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Bayesian inference provides a systematic framework for integration of data with mathematical models to

quantify the uncertainty in the solution of the inverse problem. However, the solution of Bayesian inverse

problems governed by complex forward models described by partial differential equations (PDEs) remains

prohibitive with black-box Markov chain Monte Carlo (MCMC) methods. We present hIPPYlib-MUQ,

an extensible and scalable software framework that contains implementations of state-of-the art algorithms

aimed to overcome the challenges of high-dimensional, PDE-constrained Bayesian inverse problems. These

algorithms accelerate MCMC sampling by exploiting the geometry and intrinsic low-dimensionality of

parameter space via derivative information and low rank approximation. The software integrates two com-

plementary open-source software packages, hIPPYlib and MUQ. hIPPYlib solves PDE-constrained inverse

problems using automatically-generated adjoint-based derivatives, but it lacks full Bayesian capabilities.

MUQ provides a spectrum of powerful Bayesian inversion models and algorithms, but expects forward

models to come equipped with gradients and Hessians to permit large-scale solution. By combining these

two complementary libraries, we created a robust, scalable, and efficient software framework that realizes the

benefits of each and allows us to tackle complex large-scale Bayesian inverse problems across a broad spec-

trum of scientific and engineering disciplines. To illustrate the capabilities of hIPPYlib-MUQ, we present a
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comparison of a number of MCMC methods available in the integrated software on several high-dimensional

Bayesian inverse problems. These include problems characterized by both linear and nonlinear PDEs, various

noise models, and different parameter dimensions. The results demonstrate that large (∼50×) speedups

over conventional black box and gradient-based MCMC algorithms can be obtained by exploiting Hessian

information (from the log-posterior), underscoring the power of the integrated hIPPYlib-MUQ framework.

CCS Concepts: • Mathematics of computing→ Bayesian computation; Mathematical optimization;

Partial differential equations; Computations on matrices; Discretization; Solvers; • Computing method-

ologies→ Uncertainty quantification; • Applied computing→ Physical sciences and engineering;

Additional Key Words and Phrases: Infinite-dimensional inverse problems, adjoint-based methods, inex-

act Newton-CG method, low-rank approximation, Bayesian inference, uncertainty quantification, sampling,

generic PDE toolkit
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1 INTRODUCTION

With the rapid explosion of observational and experimental data, a prominent challenge is how
to derive knowledge and insight from this data to make better predictions and high-consequence
decisions. This question arises in all areas of science, engineering, technology, and medicine, and
in many cases, there are mathematical models available that represent the underlying physical
systems of which the data is observed or measured. These models are often subject to consider-
able uncertainties stemming from unknown or uncertain input model parameters (e.g., coefficient
fields, constitutive laws, source terms, geometries, initial and/or boundary conditions) as well as
from noisy and limited observations. The goal is to infer these unknown model parameters from
observations of model outputs through corresponding partial differential equation (PDE) mod-
els, and to quantify the uncertainty in the solution of such inverse problems.

Bayesian inversion provides a systematic framework for integration of data with complex
PDE-based models to quantify uncertainties in model parameter inference [Kaipio and Somersalo
2005; Tarantola 2005]. In the Bayesian framework, noisy data and, possibly uncertain, mathe-
matical models are integrated together with a prior information, yielding a posterior probability
distribution of the model parameters. The Markov chain Monte Carlo (MCMC) method is
a common way to explore the posterior distribution by use of sampling techniques. However,
Bayesian inversion with complex forward models via conventional MCMC methods faces several
computational challenges. First, characterizing the posterior distribution of the model parameters
or subsequent predictions often requires repeated evaluations of expensive-to-solve large-scale
PDE models. Second, the posterior distribution often has a complex structure stemming from the
nonlinear mapping from model parameter to observed quantities. Third, the parameters often
are fields, which, after discretization, lead to very high-dimensional posteriors. These difficulties
make the solution of Bayesian inverse problems with complex large-scale PDE forward models
computationally intractable.

Extensive research efforts have been devoted to overcome the prohibitiveness of Bayesian
inverse problems governed by large-scale PDEs. With rapid progress in high-performance
computing, and advances in scalable PDE solvers, repeated evaluations of forward PDE models for
different input parameters [Balay et al. 2018; Trilinos Project Team 2020] are becoming tractable.
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Furthermore, structure-exploiting MCMC methods have effectively facilitated the exploration
of complex posterior distributions [Beskos et al. 2017; Bui-Thanh et al. 2012; Cotter et al. 2012;
Petra et al. 2014]. Finally, dimension reduction methods have proven to significantly reduce the
computational cost of MCMC simulations [Cui et al. 2016b; Zahm et al. 2022]. Applying and
combining these advanced techniques can be extremely challenging. Therefore, a computational
tool that will assist the computational and scientific community to apply, extend, and tailor these
methods will be very beneficial.

In this paper, we present a software framework to tackle large-scale Bayesian inverse problems
with PDE-based forward models, which has applications across a wide range of science and engi-
neering fields. The software integrates two open-source software packages, an Inverse Problems

Python library (hIPPYlib) [Villa et al. 2021] and the MIT Uncertainty Quantification Library

(MUQ) [Parno et al. 2014], respecting their attractive complementary capabilities.
hIPPYlib is an extensible software framework for the solution of deterministic and linearized

Bayesian inverse problems constrained by complex PDE models. Based on FEniCS [Logg et al.
2012] for the finite element approximation of PDEs and on PETSc [Balay et al. 2014] for high-
performance linear algebra operations and solvers, hIPPYlib allows users to describe (and solve)
the underlying PDE-based forward model (required by the inverse problem solver) in a relatively
straightforward way. hIPPYlib also contains implementations of efficient numerical methods for
the solution of deterministic and linearized Bayesian inverse problems. These include globalized
inexact Newton-conjugate gradient [Akçelik et al. 2006; Borzì and Schulz 2012], adjoint-based
computation of gradients and Hessian actions [Tröltzsch 2010], randomized linear algebra [Halko
et al. 2011], and scalable sampling from large-scale Gaussian fields. The state-of-the-art algorithms
implemented in hIPPYlib efficiently deliver the solution of the linearized Bayesian inverse problem.
hIPPYlib is, however, mainly designed for deterministic and linearized Bayesian inverse problems,
and lacks full Bayesian inversion capabilities.

MUQ complements hIPPYlib’s capabilities with more support for the formulation and solution
of Bayesian inference problems. MUQ is a modular software framework designed to address un-
certainty quantification problems involving complex models. The software provides an abstract
modeling interface for combining physical (e.g., PDEs) and statistical components (e.g., additive
error models, Gaussian process priors, etc.) to define Bayesian posterior distributions in a flex-
ible and semi-intrusive way. MUQ also contains a suite of powerful uncertainty quantification
algorithms including Markov chain Monte Carlo (MCMC) methods [Parno and Marzouk 2018],
transport maps [Marzouk et al. 2016], likelihood-informed subspaces, sparse adaptive generalized

polynomial chaos (gPC) expansions [Conrad and Marzouk 2013], Karhunen-Loéve expansions,
Gaussian process modeling [Hartikainen and Särkkä 2010; Rasmussen and Williams 2005], and
prediction methods enabling global sensitivity analysis and optimal experimental design. To effec-
tively apply these tools to Bayesian inverse problems, however, MUQ needs to be equipped with
the type of gradient and/or Hessian information that hIPPYlib can provide.

By interfacing these two software libraries, we aim to create a robust, scalable, efficient, flexible,
and easy-to-use software framework that overcomes the computational challenges inherent
in complex large-scale Bayesian inverse problems. Representative features of the software are
summarized as follows:

• The software combines the benefits of the two packages, hIPPYlib and MUQ, to enable
scalable solution of Bayesian inverse problems governed by large-scale PDEs.
• Various advanced MCMC methods are available that can exploit problem structure (e.g., the

derivative/Hessian information of the log-posterior).
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• The software makes use of sparsity, low-dimensionality, and geometric structure of the
log-posterior to achieve scalable and efficient MCMC methods.
• Convergence diagnostics are implemented to assess the quality of MCMC samples.

In the following sections, we first briefly review the Bayesian formulation of inverse problems
governed by PDEs both in infinite-dimensional and in finite-dimensional spaces (Section 2). We
then describe MCMC methods used to characterize the posterior (Section 3) and summarize
convergence diagnostics available in the software (Section 3.2). Next, we present the design of
hIPPYlib-MUQ (Section 4). Finally, we present numerous benchmark problems and a step-by-step
implementation guide to illustrate the key aspect of the present software (Section 5). Section 6
provides concluding remarks.

2 THE BAYESIAN INFERENCE FRAMEWORK

In this section, we present a brief discussion of the Bayesian inference approach to solving inverse
problems governed by PDEs. We begin by providing an overview of the framework for infinite-
dimensional Bayesian inverse problems following Bui-Thanh et al. [2013]; Petra et al. [2014]; Stuart
[2010]. Then we present a brief discussion of the finite-dimensional approximations of the prior
and the posterior distributions; a lengthier discussion can be found in Bui-Thanh et al. [2013].
Finally, we present the Laplace approximation to the posterior distribution, which requires the
solution of a PDE-constrained optimization problem for the computation of the maximum a

posteriori (MAP).

2.1 Infinite-dimensional Bayesian Inverse Problems

The objective of the inverse problem is to determine an unknown input parameter field m that
would give rise to given observational (or experimental) noisy datad by means of a (physics-based)
mathematical model. In other words, given d ∈ Rq , we seek to inferm ∈ M such that

d ≈ F (m), (1)

where F : M → Rq is the parameter-to-observable map that predicts observations from a given
parameter m through a forward mathematical model, and M is an infinite-dimensional Hilbert
space of functions defined on a domain D ⊂ Rd . Note that the evaluation of this map involves
solving the forward PDE model given m, followed by extracting the observations from the solu-
tion of the forward problem. In what follows, we assume that the forward equation residual is
continuously Fréchet-differentiable and its Jacobian a continuous linear operator with continuous
inverse [Ghattas and Willcox 2021].

In the Bayesian approach, the inverse problem is framed as a statistical inference problem. The
uncertain parameter m and the observational data d are deemed as random variables and the
solution is a conditional probability distribution μpost (m |d ) that represents level of confidence in
the estimation of the parameter given the data. The approach combines a prior model reflecting our
prior knowledge or assumptions about the parameters before data are acquired, and a likelihood

model representing the probability that a given set of parameters might give rise to the observed
data.

Using the Radon-Nikodym derivative [Williams 1991] of the posterior measure μpost (m) with
respect to the prior measure μprior (m), Bayes’ theorem in infinite dimensions is stated as

dμpost

dμprior

∝ πlike (d |m), (2)

where πlike denotes the likelihood function. For detailed conditions under which the posterior mea-
sure is well-defined, we refer the reader to Stuart [2010].
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Without loss of generality, the probability density function of the likelihood can be expressed as

πlike (d |m) ∝ exp
{−Φ(m;d )

}
. (3)

The negative log-likelihood function Φ(m;d ) has different forms depending on how one models the
noise that stems from measurement uncertainties and/or modeling errors; for example, in the case
of an additive Gaussian noise model d = F (m) +η with a Gaussian noise random variable η ∈ Rq

with zero mean and covariance matrix Γnoise ∈ Rq×q , it has the form Φ(m;d ) = 1
2 ‖F (m) − d ‖2

Γ−1
noise

,

where ‖ · ‖Γ−1
noise

denotes the L2 norm weighted by the inverse noise covariance Γ−1
noise.

We take the prior to be a Gaussian measure,1 i.e., μprior = N(mpr,Cprior), and assume that sam-
ples from the prior distribution are square-integrable functions in the domain D, i.e., belong to
L2 (D). The prior covariance operator Cprior is constructed to be a trace-class operator to guarantee
bounded variance of samples from the prior distribution and well-posedness of the Bayesian in-
verse problem [Bui-Thanh et al. 2013; Stuart 2010; Villa et al. 2021] for detailed explanation. Specif-
ically, we take the prior covariance operator as the inverse of the vth power of a Laplacian-like

operator, namely Cprior := A−v = (−γΔ + δI )−v ; v > d
2 . Here γ and δ > 0 control the correlation

length and the pointwise variance of the prior operator [Lindgren et al. 2011; Villa et al. 2021].
These choices of prior ensure that Cprior is a trace-class operator, guaranteeing bounded pointwise
variance and a well-posed infinite-dimensional Bayesian inverse problem [Bui-Thanh et al. 2013;
Stuart 2010].

2.2 Discretization of the Bayesian Formulation

Here, we briefly present the finite-dimensional approximation of the Bayesian formulation de-
scribed in the previous section. We consider a finite-dimensional subspaceMh ofM, defined by
the span of a set of basis functions {ϕ j }nj=1. For example, in hIPPYlib-MUQ, these basis functions

are globally continuous piecewise polynomials on each element of a mesh discretization of the
domainD [Becker et al. 1981; Strang and Fix 1988]. These are the natural choice for the discretiza-
tion of the elliptic operator A used in the definition of the prior covariance. The parameter field

m is then approximated as m ≈ mh =
∑n

j=1mjϕ j , and, in what follows, m = (m1, . . . ,mn )T ∈ Rn

denotes the vector of the finite element coefficients ofmh .
The finite-dimensional approximation of the prior measure μprior is now specified by the density

πprior (m) ∝ exp
(
− 1

2
‖m −mpr‖2Γ−1

prior

)
, (4)

where mpr ∈ Rn and Γprior ∈ Rn×n are the mean vector and the covariance matrix that arise upon
discretization of mpr and Cprior, respectively. We refer the reader to Bui-Thanh et al. [2013]; Villa
et al. [2021] for the explicit expression of the prior covariance matrix Γprior.

Then the Bayes’ theorem for the density of the finite-dimensional approximation of the posterior
measure μpost is given by

πpost (m) := πpost (m |d ) ∝ πlike (d |m)πprior (m). (5)

The finite-dimensional posterior probability density function can be expressed explicitly as

πpost (m) ∝ exp
(
− Φ(m;d ) − 1

2
‖m −mpr‖2Γ−1

prior

)
. (6)

1The use of a Gaussian measure (often with Matérn covariance covariance kernel) is a common choice in infinite-

dimensional inverse problems, where the inversion parameter is a spatially varying field. In hIPPYlib-MUQ, non-Gaussian

prior probability distributions can be handled in a case-by-case basis by introducing a nonlinear invertible change of vari-

ables to map the desired prior distribution to a Gaussian one.
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Here, evaluating Φ(m;d ) requires constructing a finite dimensional discretization of the parameter-
to-observable map, F(m).

2.3 The Laplace Approximation of the Posterior Distribution

In general, the posterior probability distribution (6) is not Gaussian due to the nonlinearity of
the parameter-to-observable map. In this section, we discuss the solution to the so-called lin-

earized Bayesian inverse problem by use of the Laplace approximation. The Laplace approximation
amounts to constructing a Gaussian distribution centered at the maximum a posteriori (MAP) point.
The MAP point represents the most probable value of the parameter vector over the posterior, i.e.,

mMAP := argmin
m

(− logπpost (m)) = argmin
m

[
Φ(m;d ) +

1

2
‖m −mpr‖2Γ−1

prior

]
. (7)

The covariance matrix of the Laplace approximation is the inverse of the Hessian of the negative
log-posterior evaluated at the MAP point. Then under the Laplace approximation, the solution of
the linearized Bayesian inverse problem is given by

π̂post (m) ∼ N (mMAP, Γpost), (8)

with

Γpost = H
−1 (mMAP) =

(
Hmisfit (mMAP) + Γ−1

prior

)−1
, (9)

where H(mMAP) and Hmisfit (mMAP) denote the Hessian matrices of, respectively, the negative log-
posterior and the negative log-likelihood evaluated at the MAP point; see Villa et al. [2021] for a
derivation of this Hessian using the adjoint-based method.

The quality of the Gaussian approximation of the posterior depends on the degree of non-
linearity in the parameter-to-observable map, the noise covariance matrix, and the number of
observations [Bui-Thanh et al. 2013; Evans and Swartz 2000; Gelman et al. 2004; Isaac et al.
2015; Press 2003; Stigler 1986; Tarantola 2005; Tierney and Kadane 1986; Wong 2001]. When the
parameter-to-observable map is linear and the additive noise and prior models are both Gaussian,
the Laplace approximation is exact. Even if the parameter-to-observable map is significantly
nonlinear, the Laplace approximation is a crucial ingredient to achieve scalable, efficient, and
accurate posterior sampling with MCMC methods, as we will discuss in the following section.

Note that the Laplace approximation involves the Hessian of the negative log-likelihood (the
data misfit part of the Hessian), which may not be explicitly constructed when the parameter
dimension is large. However, the data typically provide only limited information about the param-
eter field, and thus the eigenspectrum of the Hessian matrix often decays very rapidly. We exploit
this compact nature of the Hessian to overcome its prohibitive computational cost, and construct
a low-rank approximation of the data misfit Hessian matrix using a matrix-free method (such as
the randomized subspace iteration [Halko et al. 2011]).

Concretely, we construct a low-rank approximation of the data misfit Hessian, i.e., Hmisfit ≈
Γ−1

priorVr Λr V
T
r Γ−1

prior, where Λr = diag(λ1, . . . , λr ) ∈ Rr×r and Vr = [v1, . . . ,vr ] ∈ Rn×r contain the
r largest eigenvalues and corresponding eigenvectors, respectively, of the generalized symmetric
eigenvalue problems

Hmisfitvi = λi Γ−1
priorvi ; i = 1, . . . ,n. (10)

Note that the eigenvectorsvi are orthonormal with respect to Γ−1
prior, that isvT

i Γ−1
priorv j = δi j , where

δi j is the Kronecker delta. With this row-rank approximation and using the Sherman-Morrison-
Woodbury formula [Golub and Van Loan 1996], we obtain, for the inverse of the Hessian in (9),
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H
−1 =

(
Hmisfit + Γ−1

prior

)−1
= Γprior − Vr Dr V

T
r + O ��

n∑
i=r+1

λi

1 + λi

�� , (11)

where Dr = diag(λ1/(λ1 + 1), . . . , λr /(λr + 1)) ∈ Rr×r . We refer the reader to Villa et al. [2021] for
a detailed description of how the randomized algorithm [Halko et al. 2011] proceeds to construct
the low-rank approximation of the Hessian, including the associated computational complexity.

We can see from the last remainder term in (11) that to obtain an accurate low-rank approxi-
mation of H

−1, we must keep eigenvectors corresponding to eigenvalues that are greater than 1.
This approximation is used to efficiently perform various operations related to the Hessian, for
example, applying the square-root inverse of the Hessian to a vector, which is needed to draw
samples from the Gaussian approximation discussed in this section. We remark that the efficiency
and scalability of our approach is based on the low rankness of the data misfit Hessian. We refer
the reader to Ghattas and Willcox [2021], where this argument is made via model problems where
low-rankness can be analytically shown, and for references to more complex problems where it
can be shown empirically.

3 MCMC SAMPLING

As mentioned above, when the parameter-to-observable map is nonlinear, the Laplace approxima-
tion may be a poor approximation of the posterior. In this case, one needs to apply a sampling-
based method to explore the full posterior. In this section, we focus on several advanced Markov
chain Monte Carlo (MCMC) methods available in the present software. We outline the general
structure of MCMC methods with a brief discussion of their key features. We then present various
diagnostics to assess the convergence of MCMC simulations.

3.1 Markov Chain Monte Carlo

MCMC provides a flexible framework for exploring the posterior distribution. It generates samples
from the posterior distribution that can be employed in Monte Carlo approximations of posterior
expectations. For example, the posterior expectation of a quantity of interest G (m) can be approx-
imated by ∫

G (m) dμpost ≈
1

N

N∑
i=1

G (mi ) , (12)

where eachmi ∼ μpost is a sample of the posterior distribution.
MCMC techniques construct ergodic Markov chains where the posterior distribution is the

unique stationary distribution of the chain [Robert and Casella 2005]. Asymptotically, the states of
the Markov chain are therefore exact samples of the posterior distribution and can be used in (12).
Markov chains are defined in terms of a transition kernel, which is a position dependent probability
distribution K (·|mi ) over state mi+1 in the chain given the previous state mi , i.e., mi+1 ∼ K (·|mi ).
Note that chains of finite length must be employed in practice and the statistical accuracy of the
Monte Carlo estimator is therefore highly dependent on the ability of the transition kernel to effi-
ciently explore the parameter space.

There are several frameworks for constructing transition kernels that are appropriate for MCMC,
including the well known Metropolis-Hastings (MH) rule [Hastings 1970; Metropolis et al. 1953],
Gibbs sampler (e.g., [Casella and George 1992]), and delayed rejection (DR) [Mira et al. 2001].
MUQ provides implementations of these frameworks, as well as the generalized Metropolis-

Hastings (gMH) kernel [Calderhead 2014] and multilevel MCMC framework of [Dodwell et al.
2019]. Most of these frameworks start by drawing samples from one or more proposal distribu-
tions q1 (·|mi ), . . . , qK (·|mi ) that are easy to sample from (e.g., Gaussian) and then “correct” the
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proposed samples to obtain exact, but correlated, posterior samples. In the MH and DR kernels,
corrections take the form of accepting or rejecting the proposed point. In the gMH kernel, the cor-
rection involves analytically sampling a finite state Markov chain over multiple proposed points.
Intuitively, proposal distributions that capture the shape of the posterior, either locally aroundmi

or globally over the parameter space, tend to require fewer “corrections” and yield more efficient
algorithms.

Proposal Distributions. Let q(·|mi ) denote a proposal distribution that is “parameterized” by the
current state of the chainmi . We require that the proposal distribution is easily sampled and that its
density can be efficiently evaluated. The MH rule [Hastings 1970; Metropolis et al. 1953] defines a
transition kernel KMH (·|mi ) through a two step process: first draw a random samplem′ ∼ q(·|mi )
from the proposal distribution, and then accept the proposed sample m′ as the next step in the

chainmi+1 with a probability α = min{1,γ } where γ =
πpost (m′)
πpost (mi )

q (mi |m′)
q (m′ |mi ) . If rejected, setmi+1 =mi .

Under mild technical conditions on the proposal distribution (see e.g., Roberts et al. [2004]), the
MH rule defines a Markov chain that is ergodic and has μpost as a stationary distribution, thus
enabling states in the chain to be used in Monte Carlo estimators. Note that the detailed balance
condition (see e.g., Owen [2013]) is commonly employed to verify that a Markov chain has μpost as
a stationary distribution, but this condition alone is not sufficient to guarantee that the chain will
converge to the stationary distribution. See Roberts et al. [2004] for a detailed discussion of MH
convergence and convergence rates.

While the MH rule will yield a valid MCMC kernel for a large class of proposal distributions, the
dependence of the proposal on the previous state, combined with possible rejection of the proposed
state, results in inter-sample correlations in the Markov chain. Because of these correlations, the
error of the Monte Carlo approximation in (12) will be larger when using MCMC than in the
classic Monte Carlo setting with independent samples. Markov chains with large correlations will
result in larger estimator variance. To reduce correlation in the Markov chain, we seek proposal
distributions that can take large steps with a high probability of acceptance. From the acceptance
probability in the MH rule we see that this can occur when the proposal density q(m |mi ) is a good
approximation to πpost (m), so that γ is close to 1.

We now turn to describing specific proposal distributions used in hIPPYlib-MUQ. First, we begin
by describing common proposal mechanisms that exploit gradient and curvature information to
accelerate sampling in finite-dimensional spaces. These algorithms comprise the left face of the
cube in Figure 1. We then show how these ideas can be extended to construct proposals with
performance that is independent of mesh-refinement (i.e., independent of dimension), thus “lifting”
the derivative-accelerated proposals to an infinite-dimensional setting. This “lifting” operation
transforms proposals on the left face in Figure 1 to their dimension-independent analogs on the
right face of the proposal cube.

Exploiting Gradient and Curvature Information. Perhaps the simplest and most common, but not
generally efficient, proposal distribution takes the form of a Gaussian distribution centered at the
current state in the chain,

qRW (m |mi ) = N
(
mi , Γprop

)
, (13)

where Γprop ∈ Rn×n is a user defined covariance matrix. When used with the MH rule, this
random walk (RW) proposal yields an MCMC algorithm that is commonly called the random
walk Metropolis algorithm. The adaptive Metropolis (AM) algorithm employs a variant of this
proposal where the covariance Γprop is adapted based on previous samples [Haario et al. 2001]. A
proposal covariance Γprop that matches posterior covariance increases efficiency, but the random
walk proposal is still a poor approximation of the posterior density.
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Fig. 1. The relationship of various MCMC proposal distributions with respect to mesh-refinement indepen-

dence (blue arrow), gradient awareness (green arrow), and curvature awareness (red arrow). The abbrevi-

ations stand for the following MCMC proposals: RW for random walk, pCN for preconditioned Crank-

Nicolson, MALA for Metropolis-adjusted Langevin algorithm, H-pCN for curvature-informed pCN, H-MALA

for curvature-informed MALA, ∞-MALA for infinite-dimensional MALA, and H-∞-MALA for curvature-

informed infinite-dimensional MALA.

A slightly more efficient proposal can be obtained through a one-step Euler-Maruyama
discretization of the Langevin stochastic differential equations [Roberts and Stramer 2003]. The
resulting Langevin proposal takes the form

qMALA (m |mi ) = N
(
mi + τΓprop∇ log πpost (mi ), 2τΓprop

)
, (14)

where τ is the step size parameter. MH samplers with this proposal are called Metropolis-

adjusted Langevin algorithms (MALA). Like the AM algorithm, adapting the covariance of
the MALA proposal can also improve performance [Atchadé 2006; Marshall and Roberts 2012].
It is also common to use an approximation of the posterior covariance, such as the inverse of the
log-posterior Hessian, to help the MALA proposal capture the posterior correlation. In this work
for example, we employ a low rank-based approximation of the log-posterior Hessian at the MAP
point (c.f. Equation (11))

qH-MALA (m |mi ) = N
(
mi + τH

−1∇ log πpost (mi ), 2τH
−1

)
. (15)

This metric is similar to the one used by Martin et al. [2012] and is equivalent to the preconditioned
MALA proposal in (14) using the covariance of the Laplace approximation in (9).

Both (13) and (14) use a covariance that is constant across the parameter space. Allowing this
covariance to adapt to the local correlation structure of the posterior density enables higher order
approximations to be obtained, resulting in more efficient MCMC algorithms. In Girolami and
Calderhead [2011], a differential geometric viewpoint was employed to define a family of proposal
mechanisms on a Riemannian manifold. Adapting the MALA proposal in (14) to this manifold
setting and ignoring the manifold’s curvature, results in

qsMMALA (m |mi ) = N
(
mi + τG

−1 (mi )∇ logπpost (mi ), 2τG
−1 (mi )

)
, (16)

where G(m) is a position-dependent metric tensor. This is known as the simplified Manifold

MALA (sMMALA) proposal. Girolami and Calderhead [2011] defined the metric tensor G(m)
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using the expected Fisher information metric, which provides a positive definite approximation of
the posterior covariance at the pointm.

Hamiltonian Monte Carlo techniques, including the No-U-Turn Sampler (NUTS) [Hoffman
and Gelman 2014], are another important class of MCMC proposals. These techniques approx-
imately solve a Hamiltonian system to take large jumps in parameter space. While efficient
in many scenarios (see e.g., Neal [2010]), especially with purely statistical models, we have
found that solving the Hamiltonian system involves an intractable number of posterior gradient
evaluations on our PDE-based problems of interest. The transport map MCMC algorithms
of Parno and Marzouk [2018] are also not considered here because of the challenge of building
high-dimensional transformations.

Dimension-Independent Proposal Distributions. For finite-dimensional parameters, the random
walk and MALA proposals defined above can be used with the MH rule for MCMC. However,
their performance is not discretization invariant. As the discretization of the functionm is refined,
the performance of the samplers on the finite-dimensional posterior πpost (m) will worsen. As the
dimension increases, the difference between the largest two eigenvalues of the MCMC transition
kernel (i.e., the spectral gap), goes to zero and the mixing times of the chains grows indefinitely;
see Cotter et al. [2012]; Hairer et al. [2014] for details. Some modifications to the proposals are nec-
essary to obtain “dimension-independent” performance. The works of Cotter et al. [2012], Beskos
et al. [2017], and Bardsley et al. [2020], for example, modify existing finite-dimensional proposals
to ensure the algorithm performance is independent of mesh refinement.

The dimension-independent analog of the RW proposal is the preconditioned Crank-

Nicolson (pCN) proposal introduced in Cotter et al. [2012]. It takes the form

qpCN (m |mi ) = N
(
mpr +

√
1 − β2 (mi −mpr), β

2Γprior

)
. (17)

Notice that when β = 1, the pCN proposal is equal to the prior distribution. The MALA proposal
was also adapted in Cotter et al. [2012] to obtain the infinite-dimensional MALA (∞-MALA) pro-
posal

q∞MALA (m |mi ) = N ��
√

1 − β2mi + β

√
h

2

(
mpr − Γprior∇Φ(mi )

)
, β2Γprior

�� , (18)

where β = 4
√
h/(4 + h) and h is a parameter that can be tuned. While the pCN and ∞-MALA

proposals result in discretization-invariant Metropolis-Hastings algorithms, they suffer from the
same deficiencies as their finite-dimensional RW and MALA analogs, i.e., they do not capture the
posterior geometry.

Several efforts have worked to minimize this deficiency, see for example Beskos et al. [2017];
Petra et al. [2014]; Pinski et al. [2015]; Rudolph and Sprungk [2018]. We consider a generalization of
the pCN proposal described in Pinski et al. [2015]. It incorporates the MAP point and the posterior
curvature information at that point into the pCN proposal, which is denoted by H-pCN and takes
the form

qH-pCN (m |mi ) = N
(
mMAP +

√
1 − β2 (mi −mMAP), β2

H
−1

)
. (19)

Another method that can exploit the posterior geometry is an extension of the∞-MALA proposal
discussed in Beskos et al. [2017]:

q∞sMMALA (m |mi ) = N (μ ′(mi ), Γ′(mi )) , (20)
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where

μ ′(mi ) =

√
1 − β2mi + β

√
h

2

(
mi − G

−1Γ−1
prior (mi −mpr) − G

−1∇Φ(mi )
)

(21)

Γ′(mi ) = β2
G
−1 (mi ). (22)

This ∞-sMMALA proposal simplifies to ∞-MALA when G
−1 (mi ) = Γprior. When G(mi ) is the

Laplace approximation Hessian from (9), the∞-sMMALA proposal simplifies to

q∞H-MALA (m |mi ) = N ��
√

1 − β2mi + β

√
h

2

(
mi − H

−1Γ−1
prior (mi −mpr) − H

−1∇Φ(mi )
)
, β2

H
−1�� ,

(23)
which we denote by H-∞-MALA.

Alternative Transition Kernels. The proposal distributions above are classically considered in the
context of a Metropolis-Hasting kernel. However, there are alternative transition kernels that also
result in ergodic Markov chains. Here we consider transition kernels constructed from the delayed
rejection approach of Mira et al. [2001] as well as Metropolis-within-Gibbs kernels, which repeat-
edly use the Metropolis-Hastings rule on different conditional slices of the posterior distribution
to construct the Markov chain. In particular, we consider the family of dimension-independent

likelihood-informed (DILI) approaches [Cui et al. 2016a; Cui and Zahm 2021], which define
a Metropolis-within-Gibbs sampler that inherits dimension-independent properties from an ap-
propriate dimension-independent proposal. By dimension-independence here we mean that the
acceptance rate and mixing properties will not deteriorate when the dimension of the problem
increases.

The delayed rejection kernel allows multiple proposals to be attempted in each step of the
Markov chain. This can be advantageous when using multiple proposals with complementary
properties. For example, it is possible to start with a proposal that attempts to make large ambi-
tious jumps across the parameter space but may have low acceptance probability while falling back
on a more conservative proposal that takes smaller steps with a larger probability of acceptance.
Similarly, it is possible to start with a proposal that is more computationally efficient (e.g., does
not require gradient information) but less likely to be accepted, while employing a more expensive
proposal mechanism in a second stage to ensure the chain explores the space. In either case, if the
first proposed move is rejected by the Metropolis-Hastings rule, another more expensive proposal
that is more likely to be accepted can be tried with an adjusted acceptance probability. More than
two stages can also be employed.

DILI divides the parameter space into a finite-dimensional subspace, which can be explored
with standard proposal mechanisms, and a complementary infinite-dimensional space that
can be explored with a dimension-independent approach, such as those described above. The
resulting transition kernel is more complicated than the Metropolis-Hastings rule, but inherits the
dimension-independent properties of the complementary space proposal. The likelihood-informed
subspace is computed using the generalized eigenvalue problem (10). If the eigenvalue is larger
than one, it indicates that the likelihood function dominates the prior density in that direction.
The same low rank structure used to approximate the posterior Hessian can therefore be used
to decompose the parameter space into a likelihood-informed subspace (LIS) spanned by the
columns of Vr and an orthogonal complementary space (CS). Within each subspace, a standard
Metropolis-Hastings kernel is employed. As long as the kernel in the CS uses a dimension-
independent proposal (typically pCN), then the DILI sampler will remain dimension-independent.
Unlike the original implementation described in Cui et al. [2016a], the MUQ implementation
does not use a whitening transform and thus avoids computing any symmetric decomposition
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Fig. 2. The flexible framework of hIPPYlib-MUQ allows many different combinations of transition kernels

and proposal distributions to be employed. Note that each kernel can interact with any proposal distribution,

which enables many different MCMC algorithms to be constructed from the same basic components.

of the prior covariance. In general, the Hessian used in (10) can be adapted to capture more
correlation structure. However, we did not find this necessary in the numerical experiments
below.

Assembling an MCMC Algorithm. It is possible to combine nearly any of the proposals and ker-
nels described above, resulting in myriad possible MCMC algorithms. As suggested in Figure 2,
there are three fundamental building blocks to an MCMC algorithm. The chain keeps track of pre-
vious points and allows computing Monte Carlo estimates. The kernel defines a mechanism for
sampling the next state mi+1 given the value of the current state mi and one or more proposal
distributions. The proposal defines a position specific probability distribution that can be easily
sampled and has a density that can be efficiently evaluated. We mimic these abstract interfaces in
our software design to define and test a large number of kernel-proposal combinations.

3.2 MCMC Diagnostics

Two questions naturally arise when analyzing a length I Markov chain [m1, . . . ,mI ] produced by
MCMC. First, has the chain converged to the stationary distribution? Second, what is the statistical
efficiency of the chain, that is, how many independent samples does the chain have that actually
contribute to the accuracy of Monte Carlo estimators? Most theoretical guarantees are asymp-
totic, and it is important to quantitatively answer these questions when employing finite-length
MCMC chains. Based on these considerations, this section describes the diagnostics implemented
in hIPPYlib-MUQ to check the convergence and statistical efficiency of high-dimensional MCMC
chains.

3.2.1 Assessing Convergence. To assess convergence, we compute two different asymptotically
unbiased estimators of the posterior covariance: one that is an overestimate for finite I and one
that is an underestimate for finite I . As the ratio of these two estimates approaches one, we can be
confident that the MCMC chain has converged (see e.g., Brooks and Gelman [1998]; Gelman et al.
[2004]; Vehtari et al. [2020]).

The estimates are based on running J independent chains starting from randomly chosen points
that are more disperse than the posterior distribution μpost, where we define a “disperse” distribu-
tion as one that has a larger covariance than μpost. Each chain has the same length I .
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Letting mi j be the ith MCMC sample in chain j, we define the within-sequence covariance matrix
W and the between-sequence covariance matrix B as

W =
1

J (I − 1)

J∑
j=1

I∑
i=1

(mi j − m̄.j ) (mi j − m̄.j )
T ; m̄.j =

1

I

I∑
i=1

mi j , (24)

B =
I

J − 1

J∑
j=1

(m̄.j − m̄.. ) (m̄.j − m̄.. )
T ; m̄.. =

1

J

J∑
j=1

m̄.j . (25)

As pointed out in Brooks and Gelman [1998], W and B can be combined to produce an estimate V̂

of the posterior covariance that takes the form

V̂ =
I − 1

I
W +

J + 1

J I
B. (26)

The overdispersion of the initial points in each chain causes V̂ to overestimate the posterior covari-
ance for finite I . On the other hand, the average within-chain covariance W will tend to underesti-
mate the covariance because the chains have not explored the entire parameter space. Comparing

W and V̂ thus provides a way of assessing convergence.

The R̂ statistic of Gelman et al. [2004] and Vehtari et al. [2020] is a common way of comparing W

and V̂. It uses the ratio of the diagonal component of V̂ and W to construct a componentwise con-
vergence diagnostic. For high dimensional problems, it is more natural to consider a multivariate
convergence diagnostic. We will therefore employ the multivariate potential scale reduction

factor (MPSRF) of Brooks and Gelman [1998], which is a natural extension of the componentwise

R̂ statistic. The MPSRF is defined by

MPSRF =

√
max

a

aT V̂a

aT Wa
=

√
I − 1

I
+

J + 1

J I
λmax ,

(27)

where λmax is the largest eigenvalue satisfying the generalized eigenvalue problem Bv = λWv .
Note that MPSRF ≥ 1 when λmax > 1, which occurs when the chains have overdispersed

starting points that cause the inter-chain variance B to be larger than the within-chain variance W.
When the MPSRF approaches 1, the variance within each sequence approaches the variance across
sequences, thus indicating that each individual chain has converged to the target distribution. The
literature contains several recommendations for values of MPSRF that indicate convergence; for
example, Gelman and Rubin [1992] suggest the commonly used value MPSRF < 1.1 while Vehtari
et al. [2020] argues for the more conservative threshold MPSRF < 1.01.

3.2.2 Statistical Efficiency. The samples in an MCMC chain are generally correlated, which in-
creases the variance of Monte Carlo estimators constructed with MCMC samples. For a quantity
of interest G (m), the effective sample size (ESS) of a Markov chain is defined as the number
of independent samples of the posterior that would be needed to estimate E[G] with the same
statistical accuracy as an estimate from the Markov chain. The ESS is therefore a measure of how
much information is contained in the MCMC chain. In this work, it is commonly assumed that
the ESS is derived for estimators of the posterior mean, i.e., E[G] = E[m], and here we derive
the ESS under this common assumption. Other ESS variants, like those described by Vehtari et al.
[2020], are more suitable for problems involving tail probabilities, but the implementation of these
methods in hIPPYlib-MUQ is left to future work.

There are several ways of estimating the ESS. For instance, spectral approaches use the inte-
grated autocorrelation of the MCMC chain to estimate the effective sample size (see e.g., Gelman
et al. [2004]; Wolff et al. [2004]). Other common methods use the statistics of small sample batches
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Fig. 3. Description of the functionalities of hIPPYlib and MUQ and their interface. Orange and red boxes

represent hIPPYlib and MUQ functionalities, respectively. Green boxes indicate external software libraries,

FEniCS and PETSc, that provide parallel implementation of finite element discretizations and solvers. Arrows

represent one-way or reciprocal interactions.

(see e.g., Flegal and Jones [2010]; Vats et al. [2019]). MUQ provides implementations of both spec-
tral and batch methods. Here we focus on the spectral formulation of ESS however, because it gives
additional insight into the structure of MCMC chains. The ESS for component k ofm is defined by

ESSk =
J I

1 + 2
∑∞

t=1 ρkt
, (28)

where ρkt is the autocorrelation function of component k in the MCMC chain at lag t . Here, the
autocorrelation function ρkt is estimated by the following formula [Gelman et al. 2004]:

ρkt ≈ ρ̂kt = 1 − vkt

2V̂kk

, (29)

where V̂kk is the kth diagonal component of the posterior covariance estimate defined in (26) and
vkt is the variogram defined by

vkt =
1

J (I − t )

J∑
j=1

I∑
i=t+1

(mi j,k −m (i−t )j,k )2. (30)

In practice, ρ̂kt is noisy for large values of t and we truncate the summation (28) at some lag
t ′. Following common practice, we choose t ′ ≥ 0 to be the lag for which the sum successive
autocorrelation estimates ρ̂2t ′ + ρ̂2t ′+1 is negative [Gelman et al. 2004].

4 SOFTWARE FRAMEWORK

hIPPYlib-MUQ is a Python interface that integrates two open source software libraries, hIPPYlib
and MUQ, into a unique software framework, allowing the user to implement state-of-the-art
Bayesian inversion algorithms in a seamless way. We outline in Figure 3 the main functionalities
of hIPPYlib and MUQ and the integration of their complementary components.
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hIPPYlib, built on FEniCS and PETSc for the discretization and solution of PDEs, provides
Python implementations of scalable adjoint-based algorithms for solving large-scale deterministic
and linearized Bayesian inverse problems governed by PDEs. hIPPYlib model component provides
a collection of libraries by which users can describe the forward PDE, the prior model, and the
likelihood model in the FEniCS form language [Logg et al. 2012]. hIPPYlib algorithms component
incorporates optimization algorithms, randomized linear algebra, and scalable sampling of
Gaussian fields that are required to efficiently solve the deterministic and linearized Bayesian
inverse problems. The hiPPYlib user manual can be found at Villa et al. [2020], which includes
details on the software installation, documentation, and tutorials.

MUQ is an easy-to-use software framework for defining and solving uncertainty quantification
problems. MUQ modeling tools allow users to easily and flexibly construct complicated models,
including Bayesian hierarchical models, in a semi-intrusive way that enables efficient gradient
and Hessian evaluations. MUQ also implements a variety of advanced uncertainty quantification
techniques including MCMC sampling methods, surrogate models (e.g., Gaussian processes), and
prediction tools (e.g., global sensitivity analysis). We refer the reader to muq.mit.edu for a detailed
description of the software with installation instructions and step-by-step tutorials.

We note that a significant synergistic effect can be obtained by making use of complementary as-
pects of these two software libraries: hIPPYlib outputs such as the gradient and Hessian evaluations
and the Laplace approximation, and MUQ’s advanced MCMC sampling modules and flexible mod-
eling capabilities. In the integrated framework, hIPPYlib is used to define the forward model, the
prior, and the likelihood, to compute the maximum a posteriori (MAP) point, and to construct
a Laplace approximation of the posterior distribution based on approximations of the posterior co-
variance as a low-rank update of the prior [Bui-Thanh et al. 2013]. MUQ is employed to exploit ad-
vanced MCMC methods to fully characterize the posterior distribution in non-Gaussian/nonlinear
settings. hIPPYlib-MUQ offers a set of wrappers that encapsulate the functionality of hIPPYlib in
a way that various features of hIPPYlib can be accessed by MUQ. A key aspect of hIPPYlib-MUQ
is that it enables the use of curvature-informed MCMC methods, which is crucial for efficient and
scalable exploration of the posterior distribution for large-scale Bayesian inverse problems.

In the context of hIPPYlib-MUQ, hIPPYlib provides tools for (i) automatically implementing
adjoint gradients and Hessian actions, (ii) efficiently sampling Gaussian Markov Random fields

(GMRF), and (iii) constructing Laplace approximations with low-rank Hessians. On the other hand,
MUQ provides two important capabilities: (i) an abstract graphical modeling framework that pro-
vides an interface for implementing model components (e.g., prior distributions or forward models)
and enables multiple components of a model or inverse problem to be easily composed and differ-
entiated, and (ii) a suite of MCMC algorithms, including curvature-informed and discretization-
invariant methods. The adjoint techniques of hIPPYlib enable MUQ to efficiently compute gradi-
ents and Hessian actions of a graphical model with PDE-based components. The efficient GMRF
sampling and low-rank Laplace approximations accelerate MUQ’s discretization-invariant MCMC
techniques, which use these hIPPYlib tools within the MCMC proposal. The details of our object
orientated approach for seamlessly blending these MUQ and hIPPYlib tools are provided below.

Figure 4 gives an overview of the Python classes implemented by the hIPPYlib-MUQ interface.
Inherited from MUQ classes, the interface classes wrap the hIPPYlib functionalities needed to
achieve curvature-informed MCMC sampling methods. These include:

(1) Prior Gaussian interface (LaplaceGaussian and BiLaplaceGaussian) to enable the use of
hIPPYlib prior models (LaplacianPrior and BiLaplacianPrior) in MUQ probability distri-
bution models (GaussianBase). The interface allows MUQ to use Gaussian prior with covari-
ance as inverse of the v-th power of a Laplacian-like operator (v = 1 for LaplaceGaussian
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Fig. 4. Class hierarchy for hIPPYlib-MUQ framework. Classes of hIPPYlib, MUQ, and the interface are col-

ored in orange, red, and blue, respectively. Dashed arrows represent inheritance relationship between two

classes: the arrowhead attaches to the super-class and the other attaches to the sub-class.

and v = 2 for BiLaplacianPrior) and scalable sampling techniques for Gaussian random
fields.

(2) Likelihood interface (Param2LogLikelihood) to incorporate hIPPYlib likelihood functions
(Model) into MUQ Bayesian models (ModPiece). The interface enables the MUQ model to effi-
ciently perform the model evaluation (the parameter-to-observable map) including forward
PDE solves and the adjoint-based computation of gradient and Hessian actions.

(3) Laplace approximation interface (LAPosteriorGaussian) to let MUQ MCMC modules get
access to the Laplace approximation of the posterior distribution generated by hIPPYlib
(GaussianLRPosterior). This interface provides the MAP point and/or the low-rank ap-
proximation of the Hessian at the MAP point for MUQ MCMC proposals, which leads to
efficient and scalable sampling of the posterior.

These interface classes can then be used to form a Bayesian posterior model governed by PDEs us-
ing MUQ’s graphical modeling interface (WorkGraph) as shown in Figure 5, as well as to construct
MCMC proposals.

hIPPYlib-MUQ also implements the MCMC convergence diagnostics described in Section 3.2.
These include the potential scale reduction factor and its extension to multivariate parameter
cases [Brooks and Gelman 1998], the autocorrelation function, and the effective sample size.
A detailed description of all classes and functionalities of hIPPYlib-MUQ can also be found at
https://hippylib2muq.readthedocs.io/en/latest/modules.html.

5 NUMERICAL ILLUSTRATION

The objective of this section is to showcase applications of the integrated software framework
discussed in previous sections via a step-by-step implementation procedure. We focus on com-
paring the performance of several MCMC methods available in the software framework. For the
illustration we first revisit the model problem considered in Villa et al. [2021], an inverse problem
of reconstructing the log-diffusion coefficient field in a two-dimensional elliptic partial differen-
tial equation. We then consider a nonlinear p-Poisson problem in three dimensions for which
the parameter field in a Robin boundary condition is inferred. In this section, we summarize the
Bayesian formulation of the example problems and present numerical results obtained using the
proposed software framework, hIPPYlib-MUQ version 0.2.0 that builds on hIPPYlib version 3.1.0
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Fig. 5. Graphical description of Bayesian posterior modeling using hIPPYlib-MUQ software framework

(left) and an example code snippet (right). In the left figure, class names of MUQ and the interface are

colored in red and blue, respectively. MUQ’s WorkGraph class provides a way to combine all the Bayesian

posterior model components by its member functions AddNode and AddEdge. MUQ’s IdentityOperator
class identifies input parameters and the input argument dim represents the parameter dimension. MUQ’s

DensityProduct class defines the product of prior and likelihood densities and the input argument 2

means the number of input densities. The second and fourth arguments of the function AddEdge mean the

output index of the first argument and the input index of the third argument, respectively. For example,

graph.AddEdge(’Parameter’, 0, ’Prior’, 0) means that the output of ’Parameter’ indexed 0 is

connected to the input of ’Prior’ indexed 0.

with FEniCS version 2019 and MUQ version 0.3.0; see https://hippylib2muq.readthedocs.io/en/
latest/installation.html for the software installation instruction and its dependencies. The accompa-
nying Jupyter notebook provides a detailed description of the hIPPYlib-MUQ implementations; see
https://hippylib2muq.readthedocs.io/en/latest/tutorial.html. Additional examples, including some
with hierarchical models, can also be found at muq.mit.edu.

5.1 Coefficient Field Inversion in a Two-dimensional Poisson Linear PDE

We first consider the coefficient field inversion in a Poisson partial differential equation given
pointwise noisy state measurements. We begin by describing the forward model setup and quantity
of interest, followed by the definition of the prior and the likelihood distributions. Next, we present
the Laplace approximation of the posterior and apply several MCMC methods to characterize the
posterior distribution, as well as the predictive posterior distribution of a scalar quantity of interest.
Finally, the scalability of the proposed methods with respect to the parameter dimension is then
assessed in a mesh refinement study.

5.1.1 Forward Model. Let Ω ∈ Rd (d = 2, 3) be an open bounded domain with boundary ∂Ω =
∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅. Given a realization of the uncertain parameter field m, the state
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variable u is governed by

−∇ · (em∇u) = f in Ω,

u = д on ∂ΩD , (31)

em∇u · n = h on ∂ΩN ,

where f is a volume source term, д and h are the prescribed Dirichlet and Neumann boundary
data, respectively, and n is the outward unit normal vector.

The weak form of (31) reads as follows: Find u ∈ Vд such that

〈em∇u,∇p〉 = 〈f ,p〉 + 〈h,p〉∂ΩN
∀p ∈ V0, (32)

where

Vд =
{
v ∈ H 1 (Ω) |v = д on ∂ΩD

}
,

V0 =
{
v ∈ H 1 (Ω) |v = 0 on ∂ΩD

}
. (33)

Above, we denote the L2-inner product over Ω by 〈·, ·〉 and that over ∂ΩN by 〈·, ·〉∂ΩN
.

As a quantity of interest, the logarithm of the normal flux through the bottom boundary ∂Ωb ⊂
∂ΩD is considered. Specifically, we define the quantity of interest G (m) as

G (m) = ln

{
−

∫
∂Ωb

em∇u · nds
}
. (34)

In this example, we consider a unit square domain in R2 with no source term (f = 0), no normal
flux (h = 0) on the left and right boundaries, and the Dirichlet condition imposed on the top
boundary (д = 1) and the bottom boundary (д = 0).

For the spatial discretization, we use quadratic finite elements for the state variable (also for the
adjoint variable) and linear finite elements for the parameter variable. The computational domain
is discretized using a regular mesh with 2,048 triangular elements. This leads to 4,225 and 1,089
degrees of freedom for the state and parameter variables, respectively. In the scalability results
presented in Section 5.1.6, the mesh is then refined with up to four levels of uniform refinement
leading to 263,169 and 66,049 degrees of freedom for the state and parameter variables, respectively,
on the finest level.

5.1.2 Prior Model. As discussed in Section 2, we choose the prior to be a Gaussian distribution
N(mpr,Cprior) with Cprior = A−2 where A is a Laplacian-like operator given as

Am =
⎧⎪⎨⎪⎩−γ∇ · (Θ∇m) + δm in Ω,

Θ∇m · n + βm on ∂Ω.
(35)

Here, β ∝
√
γδ is the optimal Robin coefficient introduced to alleviate undesirable boundary ef-

fects [Daon and Stadler 2018], and an anisotropic tensor Θ is of the form

Θ =

[
θ1 sin2 α + θ2 cos2 α (θ1 − θ2) sinα cosα
(θ1 − θ2) sinα cosα θ1 cos2 α + θ2 sin2 α

]
. (36)

For this example we take γ = 0.1,δ = 0.5, β =
√
γδ/1.42,θ1 = 2.0,θ2 = 0.5 and α = π/4.

Figure 6 shows the prior meanmpr and three samples from the prior distribution.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 17. Publication date: June 2023.



hIPPYlib-MUQ: Integrating Data with Complex Predictive Models 17:19

Fig. 6. Prior mean (leftmost) and three sample fields drawn from the prior distribution for the Poisson

problem.

Fig. 7. True parameter field (left) and the corresponding state field (right) for the Poisson problem. The

locations of the observation points are marked as white squares in the right figure.

5.1.3 Observations with Noise and the Likelihood. We generate state observations at l random
locations uniformly distributed over [0.05, 0.95]2 by solving the forward problem on the finest
mesh with the true parameter field mtrue (here a sample from the prior is used) and then adding a
random Gaussian noise to the resulting state values; see Figure 7. The number of observations l is
set to 300 for this example. The vector of synthetic observations is given by

d = Bu + η, (37)

where B is a linear observation operator, restricting the state solution to the l observation points.
The additive noise vector η has mutually independent components that are normally distributed
with zero mean and standard deviation σ = 0.005. The likelihood function is then given by

πlike (d |m) ∝ exp
(
−1

2
‖B u (m) − d ‖2

Γ−1
noise

)
, (38)

where Γnoise = σ 2
I.

5.1.4 Laplace Approximation of the Posterior. We next construct the Laplace approximation of
the posterior, a Gaussian distribution μ̂post ∼ N(mMAP,H (mMAP)−1) with mean equal to the MAP
point and covariance given by the Hessian of the negative log-posterior evaluated at the MAP
point. The MAP point is obtained by minimizing the negative log-posterior, i.e.,

min
m∈M

J (m) :=
1

2
‖B u (m) − d ‖2

Γ−1
noise

+
1

2
‖m −mpr‖2C−1

prior
. (39)

We employ the inexact Newton-CG algorithm implemented in hIPPYlib to solve the above
optimization problem. We refer the reader to Villa et al. [2021] for a detailed description of the algo-
rithm and the expressions for the gradient and Hessian actions of the negative log-posterior J (m).
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Fig. 8. Logarithmic plot of the r = 100 dominant eigenvalues of the prior-preconditioned data misfit Hes-

sian and the eigenvectors corresponding to the 1st , 4th, 16th, and 64th largest eigenvalues for the Poisson

problem.

Fig. 9. The MAP point (leftmost) and three sample fields drawn from the Laplace approximation of the

posterior distribution for the Poisson problem.

As pointed out in Section 2, explicitly computing the Hessian is prohibitive for large-scale prob-
lems, as this entails solving two forward-like PDEs as many times as the number of parameters. To
make the operations with the Hessian scalable with respect to the parameter dimension, we invoke
a low-rank approximation of the data misfit part of the Hessian, retaining only r eigenvectors that
are the most significantly informed directions from the data [Villa et al. 2021].

Figure 8 shows the eigenspectrum of the prior-preconditioned data misfit Hessian. The dou-
ble pass randomized algorithm provided by hIPPYlib with an oversampling factor of 20 is used
to accurately compute the dominant eigenpairs. We see that eigenvalues are smaller than 1 after
around the 60th eigenvalue, indicating that keeping 60 eigenpairs is sufficient for the low-rank ap-
proximation. Figure 8 also shows four eigenvectors, which, as expected, illustrate that eigenvectors
corresponding to smaller eigenvalues display more fluctuations.

In Figure 9, we depict the MAP point and three samples drawn from the Laplace approximation
of the posterior.

5.1.5 Exploring the Posterior using MCMC Methods. In this section, we implement the advanced
MCMC algorithms discussed in the Section 3 to explore the posterior and compare their perfor-
mance.
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Table 1. Comparison of the Performance of Several MCMC Methods for the Poisson Problem: pCN, MALA,

∞-MALA, DR, DILI, and their Hessian-informed Versions

Method AR (%) MPSRF Min. ESS (index) Max. ESS (index) Avg. ESS NPS/ES

pCN (5.0E-3) 24 2.629 25 (24) 225 (8) 84 5,952
MALA (6.0E-6) 48 2.642 26 (22) 874 (5) 148 10,135
∞-MALA (1.0E-5) 57 2.943 25 (23) 1,102 (5) 160 9,375

H-pCN (4.0E-1) 27 1.192 64 (1) 3,598 (15) 2,314 216
H-MALA (6.0E-2) 60 1.014 545 (1) 8,868 (19) 6,459 232
H-∞-MALA (1.0E-1) 71 1.016 582 (1) 8,417 (18) 5,905 254

DR (H-pCN (1.0E0), H-MALA (6.0E-2)) (4, 61) 1.013 641 (1) 12,522 (17) 9,222 215
DR (H-pCN (1.0E0), H-∞-MALA (2.0E-1)) (4, 48) 1.011 613 (1) 12,812 (17) 9,141 213

DILI-PRIOR (0.8, 0.1) (60, 33) 1.064 314 (1) 4,667 (13) 3,216 548
DILI-LA (0.8, 0.1) (83, 36) 1.017 562 (1) 10,882 (17) 7,192 245
DILI-MAP (0.8, 0.1) (77, 22) 1.006 1,675 (1) 10,271 (20) 8,692 202

Acceptance rate (AR), multivariate potential scale reduction factor (MPSRF), and effective sample sample

size (ESS) are reported for convergence diagnostics. MPSRF and ESS are computed with respect to the projection of

parameter samples along the first 25 dominant eigenvectors of the prior-preconditioned data misfit Hessian at the MAP

point. Two values of AR are listed in DR and DILI-MAP, which are for the first and the second proposal moves,

respectively. We also provide the number of forward and/or adjoint PDE solves per effective sample (NPS/ES)

for sampling efficiency. We use 20 MCMC chains, each with 25,000 iterations (500,000 samples in total). The numbers in

parentheses in each method name represent the parameter values used (β for pCN, τ for MALA, h for∞-MALA, and β

and τ for and DILI). The numbers in parentheses of the minimum ESS and the maximum ESS indicate the

corresponding eigenvector index.

In particular, we consider pCN, MALA, ∞-MALA, DR, DILI, and their Hessian-informed coun-
terparts. For each method, we simulate 20 independent MCMC chains, each with 25,000 samples
(after discarding 2,500 samples as burn-in), and hence draw a total of 500,000 samples from the
posterior. A sample from the Laplace approximation of the posterior is chosen as a starting point
for each chain.

For checking the convergence and statistical efficiency of MCMC chains, we consider the sub-
space spanned by the r dominant eigenvectors of the generalized eigensystem in (10), instead of
all components of the parameter vector m. Specifically, we compute the MPSRF, autocorrelation
time, and ESS with respect to a coefficient vector c ∈ Rr defined by

c = V
T
r Γ−1

priorm. (40)

Table 1 shows the convergence diagnostics and computational efficiency of the MCMC samples.
MPSRF and ESS are computed with respect to the projection of parameter samples along the first 25
dominant eigenvectors of the prior-preconditioned data misfit Hessian at the MAP point. Table 1
reports the mininum, maximum, and average ESS over all the 25 projections.

The last column in Table 1 represents the number of forward and/or adjoint PDE solves required
to draw a single independent sample (average ESS is used). This quantity can be used to measure
the sampling efficiency and rank the methods in terms of computational efficiency. Under this
metric, DILI-MAP is the most efficient method and requires only 202 PDE solves for an effective
sample. DR (213 NPS/ES for H-∞-MALA and 215 NPS/ES for H-MALA) and H-pCN (216 NPS/ES)
are close seconds.

We next assess the convergence of MCMC samples of the quantity of interest in (34) to the
predictive posterior distribution of G (m): the autocorrelation function estimates of the quantity
of interest (34) are shown in Figure 10 (here, we use the formula (29) to account for the use of
multiple chains), and trace plots from three independent MCMC chains and histograms of all the
MCMC samples for pCN and H-pCN are depicted in Figure 11.

Lastly, we compare estimates of moments of the quantity of interest for the different sampling
strategies. For each MCMC chain, the kth (k = 1, 2, 3) moment of the quantity of interest computed

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 17. Publication date: June 2023.



17:22 K.-T. Kim et al.

Fig. 10. Autocorrelation function estimate (29) of the quantity of interest G (34) for several MCMC methods.

Note that the autocorrelation function plots for pCN, MALA, and∞-MALA appear unchanged and overlap.

Fig. 11. Left: Trace plots of the quantity of interest G (34) from three MCMC chains (out of 20 independent

chains) of pCN and H-pCN simulations; different colors (here blue, green, and red) represent the trace of

each chain. Right: Probability density function estimate of the quantity of interest G (34) computed from

pCN and H-pCN samples; all the 500,000 samples, 20 chains with 25,000 samples each, are pulled together in

the histogram; the number of counts is normalized so that the plot represents a probability density function;

the black dashed line represents the quantity of interest computed from the true parameter fieldmtrue.
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Fig. 12. Whisker plots of first, second, and third moment estimates (Ĝk ,k = 1, 2, 3) of the quantity of in-

terest (41) computed by using several MCMC methods. The central mark is the median; lower and upper

quartiles represent 25th and 75th percentiles, respectively. Whiskers extend to the extreme data points that

fall within the distance from the lower or upper quartiles to 1.5 times the interquartile range (the distance

between the upper and lower quartiles); all the other data points are plotted as outliers. The number of data

points for each method is 20, the number of independent MCMC chains.

from parameter samples mi (i = 1, 2, . . . ,N ;N = 25, 000) is computed as

Ĝk =
1

N

N∑
i=1

Gk (mi ). (41)

The results are reported in Figure 12 as box-and-whisker plots.
From the results presented in this section, we draw the following conclusions:

• The Hessian information at the MAP point plays an important role in enhancing the sam-
pling performance of the MCMC methods. In fact, MCMC chains without the Hessian in-
formation did not converge over the entire length of the chain and were localized around
the starting point. The convergence was achieved or nearly achieved only when the MCMC
proposal exploited the Laplace approximation of the posterior that incorporates the Hessian
information.
• DILI-MAP shows the best sampling efficiency in terms of the number of forward and/or

adjoint PDE solves per effective sample. Note that the parameter value used in the MCMC
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Fig. 13. Left: Logarithmic plot of the r = 100 dominant eigenvalues of the prior-preconditioned data misfit

Hessian (top), and autocorrelation function estimate (29) of the quantity of interest G (34) (bottom). Right:

Probability density function estimate of the quantity of interest G (34); all the samples, 20 chains with 25,000

samples each, so 500,000 in total, are pulled together in the histogram; the number of counts is normalized

so that the plot represents a probability density function. We consider four different meshes which are in-

creasingly refined from the coarsest (mesh 1) to the finest (mesh 4). We use the H-pCN method (β = 0.4) to

draw samples.

methods (e.g., β and/or τ ) was not the optimal and a different result may be obtained with
different parameter values.

We further study the performance of MCMC methods under different problem settings to provide
more insight into the practical use of the hIPPYlib-MUQ framework.

5.1.6 Scalability of Hessian-informed pCN. Here we investigate the effect of mesh resolution on
the sampling performance. A curvature aware MCMC method, the H-pCN is selected with β = 0.4
for the test. The dimensions of the parameter and the state variables from a coarse mesh (mesh 1)
to the finest mesh (mesh 4) are (1,089, 4,225), (4,225, 16,641), (16,641, 66,049), and (66,049, 263,169),
respectively.

We follow the same problem setting as before, and use the same synthetic observations (obtained
from the true parameter field generated from the finest mesh) for all levels. The top-left part of
Figure 13 shows the r = 100 dominant eigenvalues of the prior-preconditioned data misfit Hessian.
One observes that the eigenspectrum is virtually independent of mesh refinement.

To assess the convergence of the MCMC methods, in Table 2 we report the acceptance rate, MP-
SRF, and ESS of the posterior samples. The MPSRF and ESS are computed with respect to the pro-
jection of parameter samples along the first 25 dominant eigenvectors of the prior-preconditioned
data misfit Hessian at the MAP point. We present the autocorrelation function estimates (29) in
the bottom-left part of Figure 13, and show histograms for the quantity of interest G (34) in the
right part of Figure 13. The results show that the convergence of samples is almost independent
with respect to the MPSRF and the autocorrelation function.
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Table 2. Acceptance Rate (AR), Multivariate Potential Scale Reduction Factor (MPSRF) and Effective

Sample Size (ESS) of the Posterior Samples Generated by using the H-pCN Method

with Different Dimensions

Dimension (state, parameter) AR (%) MPSRF Min. ESS (index) Max. ESS (index) Avg. ESS

(4,225, 1,089) 27 1.192 64 (1) 3,598 (15) 2,314
(16,641, 4,225) 24 1.333 63 (1) 3,221 (18) 1,830
(66,049, 16,641) 23 1.075 209 (1) 3,073 (11) 1,940
(263,169, 66,049) 22 1.117 102 (2) 3,276 (15) 1,767

We use β = 0.4 for the H-pCN method and draw in total 500,000 samples (20 MCMC chains, each with 25,000

iterations). MPSRF and ESS are computed with respect to the projection of samples along the first 25 dominant

eigenvectors of the prior-preconditioned data misfit Hessian at the MAP point. The numbers in parentheses of the

minimum ESS and the maximum ESS indicate the corresponding eigenvector index.

5.2 Coefficient Field Inversion in a Robin Boundary Condition for a

Three-dimensional p-Poisson Nonlinear PDE

So far, we restricted our attention to the additive Gaussian noise model. While this additive noise
model is the most commonly used model, it would be inappropriate in some cases such as speckle
noise found in synthetic aperture radar (SAR) images. In this example, we consider a different
noise model where the noise is proportional to the value of the observations.

The example forward model is a nonlinear PDE in three space dimensions for which we seek
to infer an unknown coefficient field in a Robin boundary condition. Specifically, the forward
governing equations are given by

−∇ ·
(
|∇u |p−2

ϵ ∇u
)
= f in Ω,

|∇u |p−2
ϵ ∇u · n + emu = 0 on ∂ΩR , (42)

|∇u |p−2
ϵ ∇u · n = 0 on ∂Ω \ ∂ΩR ,

with 1 ≤ p ≤ ∞. Note that thep-Laplacian,∇· ( |∇u |p−2∇u), is singular whenp < 2 and degenerates
when p > 2 at points ∇u = 0 [Brown 2010; Lindqvist 2017], so a regularization term ϵ (here we

take ϵ = 1.0×10−8) is introduced in the above equation as |∇u |ϵ =
√
|∇u |2 + ϵ . The p-Laplacian is a

nonlinear counterpart of the Laplacian operator, and appears in many nonlinear diffusion problems
(e.g., non-Newtonian fluids), where a nonlinear diffusion is modeled as a power law type.

We assume p = 3 and consider a thin brick domain Ω = [0, 1]2 × [0, 0.05] with a volume source
term (f = 1) and a mixed boundary condition, e.g., we impose a Robin boundary condition on the
bottom boundary surface and no normal flux on the remaining boundary surfaces.

The problem domain Ω is discretized using a regular tetrahedral grid and using linear finite
elements for all the state, adjoint, and parameter variables. After discretization, the dimension is
66,564 for the state and adjoint variables, and 16,641 for the parameter variable.

For the prior, we use the same Gaussian distribution as the one employed in the previous exam-
ple. We create synthetic state observations at l = 300 random locations uniformly distributed on
the top boundary surface by first solving the forward problem with the true parameter fieldmtrue

obtained from a sample of the prior, and then multiplying a Gamma-distributed noise. Specifically,
the vector of synthetic observations is of the form

d = η � Bu, (43)

where � denotes component-wise multiplication, and each component of η is independently and
identically Gamma-distributed with shape κ and scale ν , i.e., ηi = Gamma(κ,ν ), i = 1, . . . ,q. We
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Fig. 14. Left: True parameter field on the bottom surface. Middle: Corresponding state field and l = 300

observation points (white square marks) on the top surface. Right: The MAP point on the bottom surface.

Table 3. Convergence Diagnostics for the p-Poisson Problem: Acceptance Rate (AR),

Multivariate Potential Scale Reduction Factor (MPSRF), and Effective Sample

Sample Size (ESS) of the Projection of the Parameter Samples along the First 25

Eigenvectors of the Prior-preconditioned Data Misfit Hessian at the MAP Point

AR (%) MPSRF Min. ESS (index) Max. ESS (index) Avg. ESS

23 1.041 243 (0) 2,891 (22) 1,586
We use H-pCN method (β = 0.2) with 40 chains, each with 25,000 iterations (1,000,000

samples in total). The numbers in parentheses of the minimum ESS and the maximum ESS

indicate the corresponding eigenvector index.

take κ = 1/ν and in this case the negative log-likelihood function has the form

Φ(m;d ) = κ

q∑
i=1

(
log(Bu)i +

di

(Bu)i

)
, (44)

where the subscript i means ith component of the corresponding vector. In this example, we set
κ = 104.

Figure 14 illustrates the true parameter field on the bottom boundary, the locations of the ob-
servations on the top surface, and the MAP point obtained by solving the optimization problem
of minimizing the negative log-posterior. The Laplace approximation of the posterior is then con-
structed based on the low-rank factorization of the data misfit Hessian at the MAP point. The
spectrum of the prior-preconditioned data misfit Hessian indicates that the number of dominant
eigenvalues (larger than 1) is about 55.

5.2.1 MCMC Results for Characterizing the Posterior. Here we present MCMC simulation re-
sults for the uncertain boundary coefficient vector. In this example, we consider the H-pCN method
with β = 0.2 and run 40 independent MCMC chains, each with 25,000 iterations after discarding
2,500 samples as burn-in (1,000,000 samples are generated in total). For each MCMC run, a sample
from the Laplace approximation of the posterior is taken as the starting point.

Table 3 lists convergence diagnostics of the MCMC simulation. The parameter samples are pro-
jected onto the first 25 eigenvectors of the prior-preconditioned data misfit Hessian at the MAP
point, and the MPSRF and the ESS are evaluated based on this projection.

Figure 15 shows marginal distributions of the posterior MCMC samples and of the Laplace ap-
proximation. As before, these marginals are computed with respect to the projection of the pa-
rameter samples onto the eigenvectors. We observe that there is a clear difference between the
marginal distributions of the MCMC samples and those of the Laplace approximation, especially
for the eigenvector corresponding to larger eigenvalues.

The numerical studies have been carried out on the Multi-Environment Computer for Ex-

ploration and Discovery (MERCED) cluster at UC Merced. While there are some performance
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Fig. 15. Marginal distributions of the MCMC samples (red) and the Laplace approximation (black), both for

the projection of parameter samples onto the eigenvectorsv1,v2,v10, and,v25. In the one-dimensional mar-

ginal plots, the blue dashed lines represent the projection of the true parameter vector onto the eigenvectors.

For the two-dimensional marginal plots, we only show three contours that represent 5%, 50%, and 95% of

the distribution, respectively. We note the difference in scaling and hence the appearance of a much larger

difference between the estimated and the Laplace approximation of the posterior in the first column.

variations depending on the cluster CPU node that a job is assigned to, approximately, a single
PDE solve required about 0.07 seconds for the first example, and about 4 seconds for the second
three-dimensional example (both are the elapsed time).

6 CONCLUSION

We have presented a robust and scalable software framework for the solution of large-scale
Bayesian inverse problems governed by PDEs. The software integrates two complementary
open-source software libraries, hIPPYlib and MUQ, resulting in a unique software framework that
addresses the prohibitive nature of Bayesian solution of inverse problems governed by PDEs. The
main objectives of the proposed software framework are to

(1) provide to domain scientists a suite of sophisticated and computationally efficient MCMC
methods that exploit Bayesian inverse problem structure; and

(2) allow researchers to easily implement new methods and compare against the state of the art.
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The integration of the two libraries allows advanced MCMC methods to exploit the geometry
and intrinsic low-dimensionality of parameter space, leading to efficient and scalable exploration
of the posterior distribution. In particular, the Laplace approximation of the posterior is employed
to generate high-quality MCMC proposals. This approximation is based on the inverse of the Hes-
sian of the log-posterior, made tractable via low-rank approximation of the Hessian of the log-
likelihood. Numerical experiments on linear and nonlinear PDE-based Bayesian inverse problems
illustrate the ability of Laplace-based proposals to accelerate MCMC sampling by factors of ∼50×.

Despite the fast and dimension-independent convergence of these advanced structure-
exploiting MCMC methods, many Bayesian inverse problems governed by expensive-to-solve
PDEs remain out of reach. For example, the results of Section 5.1.5 for the Poisson coefficient
inverse problem indicate thatO (106) PDE solves may still be required even with the most efficient
MCMC methods. In such cases, hIPPYlib-MUQ can be used as a prototyping environment to study
new methods that further exploit problem structure, for example through the use of various re-
duced models (e.g., Cui et al. [2016b]) or via advanced Hessian approximations that go beyond low
rank Alger et al. [2019]; Ambartsumyan et al. [2020].

We also remark on limitations of our software framework. Since we rely on FEniCS for the
finite element approximation of PDEs, hIPPYlib-MUQ inherits all the limitations and challenges
that come with this software. However, the FEniCS, hIPPYlib, and MUQ developers and user com-
munities offer a rich support base that the users of hIPPYlib-MUQ can build on. Support for alter-
native finite element implementations is the subject of future work. Another current limitation of
hIPPYlib-MUQ is the lack of parallel implementations of MCMC methods. Therefore, the goal for
future versions of hIPPYlib-MUQ is to incorporate multilevel parallelism. This will include both the
parallel PDE solvers available now and additional parallel MCMC chains, and will allow solutions
of even more complex PDE-based Bayesian inverse problems with higher-dimensional parameter
spaces.

Software Availability. hIPPYlib-MUQ is distributed under the GNU General Public License ver-
sion 3 (GPL3). The hIPPYlib-MUQ project is hosted on GitHub (https://github.com/hippylib/
hippylib2muq) and use Travis-CI for continuous integration. hIPPYlib-MUQ uses semantic ver-
sioning. The results presented in this work were obtained with hIPPYlib-MUQ version 0.3.0, hIP-
PYlib version 3.1.0, and MUQ version 0.3.5. A Docker image [Merkel 2014] containing the pre-
installed software and examples is available at https://hub.docker.com/r/ktkimyu/hippylib2muq.
hIPPYlib-MUQ documentation is hosted on ReadTheDocs (https://hippylib2muq.readthedocs.io).
Users are encouraged to join the hIPPYlib and MUQ workspaces on Slack to connect with other
users, get help, and discuss new features; see https://hippylib.github.io/#slack-channel and https://
mituq.bitbucket.io for more information on how to join.
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