
RESEARCH
CONTRIBUTIONS

Applications:
Operations and

Management
Lloyd Fosdick*

Editor

Some Factors Affecting
Program Repair
Maintenance:
An Empirical Study
IRIS VESSEY and RON WEBER University of Queensland, Australia

* Editor of record.
Howard Morgan is the

former editor of the
department, of which Alan

Merten is the current editor.
Authors' Present Address:

Iris Vessey and Ron Weber,
University of Queensland,
Department of Commerce,

St. Lucia, Queensland,
Australia 4067.

Permission to copy
without fee all or part of this
material is granted provided
that the copies are not made

or distributed for direct
commercial advantage, the
ACM copyright notice and
the title of the publication

and its date appear, and
notice is given that copying is

by permission of the
Association for Computing

Machinery. To copy
otherwise, or to republish,

requires a fee and/or specific
permission. © 1983 ACM

0001..0782/83/0200-0128 75¢

1. I N T R O D U C T I O N
T h e f o c u s o f r e c e n t r e s e a r c h h a s b e e n s t r u c t u r e d p r o -
g r a m m i n g [13]. P r e v i o u s l y t h e c o n c e r n s w e r e m o d u l a r
p r o g r a m m i n g m e t h o d o l o g i e s , u s e o f d e c i s i o n t ab l e s , t e s t
d a t a g e n e r a t o r s , a u t o m a t i c f l o w c h a r t e r s , e tc . [16]. To d a t e
t h e r e s e a r c h o n m e t h o d s to i m p r o v e p r o g r a m q u a l i t y a n d
l o w e r p r o g r a m d e v e l o p m e n t , i m p l e m e n t a t i o n , a n d m a i n t e -
n a n c e c o s t s h a s b e e n p r i m a r i l y t h e o r e t i c a l . 1

M o s t o f t h e d e v e l o p e d t h e o r i e s h a v e b e e n n o r m a t i v e ,
t h a t is, t h e y s t a t e d w h a t should be d o n e to i m p r o v e t h e
q u a l i t y of p r o g r a m s a n d t h e p r o g r a m m i n g p r o c e s s . U n f o r -
t u n a t e l y t h e s e t h e o r i e s h a v e r a r e l y b e e n s u b j e c t e d to e m -
p i r i ca l t e s t ing , a n d so t h e i r v a l u e r e m a i n s u n k n o w n . 2
T h e y p r o v i d e t h e z e a l o t s w i t h o p p o r t u n i t i e s to m a r k e t a
r a s h of s e m i n a r s a n d c o u r s e s a n d to f l o o d t h e l i t e r a t u r e
w i t h p a p e r s a d v o c a t i n g t h e n e w t e c h n o l o g i e s . W h e n t h e
t h e o r i e s a r e s u b j e c t e d to t e s t i ng , w h a t l i t t le e v i d e n c e h a s
b e e n o b t a i n e d s o m e t i m e s s u g g e s t s t h a t t h e c l a i m e d b e n e -
f i ts , in fac t , m a y n o t e x i s t [15, 20].

T h i s p a p e r d e s c r i b e s t h r e e e m p i r i c a l s t u d i e s o f f a c t o r s
p u r p o r t e d to a f f e c t t h e e x t e n t o f r e p a i r m a i n t e n a n c e ca r -
r i ed ou t o n p r o g r a m s . By r e p a i r m a i n t e n a n c e w e m e a n
m a i n t e n a n c e n e e d e d to c o r r e c t logic e r r o r s d i s c o v e r e d in a
p r o g r a m a f t e r it h a s b e e n r e l e a s e d in to p r o d u c t i o n . T h e s e
logic e r r o r s a r i se b e c a u s e p r o g r a m s p e c i f i c a t i o n s a r e im-
p l e m e n t e d i n c o r r e c t l y w h e n t h e p r o g r a m is f i r s t w r i t t e n ,
o r as t h e c o n s e q u e n c e of m a i n t e n a n c e c a r r i e d o u t i n c o r -
r e c t l y a f t e r t h e in i t i a l p r o d u c t i o n r e l ea se . W e d i s t i n g u i s h
r e p a i r m a i n t e n a n c e f r o m a d a p t i v e m a i n t e n a n c e a n d p r o -

l We use the term "theory" here very loosely.
2 For example, we know of only a few controlled experiments where attempts

have been made to investigate rigorously the claims made for structured pro-
gramming, e.g., [20]. Usually any empirical evidence provided to support struc-
tured programming reports the success of some project such as the New York
Times Project. However, the projects cited often have a number of different
variables changed, for example, the project management method, the way the
programming team was organized, and the types of programmers employed on
the project. The effects of these factors confound, so there is no way of sorting
out individual effects. (See also [19]:)

ABSTRACT: An empirical study
of 447 operational commercial and
clerical Cobol programs in one
Australian organization and two
U.S. organizations was carried out
to determine whether program
complexity, programming style,
programmer quality, and the
number o f t imes a program was
released af fected program repair
maintenance. In the Australian
organization only program
complexity and programming
style w e r e statistically significant.
In the two U.S. organizations only
the number o f t imes a program
was released was statistically
significant. For all organizations
repair maintenance const i tuted a
minor problem: over 90 percent o f
the programs studied had
undergone less than three repair
maintenance activit ies during
their lifetime.

128 Communications of the ACM February 1983 Volume 26 Number 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F358024.358057&domain=pdf&date_stamp=1983-02-01

RESEARCH CONTRIBUTIONS

ductivity maintenance [11, 12]. Adaptive maintenance
permits a program to evolve to better meet user needs.
Productivity (perfective) maintenance seeks to improve
the efficiency with which a program consumes resources.

The paper proceeds as follows. First, we articulate the
hypotheses tested in the studies and briefly discuss the
theoretical, empirical, and popular bases that exist in sup-
port of these hypotheses. Second, we discuss the data
collected and the results obtained in an Australian study.
Third, we discuss the data collected and the results ob-
tained in two U.S. studies. Fourth, we examine the impli-
cations of the results. Finally, we present our conclusions
and identify several directions for further research.

2. HYPOTHESES
The amount of resources expended on maintenance is a
significant proportion of the total life cycle costs of a
system. Estimates of the amount vary, but 40-75 percent 3
is a common range. (See [12] for a brief survey of this
research.) Although empirical studies on maintenance
costs are not widespread, if the above estimates of costs
are accurate, seeking to reduce maintenance costs is a
laudable objective [4].

Strategies for reducing maintenance costs can be for-
mulated only with an understanding of what factors af-
fect maintenance costs. The following sections briefly dis-
cuss some factors believed to affect the extent of program
repair maintenance carried out. We chose to investigate
these factors for three reasons. First, there is some sup-
port either in the literature, prior research, or among prac-
titioners for these factors being important determinants of
repair maintenance activities. Second, the factors are
global in nature. We prefer to focus on a few major vari-
ables rather than on a multitude of low level variables,
where there is more uncertainty about the existence and
direction of effects. Third, the factors chosen are uncorre-
lated. The existence, direction, and magnitude of effects
were studied using the general linear statistical model
[17]. We attempted to avoid the problems that arise with
the model when independent variables in the model are
correlated. To make our beliefs explicit, the relationships
between the factors chosen and the extent of repair main-
tenance are stated as formal hypotheses to be investigated
empirically.

2.1 Effects of Program Complexity
We expect repair maintenance to be a function of system
complexity. There is both theoretical and empirical sup-
port for this belief. The theoretical support comes from
general systems theory--more complex systems experi-
ence greater entropy [2, 6]. Complexity is a function of
the number of interfaces in a system. Simon [21] argues
that systems that minimize the number of interfaces be-
tween their subsystems tend to survive longer. As open
systems, programs must import energy from their envi-
ronment to arrest entropy. This negative entropy takes
the form of maintenance [5].

Thayer et al. [22] also obtained empirical support for a
relationship between program complexity and mainte-
nance, but their results varied considerably across the
programs they studied. To further test the generality of

:~ Care should be taken to show the extent of maintenance costs whenever
percentage figures are given. For example, in a mature installation the amount of
new development work to be done may be very small: thus maintenance costs
would be a high percentage of the totaloperational costs of the installation.
However, it does not follow that the installation is experiencing a severe mainte-
nance problem.

their findings, we sought support for the following hy-
pothesis: 4

HI: More complex programs experience more repair mainte-
nance.

2.2 Effects of Modular and Structured Programming
The proponents of modular programming claim it permits
easier and more complete debuggingP Programs written in
a modular manner should experience less repair mainte-
nance because they have been tested more thoroughly
before being released into production [3]. Modular pro-
grams are supposedly easier to maintain; thus there
should be fewer logic errors introduced into a program
whenever it is modified for any reason.

The modular programming discipline has been ex-
tended and formalized in the structured programming ap-
proach to writing programs. A major objective of struc-
tured programming research is to develop formal proofs
of program correctness [7, 10]. If the underlying theory is
correct, structured programs should experience less repair
maintenance than modular programs, and modular pro-
grams should experience less repair maintenance than un-
structured (convoluted) programs.

In our investigation we sought evidence to support this
postulated relationship by testing the following hy-
potheses:

H2(a): Structured programs will experience less repair mainte-
nance than modular programs.

H2(b): Modular programs will experience less repair mainte-
nance than unstructured programs.

2.3 Effects of Programmer Quality
In our conversations with practitioners we have often
heard it said that the quality of the programmer who
initially wrote a program is a significant factor affecting
the program's subsequent repair maintenance history.
Presumably, higher quality programmers write programs
with fewer logic errors, test their programs more thor-
oughly, and write programs that are easier to maintain.
Weinberg [23] emphasizes the importance of the individ-
ual characteristics of programmers as basic determinants
of program quality. After his study of errors found in
IBM's DOS/VS Release 29 operating system, Endres [8]
concluded the quality of the individual programmer was
an important factor affecting the amount of maintenance
needed by a module within the operating system. We
tested the following hypothesis:

H3: Higher quality programmers will produce programs requir-
ing less repair maintenance.

2.4 Effects of Frequency of Maintenance
A program may undergo maintenance for three reasons:
(1) to repair a logic error, (2) to modify the program so
that it better meets user needs, and (3) to improve its
operational efficiency. The maintenance process itself is a
cause of further repair maintenance being needed. After a
study of modifications to large scientific batch programs,
Boehm [1] repot_ted that even with small modifications
(involving changes to less than 10 statements), the
chances of a successful first run after modification were,

4 Note, the hypotheses are stated in a "natural" form rather than the tradi-
tional null form.

r' Again, the theoretical basis for this claim is the notion that modular pro-
grams are simpler because they have fewer, better-defined interfaces between
their subsystems.

February 1983 Volume 26 Number 2 Communications of the ACM 129

RESEARCH CON'rRIE~IION$

at best, about 50 percent. If 50 or more statements were
changed, the chances of a successful first run dropped
below 20 percent. Consequently, in our study we tested
the following hypothesis:

H4: The extent of repair maintenance increases as a program is
modified more frequently (maintenance of any type).

2.5 Effects of Program Age
As a program gets older, we expect less repair mainte-
nance. Presumably, when a program is run more times, a
greater number of logic paths are exercised, and any logic
errors existing in the program are discovered and cor-
rected. Thus, we hypothesize that the number of produc-
tion runs of a program between repair maintenance activ-
ities will increase exponentially as the program gets older.
We tested our belief using the following hypothesis:

H5: The number of production runs between repair maintenance
R, and repair maintenance Rn+] will be greater than the
number of production runs between repair maintenance
Rn-] and Rn.

3. THE AUSTRALIAN STUDY
The first test of our hypotheses was carried out using
data collected on all Cobol production programs in a me-
dium-sized Australian installation. The installation was
mature; it had been started in May 1966. A variety of
scientific and business applications were processed, and
there were batch, online, and data communications sys-
tems. During the period of our data collection the installa-
tion was carrying out exploratory work with a database
management system. The installation had 34 staff mem-
bers: 4 management, 8 system analysts, 6 system analys t /
programmers, and 16 programmers.

For. control purposes we chose initially to focus only on
a single installation and only on production, 6 business, or
clerical application programs written in Cobol. The objec-
tive was to reduce the possibility of confoundings in our
experimental design. For example, the repair maintenance
profiles of programs in two installations may differ be-
cause of different organizational and management philo-
sophies. Similarly, the type of programming language
used may affect repair maintenance.

The installation we investigated had a reputation for
being well managed and innovative. It established and
enforced standards early in its history. Moreover, it ex-
perimented with and used a variety of management, sys-
tem analysis, and programming aids: PERT, decision table
preprocessors, flowcharters, test data generators, logic
path monitors, 7 librarians, etc.

3.1 Data
The source of the data was a maintenance sheet included
in all program folders. It was compulsory for program-
mers to complete this sheet whenever maintenance
was carried out. The sheet documented, among other
things, the nature of the maintenance carried out and the
date and time that the new version of the program was
released. In total we obtained data on 200 programsS--the

To the extent that the repair maintenance profiles of programs that have
been retired are different from production programs, our results will be biased.
It may be, forexample, that programs are retired because of a poor repair
maintenance history.

7 By a logic path monitor we mean a program that flags the various logic
paths in the subject program and indicates which of these paths have not been
traversed by test data.

s We did not purposely select 200 programs; it so happened there were ex-
actly 200 operational Cobol commercial and clerical programs in the installation.

entire number of operational commercial and clerical ap-
plication programs in the installation.

3.1.1 Repair Maintenance. The major 'dependent vari-
able in the study was repair maintenance. By examining
the program maintenance sheets, we identified those in-
stances of maintenance that involved repairs and the
dates that the repaired program was rereleased for pro-
duction.

For the purposes of the study the number of repairs
was inadequate as the dependent measure. In light of our
hypotheses, we believed the number of times a program
was run in production affected the likely number of re-
pairs carried out on the program. Logic errors are discov-
ered during production running; thus, even though two
programs may have been released for the same elapsed
time, we would expect the program that is run more often
to have a greater chance of having its logic errors discov-
ered. Consequently, we defined the dependent variable to
be the repair maintenance rate: the number of repairs
carried out divided by the number of production runs of
the program. The operator's instructions and the opera-
tions schedule showed how often a program was run.
Ultimately the repair maintenance rate must be a major
variable of interest to management: how many production
runs of a program can beexpected before a repair will
need to be carried out? Elapsed time between repairs is
not very meaningful when comparing a program run an-
nually with a program run four times a day.

3.1.2 Program Complexity. Recently there have been
several attempts to formalize the notion of program com-
plexity [9, 14]. However, because the time required to
collect data was substantial and we considered our re-
search to be exploratory, we exercised our judgments in
assigning each program a complexity rating. 9

Programs were classified as simple, moderately com-
plex, or complex. We considered the following parame-
ters when making our judgments. Firsf, the number of
source statements in a program was estimated. We tended
to classify programs having less than 300 source state-
ments as simple, those having 300-600 source statements
as moderately complex, and those having over 600 source
statements as complex) ° Second, we examined the rela-
tive size of the data division and the procedure division in
a program. Programs having a large data division and a
small procedure division tended to be rated downward in
complexity. Similarly, to the extent that many of the
source statements were comments, a 400 source statement
program, for example, might have been classified as sim-
ple. Third, we examined the number of logic paths
through the program. Programs having more logic paths
were rated higher in complexity. In this respect update
programs tended to rate higher in complexity than valida-
tion (edit) programs, and validation programs tended to
rate higher than report programs. Fourth, we considered
other factors that we believe affect a program's complex-
ity, for example, the number of files it handles, the num-
ber of fields in its records, its core size, whether or not it
is an online or a batch program, and the complexity of its
file structures.

Each of us has over 10 years experience in data processing and together 6½
years working in practice. Thus we believe our judgments to be at least reasona-
bly sound.

~0 There appears to be a reasonable correlation between program length and
the McCabe and Halstead metrics [5].

130 Communications of the ACM February 1983 Volume 26 Number 2

RESEARCH CONTRIB([rlONS

In some cases the p rogram speci f ica t ions p repa red by
the sys tem analyst con ta ined a complex i ty rat ing for the
program, and we could compa re our rat ings wi th this
rating. Also, we asked the project managers respons ib le
for the programs to judge the complex i ty of the p rograms
according to their o w n criteria. Initially, we were nervous
about the project managers ' rat ings since we felt their
ratings may be ex post ratings, that is, rat ings af fec ted by
the repair his tory of the p rogram ra ther than rat ings
based on the character is t ics of the p rogram w h e n it was
first re leased into product ion. In general , however , rat ing
consensus was high, and to the extent possible we recon-
ciled our differences.

3.1.3 Design and Coding Discipline Used. At first we
a t tempted to classify programs in the instal la t ion as being
unst ructured, modular , or s t ructured; however , only a f ew
programs had been wr i t ten s t r ic t ly according to a t op -
d o w n design and s t ructured p rog ramming discipline.
Thus we classif ied programs as being uns t ruc tu red or
modular ; those s t ructured programs exist ing were classi-
f ied as modular . Consequent ly , the Aus t ra l i an data a l lows
us to test only hypothes i s 2(b): modu la r programs wil l
exper ience less repair ma in t enance than uns t ruc tu red
programs.

Again, we exerc ised our judgment on w h e t h e r a pro-
gram was uns t ruc tu red or modular . W e a t t empted to
ident i fy whe the r the major funct ions in a p rogram had
been organized into logical units and coded as sect ions or
subrout ines wi th in the program. H We tr ied to the ex ten t
possible to ident i fy those p rograms that superf ic ia l ly ap-
peared modula r because of we l l -documen ted code but
were, in fact, uns t ructured .

As wi th complex i ty we checked our judgments on
whe the r a p rogram was uns t ruc tu red or modu la r wi th the
judgments of the project manage r responsib le for the ap-
pl icat ion programs. Again, consensus -was high and we
a t tempted to reconci le dif ferences .

3.1.4 Programmer Quality. T w o managers wi th in the in-
stallation rated the qual i ty of the p rog rammers w h o pre-
pared the programs in the s tudy as e i ther average or good.
One manager was in charge of all p rog rammers wi th in
the instal lat ion and had f inal responsib i l i ty for the qual i ty
of all programs. The o ther manager had respons ib i l i ty for
the final p roduc t ion release of all sys tems and programs
wi th in the installat ion. Both managers had been wi th the
instal lat ion a long time: 10 years and 13 years, respec-
tively. Both had substant ia l knowledge of the programs,
the programmers , and the p rog rammers ' work wi th in the
installation.

We asked the managers to rate the p rog rammers on
their abil i ty to produce high qual i ty programs. The not ion
of "qua l i ty" was left undef ined. The managers were pro-
vided wi th a list of the p rog rammers w h o had wr i t ten the
programs in the s tudy and the dates at w h i c h they had
wri t ten the programs. They were asked to make an inde-
pendent judgment on p r o g r a m m e r qual i ty first, and then
to compare their ratings and to reconci le any di f ferences .
They were also asked to cons ider possible changes in
their rating of the qual i ty of a p r o g r a m m e r as the pro-
g rammer gained more exper ience . Since the managers
knew w h e n a p rog rammer wro te a program, they could
assess the qual i ty of a p rog rammer at a par t icular date.

t~ For example, we looked for a mainline section that contained primari ly
PERFORM statements.

TABLE I. Relative Frequency (Percent) of Number of Repair
Maintenance Activities for One Australian Organization and
Two U.S. Organizations

Number of Australian U.S. organizations
repairs organization A B

0 55.5 63.0
1 18.5 22.0
2 16.0 7.1
3 1.0 6.3
4 4.5 ...
5
6 "l'J) '(~.8
7 1.5 ...
8 0.5 . . .
9 1.0 ...

10
11 . . .

12 '0.8
21 '0.5 . . .

72.0
13.0

9.0
4.0
1.0

1'.i

100.0 100.0 100.0

3.1.5 Number o f Production Releases. The n u m b e r of
product ion releases of a p rogram was needed in order to
de te rmine whe the r more f requen t ly modi f ied p rograms
exper ienced a higher repair m a i n t e n a n c e rate. The pro-
gram main tenance sheets s h o w e d the date of each pro-
duct ion release of a program. In a f ew cases a p rogram
had been comple te ly rewr i t t en at some date. W h e n e v e r
this occurred we counted this date as the initial produc-
tion release of the program. TM

3.1.6 Number of Production Runs Between Repairs. To
obtain the number of p roduc t ion runs be tween repairs,
we calcula ted the e lapsed t ime b e t w e e n success ive repairs
and de te rmined the n u m b e r of p roduc t ion runs that
wou ld have occur red dur ing this e lapsed time. The re are
some inaccuracies in this calculat ion. We do not k n o w
h o w long a p rogram was under repair; thus our es t imates
overs ta te the number of p roduc t ion runs b e t w e e n repairs .
Because d i f ferent p rograms were under repair for differ-
ent t imes and the f r equency of p roduc t ion runs varied,
our es t imates have varying accuracy. Similarly, p rograms
were not in p roduc t ion dur ing t imes of adapt ive and pro-
duct iv i ty main tenance . We were unable to de te rmine the
extent to wh ich es t imates should have been adjus ted to
take these per iods into account .

3.2 Data Ana lys i s 13
Table I shows one striking a t t r ibute of the p rograms stud-
ied in the Aus t ra l i an organizat ion, namely , the smal l
number of t imes that the programs u n d e r w e n t repai r
main tenance . Interest ingly, 55.5 percen t of the p rograms
exper ienced no repair ma in tenance , and 90 percen t of the
programs exper ienced two or f ewer repai r m a i n t e n a n c e
activities. On the average, repai r m a i n t e n a n c e cons t i tu ted
11.13 percent of the produc t ion releases of a program. TM

12 Basically we believe the program is "new" at this date. However, we recog-
nize that the programmer who rewrites the program has the benefit of a prior
version of the program. We do not know the extent to which this biases our
results.

m In the interests of brevity and readability, the statistical hypothesis testing
and estimation described in this paper is a considerably shortened version from
that in our initial report. Table I shows a skewed dependent variable, which
presented problems for our analysis, that we attempted in various ways to
overcome. The interested reader can contact the authors for a copy of the report
containing the full statistical analysis.

1+ In fact, this figure is an overstatement since in some cases adaptive and
productivity maintenance were carried out at the same time as repair mainte-
nance.

February 1983 Volume 26 Number 2 Communications of the ACM 131

RESEARCH CONTRIBUTIONS

The average repair maintenance rate was 2.35 repairs per
hundred production runs.

To test the first four hypotheses listed in Sec. 2, an
analysis of covariance (ANCOVA) model was fitted to the
data. The dependent variable was the repair maintenance
rate. There were three factors: (1) program complexity
measured at three levels, (2) programming style measured
at two levels, and (3) programmer quality measured at
two levels. The covariate was the number of production
releases. Only two factors were significant at the 0.05
level: program complexity (F = 7.16, df = 2/187,
p <0.001) and programming style (F = 4.85, df = 1/187,
p <0.03). Thus we have support only for hypotheses 1 and
2(b). Overall, the factors and covariate accounted for 7.8
percent of the variance in the repair maintenance rate.

To determine the practical significance of the statisti-
cally significant factors, we undertook estimation of the
differences between factor-level means using the Bonfer-
roni method of multiple comparisons and a 0.90 family
confidence coefficient [17]. In terms of the program com-
plexity factor, moderately complex programs had be-
tween 0.27 and 5.73 more repairs per hundred production
runs than simple programs; furthermore, complex pro-
grams had between -0.22 and 5.88 more repairs per
hundred production runs than simple programs, and be-
tween -3.23 and 2.89 more repairs per hundred produc-
tion runs than moderately complex programs. In terms of
the programming style factor, use of a modular style in-
stead of an unstructured style reduced the repair mainte-
nance rate by between -1.12 and 3.7 repairs per hundred
production runs.

To test hypothesis 5, we used a single factor analysis of
variance (ANOVA) model. The dependent variable was
the number of production runs between successive re-
leases of a program where program maintenance had
been carried out. The independent variable was the num-
ber of the time period between successive repair mainte-
nance activities, that is, time period 1 was the time period
between the initial production release and that after the
first repair maintenance activity, time period 2 was the
time period between the production release after the first
repair maintenance activity and the production release
after the second repair maintenance activity, etc. Since
only one program had more than nine repair maintenance
activities and the ANOVA model needs at least two ob-
servations per time period, we could test hypothesis 5
over 9 time periods.

The F test for equality of the factor-level means was
significant only at the 0.4511 level. We conclude there are
no differences between any of the factor-level means, and
we must reject hypothesis 5.

4. THE U.S. STUDY
Because the results from the first study were contrary to
expectations, we replicated the research to determine
whether the results appeared to hold generally. Cobol
programs in two U.S. organizations were studied. Both
organizations were large and mature: organization A had
over 240 analysts and programmers, and organization B
had over 40 analysts and programmers.

4.1 Data
Data was collected on 127 programs in organization A
and 100 programs in organization B. The programs did
not constitute the whole set of production programs in
both organizations. Unfortunately, the needed data had

been recorded routinely by the organizations only in re-
cent years. The studied programs were developed and
implemented from about 1975 onward.

There were two differences between the data obtained
in the Australian study and the data obtained in the U.S.
study. First, the programs examined in the U.S. study, on
the average, were less complex than those examined in
the Australian study. Hence, it was not possible to use the
same complexity ratings as were used in the Austral ian
study. Instead of classifying programs with 1-300 source
statements as simple, 301-600 as moderately complex, and
over 600 as complex, the upper category limits were es-
tablished at 150, 300, and 450 procedure division state-
ments. Again, adjustments were made to this initial com-
plexity rating based on the number of logic tests, number
of files handled, etc. This difference between the two
studies affects the comparability of results, but it enables
the effects of program complexity to be examined using a
finer measurement scale.

The second difference between the two studies relates
to the distribution of programming styles used. Since data
could be collected only on the more recently developed
programs within each U.S. organization, the programming
style used was primarily a modular or a structured style.
Both organizations had enforced standards aimed at elim-
inating unstructured code. The smaller size of the pro-
grams relative to those in the Austral ian study reflects
these standards. Thus the programming style factor has
only two levels: modular and structured. Again, this af-
fects the comparability of the Austral ian and U.S. results;
however, a test of hypothesis 2(a) now could be per-
formed.

4.2 Data Analysis
Table I shows the relative frequency of repair mainte-
nance activities for the two U.S. organizations. Note the
similarities between the Australian and U.S. data; most
programs experienced only a small number of repair
maintenance activities. In organization A, repair mainte-
nance activities occurred, on the average, 0.823 times per
hundred production runs and constituted 18.8 percent of
production releases. The corresponding figures for organi-
zation B are 0.627 and 21.43 percent.

To test the first four hypotheses listed in Sec. 2, an
ANCOVA model was again fitted to the data. Only the
covariate was significant at the 0.05 level in both cases
(F = 13.86, df = 1/114, p <0.001 for organization A, and
F = 7.79, dl' = 1/87, p <0.006 for organization B). Thus we
have support only for hypothesis 4. Overall, the factors
and covariate accounted for 11.7 percent of the variance
in the repair maintenance rate for organization A and 12.4
percent of the variance in the repair maintenance rate for
organization B.

To evaluate the practical significance of the statistically
significant covariate, we undertook statistical estimation
of the slope of the regression line for the covariate [17].
For organization A, at the 95 percent confidence level
each release of a program resulted in between 0.55 and
1.92 more repairs per hundred production runs. For orga-
nization B, at the 95 percent confidence level each release
of a program resulted in between 0.22 and 1.26 more re-
pairs per hundred production runs.

Hypothesis 5 was tested again using a one-way
ANOVA model. The F test for equality of the factor level
means was significant at the 0.777 level for organization
A and the 0.001 level for organization B. Hence, the effect

132 Communications of the ACM February 1983 Volume 26 Number 2

RESEARCH CONTRIBUTIONS

of program age is significant for organization B only.
However, the result gives only weak support to hypothe-
sis 5. For the first four time periods between successive
repair maintenance activities, the average number of pro-
duction runs was 19.14, 18.33, 15.83, and 112.5. Thus the
significant result is obtained because the mean for t ime
period 4 differs considerably from the other three time
periods.

5. DISCUSSION OF RESULTS
Our first conclusion from the results is that repair mainte-
nance does not seem to constitute a very important activ-
ity in any of the three installations. Adapt ive maintenance
is far more important. (We noted only a few instances of
productivi ty maintenance.) We do not know whether this
conclusion holds generally, but it is apparent that certain
organizations test their programs thoroughly before re-
leasing them for production running.

In two of the three organizations studied, we found
support for Boehm's [1] hypothesis that the l ikelihood of a
successful first run after only a minor modification is
small. For both U.S. organizations the number of program
releases affected the repair maintenance rate. Neverthe-
less, the practical significance of the result might be ques-
tioned. The confidence interval for the covariate effects
shows the increase in the repair maintenance rate with an
extra program release to be between 0.55 and 1.92 and
between 0.22 and 1.26 more repairs per hundred produc-
tion runs, respectively, for organizations A and B.

The complexity factor was significant only for the Aus-
tralian organization. What is surprising, however, is that
we found little difference between the repair maintenance
rates for moderately complex programs and complex pro-
grams. The factor is stat ist ically significant because the
repair maintenance rate for easy programs differs from
the repair maintenance rate for moderate ly complex or
complex programs. In fact, the estimate of the repair
maintenance rate for moderately complex programs is
slightly higher than the rate for complex programs.

We offer three possible explanat ions for this finding.
First, our judgment on the level of complexi ty of a pro-
gram may be inaccurate. As mentioned earlier, formal
measures of program complexi ty are still evolving. Sec-
ond, the repair maintenance rate may be a logarithmic
function of complexity. At moderate levels of complexi ty
the rate of increase of the function may be small. Third,
programmers may exercise greater care when they design,
code, and test complex programs. They may recognize the
increased potential for logic errors and take precaut ionary
measures as a result.

Why program complexi ty was not significant in the two
U.S. organizations is unclear. For the three organizations
studied, program complexi ty was significantly related to
the number of releases; but the number of releases was
not significant as a covariate in the Austra l ian organiza-
tion, while program complexi ty still was not significant in
the two U.S. organizations when the covariate was ex-
cluded from the model. It seems as though program com-
plexity and number of releases may be explaining differ-
ent parts of the total variabil i ty of the repair maintenance
rate. Recall that for the three organizations studied, the
covariate and the factors accounted for less than 13 per-
cent of the total variance in the dependent variable. Thus
much of the variance in the repair maintenance rate still
has to be "explained."

A possible reason for the conflicting results is the dif-

ferent ways in which program complexi ty was measured
for the Austral ian and U.S. organizations. The programs
in the Austral ian organization, in general, were more
complex than those in the U.S. organizations. This also
might explain the higher mean repair maintenance rate in
the Austral ian organization: 2.35 repairs per hundred pro-
duction runs versus 0.82 and 0.63 repairs per hundred
production runs for the U.S. organizations. Still another
explanation for the conflicting results might be that devel-
opment programmers in the U.S. organizations tested
their programs better than programmers in the Austra l ian
organization.

Only weak support exists for programming style having
an effect on the repair maintenance rate. While this factor
is significant in the Austral ian study, there is no evidence
of an effect in the U.S. studies. On the basis of the Aus-
tralian study we suspect that modular (and structured)
programming has a greater impact on the repair mainte-
nance rates of moderate ly complex and complex pro-
grams than simple programs. However, there was no evi-
dence of an interaction effect to support this hypothesis.
Further research might investigate this issue.

We are unable to explain the results relating to pro-
grammer quality. Perhaps the managers judged the qual-
ity of programmers incorrectly. In retrospect, however,
we suspect that good programmers differ from average
quality programmers on the basis of at tr ibutes other than
repair maintenance, for example, the speed with which
they design and implement programs, how easy their pro-
grams are to maintain, and the efficiency with which
their programs run. Still the question begs: What are the
attributes of a good programmer?

We found no support for the hypothesis that the num-
ber of production runs between repairs increases after
each repair. One possible explanat ion for this result is
that more adaptive maintenance must be carried out as a
program gets older (to arrest entropy); consequently,
though the initial logic errors are removed, new logic er-
rors creep into the program as more adapt ive mainte-
nance is carried out.

6. CONCLUSIONS
Our study confirms the need for further empirical re-
search in the programming area [18]. Although we found
support for some of the hypotheses advanced about repair
maintenance, other hypotheses still await stat ist ically sig-
nificant results. Moreover, the independent variables we
examined do not account for a large percentage of the
variation in the dependent variables.

It is not difficult to identify further research topics.
Textbooks and articles are rife with prescription. For ex-
ample, Yourdon [24] claims top-down testing reduces sys-
tem testing, allows major bugs to be discovered earlier in
testing, facilitates finding bugs, distr ibutes testing more
evenly through a project 's life, etc. All of these proposi-
tions are testable hypotheses.

What is difficult is operationalizing the research. For
example, one way of testing the claim that s tructured
code is easier to maintain than unstructured code would
be to run a controlled experiment. Two groups of pro-
grammers would code a set of programs: an exper imental
group would use the structured programming methodol-
ogy and a control group would use an unstructured meth-
odology. A series of modifications to the program then
could be made and such variables as the time to accom-
plish the modifications and the accuracy of the modifica-

February 1983 Volume 26 Number 2 Communications of the ACM 133

RESEARCH CONTRIBUTIONS

t ions m a d e could be m e a s u r e d . U n f o r t u n a t e l y , c a r r y i n g
out th is e x p e r i m e n t w o u l d be diff icul t ; it w o u l d be t ime
c o n s u m i n g a n d cost ly; the e x p e r i m e n t e r w o u l d h a v e to
e n s u r e h o m o g e n i t y of the qua l i ty of the p r o g r a m m e r s in
the e x p e r i m e n t a l a n d con t ro l groups; the con t ro l g roup
s h o u l d not h a v e b e e n e x p o s e d to s t r u c t u r e d p r o g r a m m i n g
in case it b i a sed the w a y t hey w r o t e code; etc. Un t i l t he se
types of p r o b l e m s are ove rcome , it is un l ike ly t h e r e wil l
be r ap id d e v e l o p m e n t s in emp i r i ca l w o r k to s u p p o r t the
t h e o r y of p r o g r a m m i n g .

Our resu l t s s t a n d as a cha l l enge to s o m e c o n v e n t i o n a l
w i s d o m a n d the p r o p o n e n t s of s t r u c t u r e d p r o g r a m m i n g
(who inc lude us). W e read i ly a c k n o w l e d g e t h a t ou r re-
s e a r c h is e x p l o r a t o r y a n d t h e r e are p r o b l e m s w i t h the
s ta t i s t ica l model . Never the les s , the resu l t s are a n o m a l o u s .
Care fu l t h o u g h t n e e d s to be g iven to the n a t u r e of the
f u n c t i o n a l r e l a t i o n s h i p b e t w e e n d i f f e r en t p r o g r a m qua l i t y
m e a s u r e s and, say, p r o g r a m m i n g style. F o r m a l emp i r i ca l
w o r k n e e d s to be u n d e r t a k e n to va l ida t e t he n a t u r e of the
f u n c t i o n a l r e l a t i o n s h i p s h y p o t h e s i z e d . P e r h a p s ou r f a i lu re
to o b t a i n s ta t i s t i ca l ly s ign i f i can t r e su l t s re f lec ts the n e e d
to deve lop m o r e formal , opera t iona l m e a s u r e s of p r o g r a m
complex i ty , p r o g r a m m i n g style, a n d p r o g r a m m e r qual i ty .
But in the case of r epa i r m a i n t e n a n c e ra t e s we s u s p e c t
th is wil l do li t t le good. T a b l e I s h o w s t h a t the va r i ab i l i t y
of r epa i r m a i n t e n a n c e ra t e s in t h r ee o r g a n i z a t i o n s is al-
mos t negligible. If th i s resu l t ho lds genera l ly , m o r e ca re fu l
m e a s u r e m e n t of the i n d e p e n d e n t v a r i a b l e s wil l no t ac-
c o u n t for va r i ab i l i ty in the d e p e n d e n t v a r i a b l e if t h e r e is
no va r i ab i l i ty to be e x p l a i n e d a n y w a y ! Ins tead , w e be l ieve
t ha t a n e s sen t i a l p r e r equ i s i t e to o b t a i n i n g the des i r ed re-
sul ts is tha t , for example , the p r o p o n e n t s of s t r u c t u r e d
p r o g r a m m i n g e n u n c i a t e prec i se l y w h a t d e p e n d e n t var i -
ab les wil l be a f fec ted b y s t r u c t u r e d p r o g r a m m i n g .

Acknowledgments. T h i s p a p e r ha s b e n e f i t e d f r o m the
c o m m e n t s of p a r t i c i p a n t s in w o r k s h o p s at the U n i v e r s i t y
of M i n n e s o t a , P u r d u e Un ive r s i t y , a n d I n d i a n a Un ive r s i t y .
W e are espec ia l ly i n d e b t e d to A n d r e w Bai ley a n d Izak
B e n b a s a t for de ta i l ed c o m m e n t s o n ear l ie r v e r s i o n s of the
paper . T h e r e s pons i b i l i t y for t he c o n t e n t s of th i s p a p e r
res ts w i t h the au tho r s .

REFERENCES
1. Boehm, B.W. Software and its impact: A quantitative assessment. Da-

tamation 19, 5 (May 1973), 48-59.
2. Buckley, W. Sociology and Modern Systems Theory. Prentice-Hall,

Englewood Cliffs, N.J., 1967.

3. Canning, R.G. Modular COBOL programming. EDP Analyzer 10, 7
(July 1972), 1-14.

4. Canning, R.G. That maintenance "iceberg." EDP Analyzer 10, 10 (Oct.
1972), 1-14.

5. Curtis, B., Sheppard, S.B., Milliman, P., Burst, M.A., and Love T. Meas-
uring the psychological complexity of software maintenance tasks
with the Halstead and McCabe metrics. IRER Transactions on Soft-
ware Engineering SE-5, 2 (March 1979), 96-104.

6. Davis, G.B. Management Information Systems: Conceptual Founda-
tions Structure, and Development. McGraw-Hill, New York, 1974.

7. De Millo, R.A., Lipton, R.[., and Perlis, A.J. Social processes, and proofs
of theorems and programs. Comm. ACM 22, 5 (May 1979), 271-280.

8. Endres, A. An analysis of errors and their causes in systems programs.
IEEE Transactions on Software Engineering SE1, 2 (June 1975), 140-
149.

9. Halstead, M.H. Elements of Software Science. Elsevier, New York,
1977.

10. Hantler, S.L., and King,].C. An introduction to proving the correctness
of programs. Computing Surveys 8, 3 (Sept. 1976), 331-353.

11. Lientz, B.P., and Swanson, E.B. Problems in application software main-
tenance. Comm. ACM 24, 11 (Nov. 1981), 763-769.

12. Lientz, B.P., Swanson, E.B., and Tompkins, G.E. Characteristics of ap-
plication software maintenance. Comm. ACM 21, 6 (June 1978), 466-
471.

13. Linger, R.C., Mills, H.D., and Witt, B.I. Structured Programming: The-
ory and Practice. Addison-Wesley, Reading, Mass., 1979.

14. McCabe, T.J. A complexity measure. IEER Transactions on Software
Engineering SE2, 4 (Dec. 1976), 308-320.

15. Myers, G.J. A controlled experiment in program testing and code
walkthroughs/inspections. Comm. ACM 21, 9 (Sept. 1978), 760-768.

16. Naftaly, S.M., Cohen, M.C., and Johnson, B.G. COBOL Support Pack-
ages: Programming and Productivity Aids. Wiley, New York, 1972.

17. Neter, J., and Wasserman, W. Applied Linear Statistical Models. Irwin,
Homewood, Ill., 1974.

18. Sheppard, S.B., Curtis, B., Milliman, P., and Love, T. Modern coding
practices and programmer performance. Computer 12, 12 (Dec. 1979),
41-49.

19. Sheil, B.A. The psychological study of programming. Computing Sur-
veys 13, 1 (March 1981), 101-120.

20. Shneiderman, B., Mayer, R., MeKay, D., and Heiler, P. Experimental
investigations of the utility of detailed flowcharts in programming.
Comm. ACM 20, 6 (June 1977), 373-381.

21. Simon, H. A. The Sciences of the Artificial. MIT Press, Cambridge,
Mass., 1969.

22. Thayer, T.A., Lipow, M., and Nelson, E.C. Software Reliability. North-
Holland, Amsterdam, 1978.

23. Weinberg, G.M. The Psychology of Computer Programming. Van Nos-
trand Reinhold, New York, 1971.

24. Yourdon, E. Techniques of Program Structure and Design. Prentice-
Hall, Englewood Cliffs, N.J., 1975.

CR Categories and Subject Descriptors: D.2.7 [Software Engineering]:
Distribution and Maintenance--corrections: D.2.2 [Software Engineering]:
Tools and Techniques--Structured Programming

General Term: Experimentation
Additional Key Words and Phrases: program maintenance, repair main-

tenance, program complexity, modular programming, structured program-
ming, programmer quality, programming management

Received 1/80; revised 4/82; accept 5/82

ACM Algorithms
Collected Algorithms from AC.M (CALGO) now includes quar-
terly issues of comple te a lgori thm listings on microfiche as part
of the regular CALGO supp lemen t service.

The ACM Algori thms Distribution Service now offers microfiche
containing comple te listings of ACM algori thms, and also offers
compi la t ions of a lgor i thms on tape as a substi tute for tapes
containing single algorithms. The fiche and tape compila t ions
are available by quarter and by year. Tape compila t ions covering
five years will also be available.

To subscr ibe to CALGO, request an order form and a free
A C M Publicat ions Catalog from the A C M Subscr ipt ion De-
par tment , Associat ion for Compu t ing Machinery , 11 Wes t
42nd Street, New York, NY 10036. To order f rom the A C M
Algor i thms Dis t r ibut ions Service, refer to the order form that
appears in every issue of A C M Transactions on Mathematical
Software beginning with March 1980, and in the March 1980
issue of Communicat ions of the A C M (page 191).

134 Communications of the ACM February 1983 Volume 26 Number 2

