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An automatic spelling correcting algorithm corrects most of the 50,000 
misspellings culled from 25,000,000 words of text from seven scientific and 
scholarly databases. It uses a similarity key to identify words in a large 
dictionary that are most similar to a particular misspelling, and'then an 
error-reversal test to select from these the most plausible correction(s). 

AUTOMATIC SPELLING CORRECTION IN 
SCIENTIFIC AND SCHOLARLY TEXT 
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The study of computerized correction of spelling errors 
has a relatively long history and remains of considera- 
ble current interest if regularly appearing papers on the 
topic are any gauge. Whereas early papers focused on 
the correction of output from optical character recogni- 
tion (OCR), voice recognition, Morse code, or on spell- 
ing errors in program code, the application of most in- 
terest today is probably the correction of machine-read- 
able text. Also, the techniques involved in spelling er- 
ror correction have other important applications, for 
example, measuring the similarity of two strings of 
symbols to determine the evolutionary distance of pro- 
teins. The specialized subtopics are covered extensively 
in recent bibliographies by Peterson [7] and Pollock [8] 
and are not discussed further here. 

The most suitable correction strategy for text often 
depends on both its nature and its source. Correcting 
source code for a procedural language with a smafl 
vocabulary of short words (e.g., a typical programming 
language or the command language for a bibliographic 
search system) presents quite different problems than 
scientific text. Similarly, OCR output contains almost 
exclusively substitution errors, which ordinarily ac- 
count for less than 20 percent of keyboarded misspell- 
ings [9, 10]. 

This paper describes the correction pro.gram devel- 
oped as part of SPEEDCOP (Spelling Error. Detection/ 
©1984ACM0001-0782/84/0400-0358 75¢ 

Correction Project), a Chemical Abstracts Service (CAS) 
project supported by the National Science Foundation. 
The program is intended not as a theoretical construct 
but as a useful tool for text editing. Under SPEEDCOP, 
approximately 25,000,000 words from seven scientific 
and scholarly textual databases were processed to ex- 
tract over 50,000 misspellings using a dictionary equiv- 
alent to 40,000 words. This contrasts sharply with most 
work on spelling correction that tends to feature small 
dictionaries and either few or artificial misspellings. In 
our case, the use of real data gave credibility to the 
proposed solution, whereas the large dictionary re- 
vealed problems such as ambiguity that would not oth- 
erwise have been discovered. Internal reports [10-13] 
and papers [9, 19] describe in considerable detail how 
the misspellings were gathered and analyzed. 

The core of the SPEEDCOP program is an algorithm 
for correcting only isolated misspellings that contain a 
single error and whose correct forms are in a diction- 
ary. This is not as drastic a restriction as it may seem as 
90-95 percent of misspellings in raw keyboarding typi- 
cally contain only one error [9, 10]. The SPEEDCOP 
program also incorporates a common misspelling dic- 
tionary and a function word routine and is therefore 
not rigidly restricted to the above class of misspellings. 
In practice, the program corrected 85-95 percent of the 
misspellings for which it was designed, 75-90 percent 
of those whose corresponding words were in the dic- 
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tionary (including multiple errors), and 65-80 percent 
of the misspellings overall. 

THE PROBLEM 
A misspelling can be corrected by two fundamentally 
different strategies that are referred to here as absolute 
and relative. In an absolute method, the correction is 
deduced directly from the characteristics of the mis- 
spelling and a dictionary is used only for confirmation 
(if at all), whereas in relative methods the correct form 
is selected from a dictionary. 

The simplest absolute method is the historical ap- 
proach, which involves constructing a dictionary of 
misspellings that have often occurred previously in the 
database and are unambiguous. For example, if the 
string HTE is known to occur often and only as a mis- 
spelling of THE, then it can confidently be transformed 
to THE whenever it is found. This approach, which is 
limited but very cost effective, is incorporated in the 
SPEEDCOP correction program. 

Less extreme absolute methods are based on the let- 
ter characteristics of the misspelling. For example, a 
triple letter in a misspelling might be changed to a 
double letter and the correction confidently accepted if 
the new string were in the dictionary. This method can 
be extended to letters whose doubling and undoubling 
have been found to be relatively frequent causes of 
error. However, only a small proportion of misspellings 
can be corrected in this fashion. More sophisticated 
variants of this method--based on n-gram probabili- 
t i e s -have  been used by various researchers [8]. 

The relative strategy involves locating words in a dic- 
tionary that are most similar to a misspelling and se- 
lecting a correction from these. Generally, the selection 
method is based on maximizing similarity or minimiz- 
ing the string-to-string edit distance [4, 8]. Although 
more widely applicable than the absolute approach, the 
relative strategy depends on being able to define a use- 
ful measure of similarity or, better, plausibility, with 
respect to a model of error generation. 

THE SPEEDCOP CORRECTION ALGORITHM 
In SPEEDCOP we elected to generate a similarity key 
for each word in the dictionary and then to sort the 
dictionary in key order. A misspelling is then corrected 
by locating words whose keys collate most closely to 
the key of the misspelling and selecting the plausible 
correction(s) from these. The underlying premises are 
that key collation proximity is a useful measure of sim- 
ilarity, that sorting the dictionary is equivalent to per- 
forming all possible similarity comparisons in advance, 
and that plausibility is much more significant than sim- 
ilarity. 

Similarity keys exhibit less scatter than the original 
strings because an arbitrary number of strings may 
have the same key. A key also orders the strings' fea- 
tures so that the collating distance between two keys is 
a measure of the similarity of the original strings. The 
key generated from a misspelling is compared with dic- 
tionary keys by a random access method; the last key to 
compare equal to or less than the misspelling key be- 

comes the center of a similarity-ordered set of diction- 
ary words that are potential corrections. In practice (see 
the Error Reversal section), the correction word was at 
the center of this set in over half the cases studied and 
very close for almost all the rest. 

When the set of similar words has been retrieved, 
each member is tested for plausibility of correction by 
attempting to reverse the error operations encountered 
in practice. This idea was first proposed by Damerau [1] 
in what is probably the most useful paper in the early 
spelling correction literature although it doesn't seem 
to have been applied by later practitioners. 

What is envisaged here is the correction of isolated 
misspellings. If context were to be taken into account, 
more elaborate strategies would be needed. Although 
absence of context gives rise to ambiguous corrections, 
this would be equally true of manual correction and 
one cannot reasonably expect a computer program to 
be superior to human beings in this respect. 

THE SIMILARITY KEYS 
To be effective in spelling error correction, a similarity 
key should retain the fundamental features of a string 
(word or misspelling) and be insensitive to typical spell- 
ing error operations. Many approaches to string similar- 
ity appear in the literature [4, 8]. 

Two obvious properties of an alphabetic string are 
the identity and interrelationships of the letters that 
comprise it. Using these properties, one can envisage a 
spectrum of similarity keys beginning with identity at 
the most rigorous end (the string itself) and continu- 
ously relaxing to only the most tenuous resemblance 
(perhaps an equal number of universal characters). Let- 
ter content might be expressed by a key containing the 
string's unique letters in a predetermined order, but 
this low degree of similarity would fail to distinguish 
many words (e.g., DEGREE and GREED) and would be 
adequate only for very small vocabularies. A key that 
incorporates letter interrelationships in a simple way 
would consist of the string's unique letters in their orig- 
inal order. This key is considerably less "relaxed" be- 
cause it preserves more of the original string's informa- 
tion. A more rigorous key still is one that preserves all 
the original interrelationships. A key of this kind (pro- 
posed by Riseman et al. [5, 14, 15]) consists of a set of 
subscripted letter pairs AiBj, i < j, where i and j repre- 
sent the positions of each of the letters in the word. 

The more information the key retains, the more sen- 
sitive it is to transformations caused by misspelling and 
the harder it becomes to connect word and misspelling. 
A key must blur the identity of the string, not obliterate 
or replicate it. The two keys used in SPEEDCOP--the 
skeleton key and the omission key--were constructed 
so as to be compatible with the experimental evidence 
gathered in the data collection phase [9, 10] and to be 
complementary to each other. 

The Skeleton Key 
The similarity key originally chosen was constructed 
by concatenating the following features of the string 
(word or misspelling): the first letter, the remaining 
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TABLE I. Skeleton Key Examples 

String Key 
, , , , , ,  

CHEMOGENIC CHMGNEOI 
CHEMOMAGNETIC CHMGNTEOAI 
CHEMCAL CHMLEA 
CHEMCIAL CHMLEIA 
CHEMICAL CHMLEIA 
CHEMICIAL CHMLEIA 
CHIMICAL CHMLiA 
CHEMILUMINESCENCE CHMLNSEIU 
CHEMILUMINESCENT CHMLNSTEIU 
CHEMICALS CHMLSEIA 
CHEMICALLY • CHMLYEIA 

unique consonants in order of occurrence, and the 
unique vowels in order of occurrence. 

Some examples of string/key pairs are given in Table 
I. Note that CHEMICAL, CHEMCIAL and CHEMICIAL 
have the same key and CHIMICAL and CHIMCAL have 
very similar ones. Thus, CHEMICAL and these (real) 
misspellings sort very closely together. The rationale 
for this key is that (1) the first letter keyed is likely to 
be correct, (2) consonants carry more information than 
vowels, (3) the original consonant order is mostly pre- 
served, and (4) the key is not altered by the doubling or 
undoubling of letters or most transpositions. 

The first assumption derives from data gathered in 
SPEEDCOP [9, 10], which showed that only 7.8 percent 
of the first letters of misspellings were incorrect com- 
pared to 11.7 percent of the second and 19.2 percent of 
the third. Moreover, every key must possess some sort 
of "anchor" and the first letter seemed a reasonable 
choice. In terms of the second assumption, it is gener- 
ally assumed in the literature [18] that vowels are less 
imporrtant than consonants; also, the "natural" way to 
abbreviate seems to be to omit vowels other than the 
first letter. Third, in most misspellings, unique letter 
order is changed only slightly. Finally, this key is in- 
sensitive to a significant number of misspelling-creating 
transformations such as doubling and undoubling of 
characters and vowel/consonant transposition. Since 
we regard the unique consonants in their original order 
as the backbone of a word, we call this key the skeleton 
key. 

The skeleton key reflects the misspellings collected 
[9, 10] and is intuitively reasonable in that strings that 
"look" similar produce closely related keys. The more 
abstract techniques (e.g., Levenshtein distance [6, 8]) 
produce similarities that are counterintuitive and ob- 
scure to manual inspection and are thus unlikely to 
represent spelling errors. 

The most vulnerable aspect of this key is its emphasis 
on the early consonants. The closer an incorrect conso- 
nant is to the start of a word, the greater the collating 
distance between the keys of the word and misspelling. 
In principle, this does not disable the correction tech- 
nique (since one could test every word in the diction- 

ary against the misspelling), but it may make locating 
the correct word impractical. 

The Omission Key 
Analysis of the skeleton key correction results revealed 
that the most frequent cause of failure to correct mis- 
spellings with parent words in the dictionary was that 
early consonant damage prevented the valid form from 
being retrieved because of the magnitude of the collat- 
ing distance between the keys of the word and the 
misspelling. Since this occurred most often with omis- 
sion errors, the omission frequency string discovered in 
the data-gathering phase of SPEEDCOP [9, 10] was used 
as the basis for a new key. Consonants were omitted 
from words in the following frequency order: 
RSTNLCHDPGMFBYWVZXQKJ. That is, R was omitted 
more often than any other letter; J less often. The omis- 
sion key for a particular string is constructed by sorting 
its unique consonants in the reverse of the above fre- 
quency order and then appending the unique vowels in 
their original order (Table II). Note that this key is 
much less intuitive than the skeleton key. Strings with 
almost identical keys do not necessarily "look" like 
each other because letter content alone determines 
the key. Keys of this kind naturally cluster anagrams 
(CARAMEL MACERAL, and CAMERAL). The omission 
key is much harder to construct manually than the 
skeleton key, but not computationally. 

PLAUSIBILITY-BASED CORRECTION 
Having retrieved the dictionary words most similar to 
the misspelling, the problem now i~ to find the parent 
or correct word. Although almost all the documented 
methods rely on similarity measures to do this, it 
seemed to us from the outset that a plausibility test 
based on reversing the error patterns discovered in the 
data-gathering phase was more realistic. A measure 
combining the Hamming distance of the keys used by 
the PLATO system [16] and the distance of the word 
from the center of the set method was experimented 
with and then abandoned when it became clear that 

TABLE II. Omission Key Examples 

String Key 

MICROELECTRONICS MCLNTSRIOE 
CIRCUMS"FANTIAL MCLNTSRIUA 
LUMINESCENT MCLNTSUIE 
MULTINUCLEATE MCLNTUIEA 
MULTINUCLEON MCLNTUlEO 
CUMULENE MCLNUE 
LUMINANCE MCLNUlEA 
COELOMIC MCLOEI 
MOLECULE MCLOEU 
CAMERAL MCLRAE 
CARAMEL MCLRAE 
MACERAL MCLRAE 
LACRIMAL MCLRAI 
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this techniclue was unlikely to approach the effective- 
ness of the error reversal technique, which finds all 
and only plausible corrections in the retrieval set. 

Error Types 
Following Gates [3], we define four basic spelling error 
operations: insertion--one extra character is inserted 
into the string; omission--one character is removed 
from the string; transposition--two adjacent characters 
in the string are interchanged; substitution--one charac- 
ter in the string is replaced by a different one. 

These are not irreducibly primitive operations nor do 
they necessarily provide a unique path between word 
and misspelling. Rather, their usefulness ties in their 
correspondence to real-world error-creating operations 
and their ability to interconvert any pair of strings. Five 
error classes are defined based on these operations: 
Four (omission, insertion, substitution, and transPosi- 
tion) are created by a single application of the corre- 
sponding error operation to the correct string, whereas 
the fifth (multiple errors) results from the successive 
application of two or more (not necessarily different) 
error operations. 

Error Type and the Intrinsic Difficulty of Correction 
The number of operations required to interconvert 
word and misspelling varies markedly with error type. 
For an N-letter misspelling with a single insertion error, 
the dbletion of each character in turn will regenerate 
the originai word. If one regards substitution as the 
fundamental operation and deletion as substitution by a 
null, then correction of an insertion error requires at 
most N attempts. Similarly, a single transposition error 
can be reversed by inverting each pair of adjacent char- 
acters in turn for a maximum of N - 1 inversions or 
2(N - 1) substitutions, a single substitution error can be 
rectified by at most 25N substitutions, and a ~ingle 
omission error by a maximum of 26(N + 1) substitutions 
of a letter for a null. 

Clearly, there is a marked difference between inser- 
tion and transposition, which require few operations, 
and omission and substitution, which require many 
more. For practical purposes, this means that only the 
insertion and transposition operation can be reversed at 
execution time by string-distance measurement tech- 
niques that examine a large number of alternatives 
(see, e.g., [4, 17]). 

The maximum number of operations necessary to ef- 
fect an error correction increases sharply when more 
than one error is involved. For example, to be certain 
of reversing a misspelling resiflting from two substitu- 
tion errors, a maximum of (625/2)(N(N + 1)) substitu- 
tions would be required. Also, the plausibility of cor- 
rection decreases sharply as the number of individual 
errors increases. Many words can be transformed into 
other perfectly valid words by even two error opera- 
tions, for example, INCREASED to DECREASED. At the 
logical limit, any N-letter string can be transformed into 
any other by N substitutions and into all others by 2N N. 

Correcting multiple errors ihrough these error reversal 
techniques produces a plethora of possible corrections 
with low plausibilities--a poor prognosis unless the 
paren~t vocabulary is extremely small. This suggests 
that the error correction technique should not be 
too powerful or it will generate too many false 
"corrections". 

Error Reversal 
Error reversal is based on the idea that if a misspelling 
can be transformed into a dictionary word by reversing 
one of the basic error operations, then the latter word is 
a plausible correction. Since this technique cannot cor- 
rect misspellings with more than one error, 5-9 percent 
of the misspellings are typically excluded a priori. 
However, since the technique is limited to single errors, 
it only needs to test words of the same length as the 
misspelling for substitution and transposition, words of 
one character more for omission, and words of one 
character less for insertion. This greatly reduces the 
number of possible comparisons. The algorithm for de- 
termining whether two strings, differing in length by 
or 1, can be transformed into each other by a single 
error operation i s as follows. Note how enormously 
simpler it is than string-distance measures. 

1. Find the leftmost position (P} at which the strings 
differ. 

2. IF the (potential target) word is longer than the 
misspelling AND the word from position P + 1 to 

the end is identical to the misspelling from po- 
sition P to the end 

THEN the misspelling and the word differ by an 
OMISSION error. 

3. ELSE IF the word is shorter than the misspelling 
AND the word from position P to the end is iden- 

tical to the misspelling from position P + 1 to 
the end 

THEN the misspelling and the word differ by an 
INSERTION error. 

4. ELSE IF the two strings are the same length 
THEN 

IF the two strings are identical from posi- 
tion P on 

THEN the misspelling and the word differ by a 
SUBSTITUTION error. 

ELSE IF a substring consisting of the 
iP + 1)th character of the 

misspelling followed by the Pth 
character of the misspelling fol- 
lowed by that part of the misspell- 
ing to the right of the (P + 1)th 
character is identical to the target 
word from the Pth character to the 
end 

THEN the misspelling and the word differ 
by a TRANSPOSITION error. 

5. ELSE the word is not a potential correction. 
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This algorithm is applied to the retrieval set contain- 
ing the dictionary words whose keys collate alphabeti- 
cally closest to that of the misspelling. The center of the 
set is the last diction.ary key to compare low or equal to 
the misspelling key. Because collating proximity is a 
measure of similarity, the probability of finding a plau- 
sible correction decreases sharply with distance from 
the center of the retrieval set. Virtually all the ineligi- 
ble words in the dictionary have thus been excluded a 
priori by the collating process. 

The correction search begins at the center and pro- 
ceeds alternately before and after the center until 
either a match is found or the boundary reached if a 
single plausible correction is sufficient. If a single plau- 
sible correction is not sufficient, the search compares 
every word in the set. The length-eligible words in a 
50-word span of dictionary for PLATIN are shown in 
Table III. The fact that only 15 of the 50 words are 
within one character of the length of PLATIN is a typi- 
cal result. PILOT would first be checked as a potential 
reverse insertion error for PLATIN, then PLATING rec- 
ognized as a reverse omission error. If PLATING were 
not present, PELITE would be examined as a potential 
reverse substitution error, PLUTONS as a potential re- 
verse omission error, and so on. 

In practice, !t is rare for the correct word to be far 
from the center of the set and common for it to be the 
first word tested. For a typical dataset of misspellings 
studied, population (number of misspellings at this off- 
set) declined with offset (absolute distance from center 
of set) for the skeleton key as shown in Table IV. That 
is, for two-thirds of the misspellings, the desired correc- 
tion was at the center of the set. 

THE COMMON MISSPELLING DICTIONARY 
The common misspelling dictionary is considered a his- 
torical approach to correction because it assumes that 
misspellings that have occurred in the past will recur 
and can then be automatically mapped to the correct 
form. If misspelling creation were a deterministic proc- 
ess and the samples from which the dictionary was 

TABLE IlL Dictionary Words Most Similar to PLATIN 

Word Key 

PLATIN 

PALATAL PLTA 
PALATE PLTAE 
PLATE PLTAE 
PLATEAU PLTAEU 
PELITIC PLTCEI 
PLATED PLTDAE 
PLEATED PLTDEA 
PLOTTED PLTDOE 
PELLET PLTE 
PELITE PLTEI 
PILOT PLTIO 

PLATING PLTNGAI 
PLUTONS PLTNSUO 
PLUTON PLTNUO 
POULT PLTOU 

TABLE IV. Skeleton Key Offset for Misspellings 

Offset  Population 

0 1902 
1 484 
2 134 
3 93 
4 46 
5 50 
6 31 
7 26 
8 24 
9 17 

created were adequate, it would be the only method 
needed. However, this is not feasible because (1) most 
spelling errors do not recur in a reasonable text span 
and therefore the dictionary would consist almost en- 
tirely of useless terms, (2) 10-15 percent of misspellings 
are ambiguous (can be plausibly corrected to more than 
one dictionary word), and (3) new misspellings con- 
stantly occur and cannot by definition be corrected by 
a historical method. Nonetheless, within these limita- 
tions, correction via dictionary lookup remains highly 
efficient and very effective as it requires little computa- 
tional effort and is almost 100 percent accurate. 

To be included in the common misspelling diction- 
ary, a spelling error must both occur often enough and 
always derive from the same word. The effectiveness of 
a common misspelling dictionary depends very much 
on the size of the sample from which it is created. A 
dictionary based on over 10,000,000 text words might 
reasonably be expected to correct 10 percent of the 
input misspellings [11]. Intuitively, it seems unlikely 
that a common misspelling dictionary could correct 
more than 15 percent of the misspell!ngs even if it were 
generated from a very large text sample, say, 
100,000,000 words. 

A common misspelling dictionary is extremely small 
compared to both the main dictionary in a detection/  
correction system and the proportion of misspellings it 
can correct. For example, the main dictionary for 
SPEEDCOP contains almost 40,000 words and could 
usefully be enlarged, while the 256-entry common mis- 
spelling dictionary that corrected about 10 percent 
of the misspellings in SPEEDCOP tests is more than 
ample. 

The small size of the common misspelling dictionary 
probably indicates that most misspelling is stochastic, 
that is, most keyboarders know how to spell most 
words. The frequency of a misspelling seems to be de- 
termined more by the frequency of its parent word 
than by the difficulty of spelling it; most errors are 
mechanical (typos), not the result of poor spelling. In 
the same way, the more frequent a letter, the more 
likely it is to be miskeyed [10]. 

OTHER CORRECTION AIDS 
Two other techniques for improving the SPEEDCOP 
correction program were tried--suffix normalization 
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and a routine for concatenated function words. If a suf- 
fix variant of a dictionary word is searched, it will not 
be found by a simple match. If a misspelling with a 
certain suffix cannot be plausibly corrected, it may be 
useful to normalize this suffix to the one most likely to 
be in the dictionary and try again. Studies showed that 
perfect suffix normalization would on average allow an 
additional 3 percent of the words corresponding to mis- 
spellings to be recognized. As this represents the maxi- 
mum gain from suffix normalization, the technique was 
judged not to be cost effective. 

The function word routine is based on the observa- 
tion that function words-- those that fulfill a syntactic 
rather than a semantic role (roughly speaking, anything 
but nouns, adjectives, verbs, and adverbs [2])--are un- 
usually prone to being keyed without one of their asso- 
ciated blanks, e.g., OFTHEIR or PRONETO. This type of 
error is relatively easy to rectify because of the small 
number of frequent function words. (One of the few 
traps is that an unrecognized string consisting of IN 
prepended to a dictionary word may be a valid negative 
form.) This very small routine increases corrections by 
only 1-2 percent, but is almost completely accurate. 

AMBIGUITY RESOLUTION 
Approximately 10-15 percent of the misspellings stud- 
ied could plausibly be transformed into more than one 
valid word. ABSORBE might have been changed to AB- 
SORB by deletion, to ABSORBED by insertion, or to AB- 
SORBS by substitution. 

This phenomenon has several implications for the 
correction strategy. First, the program should not stop 
searching on finding a plausible correction since this 
may not be the target word. Second, one may choose 
either to display the likeliest target or to present the 
user with a list of possible corrections. The first course 
is more appealing because, if the program's choice is 
correct, the user has been saved the trouble of keying 
the change (and possibly introducing a secondary er- 
ror), whereas, if it. is wrong, no harm has been done: 
The new misspelling is no more wrong than the origi- 
nal one, and the user is unlikely to be misled by the 
change. 

Two criteria for ranking alternative corrections are 
the relative frequencies of the target words in the data- 
base and the probabilities of the error operations in- 
volved. In the case of ABSORBE, the relative frequency 
of the target words in the database is almost certainly 
ABSORBED > ABSORB >> ABSORBS, while that of the 
error operations is OMISSION > INSERTION >> SUB- 
STITUTION [9, 10]. Both frequency- and operation- 
based ambiguity decisions were investigated. Unfortu- 
nately, the frequency component of the dictionary is 
definitely incomplete and somewhat suspect. 

Superficially one might expect the probability of a 
target word's being correct to follow directly the order 
of frequency of the error operations. Given the choice 
between an insertion and a transposition error, one 
might select the former since it is approximately twice 
as frequent as the latter. However, analyzing the mech- 
anism involved leads to the opposite conclusion: Only a 

very small proportion of the possible insertions would 
give rise to a string that is also potentially a transposi- 
tion error, whereas at least one of the relatively minute 
number of possible transpositions is known to produce 
an apparent insertion error. Thus, if a string could be 
either an insertion or a transposition error, it is more 
likely to be the latter. Experiments showed the prece- 
dence order to be: OMISSION = TRANSPOSITION > 
INSERTION > SUBSTITUTION. It seems that the error 
operations involved are a much more reliable guide to 
correct spelling than the database frequency of the pos- 
sible corrections, although the latter may have some 
use as a subsidiary criterion when equivalued error 
operations are present. 

THE DATA 
The seven textual databases used as a source of spelling 
errors were: Chemical Abstracts; and Biological Abstracts; 
unedited text for the primary journals of the American 
Chemical Society; DOLE, a Chemical Abstracts Service 
in-house file of spelling corrections; Chemical Industry 
Notes; Information Science Abstracts; and The Philosopher's 
Index. 

Chemical Abstracts (CA), the secondary information 
service issued weekly by Chemical Abstracts Service 
(CAS), contains titles, bibliographic data, abstracts, and 
author and keyword indexes for some 450,000 mono- 
graphs per year-- journal  articles, patents, books--on 
essentially all aspects of chemistry and chemical engi- 
neering. The abstracts and keyword indexes were used 
as the source of misspellings. DOLE, an in-house file of 
CAS, also proved a highly suitable database as it re- 
cords spelling corrections made by editors to abstracts 
and a range of indexes. 

Biological Abstracts (BA) is a publication of abstracts 
analogous to CA that deals with biology rather than 
chemistry serials. In terms of this project, it differed 
most significantly from CA in that only edited text was 
available. In addition, BA has a reputation for contain- 
ing relatively few misspellings, so one may assume that 
a determined effort had already been made to remove 
all misspellings from the text. Even so, using a suffi- 
ciently large body of text yielded a satisfactory number 
of misspellings. 

Unedited keyboarded text for the American Chemi- 
cal Society (ACS) primary journals was used as well 
since complete papers tend to have a rather different 
vocabulary than abstracts. Chemical Industry Notes (CIN) 
is a weekly ACS publication summarizing chemical in- 
dustry news as reported in some 80 diverse serials, e.g., 
the Wall Street Journal and sundry trade publications. 
Information Science Abstracts (ISA) publishes abstracts 
of monographs in the information science field, while 
The Philosopher's Index (PI) fulfills the same role for phi- 
losophy. 

These seven databases provided a reasonable diver- 
sity of vocabulary. Passing the text against a 40,000- 
word dictionary produced a mixture of misspellings 
and words missing from the dictionary. The misspell- 
ings were manually extracted and linked to their cor- 
rect forms, cumulated, and classified to give records 
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TABLE V. Total and Unique Misspellings Collected 
from Each Database 

ACS 
ACS-2 
BA 
CA 
CIN 
DOLE 
ISA 
PI 
Total 

2,937,929 5,542 4,342 
1,787,326 2,512 2,050 
4,645,593 4,662 3,905 
4,762,128 10,243 3,026 

756,835 1,718 1,491 
10-15,000,000 27,844 21,335 

118,950 362 335 
38,568 80 72 

25-30,000,000 52,963 31,815 

TABLE Vl. Correction Ceiling for Each Database 

ACS 7.49 5.90 86.61 
ACS-2 7.93 6.34 85.73 
BA 23.90 4.85 71.25 
CA 5.12 3.48 91.40 
CIN 22.03 4.43 73.54 
DOLE 12.27 8.97 78.76 
ISA 20.31 4.86 74.83 
PI 34.72 6.95 58.33 

containing the misspelling, the corresponding word, a 
code identifying the error type, and the frequency of 
the particular word/misspelling pair. (See [9, 10] for 
details.} In the following discussion, a dataset of mis- 
spellings is referred to by the acronym of the database 
from which it derives. 

The correction program was developed using over 
50,000 misspellings extracted from some 25,000,000 
words of text from the above databases (Table V). Note 
that because of the nature of DOLE, the number of 
words scanned can only be estimated and therefore the 
upper limit is more likely to be correct. Also, the Differ- 
ent Misspellings column does not sum in a simple way 
since there are duplicate misspellings between datasets 
as well as in them. 

The correction program was then retested on a flesh 
set of misspellings (ACS-2) extracted from the ACS da- 
tabase. Both the composition of ACS-2 and its correc- 
tion results were completely consistent with those of 
the other datasets. 

EXPERIMENTAL RESULTS 
The correction program consists of the following mod- 
ules, each of which is applied only if the previous 
one(s) fails to yield a correction: the common- 
misspelling dictionary, the skeleton key, the omission 
key, and the function word routine. Each dataset of 
misspellings was run both with and without the com- 
mon misspelling dictionary because, although this 

would certainly be used in an operational system, the 
most interesting part of the program is undoubtedly the 
similarity key/error  reversal correction algorithm. 

The Scope of the SPEEDCOP Algorithm 
There are three ceilings against which one might meas- 
ure the success of the correction algorithm. First, since 
the method is restricted to single-error misspellings 
whose correct forms are in the dictionary, one might 
take the percentage of these errors corrected as a meas- 
ure of success and ignore the remaining misspellings. 
Or, one might argue that a more powerful algorithm 
would correct any misspelling whose valid form is in 
the dictionary. Finally, one might expect a correction 
program to correct all misspellings. (These three meas- 
ures are labelled, respectively, ALGORITHM, RELA- 
TIVE, and ABSOLUTE in Table VII.) The ABSOLUTE 
measure is difficult to sustain because, unlike the limi- 
tations inherent in the ALGORITHM and RELATIVE 
measures, the adequacy of the dictionary is independ- 
ent of the correction algorithm. The effectiveness of the 
correction program is certainly affected by the diction- 
ary composition, but that of the algorithm is not. The 
theoretical correction ceiling for each dataset is shown 
in Table VI, where Dictionary Loss refers to the per- 
centage of target words not in the dictionary and 
Ceiling to the best result achievable by an algorithm 
limited to single errors with correct forms in the 
dictionary. 

The dictionary essentially reflects the vocabulary of 
the CA titles and keyword index, so it is naturally less 
than ideal for the other databases. Table VI shows how 

TABLE VII. Effectiveness of the Correction Program 
as Measured by Three Different Cnteda 

(%) 
ACS 82 77 71 
ACS-2 88 83 74 
BA 94 88 67 
CA 84 81 77 
CIN 84 79 62 
DOLE 83 74 65 
ISA 77 77 57 
PI 96 86 56 

TABLE VIII. Cumulative Effectiveness of the Similarity Keys 

ACS 65.81 71.00 10.85 11.54 23.34 17.45 
ACS-2 68.51 74.40 9.20 9.75 22.29 15.84 
BA 61.04 66.87 5.25 5.89 33.71 27.24 
CA 71.73 76.95 12.36 12.76 15.91 10.29 
CIN 57.61 61.89 11.42 12.18 30.97 25.94 
DOLE 58.73 65.16 11.10 11.81 30.17 23.04 
ISA 54.02 57.34 11.91 12.47 34.07 30.19 
PI 48.75 56.25 3.75 3.75 47.50 40.00 
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TABLE IX. Correction of Error Types for ACS Misspellings 

r ~ t ~  ¸ 
(%) 

SKELETON 

OMISSION 

BOTH 

OMISSION 67.16 8.03 24.81 
INSERTION 78.94 9.76 11.30 
SUBSTITUTION 53.39 17.99 28.62 
TRANSPOSITION 79.33 7.91 12.76 
MULTIPLE 0.00 20.99 79.01 
TOTAL 65.81 10.85 23.34 

OMISSION 20.24 4.17 75.60 
INSERTION 40.68 2.26 57.06 
SUBSTITUTION 19.59 3.67 76.73 
TRANSPOSITION 66.30 0.00 33.70 
MULTIPLE 0.00 1.57 98.43 
TOTAL 5.19 0.70 17.45 

OMISSION 72.30 9.09 18.61 
INSERTION 83.54 10.02 6.44 
SUBSTITUTION 59.81 18.23 21.96 
TRANSPOSITION 86.96 8.74 4.30 
MULTIPLE 0.00 22.22 77.78 
TOTAL 71.00 11.54 17.45 

important an adequate dictionary is to the correction 
algorithm. 

The Similarity Keys 
Table VII shows the correction results achieved using 
only the similarity keys (the skeleton and omission 
keys), whereas Table VIII gives their cumulative effec- 
tiveness. The skeleton key routine was used first, but 
the final result was found to be essentially independent 
of the order in which the keys were invoked. The re- 
suits in Table VIII are cumulative and refer to the total 
input; that is, 65.81 percent of the ACS misspellings 
were corrected by the skeleton key and when those 
uncorrected were passed to the omission key routine, 
the omission key corrected a number corresponding to 
5.19 percent of the total input to give a cumulative 
result of 71.00 percent. Thus, the second similarity key 
in effect corrects an additional 5-7 percent of the mis- 
spellings and miscorrects (transforms to an inappro- 
priate dictionary word) another 0.5-0.7 percent. 

Error Type and Correction 
The relationship between error type and correction is 
exemplified by the results for the ACS dataset, which 
contains 4,342 different and 5,542 total misspellings. 
Without the common misspelling dictionary, the 
results were as shown in Table IX. The percentages in 
the columns refer to the specified operations and the 
TOTAL percentages to all the input. That is, for 
OMISSION errors the skeleton key corrected 67.16 per- 
cent, selected the wrong word for 8.03 percent, and was 
unable to find a plausible correction for the remaining 
24.81 percent. With regard 1o the whole input dataset, 
the corresponding figures are 65.81 percent, 10.85 per- 
cent, and 23.34 percent. Similarly, of the 23.34 percent 
passed unchanged by the skeleton key routine, the 
omission key routine corrected a number equival0nt to 

5.19 percent of the total input, assigned the wrong tar- 
get word to 0.70 percent, and ignored 17.45 percent. 
The OMISSION key TOTAL thus represents the abso- 
lute increase in CORRECTED and MISCORRECTED, 
whereas BOTH shows the final results of applying the 
keys sequentially to uncorrected misspellings. (The re- 
suits at each stage are essentially independent of the 
order of application of the similarity keys.) 

Substitution errors are treated the least successfully 
but do not account for a disproportionate number of 
miscorrections, as shown in Table X where TOTAL is 
the percentage contribution of each type to the total 
number of miscorrections and N-TOTAL the normal- 
ized contribution of each type to the total percentage of 
miscorrections (i.e., (TOTAL x 100)/9.75 for this data- 
set). Thus, although over 18 percent of the substitution 
errors were miscorrected, this constituted only 2.87 
percent of total misspellings because of the relatively 
small proportion of substitution errors, but over 29 per- 
cent of the miscorrections, which in turn were gener- 
ated by only 9.75 percent of the misspellings input. It is 
interesting that 19 percent of the multiple errors lay 
within one error operation of a dictionary word. 

The Common Misspelling Dictionary 
Unlike the correction algorithm, the common misspell- 

TABLE X. Effect of Error Type on Miscorrection Rate 

Omission 7.03 2.71 27.8 
Insertion 10.48 2.59 26.6 
Substitution 18.41 2.87 29.4 
Transposition 2.68 0.40 4.1 
Multiple 18.63 1.19 12.3 
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TABLE Xl. Effectiveness of the Common Misspelling Dictionary 

Dataset Corrected Miscorrected Uncorrected 
( % )  (%) (%) 

ACS 12.09 0.46 87.45 
ACS-2 9.43 0.36 90.21 
BA 6.60 0.09 93.31 
CA 28.55 0.34 71.11 
CIN 10.77 0.35 88.88 
DOLE 8.67 0.26 91.07 
ISA 12.47 0.28 87.26 
PI 2.50 0.00 97.50 

TABLE Xll. Overall Correction Results 

Dataset Corrected Miscorrected Uncorrected 
(%) (%) ( % )  

ACS 76.05 8.66 15.29 
ACS-2 77.71 7.92 14.37 
BA 68.68 5.58 25.74 
CA 85.21 5.59 9.19 
CIN 65.11 10.48 24.41 
DOLE 69.11 9.42 21.46 
ISA 62.60 9.70 27.70 
PI 56.25 3.75 40.00 

ing dictionary is capable of correcting multiple errors, 
but its usefulness in practice is limited to unambiguous 
and frequent misspellings (e.g., ANND ~ AND). The 
common misspelling dictionary used in SPEEDCOP 
contains the 256 most frequent misspellings in the 
merged datasets. Table XI shows its effectiveness for 
each dataset. 

Only about 2 percent of the corrections attempted by 
the common misspelling dictionary failed; also, the 
computational effort required by this technique is triv- 
ial. However, its effectiveness as a method is limited 
and the dictionary needs to be based on a large sample 
of text (say 50-100 million words) to reach its full 
potential. 

The effect of the common misspelling dictionary is to 
transfer entries from the MISCORRECTED to the COR- 
RECTED column, not to reduce the number of UNCOR- 
RECTED misspellings, perhaps because the dictionary 
tends to contain short misspellings. (See [11] for a de- 
tailed discussion of the construction, composition, and 
effectiveness of common misspelling dictionaries.) 

Overall Results 
In practice, one would employ both the common mis- 
spelling dictionary and the function word routine (see 
under "Other Correction Aids"), which later added 1-2 
percent to the correction result. Using both the com- 
mon misspelling dictionary and the function word rou- 
tine, the correction results were as shown in Table XII. 

Effect on Valid Words 
Misspellings were collected in SPEEDCOP by passing 
the text through a spelling error detection program and 
editing the output manually. When the valid words in 
the output were also submitted to the correction pro- 
gram to simulate a completely automatic detection/cor- 
rection system, 26 percent were changed because they 
lay within one error operation of a dictionary word, for 
example, were suffix variants. Note that this is not a 
defect of the correction algorithm, but rather a manifes- 
tation of the inadequacy of the dictionary. A substantial 
proportion of the transformed valid words have less 
than five characters, a predictable correspondence with 
ambiguity. 

Table XIII shows the effect that perfect suffix 
(SUFFIX) and suffix plus prefix (AFFIX) normalization 
[12, 13] would have on the lookup of the valid words 

corresponding to the misspellings. This represents the 
maximum possible improvement since the normaliza- 
tion would not apply to misspellings that affected af- 
fixes. 

Ambiguity 
The major problem of the correction algorithm is ambi- 
guity. For example, using the common misspelling dic- 
tionary with the ACS-2 dataset resulted in the conver- 
sion of 7.92 percent of the ACS-2 misspellings to the 
wrong dictionary word; without the misspelling dic- 
tionary, 9.75 percent were converted to the wrong 
word. There are several explanations for these errors. 
First, the correct form of the misspelled word may not 
be in the dictionary, although the misspelling may lie 
within one error operation of a dictionary word. Alter- 
natively, the correct word may be in the dictionary, but 
not identifiable by the algorithm (usually true only for 
multiple errors), whereas another dictionary entry is a 
plausible correction. Nonetheless, the most frequent 
cause of miscorrection is failure of the ambiguity reso- 
lution procedure, an inevitable problem when a large 
dictionary is involved. 

The problem is analogous to asking a person to cor- 
rect a list of isolated misspellings. Without context, a 
human editor would probably be no more successful 
than the correction algorithm (Table X1V), the chief 
difference being that a person would generate fewer 
alternatives. Given context, however, a person would 
resolve the ambiguities easily and accurately. Unfortu- 
nately, the same is not true of an algorithmic approach. 
As most of the necessary contextual information is se- 
mantic and pragmatic rather than syntactic, an ex- 
tremely elaborate algorithm would be needed. The one 
advantage a program might have over a human editor 

TABLE Xlll. Maximum Improvement Possible 
via Affix and Suffix Normalization 

Dataset Suffix Affix 

CA 1.44 1.67 
ACS 2.82 3.71 
DOLE 3.28 - -  
BA 4.86 5.99 
CIN 6.05 6.39 
ISA 7.50 7.50 
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TABLE XIV. Plausible Miscorrections 

CHROMOPHORS CHROMOPHORES CHROMOPHORE 
COMPARIBLE COMPARABLE COMPATIBLE 
CONSTANS CONSTANT CONSTANTS 
ONSTANT CONSTANT INSTANT 
CONTANTS CONSTANTS CONTENTS 
CONSISTUENT CONSTITUENT CONSISTENT 
CONTAING CONTAINING CONTAIN 
CONTINED CONTINUED CONTAINED 
COVERGED CONVERGED COVERED 
CORRESPONDSD CORRESPONDED CORRESPONDS 
CHOLD COULD CHILD 
ODATE DATE IODATE 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

TABLE XV. Variation of Average and Maximum Ambiguity with Length 

2.95 
6.29 
7.05 
8.36 

10.99 
12.42 
14.33 
13.30 
9.20 
7.21 
4.74 
1.83 
1.35 

81.08 4.10 10 
47.47 3.95 10 
22.03 2.46 4 
19.05 2.42 5 
15.58 2.35 4 
9.62 2.23 4 
4.72 2.24 4 
4.79 2.00 2 
3.03 2.00 2 
4.42 2.00 2 
0.84 2.00 2 
0.00 0.00 0 
0.00 0.00 0 

17.57 77.03 
52.53 41.41 
71.75 14.12 
79.05 12.38 
76.81 7.61 
79.81 7.37 
80.28 2.22 
82.63 2.69 
76.19 1.73 
80.11 2.21 
70.59 0.84 
69.57 0.00 
50.00 0.00 

would be incorporation of database-specific word- 
frequency data. 

There is a strong correlation between the length of a 
mzsspelling and both the probability of its being miscor- 
rected and the number of plausible corrections it gener- 
ates. Table XV shows that 3- and 4-character misspell- 
ings are much more likely to be ambiguous than longer 
ones and therefore to be miscorrected. (AV. AMBIG. 
denotes the average number of choices for misspellings 
for which there is more than one plausible correction.) 
In fact, although 3-4 character misspellings constitute 
only 9.24 percent of total misspellings, they generate 42 
percent of the miscorrec~ions. Table XVI shows to what 
degree a multiplicity of choices lowers the correction 
rate. However, it is important to note that over 86 per- 
cent of the misspellings are unambiguous. The absolute 
improvement due to perfect ambiguity resolution 
(when the common misspelling dictionary is used) for 
the various datasets would be, in percentages: ACS, 
5.04; ACS-2, 4.28; BA, 1.75; CA, 3.30; CIN, 5.33; DOLE, 
5.05; ISA, 6.38; PI, 2.61. 

CONCLUSIONS 
The similarity-key/reverse-error correction algorithm 
is very effective in locating words most similar to mis- 
spellings in a large dictionary and has little scope for 

improvement in this respect. It requires much less com- 
putation than string distance measures and produces 
only plausible corrections. Although the algorithm is 
limited to misspellings with a single error, these single- 
error misspellings typically represent over 90 percent of 
real-world keying errors. In practice, however, correc- 
tion results are crucially dependent on the main dic- 
tionary. If the dictionary is very comprehensive, ambi- 
guity increases; if it is too small, valid words may be 

TABLE XVl. Variation of Accuracy with Number of Choices 

0 15.80 0.00 0.00 
1 70.90 94.83 5.17 
2 7.70 68.56 31.44 
3 2.50 43.75 56.22 
4 1.20 41.38 58.62 
5 0.67 29.41 70.59 
6 0.72 5.56 94.44 
7 0.16 0.00 100.00 
8 0.24 16.67 83.33 
9 0.00 0.00 0.00 

10 0.16 75.00 25.00 
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c o n v e r t e d  to s e m a n t i c a l l y  u n r e l a t e d  forms (RAT 
RAG) or to suff ix v a r i a n t s  (RAT ---) RATS). 

A smal l  c o m m o n  misspe l l ing  d i c t i ona ry  is a h igh ly  
cost-effect ive a n d  v i r tua l ly  e r ro r - f l ee  m e t h o d  of cor- 
r ec t ing  10-15 p e r c e n t  of t he  to ta l  misspel l ings .  In con-  
trast ,  e v e n  a per fec t  suff ix n o r m a l i z a t i o n  r o u t i n e  w o u l d  
be on ly  a m i n o r  e n h a n c e m e n t  to a co r r ec t i on  p rog ram 
w i t h  access  to a r e a s o n a b l y  c o m p r e h e n s i v e  d ic t ionary .  

Most  of the  p r o b l e m s  of a u t o m a t i c  co r rec t ion  rest i l t  
f rom sho r t  (3- a n d  4 -cha rac te r )  misspel l ings ,  a n d  ex- 
c lud ing  these  w o u l d  grea t ly  r e d u c e  the  p rac t i ca l  diffi- 
cult ies.  Similar ly ,  misspe l l ings  w i t h  m o t e  t h a n  one  er- 
ror  are  a lmos t  c e r t a i n l y  in t r ac tab le ,  t h u s  e x c l u d i n g  5 -  
10 p e r c e n t  of misspe l l ings  f rom the  co r r ec t i on  process.  

T h e  resu l t s  for the  d i f fe ren t  da tabases  are  encou rag -  
ingly  s imi lar ,  sugges t ing  t ha t  the  co r r ec t i on  p rog ram 
m a y  be  app l icab le  to v i r tua l ly  a n y  t ex t ua l  da tabase .  
However ,  SPEEDCOP is des igned  for large v o l u m e s  of 
keyed  Engl i sh  text .  O t h e r  i n p u t  m e t h o d s  (OCR, voice,  
Morse  code) or  da ta  types  (e.g., p r o g r a m m i n g  languages)  
pose s o m e w h a t  d i f fe ren t  p rob lems .  

A c k n o w l e d g m e n t ,  We gra tefu l ly  a c k n o w l e d g e  t he  sup-  
por t  p r o v i d e d  by  t he  Na t iona l  Sc ience  F o u n d a t i o n  un -  
de r  G r a n t  IST-7821075. 

Copies  of t he  SPEEDCOP pro jec t  repor t s  m a y  be  ob- 
t a i n e d  by  w r i t i ng  to: 

SPEEDCOP 
M a r k e t i n g  C o m m u n i c a t i o n s  
C h e m i c a l  Abs t r ac t s  Serv ice  
Box 3012 
C o l u m b u s ,  OH 43210 

REFERENCES 
1. Dainerau, F.J. A technique for computer detection and correction of 

spelling errors. Commun. ACM 7, 3 (Mar. 1964), 171-176. 
2. Fries, C.C. The Structure of English. Harcourt Brace, New York, 1952. 
3. Gates, A.I. Spelling Difficulties in 3867 Words. Bureau of Publications, 

Teachers College, Columbia University, New York, 1937. 
4. Hall, P.A.V., and Dowling, G.R. Approximate string matching. Corn- 

put. Surv. 12, 4 (Apr. 1980), 381--402. 
5. Hanson, A.R., Riseman, E.M., and Fisher E. Context in word recog- 

nition. Pattern Recogn. 8, 1 (Jan. 1976), 35..-45. 

6. Levenshtein, V.I. Binary codes capable of correcting deletions, inser- 
tions, and reversals. Soy. Phys.-Dokl. 10, 8 (Feb. 1966), 707-710. 

7. Peterson, J.L. Computer programs for detectiog and correcting spell- 
ing errors. Commun. ACM 23, 12 (Dec. 1980), 676-687. 

8. Pollock, J.J. Spelling error detection and correction by computer: 
Some notes and a bibliography. J. Doc. 38, 4 (Dec. 1982), 282-291. 

9. Pollock, J.J., and Zamora, A. Collection and characterization of spell- 
ing errors in scientific and scholarly text. J. Am. Soc. Inf. Sei. 34, 1 
(Jan. 1983), 51-58. 

10. Pollock, J.J. SPEEDCOP: Task Al--quantification. CAS Internal Rep., 
Chemical Abstracts Service, Columbus, Ohio, July 1980. 

11. Pollock, J.J. SPEEDCOP: Task Bl--automatic correction of common 
misspellings. CAS Internal Rep., Chemical Abstracts Service, Colum- 
bus, Ohio, Oct. 1981. 

12. Pollock, J.J. SPEEDCOP: Task B2--automatic correction of misspell- 
ings. CAS Internal Rep., cherhica] Abstracts Service, Columbus, 
Ohio, May 1981. 

13. Pollock, J.J. SPEEDCOP: Task C.--evaluation of spelling error detec- 
tion/correction system, CAS Internal Rep., Chemical Abstracts Serv- 
ice, Columbus, Ohio, Sept. 1981. 

14. Riseman, E.M., and Ehrich, R.W. Contexttial word recognition using 
binary digrams. IEEE Trans. Comput. C-20, 4 (Apr. 1971), 397--403. 

15. Riseman, E.M., and Hanson, A.R. A contextual postprocessing sys- 
tem for error correction using binary n-grams. IEEE Trans. Comput. 
C-23, 5 (May 1974), 480--493. 

16. Tenczar, P., and Golden, W. Spelling, word, and concept recognition. 
Computer:based Education Research Laboratory Rep. X-35, Dept. Univ. 
Illinois, Urbana, I1. 1972. 

17. Ullmann, J.R. A binary n-gram technique for automatic correction of 
substitution, deletion, insertion, and reversal errors in words. Corn- 
put. J. 20, 2 (Feb. 1977), 141-147. 

18. Yum, K.S. An experimental test of the law of assimilation. J. Exp. 
Psychol. 14 (Feb. 1931), 73-74. 

19. Zamora, E.M., Pollock, J.J., and Zamora, A. The use of trigram analy- 
sis for spelling error detection. Inf. Process. Manage. 17, 6 0an. 1983), 
305-316. 

CR Categories and Subject Descriptors: H.4.1 [Information Systems 
Applications]: Office Automation--word processing; 1.7.1 [Text Process- 
ing]: Text Editing--spelling 

General Terms: Algorithms 
Additional Key Words and Phrases: spelling correction, similarity 

keys, dictionary lookup 

Received 2/83; revised 7/83; accepted 9/83 

Authors' Present Addresses: J.J. Pollock, Chemical Abstracts Service, 
P.O. Box 3012, Columbus, Ohio 43210. A. Zamora, IBM Corporation, 
18100 Frederick Pike, Gaithersburg, Md. 20879. 

Permission to copy withoui fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

ACM Algorithms 
Collected Algori thms from ACM (CALGO) now includes quar- 
terly issues of comple te  a lgori thm listings on  microfiche as  part  
of the  regular CALGO supp lemen t  service. 

The  A c M  Algori thms Disthbution Service now offers microfiche 
containing comple te  listings of ACM algorithms, and  also offers 
compi la t ions  of. a lgori thms on  tape  as  a substi tute for tapes  
containing single algorithms. T he  fiche and  tape  compila t ions  
are available by quarter  and  by year. Tape  compila t ions  covering 
five years will also be  available. 

To subscr ibe  to CALGO, request  an  order  form and  a free 
A C M  P~iblications Catalog from the A C M  Subscr ipt ion De-  
par tment ,  Assoc ia t ion  for Comput ing  Machinery ,  11 West  
42nd Street, New York, NY 10036. To order  f rom the  A C M  
Algor i thms Dis t r ibut ions  Service, refer to the order  form that  
appears  in every issue of A C M  T r a n ~ c t i o n s  on Mathemat ica l  
Sof tware .  

368 Communications of the ACM April 1984 Volume 27 Number 4 


