 into several steps as described in Algorithm 2. The 𝑡 × 𝑡 product

Algorithm 2: Calculating 𝑃 := 𝑍 (𝑍𝑇𝐴𝑍)−1/2

1 𝐴𝑍 ← 𝐴 ∗ 𝑍 [sparse matrix-block vector multiplication]

2 𝑍𝑇𝐴𝑍 ← 𝑍𝑇 ∗𝐴𝑍 [𝑡 inner products]

3 𝐶𝑇𝐶 ← 𝑍𝑇𝐴𝑍 [Cholesky factorization]

4 𝑃 ← solve 𝑃 ∗𝐶 = 𝑍 [Triangular solve with multiple right sides]

𝑍𝑇 (𝐴𝑍) is stored locally on every process in the storage space of 𝑐 , as shown in Figure 3.1. The Cholesky
factorization on Line 3 of Algorithm 2 is performed simultaneously on every process, yielding a (local) copy of
𝐶 . Then each process performs a local triangular system solve using the local vector values of 𝑍 to construct
the portion of 𝑃 (see Line 4). Similarly, an additional sparse matrix block vector product 𝐴𝑃 = 𝐴 ∗ 𝑃 is avoided
by noting that 𝐴𝑃 is constructed using

𝐴𝑃 ← Triangular Solve with Multiple Right Sides of 𝐴𝑃 ∗𝐶 = 𝐴𝑍

since the product 𝐴𝑍 and the previous iteration’s 𝐴𝑃 = 𝐴 ∗ 𝑃 are already stored.

no
de

0
no

de
1

p0

p1

p2

p3

𝑐 𝑑 𝑑old𝑅 𝑋 𝑍 . . . 𝐴𝑃

Fig. 3.1. The above figure displays the partitioning of all the vectors and intermediary Partition of vectors 𝑅, 𝑋 , 𝑍 , 𝐴𝑍 , 𝑃 ,
and 𝐴𝑃 along with 𝑡 × 𝑡 working arrays 𝑐 , 𝑑 , and 𝑑old, as in Algorithm 1, for 𝑡 = 2.

Algorithm 3 summarizes our implementation in terms of computational kernels, with the on process
computation in terms of floating point operations along with the associated type of communication. The
remainder of the calculations within ECG consist of local block vector updates, as well as block vector inner
products for the values 𝑐 , 𝑑 , and 𝑑old. A straightforward approach is to compute these independently within the
algorithm, resulting in four MPI_Allreduce global communications per iteration. However, since the input
data required to calculate 𝑐 , 𝑑 , and 𝑑old are available on Line 6 in Algorithm 1 when 𝑐 is computed, a single global
reduction is possible. The implementation described in Algorithm 3 highlights a single call to MPI_Allreduce

for all of these values and reducing them in the same buffer. This reduces the number of MPI_Allreduce calls
to two per iteration.

10 Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson

Algorithm 3: Enlarged Conjugate Gradient by Kernel
1 SpMV
2 Vector Initialization
3 for 𝑘 = 1, . . .
4 SpMBV → 2 · nnz𝑝 · 𝑡 Comm: point-to-point

5 Block inner product → 2 · 𝑛𝑝 · 𝑡2 Comm: global all reduce

6 Cholesky decomposition → 1
6 · 𝑡3

7 Triangular solves → 2 · 1
2 · 𝑡2

8 Block inner product → 2 · 𝑛𝑝 · 𝑡2 Comm: global all reduce

9 Block vector addition → 2 · 𝑛𝑝 · 𝑡
10 Block vector axpy → 2 · 𝑛𝑝 · 𝑡

From Algorithm 3, we note that computation and communication per iteration costs of ECG have in-
creased over that of parallel CG. For our implementation, the number of collective communication calls to
MPI_Allreduce has remained the same as CG (at two), but the number of values in the global reductions
has increased from a single float in each of CG’s global reductions to 𝑡2 and 3𝑡2. The singular SpMV from
CG has increased to a sparse matrix block vector product (SpMBV), which does not increase the number of
point-to-point messages, but does increase the size of the messages being communicated by the enlarging
factor 𝑡 . Additionally, the local computation for each kernel has increased by a factor of 𝑡 . ECG uses these
extra per iteration requirements to reduce the total number of iterations to convergence, resulting in fewer
iterations than CG as seen in Figure 3.2.

0 500 1000 1500 2000 2500 3000
Iteration

100

101

102

‖r
‖

cg

t = 5
t = 10
t = 20
t = 25

Fig. 3.2. Residual history for CG and ECG with various enlarging factors 𝑡 for Example 2.1.

3.2 Per Iteration Performance

In Figure 3.3 we decompose the performance of a single iteration of ECG for Example 2.1 into (local) computa-
tion, point-to-point communication, and collective communication. Performance tests were executed on Blue
Waters [7, 18]. Each test is the average of 20 iterations of ECG; reported times are the maximum average time
recorded for any single process. At small scales, local computation dominates performance, while at larger
scales, the point-to-point communication in the single SpMBV kernel and the collective communication in the
block vector inner products become the bottleneck in ECG. Figure 3.3 also shows the time spent in a single
inner product. While we observe growth with the number of processes, as expected, the relative cost (and

Performance Analysis and Optimal Communication for ECG 11

growth) within ECG remains low. Importantly, increasing 𝑡 at high processor counts does not significantly
contribute to cost. This is shown in Figure 3.4, where the mean runtime for various block vector inner products
all fall within each other’s confidence intervals. This suggests that increasing 𝑡 to drive down the iteration
count will have little affect on the per iteration cost of the two calls to MPI_Allreduce, and in fact, will result
in fewer total calls to it due to the reduction in iterations.

256 512 1024 2048 4096 8192
Number of processes

0.000

0.005

0.010

0.015

Ti
m

e
(s

)

t = 5
t = 10

t = 15
t = 20

256 512 1024 2048 4096 8192
Number of processes

0

20

40

60

80

100

%
of

Ti
m

e

Colletive Comm

P2P Comm

Computation

Fig. 3.3. Time (left) and percentage of time (right) for a single iteration of ECG for various block vector sizes, 𝑡 , and processor
counts for Example 2.1. The three varying shades for each 𝑡 value represent the amount of overall time spent in on-process
computation point-to-point communication, and collective communication.

25
6

51
2

10
24

20
48

40
96

81
92

Number of Processes

0.00000

0.00005

0.00010

0.00015

Ti
m

e
(s

)

t = 1
t = 5

t = 10
t = 15

t = 20
t = 25

Fig. 3.4. Time for a single inner product (right) for various block vector sizes, 𝑡 , and processor counts for Example 2.1.
Vertical lines denote the confidence intervals.

The remainder of this section focuses on accurately predicting the performance of a single iteration of ECG
through robust performance models. In particularly, SpMBV communication is addressed in detail in Section 4
where we discuss new node-aware communication techniques for blocked data.

3.3 Performance Modeling

To better understand the timing profiles in Figure 3.3, we develop performance models. Below, we present
two different models for the performance of communication within a single iteration of ECG. First, consider
the standard postal model for communication, which represents the maximum amount of time required for

12 Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson

communication by an individual process in a single iteration of ECG as

𝑇postal = 𝛼 ·𝑚 + 𝑠 · 𝑡
𝑅𝑏︸ ︷︷ ︸

point to point

+ 2 · 𝛼 · log(𝑝) + 𝑓 · 4 · 𝑡2

𝑅𝑏︸ ︷︷ ︸
collective

(3.1)

where 𝑓 is the number of bytes for a floating point number — e.g. 𝑓 = 8. See Table 1 for a complete description
of model parameters. As discussed in Section 2.2.1, this model presents a misleading picture on the performance
of ECG at scale, particularly on current supercomputer architectures where SMP nodes encounter injection
bandwidth limits when sending inter-node messages.

25
6

51
2

10
24

20
48

40
96

81
92

Number of processes

0.000

0.002

0.004

0.006

Ti
m

e
(s

)

t = 5

25
6

51
2

10
24

20
48

40
96

81
92

Number of processes

t = 20 Measured

Postal

MaxRate

Fig. 3.5. Max-rate model versus the postal model for the point to point communication in one iteration of ECG for Example 2.1
using various 𝑡 . Measured runtimes are also included. (note: 𝑡 = 5 and 𝑡 = 20 shown for brevity).

To improve the model we drop in the max-rate model for the point-to-point communication, resulting in

𝑇𝑀𝑅 = 𝛼 ·𝑚 +max
(
ppn · 𝑠 · 𝑡

𝑅𝑁
,
𝑠 · 𝑡
𝑅𝑏

)
︸ ︷︷ ︸

point to point

+ 2 · 𝛼 · log(𝑝) + 𝑓 · 4 · 𝑡2

𝑅𝑏︸ ︷︷ ︸
collective

. (3.2)

Figure 3.5 shows that the max-rate model provides a more accurate upper bound on the time spent in point
to point communication within ECG. The term 2 · 𝛼 · log(𝑝) + 𝑓 ·4·𝑡2

𝑅𝑏
remains unchanged in Equations (3.1)

and (3.2) to represent the collective communication required for the two block vector inner products. Each
block vector inner product incurs latency from requiring log(𝑝) messages in an optimal implementation of the
MPI_Allreduce. More accurate models for modeling the communication of the MPI_Allreduce in the inner
product exist, such as the logP model [11] and logGP model [1], but optimization of the reduction is outside
the scope of this paper, so we leave the postal model for representing the performance of the inner products.

Modeling the computation within an iteration of ECG is straightforward. The computation for a single
iteration of ECG is written as the sum of the kernel floating point operations in Algorithm 3, which results in
the following

𝑇𝑐𝑜𝑚𝑝 = 𝛾 ·
(
(2 + 2𝑡) nnz

𝑝
+ (4𝑡 + 4𝑡2) 𝑛

𝑝
+ 1

2 𝑡
2 + 1

6 𝑡
3
)

(3.3)

where 𝛾 is the time required to compute a single floating point operation. In total, we arrive at the following
model for a single iteration of ECG

𝑇𝐸𝐶𝐺 = 𝛼 ·𝑚 +max
(
ppn · 𝑠 · 𝑡

𝑅𝑁
,
𝑠 · 𝑡
𝑅𝑏

)
+ 2 ·𝛼 · log(𝑝) + 𝑓 · 4 · 𝑡2

𝑅𝑏
+𝛾 ·

(
(2 + 2𝑡) nnz

𝑝
+ (4𝑡 + 4𝑡2) 𝑛

𝑝
+ 1

2 𝑡
2 + 1

6 𝑡
3
)
.

(3.4)

Performance Analysis and Optimal Communication for ECG 13

procs→ 256 512 1024 2048 4096 8192
𝑡 m-s std m-s std m-s std m-s std m-s std m-s std

5 42.2 55.6 57.9 70.0 71.7 70.2 80.1 75.5 83.5 78.9 81.9 76.6
10 21.2 40.0 34.5 56.2 51.2 65.2 65.9 67.5 75.9 69.1 77.7 68.7
15 13.0 37.6 22.2 40.4 35.2 66.7 48.6 67.0 60.0 58.5 60.5 63.8
20 9.3 24.5 16.5 38.3 27.4 62.3 40.6 47.6 54.4 45.5 57.2 53.6

(a) 2-Step Communication

procs→ 256 512 1024 2048 4096 8192
𝑡 m-s std m-s std m-s std m-s std m-s std m-s std

5 29.6 55.6 43.0 70.0 54.8 70.2 64.2 75.5 72.3 78.9 71.4 76.6
10 14.6 40.0 24.4 56.2 35.9 65.2 49.5 67.5 65.6 69.1 68.5 68.7
15 9.2 37.6 15.8 40.4 23.9 66.7 34.4 67.0 49.9 58.5 50.8 63.8
20 6.7 24.5 11.9 38.3 18.6 62.3 28.7 47.6 45.9 45.5 48.8 53.6

(b) 3-Step Communication

Table 2. Modeled percentage of time to be spent in point-to-point communication for multistep (“m-s”) compared against
the measured percentage of time spent in point-to-point communication for standard (“std”) in a single iteration of ECG for
Example 2.1 with varying 𝑡 and processor counts on Blue Waters. Blue values correspond to values for which the percentage
of time decreased by 5% − 20%, green values are a decrease of over 20%, and red values predict an increase over the original
percentage.

Using this model, we can predict the reduction in the amount of time spent in point-to-point communication
using the multi-step communication techniques presented in Section 2.2.1 for a single iteration of ECG
for Example 2.1 — see Table 2.

We see that ECG is still limited at large processor counts even when substituting the node-aware communi-
cation techniques to replace the costly point-to-point communication observed in Figure 3.3. The models do
predict a large amount of speedup for most cases, however, when using 3-step communication, suggesting
that node-aware communication techniques can reduce the large point-to-point bottleneck observed in the
performance study. While a large communication cost stems equally from the collective communication the
MPI_Allreduce operations, their performance is dependent upon underlying MPI implementation and outside
the scope of this paper. We address the point-to-point communication performance further in Section 4 by
analyzing it through the lens of node-aware communication techniques, optimizing them to achieve the best
possible performance at scale.

4 OPTIMIZED COMMUNICATION FOR BLOCKED DATA

As discussed in Section 3, scalability for ECG is limited by the sparse matrix-block vector multiplication
(SpMBV) kernel defined as

𝐴 ·𝑉 →𝑊, (4.1)

with 𝐴 ∈ R𝑛×𝑛 and 𝑉 , 𝑉 ∈ R𝑛×𝑡 , where 1 < 𝑡 ≪ 𝑛. Due to the block vector structure of 𝑋 , each message in a
SpMV is increased by a factor of 𝑡 (see Figure 4.1). The larger messages associated with 𝑡 > 1 increase the
amount of time spent in the point-to-point communication at larger scales, making the SpMBV operation an
ideal candidate for node-aware messaging approaches.

14 Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson

𝐴 ∗ 𝑉 → 𝑊

no
de

0
no

de
1

p0

p1

p2

p3

Fig. 4.1. Sparse matrix-block vector multiplication (cf. Figure 2.2).

4.1 Performance Modeling

Recalling the node-aware communication models from Section 2.2.1, we augment the 2-step and 3-step models
with block vector size, 𝑡 . As a result, the 2-step model in (2.8) becomes

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝛼 ·𝑚proc→node +max
(
𝑡 · 𝑠node
𝑅𝑁

,
𝑡 · 𝑠proc
𝑅𝑏

)
︸ ︷︷ ︸

inter-node

+𝛼ℓ · (ppn − 1) + 𝑡 · 𝑠proc
𝑅𝑏,ℓ︸ ︷︷ ︸

intra-node

(4.2)

while the 3-step model in (2.7) becomes

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝛼 · 𝑚node→node
ppn

+max
(
𝑡 · 𝑠node
𝑅𝑁

,
𝑡 · 𝑠proc
𝑅𝑏

)
︸ ︷︷ ︸

inter-node

+ 2 ·
(
𝛼ℓ · (ppn − 1) + 𝑡 · 𝑠node→node

𝑅𝑏,ℓ

)
︸ ︷︷ ︸

intra-node

. (4.3)

In both models, 𝑡 impacts maximum rate, a term that is relatively small for 𝑡 = 1 and dominates the inter-node
portion of the communication as 𝑡 grows. Since messages are increased by a factor of 𝑡 , the single buffer used
in 3-step communication quickly reaches the network injection bandwidth limits. Using multiple buffers, as in
2-step communication, helps mitigate the issue, however more severe imbalance persists since the amount of
data sent to different nodes is often widely varying.

Figure 4.2 shows every inter-node message sent by a single process alongside the message size for Example 2.1
when performing the SpMBV kernel with 4096 processes and 16 processes per node. We present the message
sizes for 3-step and 2-step communication, noting that the overall number of inter-node messages decreases
when using 3-step communication, but the average message size sent by a single process increases. For 𝑡 = 20,
the maximum message size nears 106 for 3-step communication, while the maximum message size barely
reaches 105 for 2-step communication. Additionally, there is clear imbalance in the inter-node message sizes
for 2-step communication with messages ranging in size from 103–105 Bytes.

4.2 Profiling

We next apply the node-aware communication strategies presented for SpMVs and SpGEMMs in Section 2.2 to
the SpMBV kernel within ECG.

Figure 4.3 displays the performance of standard, 2-step, and 3-step communication when applied to the
SpMBV kernel for Example 2.1 with 𝑡 = 5 and 𝑡 = 20. The 2-step communication appears outperform in

Performance Analysis and Optimal Communication for ECG 15

0 500 1000 1500 2000 2500 3000 3500 4000
Process ID

103

104

105

106
In

te
r-

no
de

M
es

sa
ge

Si
ze

(B
yt

es
)

2-Step Average

0 500 1000 1500 2000 2500 3000 3500 4000
Process ID

3-Step Average

Fig. 4.2. The inter-node message sizes across all processes for 2-Step and 3-step communication when performing the
SpMBV for Example 2.1 when 𝑡 = 20 across 4096 processes on Blue Waters. The average message size across all processes is
marked by a red line.

most cases. This is due to the large amount of data to be sent off-node that is split across many processes.
We see 2-step communication performing better due to the term 𝛼 ·𝑚proc→node in (4.2) being smaller than
the 𝛼 ·𝑚node→node term in the 3-step communication model (4.3) due to multiplication by the factor 𝑡 . In
fact, all counts measured in the ECG profiling section are now multiplied by the enlarging factor 𝑡 . While the
traditional SpMV shows speedup with 3-step communication, we now see that 2-step is generally the best fit
for our methods as message size, and thus 𝑡 , increases.

256 512 1024 2048 4096 8192
Number of processes

0.000

0.002

0.004

0.006

Ti
m

e
(s

)

t = 5t = 5t = 5

256 512 1024 2048 4096 8192
Number of processes

t = 20t = 20t = 20
Standard

2-Step

3-Step

Fig. 4.3. Strong scaling results for Example 2.1 using standard, 2-step, and 3-step communication in the SpMBV (note: 𝑡 = 5
and 𝑡 = 20 shown for brevity).

Next we consider node-aware communication performance results for a subset of the largest matrices in
the SuiteSparse matrix collection [12] (matrix details can be found in Table 3). These were selected based on
size and density to provide a variety of scenarios.

While 2-step communication is effective in many instances, it is not always the most optimal communication
strategy, as depicted in Figure 4.4. Unlike the results for Example 2.1, 3-step and 2-step communication do
not always outperform standard communication, and in some instances (4096 processes), for most values of 𝑡
there is performance degradation. This is seen more clearly in Figure 4.5.

It is important to highlight cases where only a single node-aware communication technique results in
performance deterioration over standard communication. Distinct examples include Geo_1438 and thermal2

on 4096 processes. Both of these matrices benefit from 2-step communication for 𝑡 = 10 and 20, but performance
degrades when using 3-step communication. Another example is the performance of ldoor on 8192 processes

16 Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson

matrix rows/ cols nnz nnz/row density
audikw_1 943 695 77 651 847 82.3 8.72e-5
Geo_1438 1 437 960 60 236 322 41.9 2.91e-05
bone010 986 703 47 851 783 48.5 4.92e-05
Emilia_923 923 136 40 373 538 43.7 4.74e-05
Flan_1565 1 565 794 114 165 372 72.9 4.66e-05
Hook_1498 1 498 023 59 374 451 39.6 2.65e-05
ldoor 952 203 42 493 817 44.6 4.69e-05
Serena 1 391 349 64 131 971 46.1 3.31e-05
thermal2 1 228 045 8 580 313 7.0 5.69e-06

Table 3. Test Matrices.

10−2 10−1 100 101

Speedup

51
2

10
24

20
48

40
96

81
92

N
um

be
r

of
pr

oc
es

se
s

2-Step
t = 5
t = 10
t = 20

3-Step
t = 5
t = 10
t = 20

Matrices
audikw 1

Geo 1438

bone010

Flan 1565

Hook 1498

Emilia 923

ldoor

Serena

thermal2

Fig. 4.4. Speedup of 2-step and 3-step communication over standard communication in the SpMBV for various matrices
from the SuiteSparse matrix collection on Blue Waters. The red line marks 1.0, or no speedup.

au
di

kw
1

G
eo

14
38

bo
ne

01
0

Em
ili

a
92

3

H
oo

k
14

98

Fl
an

15
65

ld
oo

r

Se
re

na

th
er

m
al

2

0

2

4

6

Sp
ee

du
p

42.0 9.711.8

4096 processes

au
di

kw
1

G
eo

14
38

bo
ne

01
0

Em
ili

a
92

3

H
oo

k
14

98

Fl
an

15
65

ld
oo

r

Se
re

na

th
er

m
al

2
8192 processes

2-Step
t = 5
t = 10
t = 20

3-Step
t = 5
t = 10
t = 20

Fig. 4.5. Speedup of 2-step and 3-step communication over standard communication in the SpMBV for various matrices on
Blue Waters for 4096 and 8192 processes. The red line marks 1.0, or no speedup. Speedups greater than 6.0 are given via
annotations on the plot.

(seen in Figure 4.5). For 𝑡 = 5 and 10, ldoor results in performance degradation using 2-step communication, but
up to 5× speedup over standard communication when using 3-step communication. These cases highlight that
while one node-aware communication technique underperforms in comparison to standard communication,

Performance Analysis and Optimal Communication for ECG 17

the other node aware technique is still much faster. Using this as the key motivating factor, we discuss an
optimal node-aware communication technique for blocked data in Section 4.3.

4.3 Optimal Communication for Blocked Data

When designing an optimal communication scheme for the blocked data format, the main consideration is
the impact the number of vectors within the block have on the size of messages communicated. The effects
message size and message number have on performance can vary based on machine, hence we present results
for Blue Waters alongside Lassen [17]. Lassen, a 23-petaflop IBM system at Lawrence Livermore National
Laboratory, consists of 792 nodes connected via a Mellanox 100 Gb/s Enhanced Data Rate (EDR) InfiniBand
network. Each node on Lassen is dual-socket with 44 IBM Power9 cores and 4 NVIDIA Volta GPUs (which are
unused in our tests.)

In Figure 4.6, we view the effects placement of data and amount of data being communicated has on
performance times for two different machines. This figure shows the amount of time required to send various
numbers of bytes between two processes when they are located on the same node but different sockets (blue)
and on the same node and same socket (red) for the machines Blue Waters (left) and Lassen (right). It also
shows the amount of time required to communicate between two processes on separate nodes when there
are less than 4 (Blue Waters) or 5 (Lassen) active processes communicating through the network at the same
time or greater than 4 or 5 processes communicating through the network at the same time. We see that
as the number of bytes communicated between two processes increases, it becomes increasingly important
whether those two processes are located on the same socket, node, or require communication through the
network. For both machines, inter-node communication is fastest when message sizes are small, and there

101 102 103 104 105

Number of Bytes Communicated

10−7

10−5

10−3

Ti
m

e
(s

)

BlueWaters

On-Socket

On-Node

Network (ppn ≥ 4)

Network (ppn < 4)

101 102 103 104 105

Number of Bytes Communicated

Lassen

On-Socket

On-Node

Network (ppn ≥ 5)

Network (ppn < 5)

Fig. 4.6. Communication time on-socket, on-node, or across the network on Blue Waters (left) and Lassen (right). Measured
times are displayed as dots; solid lines represent max-rate model [16]. ppn represents the number of processors participating
in communication. (The Blue Waters data was initially presented in [4] and is replotted here.)

are few messages being injected into the network. On Blue Waters, intra-node communication is the fastest,
with the time being dependent on how physically close the processes are located. For instance, when two
processes are on the same socket, communication is faster than when they are on the same node, but different
sockets. This is true for Lassen, as well, but cross-socket intra-node communication is not always faster
than communicating through the network. Once message sizes exceed 104 bytes, and there are fewer than
five processes actively communicating, inter-node communication is faster than two cross-socket intra-node

18 Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson

processes communicating. For both machines, however, we see that once a large enough communication
volume is reached, it becomes faster to split the inter-node data being sent across a subset of the processes on
a single node due to network contention as observed in [4].

In addition to the importance of the placement of two communicating processes, the total message volume
and number of actively communicating processes plays a key role in communication performance. While it is
extremely costly for every process on a node to send 105 bytes as seen in Figure 4.6, there are performance
benefits when splitting a large communication volume across all processes on a node, depicted in Figure 4.7.
Blue Waters sees modest performance benefits when splitting large messages across multiple processes,
whereas Lassen sees much greater performance benefits.

100 101 102 103 104 105

Number of Bytes Communicated

10−5

10−4

Ti
m

e
(s

)

BlueWaters

ppn 1

ppn 2

ppn 4

ppn 8

ppn 12

ppn 16

100 101 102 103 104 105

Number of Bytes Communicated

Lassen

ppn 1

ppn 5

ppn 10

ppn 20

ppn 30

ppn 40

Fig. 4.7. Time required to send data between two processes on separate nodes with the data communication split across
ppn processes. Timings for Blue Waters and Lassen are presented in the left and right plots, respectively.

These observations help justify why 3-step communication would outperform 2-step communication, and
vice versa in certain cases of the SpMBV profiling presented in Figure 3.5. Sending all messages in a single
buffer becomes impractical when the block size, 𝑡 , is very large, but having each process communicate with a
paired process also poses problems when some of the inter-node messages being sent are still very large, as
seen in Figure 4.2.

Motivated by the results above, we introduce an optimized multi-step communication process that combines
the aspects of both the 3-step and 2-step communication techniques, and using 3-step or 2-step communication
when necessary. We reduce the number of inter-node messages and conglomerate messages to be sent off
node for certain cases when the message sizes to be sent off-node are below a given threshold, and we split the
messages to be sent off-node across multiple processes when the message size is larger than a given threshold.
Hence, each node is determining the most optimal way to perform its inter-node communication. As a result,
this nodal optimal communication eliminates the redundancies of data being injected into the network, just
as 3-step and 2-step do, but in some cases, it does not reduce the number of inter-node messages as much as
3-step, and in fact can increase the number of inter-node messages injected by a single node to be larger than
those injected by 2-step, but never exceeding the total number of active processes per node.

The number of inter-node messages sent can be represented by the following inequality,

𝑚node→node ≤ 𝑛𝑜𝑝𝑡 ≤ max(𝑚proc→node, ppn) (4.4)

Performance Analysis and Optimal Communication for ECG 19

where 𝑛𝑜𝑝𝑡 is the number of inter-node messages injected by a single process for the optimal node-aware
communication, and it is bounded below by the worst-case number of messages communicated in 3-step
communication (4.3) and above by the worst-case number of messages communicated in 2-step communication
(4.2) or ppn, whichever is greater.

The proposed process, excluding reducing the global communication strategy to 3-step or 2-step commu-
nication, is summarized in Figure 4.8. This figure outlines the nodal optimal process of communicating data
between two nodes, each with four local processes.

Step 1: Each node conglomerates small messages to be sent off-node while retaining larger messages. Messages
are assigned to processes in descending order of size to the first available process on node. This is done
for every node simultaneously.

Step 2: Buffers prepared in step 1 are sent to their destination node, specifically to the paired process on that
node with the same local rank. P0 exchanges data with P4, while P1 sends data to P5, and P2 sends data
to P6.

Step 3: All processes on each individual node redistribute their received data to the correct destination
processes on-node. In this step, all communication is local.

The resulting speedups for the two systems Blue Waters and Lassen are presented in Figure 4.9. Here,
the message size cutoff being used is the message size cutoff before the MPI implementation switches to the
rendezvous protocol. For sending large messages between processes, the rendezvous protocol communicates
an envelope first, then the remaining data is communicated after the receiving process allocates buffer space.
It is necessary to use this protocol for large messages, but there is a slight slowdown over sending messages
via the short and eager protocols which either include the data being sent as part of the envelope (short) or
eagerly send the data if it does not fit into the envelope (eager). This cutoff is chosen because rendezvous is
the slowest protocol and because the switch to the rendezvous protocol is approximately the crossover point
when on-node messages become slower than network messages on Lassen (around 104 Bytes in Figure 4.6.)

Using this cutoff point, the method sees speedup for some test matrices and performance degradation for
most on Blue Waters, which is consistent with the minimal speedup seen by splitting large messages across
multiple processes in Figure 4.7. Additionally, it is likely that network contention is playing a large role in the
Blue Waters results as the messages sizes become large based on the findings in [4], and due to each node
determining independently how to send its own data without consideration of the size or number of messages
injected by other nodes.

The nodal optimal communication performs better on Lassen than Blue Waters and aligns with expectations
based on the combination of using 3-step for nodes with small inter-node messages to inject into the network
where on-node communication is faster than network communication (Figure 4.6) and splitting large messages
where the benefits are much greater (Figure 4.7). While Blue Waters achieves higher speedups in some
cases than Lassen, both systems see speedups as large as 60x. These results only present part of the overall
communication picture, however. There are still cases where the global communication strategy should be
reduced to 3-step communication, 2-step communication, or standard communication. This differs based on
the two machines and the specific test matrix, but tuning between the techniques results in the most optimal
communication strategy. Tuning comes at the minimal cost of performing four different SpMBVs during setup
of the SpMBV communicator. Speedups over standard communication when using tuning to use the fastest
communication technique are presented in Figure 4.10.

20 Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson

P0 P1

P2 P3

Node 0

P4 P5

P6 P7

Node 1

P0 P1

P2 P3

Node 0

P4 P5

P6 P7

Node 1

St
ep

1

St
ep

2

P0 P1

P2 P3

Node 0

P4 P5

P6 P7

Node 1

St
ep

3

P0 P1

P2 P3

Node 0

P4 P5

P6 P7

Node 1

Fig. 4.8. Node-aware communication on two nodes with four processes each.

In the top plot of Figure 4.10, Blue Waters benefits in 33% of the cases from including the nodal optimal
multi-step communication strategy. These results are expected based on Figure 4.9 where the benefits of nodal
optimal multi-step communication were less than ideal. In fact, for 20% of the cases on Blue Waters, standard
communication is the most performant, consistent with matrices of low density. The matrices Geo_1438 and
ldoor, which have the smallest density of the test matrices (Table 3), see minimal benefits from the multi-step
communication techniques as the number of processes is scaled up due to the minimal amount of data being
communicated.

Performance Analysis and Optimal Communication for ECG 21

10−2 10−1 100 101 102

Speedup

51
2

10
24

20
48

40
96

81
92

N
um

be
r

of
pr

oc
es

se
s BlueWatersBlueWatersBlueWatersBlueWatersBlueWatersBlueWatersBlueWatersBlueWatersBlueWaters

Matrices
audikw 1

Geo 1438

bone010

Flan 1565

Hook 1498

Emilia 923

ldoor

Serena

thermal2

10−1 100 101

Speedup

52
0

10
40

20
40

40
80

N
um

be
r

of
pr

oc
es

se
s LassenLassenLassenLassenLassenLassenLassenLassenLassen

Opt Split
t = 5
t = 10
t = 20

Fig. 4.9. Speedup of optimal communication over standard communication (without reducing to a global communication
strategy) in the SpMBV for various matrices from the SuiteSparse matrix collection on Blue Waters and Lassen. The red
line marks 1, or no speedup.

We expected to see 2-step and nodal optimal communication perform the best on Lassen due to the faster
inter-node communication for smaller sized messages (Figure 4.6) and the benefits of splitting messages across
many processes on node (Figure 4.7). These expectations are consistent with the results presented in the bottom
plot of Figure 4.10; most test matrices saw the best SpMBV performance with nodal optimal communication
(44% of the cases). The remainder of the test cases were divided almost equally between 2-step, 3-step, and
standard communication for which technique was the most performant (approximately 18% of the cases, each).

Table 4 shows the benefits of using the tuned point-to-point communication over the standard commu-
nication in a single iteration of ECG for Example 2.1. Tuned communication reduces the percentage of time
spent in point-to-point communication independent of system, though the performance benefits are typically
best when more data is being communicated (𝑡 = 20 in Table 4a and Table 4b.) For Blue Waters, the new
communication technique results in point-to-point communication taking 20% − 40% less of the total time
compared to the percentage of time when using standard communication (corresponding to the blue high-
lighted values in Table 4a). Performance benefits are much greater on Lassen where the tuned communication
results in a decrease of more than 40% of the total iteration time compared to an iteration time with standard
communication in most cases.

5 CONCLUSIONS

The enlarged conjugate gradient method (ECG) is an efficient method for solving large systems of equations
designed to reduce the collective communication bottlenecks of the classical conjugate gradient method (CG.)

22 Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson

100 101 102

Speedup

51
2

10
24

20
48

40
96

81
92

N
um

be
r

of
pr

oc
es

se
s BlueWatersBlueWatersBlueWatersBlueWatersBlueWatersBlueWatersBlueWatersBlueWatersBlueWaters

Matrices
audikw 1

Geo 1438

bone010

Flan 1565

Hook 1498

Emilia 923

ldoor

Serena

thermal2

100 101 102

Speedup

52
0

10
40

20
40

40
80

N
um

be
r

of
pr

oc
es

se
s LassenLassenLassenLassenLassenLassenLassenLassenLassen

2-Step
t = 5
t = 10
t = 20

3-Step
t = 5
t = 10
t = 20

2-Step
t = 5
t = 10
t = 20

3-Step
t = 5
t = 10
t = 20

2-Step
t = 5
t = 10
t = 20

3-Step
t = 5
t = 10
t = 20

2-Step
t = 5
t = 10
t = 20

3-Step
t = 5
t = 10
t = 20

2-Step
t = 5
t = 10
t = 20

3-Step
t = 5
t = 10
t = 20

2-Step
t = 5
t = 10
t = 20

3-Step
t = 5
t = 10
t = 20

2-Step
t = 5
t = 10
t = 20

3-Step
t = 5
t = 10
t = 20

2-Step
t = 5
t = 10
t = 20

3-Step
t = 5
t = 10
t = 20

2-Step
t = 5
t = 10
t = 20

3-Step
t = 5
t = 10
t = 20

Opt Split
t = 5
t = 10
t = 20

Fig. 4.10. Speedup of tuned communication over standard communication in the SpMBV for various matrices from the
SuiteSparse matrix collection on Blue Waters and Lassen. The red line marks 1.0, or no speedup.

Within ECG, block vector updates replace the single vector updates of CG, thereby reducing the overall number
of iterations required for convergence and hence the overall amount of collective communication.

In this paper, we performed a performance study and analysis of the effects of block vectors on the balance
of collective communication, point-to-point communication, and computation within the iterations of ECG.
We noted the increased volume of data communicated and its disproportionate affects on the performance
of the point-to-point communication; the communication bottleneck of ECG shifted to be the point-to-
point communication within the sparse matrix-block vector kernel (SpMBV). To address the new SpMBV
bottleneck, we designed an optimal multi-step communication technique that builds on existing node-aware
communication techniques and improves them for the emerging supercomputer architectures with greater
numbers of processes per node and faster inter-node networks.

Overall, this paper provides a comprehensive study of the performance of ECG in a distributed parallel envi-
ronment, and introduces a novel point-to-point multi-step communication technique that provides consistent
speedup over standard communication techniques independent of machine. Future work includes profiling
and improving the performance of ECG on hybrid supercomputer architectures with computation offloaded to
graphics processing units.

The software used to generate the results in this paper is freely available in RAPtor [6].

Performance Analysis and Optimal Communication for ECG 23

procs→ 256 512 1024 2048 4096 8192
𝑡 m-s std m-s std m-s std m-s std m-s std m-s std

5 54.7 55.6 34.1 70.0 66.2 70.2 70.6 75.5 70.2 78.9 41.7 76.6
10 31.8 40.0 39.3 56.2 34.6 65.2 48.4 67.5 59.7 69.1 32.2 68.7
15 9.3 37.6 18.2 40.4 30.4 66.7 31.9 67.0 38.4 58.5 26.0 63.8
20 7.5 24.5 15.0 38.3 26.3 62.3 46.0 47.6 30.8 45.5 29.7 53.6

(a) Blue Waters

procs→ 240 520 1040 2040 4080
𝑡 m-s std m-s std m-s std m-s std m-s std

5 49.4 84.3 43.6 88.0 66.6 88.4 82.2 87.2 82.7 93.1
10 26.8 87.2 33.7 84.9 52.1 84.7 58.4 89.3 78.3 91.3
15 9.9 81.2 26.4 85.7 33.6 86.1 55.3 90.0 61.2 89.2
20 12.7 74.2 17.8 79.9 29.6 81.7 39.0 80.7 57.2 79.5

(b) Lassen

Table 4. Measured percentage of time spent in point-to-point communication for the tuned multistep (“m-s”) compared
against the measured percentage of time spent in point-to-point communication for standard (“std”) in a single iteration of
ECG for Example 2.1 with varying 𝑡 and processor counts on Blue Waters and Lassen. Blue values correspond to values for
which the percentage of time decreased by 5% − 20%, green values are a decrease of 20% − 40%, and yellow values decreased
by more than 40% from the original percentage.

ACKNOWLEDGMENTS

This material is based in part upon work supported by the Department of Energy, National Nuclear Security
Administration, under Award Number DE-NA0003963 and DE-NA0003966.

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the
National Science Foundation (awards OCI0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a
joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing
Applications. This material is based in part upon work supported by the Department of Energy, National
Nuclear Security Administration, under Award Number de-na0002374.

REFERENCES
[1] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman. 1997. LogGP: Incorporating Long Messages into the LogP

Model for Parallel Computation. J. Parallel and Distrib. Comput. 44, 1 (1997), 71 – 79. https://doi.org/10.1006/jpdc.1997.1346
[2] Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain Camier, Jakub Cerveny, Veselin Dobrev, Yohann

Dudouit, Aaron Fisher, Tzanio Kolev, Will Pazner, Mark Stowell, Vladimir Tomov, Ido Akkerman, Johann Dahm, David Medina,
and Stefano Zampini. 2020. MFEM: A modular finite element methods library. Computers & Mathematics with Applications (2020).
https://doi.org/10.1016/j.camwa.2020.06.009

[3] Amanda Bienz, William Gropp, and Luke Olson. 2019. Node aware sparse matrix–vector multiplication. J. Parallel and Distrib. Comput.
130 (08 2019), 166–178. https://doi.org/10.1016/j.jpdc.2019.03.016

[4] Amanda Bienz, William D. Gropp, and Luke N. Olson. 2018. Improving Performance Models for Irregular Point-to-Point Communication.
CoRR abs/1806.02030 (2018). http://arxiv.org/abs/1806.02030

[5] Amanda Bienz, William D Gropp, and Luke N Olson. 2020. Reducing communication in algebraic multigrid with multi-step node
aware communication. The International Journal of High Performance Computing Applications 34, 5 (June 2020), 547–561. https:
//doi.org/10.1177/1094342020925535

[6] Amanda Bienz and Luke N. Olson. 2017. RAPtor: parallel algebraic multigrid v0.1. https://github.com/raptor-library/raptor. Release 0.1.
[7] Brett Bode, Michelle Butler, Thom Dunning, Torsten Hoefler, William Kramer, William Gropp, and Wen-mei Hwu. 2013. The Blue

Waters Super-System for Super-Science. In Contemporary High Performance Computing. Chapman and Hall/CRC, 339–366. https:

https://doi.org/10.1006/jpdc.1997.1346
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.jpdc.2019.03.016
http://arxiv.org/abs/1806.02030
https://doi.org/10.1177/1094342020925535
https://doi.org/10.1177/1094342020925535
https://github.com/raptor-library/raptor
https://www.taylorfrancis.com/books/e/9781466568358
https://www.taylorfrancis.com/books/e/9781466568358

24 Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson

//www.taylorfrancis.com/books/e/9781466568358
[8] Erin Carson, Nicholas Knight, and James Demmel. 2013. Avoiding Communication in Nonsymmetric Lanczos-Based Krylov Subspace

Methods. SIAM J. Sci. Comput. 35, 5 (Jan. 2013), S42–S61. https://doi.org/10.1137/120881191 arXiv:https://doi.org/10.1137/120881191
[9] A.T. Chronopoulos and C.W. Gear. 1989. s-step iterative methods for symmetric linear systems. J. Comput. Appl. Math. 25, 2 (Feb. 1989),

153–168. https://doi.org/10.1016/0377-0427(89)90045-9
[10] S. Cools and W. Vanroose. 2017. The communication-hiding pipelined BiCGstab method for the parallel solution of large unsymmetric

linear systems. Parallel Comput. 65 (July 2017), 1–20. https://doi.org/10.1016/j.parco.2017.04.005
[11] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von

Eicken. 1993. LogP: Towards a Realistic Model of Parallel Computation. SIGPLAN Not. 28, 7 (July 1993), 1–12. https://doi.org/10.1145/
173284.155333

[12] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec.
2011), 25 pages. https://doi.org/10.1145/2049662.2049663

[13] P. Ghysels and W. Vanroose. 2014. Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm. Parallel
Comput. 40, 7 (July 2014), 224–238. https://doi.org/10.1016/j.parco.2013.06.001

[14] Laura Grigori, Sophie Moufawad, and Frederic Nataf. 2016. Enlarged Krylov Subspace Conjugate Gradient Methods for
Reducing Communication. SIAM J. Matrix Anal. & Appl. 37, 2 (Jan. 2016), 744–773. https://doi.org/10.1137/140989492
arXiv:https://doi.org/10.1137/140989492

[15] Laura Grigori and Olivier Tissot. 2019. Scalable Linear Solvers Based on Enlarged Krylov Subspaces with Dynamic Reduction of Search Di-
rections. SIAM J. Sci. Comput. 41, 5 (Jan. 2019), C522–C547. https://doi.org/10.1137/18m1196285 arXiv:https://doi.org/10.1137/18M1196285

[16] William Gropp, Luke N. Olson, and Philipp Samfass. 2016. Modeling MPI Communication Performance on SMP Nodes. In Proceedings
of the 23rd European MPI Users’ Group Meeting on - EuroMPI 2016 (EuroMPI 2016). ACM Press, New York, NY, USA, 41–50. https:
//doi.org/10.1145/2966884.2966919

[17] W. A. Hanson. 2020. The CORAL supercomputer systems. IBM Journal of Research and Development 64, 3/4 (2020), 1:1–1:10.
[18] William Kramer, Michelle Butler, Gregory Bauer, Kalyana Chadalavada, and Celso Mendes. 2015. Blue Waters Parallel I/O Storage

Sub-system. In High Performance Parallel I/O, Prabhat and Quincey Koziol (Eds.). CRC Publications, Taylor and Francis Group, 17–32.
[19] Hoemmen M. 2010. Communication-Avoiding Krylov Subspace Methods. Ph.D. Dissertation. University of California, Berkeley.
[20] Lois Curfman McInnes, Barry Smith, Hong Zhang, and Richard Tran Mills. 2014. Hierarchical Krylov and nested Krylov methods for

extreme-scale computing. Parallel Comput. 40, 1 (Jan. 2014), 17–31. https://doi.org/10.1016/j.parco.2013.10.001
[21] Marghoob Mohiyuddin, Mark Hoemmen, James Demmel, and Katherine Yelick. 2009. Minimizing Communication in Sparse Matrix

Solvers. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC ’09). Association for
Computing Machinery, New York, NY, USA, Article 36, 12 pages. https://doi.org/10.1145/1654059.1654096

[22] Sophie M. Moufawad. 2020. s-Step Enlarged Krylov Subspace Conjugate Gradient Methods. SIAM J. Sci. Comput. 42, 1 (Jan. 2020),
A187–A219. https://doi.org/10.1137/18m1182528 arXiv:https://doi.org/10.1137/18M1182528

[23] Dianne P. O’Leary. 1980. The block conjugate gradient algorithm and related methods. Linear Algebra Appl. 29 (Feb. 1980), 293–322.
https://doi.org/10.1016/0024-3795(80)90247-5

https://www.taylorfrancis.com/books/e/9781466568358
https://www.taylorfrancis.com/books/e/9781466568358
https://doi.org/10.1137/120881191
https://arxiv.org/abs/https://doi.org/10.1137/120881191
https://doi.org/10.1016/0377-0427(89)90045-9
https://doi.org/10.1016/j.parco.2017.04.005
https://doi.org/10.1145/173284.155333
https://doi.org/10.1145/173284.155333
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1016/j.parco.2013.06.001
https://doi.org/10.1137/140989492
https://arxiv.org/abs/https://doi.org/10.1137/140989492
https://doi.org/10.1137/18m1196285
https://arxiv.org/abs/https://doi.org/10.1137/18M1196285
https://doi.org/10.1145/2966884.2966919
https://doi.org/10.1145/2966884.2966919
https://doi.org/10.1016/j.parco.2013.10.001
https://doi.org/10.1145/1654059.1654096
https://doi.org/10.1137/18m1182528
https://arxiv.org/abs/https://doi.org/10.1137/18M1182528
https://doi.org/10.1016/0024-3795(80)90247-5

	Abstract
	1 Introduction
	2 Background
	2.1 Enlarged Krylov Subspace Methods
	2.2 Node-Aware Communication Techniques

	3 Performance Study of Enlarged Conjugate Gradient
	3.1 Implementation
	3.2 Per Iteration Performance
	3.3 Performance Modeling

	4 Optimized Communication for Blocked Data
	4.1 Performance Modeling
	4.2 Profiling
	4.3 Optimal Communication for Blocked Data

	5 Conclusions
	References

