
All in One: Multi-Task Prompting for Graph Neural Networks
Xiangguo Sun

Department of Systems Engineering
and Engineering Management, and
Shun Hing Institute of Advanced

Engineering, The Chinese University
of Hong Kong

xiangguosun@cuhk.edu.hk

Hong Cheng
Department of Systems Engineering
and Engineering Management, and
Shun Hing Institute of Advanced

Engineering, The Chinese University
of Hong Kong

hcheng@se.cuhk.edu.hk

Jia Li
Data Science and Analytics Thrust,

The Hong Kong University of Science
and Technology (Guangzhou)

jialee@ust.hk

Bo Liu
School of Computer Science and
Engineering, Southeast University
Purple Mountain Laboratories

bliu@seu.edu.cn

Jihong Guan
Department of Computer Science and

Technology, Tongji University
jhguan@tongji.edu.cn

ABSTRACT
Recently, “pre-training and fine-tuning” has been adopted as a stan-
dard workflow for many graph tasks since it can take general graph
knowledge to relieve the lack of graph annotations from each ap-
plication. However, graph tasks with node level, edge level, and
graph level are far diversified, making the pre-training pretext often
incompatible with these multiple tasks. This gap may even cause a
“negative transfer” to the specific application, leading to poor results.
Inspired by the prompt learning in natural language processing
(NLP), which has presented significant effectiveness in leveraging
prior knowledge for various NLP tasks, we study the prompting
topic for graphs with the motivation of filling the gap between pre-
trained models and various graph tasks. In this paper, we propose a
novel multi-task prompting method for graph models. Specifically,
we first unify the format of graph prompts and language prompts
with the prompt token, token structure, and inserting pattern. In
this way, the prompting idea from NLP can be seamlessly intro-
duced to the graph area. Then, to further narrow the gap between
various graph tasks and state-of-the-art pre-training strategies, we
further study the task space of various graph applications and re-
formulate downstream problems to the graph-level task. Afterward,
we introduce meta-learning to efficiently learn a better initializa-
tion for the multi-task prompt of graphs so that our prompting
framework can be more reliable and general for different tasks. We
conduct extensive experiments, results from which demonstrate
the superiority of our method.

CCS CONCEPTS
• Networks→ Online social networks; • Computing method-
ologies→ Knowledge representation and reasoning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599256

KEYWORDS
pre-training; prompt tuning; graph neural networks

ACM Reference Format:
Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. 2023. All in
One: Multi-Task Prompting for Graph Neural Networks. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3580305.3599256

1 INTRODUCTION
Graph neural networks (GNNs) have been widely applied to various
applications such as social computing [5, 28] , anomaly detection
[30, 31] , and network analysis [4]. Beyond exploring various ex-
quisite GNN structures, recent years have witnessed a new research
trend on how to train a graph model for dedicated problems.

Traditional supervised learning methods on graphs heavily rely
on graph labels, which are not always sufficient in the real world.
Another shortcoming is the over-fitting problem when the testing
data is out-of-distribution [24]. To solve these challenges, many
studies turn to “pre-training and fine-tuning” [13], which means
pre-training a graph model with easily accessible data, and then
transferring the graph knowledge to a new domain or task via
tuning the last layer of the pre-trained model. Although much
progress has been achieved on pre-training strategies [9], there still
exists a huge gap between these pretexts and multiple downstream
tasks. For example, a typical pretext for the pre-training graph is
binary edge prediction. Usually, this pre-training strategy makes
connected nodes closer in a latent representation space. However,
many downstream tasks are not limited to edge-level tasks but also
include node-level tasks (e.g., node multi-class classification) or
graph-level tasks (e.g., graph classification). If we transfer the above
pre-trained model to multi-class node classification, it may require
us to carefully search the results in higher dimensional parameter
space for the additional classes of node labels. This tuning may
even break down (a.k.a negative transfer [33]) when connected
nodes have different labels. Tuning this pre-trained model to graph-
level tasks is neither efficient because we have to pay huge efforts
to learn an appropriate function mapping node embedding to the
whole graph representation.

ar
X

iv
:2

30
7.

01
50

4v
2

 [
cs

.S
I]

 1
7

D
ec

 2
02

3

https://doi.org/10.1145/3580305.3599256
https://doi.org/10.1145/3580305.3599256

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan

Pretrained
Graph Model

Downstream
Tasks

Fine-tuning

Pretrained
Graph Model

Downstream
Tasks Prompt

turning

Pretraining
Graph Model

Pretraining
Tasks

…

+

+
…

Task DomainPretraining Domain
…

Tuned Frozen Prompt

Task Domain

Figure 1: Fine-tuning, Pre-training, and Prompting.

A promising solution to the above problems is to extend “pre-
training and fine-tuning” to “pre-training, prompting, and fine-
tuning”. Prompt learning is a very attractive idea derived from
natural language processing (NLP) and has shown notable effective-
ness in generalizing pre-trained language models to a wide range of
language applications [20]. Specifically, a language prompt refers to
a piece of text appended to the rear of an input text. For example, a
sentiment task like “KDD2023 will witness many high-quality papers.
I feel so [MASK]” can be easily transferred to a word prediction
task via a preset prompt (“I feel so [MASK]”). It is highly expected
that the language model may predict “[MASK]” as “excited” rather
than “upset” without further optimizing parameters for the new
sentiment task because this model has already been pre-trained via
the pretext of masked words prediction and contains some useful
knowledge to answer this question. By this means, some down-
stream objectives can be naturally aligned with the pre-training
target. Inspired by the success of the language prompt, we hope to
introduce the same idea to graphs. As shown in Figure 1, prompt
tuning in the graph domain is to seek some light-weighted prompt,
keep the pre-training model frozen, and use the prompt to refor-
mulate downstream tasks in line with the pre-training task. In this
way, the pre-trained model can be easily applied to downstream
applications with highly efficient fine-tuning or even without any
fine-tuning. This is particularly useful when the downstream task
is a few-shot setting.

However, designing the graph prompt is more intractable than
language prompts. First, classic language prompts are usually some
preset phrases or learnable vectors attached at the end of input texts.
As shown in Figure 2, we only need to consider the content for the
language prompt, whereas the graph prompt not only requires the
prompt “content” but also needs to know how to organize these
prompt tokens and how to insert the prompt into the original graph,
both of which are undefined problems.

Second, there is a huge difficulty in reconciling downstream
problems to the pre-training task. In the NLP area, we usually pre-
train a language model via masked prediction and then transfer it
to various applications like question answering [22], sentiment clas-
sification [17]. The underlying support [21] is that these language
tasks usually share a large overlapping task sub-space, making a
masked language task easily transferred to other applications. How-
ever, how much does the same observation exist (if truly exists) in
graph learning? It is crucial but difficult to decide on an appropriate
pre-training task and reformulate downstream tasks to improve

``KDD2023 will witness many high-quality papers. I feel so [excited] ’’

prompt answerinput

𝑧

input prompt tasker
(answer)

insert the prompt to the input graph
inserting pattern: prompt token: token structure:

Figure 2: Our graph prompt inspired by the language prompt.

the capability of model generalization. Currently, we only find very
few works [27] studying the graph prompt issue. However, it can
only deal with a single-type task (e.g., node classification) using a
specific pretext (e.g., edge prediction), which is far from addressing
the multi-task setting with different-level tasks.

Last but not least, learning a reliable prompt usually needs huge
manpower and is more sensitive to prompt initialization in the
multi-task setting [18]. Although there are some works [14, 38]
in the NLP area trying to initialize the prompt via hand-crafted
content or some discrete features, these methods are task-bounded,
which is not sufficient when we confront a new task. This problem
may be evenworse in ourmulti-task graph area since graph features
vary a lot in different domains and tasks.

Presented work. To further fill the gap between graph pre-
training and downstream tasks, we introduce the prompt method
from NLP to graphs under the multi-task background. Specifically,
to address the first challenge, we propose to unify the format of
the language prompt and graph prompt in one way so that we can
smoothly transfer the prompt idea from NLP to graphs, then we
design the graph prompt from prompt tokens, token structures,
and prompt inserting patterns. To address the second challenge,
we first study the task subspace in graphs and then propose to
reformulate node-level and edge-level tasks to graph-level tasks by
induced graphs from original graphs. To address the third challenge,
we introduce the meta-learning technique over multiple tasks to
learn better prompts. We carefully evaluate our method with other
approaches and the experimental results extensively demonstrate
our advantages.

Contributions:

• We unify the prompt format in the language area and graph
area, and further propose an effective graph prompt for multi-
task settings (section 3.3).
• We propose an effective way to reformulate node-level and
edge-level tasks to graph-level tasks, which can furthermatch
many pre-training pretexts (section 3.2).
• We introduce the meta-learning technique to our graph
prompting study so that we can learn a reliable prompt for
improving the multi-task performance (section 3.4).
• We carefully analyze why our method works (section 3.5)
and confirm the effectiveness of our method via extensive
experiments (section 4).

All in One: Multi-Task Prompting for Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

2 BACKGROUND
Graph Neural Networks. Graph neural networks (GNNs) have
presented powerful expressiveness in many graph-based applica-
tions [10, 12, 15, 29] . The nature of most GNNs is to capture the un-
derlying message-passing patterns for graph representation. To this
end, there are many effective neural network structures proposed
such as graph attention network (GAT) [32], graph convolution
network (GCN) [34], Graph Transformer [25]. Recent works also
consider how to make graph learning more adaptive when data
annotation is insufficient or how to transfer the model to a new
domain, which triggered many graph pre-training studies instead
of traditional supervised learning.
Graph Pre-training. Graph pre-training [13] aims to learn some
general knowledge for the graph model with easily accessible infor-
mation to reduce the annotation costs of new tasks. Some effective
pre-training strategies include node-level comparison like GCA
[40], edge-level pretext like edge prediction [13], and graph-level
contrastive learning such as GraphCL [36] and SimGRACE [35].
In particular, GraphCL minimizes the distance between a pair of
graph-level representations for the same graph with different aug-
mentations whereas SimGRACE tries to perturb the graph model
parameter spaces and narrow down the gap between different per-
turbations for the same graph. These graph-level strategies perform
more effectively in graph knowledge learning [11] and are the de-
fault strategies of this paper.
Prompt Learning & Motivations. Intuitively, the above graph-
level pre-training strategies have some intrinsic similarities with
the language-masked prediction task: aligning two graph views
generated by node/edge/feature mask or other perturbations is very
similar to predicting some vacant “blanks” on graphs. That inspires
us to further consider: why can’t we use a similar format prompt
for graphs to improve the generalization of graph neural networks?
Instead of fine-tuning a pre-trained model with an adaptive task
head, prompt learning aims to reformulate input data to fit the
pretext [7]. Many effective prompt methods are firstly proposed
in the NLP area, including some hand-crafted prompts like GPT-3
[3], discrete prompts like [7, 26], and trainable prompts in the con-
tinuous spaces like [16, 19]. Despite significant results achieved,
prompt-based methods have been rarely introduced in graph do-
mains yet. We only find very few works like GPPT [27], trying to
design prompts for graphs. Unfortunately, most of them are very
limited and are far from sufficient to meet the multi-task demands.

3 MULTI-TASK PROMPTING ON GRAPHS
3.1 Overview of Our Framework
Objective: In this paper, we aim to learn a prompt graph that can be
inserted into the original graph, through which we wish to further
bridge the gap between a graph pre-training strategy and multiple
downstream tasks, and further relieve the difficulties of transferring
prior knowledge to different domains.
Overview: To achieve our goal, we propose a novel multi-task
prompting framework for graph models. First, we unify various
graph tasks in the same format and reformulate these downstream
tasks as graph-level tasks. Second, with the unified graph-level
instances, we further narrow down the gap among multiple tasks
by a novel prompt graphwith learnable tokens, inner structures, and

Question
Answering

Sentiment
Classification

Masked
Prediction

(a) NLP tasks

Subgraph-level
Operations

Graph-level Operations

Node-level
Operations

Edge-level
Operations

(b) graph tasks

Figure 3: Task space in NLP and graph

adaptive inserting patterns. Third, we build a meta-learning process
to learn more adaptive graph prompts for multi-task settings. Next,
we elaborate on the main components.

3.2 Reformulating Downstream Tasks
3.2.1 Why Reformulate Downstream Tasks. The success of the tra-
ditional “pre-training and fine-tuning” framework in the NLP area
largely lies in the fact that the pre-training task and downstream
tasks share some common intrinsic task subspace, making the pre-
training knowledge transferable to other downstream tasks (Figure
3a). However, things are a little complicated in the graph domain
since graph-related tasks are far from similar. As shown in Figure 3b,
it is far-fetched to treat the edge-level task and the node-level task
as the same one because node-level operations and edge-level oper-
ations are far more different [27]. This gap limits the performance
of pre-training models and might even cause negative transfer [13].
The same problem also happens in our “pre-training, prompting,
and fine-tuning” framework since we aim to learn a graph prompt
for multiple tasks, which means we need to further narrow down
the gap between these tasks by reformulating different graph tasks
in a more general form.

3.2.2 Why Reformulate to the Graph Level. With the above moti-
vation, we revisit the potential task space on the graph and find
their hierarchical relation as shown in Figure 3b. Intuitively, many
node-level operations such as “changing node features”, “delete/add
a node”, or edge-level operations such as “add/delete an edge”, can
be treated as some basic operations at the graph level. For example,
“delete a subgraph” can be treated as “delete nodes and edges”. Com-
pared with node-level and edge-level tasks, graph-level tasks are
more general and contain the largest overlapping task sub-spaces
for knowledge transfer, which has been adopted as the mainstream
task in many graph pre-training models [11, 35, 36]. This observa-
tion further inspires us to reformulate downstream tasks to look
like the graph-level task and then leverage our prompting model to
match graph-level pre-training strategies.

3.2.3 How to Reformulate Downstream Tasks. Specifically, we refor-
mulate node-level and edge-level tasks to graph-level tasks by build-
ing induced graphs for nodes and edges, respectively. As shown in
Figure 4a, an induced graph for a target node means its local area
in the network within 𝜏 distance, which is also known as its 𝜏-ego
network. This subgraph preserves the node’s local structure by
neighboring node connections and its semantic context by neigh-
boring node features, which is the main scope of most graph neural

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan

encoders. When we treat the target node’s label as this induced
graph label, we can easily translate the node classification problem
into graph classification; Similarly, we present an induced graph for
a pair of nodes in Figure 4b. Here, the pair of nodes can be treated
as a positive edge if there is an edge connecting them, or a negative
edge if not. This subgraph can be easily built by extending this node
pair to their 𝜏 distance neighbors. We can reformulate the edge-
level task by assigning the graph label with the edge label of the
target node pair. Note that for unweighted graphs, the 𝜏 distance is
equal to 𝜏-hop length; for weighted graphs, the 𝜏 distance refers to
the shortest path distance, where the induced graph can be easily
found by many efficient algorithms [1, 39].

(a) Induced graphs for nodes

(b) Induced graphs for edges

Figure 4: Induced graphs for nodes and edges

3.3 Prompt Graph Design
3.3.1 Prompting NLP and Graph in One Way. To seamlessly trans-
fer the prompting idea from NLP to the graph domain, we propose
to unify NLP Prompt and Graph Prompt in one perspective. Having
compared the demand of NLP and graph area as shown in Figure
2, we found that the prompt in NLP and graph areas should con-
tain at least three components: (1) prompt token, which contains
the vectorized prompting information with the same size as the
input word/node vector; (2) token structure, which indicates the con-
nection of different tokens. In the NLP area, prompt tokens (a.k.a
prompt words) are preset as a linear relation like a sub-sentence or
a phrase; whereas in the graph domain, the connections of different
tokens are non-linear and far more complicated than NLP prompts;
(3) inserting pattern, which presents how to add the prompt to the
input data. In the NLP area, the prompt is usually added in the front
or the back end of the input sentences by default. However, in the
graph area, there are no explicit positions like a sentence to joint
graph prompt, making the graph prompting more difficult.

3.3.2 Prompt Tokens. Let a graph instance be G = (V, E) where
V = {𝑣1, 𝑣2, · · · , 𝑣𝑁 } is the node set containing 𝑁 nodes; each
node has a feature vector denoted by x𝑖 ∈ R1×𝑑 for node 𝑣𝑖 ; E =

{(𝑣𝑖 , 𝑣 𝑗) |𝑣𝑖 , 𝑣 𝑗 ∈ V} is the edge set where each edge connects a
pair of nodes inV . With the previous discussion, we here present
our prompt graph as G𝑝 = (P,S) where P = {𝑝1, 𝑝2, · · · , 𝑝 | P | }

denotes the set of prompt tokens and |P | is the number of tokens.
Each token 𝑝𝑖 ∈ P can be represented by a token vector p𝑖 ∈ R1×𝑑
with the same size of node features in the input graph; Note that in
practice, we usually have |P | ≪ 𝑁 and |P | ≪ 𝑑ℎ where 𝑑ℎ is the
size of the hidden layer in the pre-trained graph model. With these
token vectors, the input graph can be reformulated by adding the
𝑗-th token to graph node 𝑣𝑖 (e.g., x̂𝑖 = x𝑖 + p𝑗). Then, we replace
the input features with the prompted features and send them to the
pre-trained model for further processing.

3.3.3 Token Structures. S = {(𝑝𝑖 , 𝑝 𝑗) |𝑝𝑖 , 𝑝 𝑗 ∈ P} is the token
structure denoted by pair-wise relations among tokens. Unlike the
NLP prompt, the token structure in the prompt graph is usually
implicit. To solve this problem, we propose three methods to design
the prompt token structures: (1) the first way is to learn tunable
parameters:

A =
| P |−1
∪
𝑖=1
𝑗=𝑖+1

{𝑎𝑖 𝑗 }

where 𝑎𝑖 𝑗 is a tunable parameter indicating how possible the token
𝑝𝑖 and the token 𝑝 𝑗 should be connected; (2) the second way is
to use the dot product of each prompt token pair and prune them
according to the dot value. In this case, (𝑝𝑖 , 𝑝 𝑗) ∈ S iff 𝜎 (p𝑖 ·p𝑗) < 𝛿
where 𝜎 (·) is a sigmoid function and 𝛿 is a pre-defined threshold;
(3) the third way is to treat the tokens as independent and then we
have S = ∅.

3.3.4 Inserting Patterns. Let𝜓 be the inserting function that indi-
cates how to add the prompt graph G𝑝 to the input graph G, then
the manipulated graph can be denoted as G𝑚 = 𝜓 (G,G𝑝). We can
define the inserting pattern as the dot product between prompt
tokens and input graph nodes, and then use a tailored connection
like x̂𝑖 = x𝑖 +

∑ | P |
𝑘=1𝑤𝑖𝑘p𝑘 where𝑤𝑖𝑘 is a weighted value to prune

unnecessary connections:

𝑤𝑖𝑘 =

{
𝜎 (p𝑘 · x𝑇𝑖), if 𝜎 (p𝑘 · x𝑇𝑖) > 𝛿

0, otherwise (1)

As an alternative and special case, we can also use a more simplified
way to get x̂𝑖 = x𝑖 +

∑ | P |
𝑘=1 p𝑘 .

3.4 Multi-task Prompting via Meta Learning
3.4.1 Constructing Meta Prompting Tasks. Let 𝜏𝑖 be the 𝑖-th task
with supporting data D𝑠

𝜏𝑖
and query data D𝑞

𝜏𝑖 ; Specifically, for the
graph classification task, D𝑠

𝜏𝑖
and D𝑞

𝜏𝑖 contain labeled graphs; for
the node classification task, we generate an induced graph for each
node as mentioned in section 3.2.3, align the graph label with the
target node label, and treat this graph as a member in D𝑠

𝜏𝑖
or D𝑞

𝜏𝑖 ;
for the edge classification task, we first generate edge induced
graphs for training and testing and the edge label is up to its two
endpoints.

3.4.2 Applying Meta-learning to Graph Prompting. Let 𝜃 be prompt
parameters, 𝜋∗ be the fixed parameters of the pre-trained graph
backbone, and𝜙 be the tasker’s parameters.We use 𝑓𝜃,𝜙 |𝜋∗ to denote
the pipeline with prompt graph (𝜃), pre-trained model (𝜋∗, fixed),
and downstream tasker (𝜙). Let LD (𝑓) be the task loss with pipline
𝑓 on data D. Then for each task 𝜏𝑖 , the corresponding parameters

All in One: Multi-Task Prompting for Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

can be updated as follows:

𝜃𝑘𝑖 = 𝜃𝑘−1𝑖 − 𝛼∇
𝜃𝑘−1
𝑖
LD𝑠

𝜏𝑖

(
𝑓
𝜃𝑘−1
𝑖

,𝜙𝑘−1
𝑖
|𝜋∗

)
𝜙𝑘𝑖 = 𝜙𝑘−1𝑖 − 𝛼∇

𝜙𝑘−1
𝑖
LD𝑠

𝜏𝑖

(
𝑓
𝜃𝑘−1
𝑖

,𝜙𝑘−1
𝑖
|𝜋∗

) (2)

where the initialization is set as: 𝜃0
𝑖
= 𝜃 , and 𝜙0

𝑖
= 𝜙 . The goal of

this section is to learn effective initialization settings (𝜃, 𝜙) for meta
prompting tasks, which can be achieved by minimizing the meta
loss on various tasks:

𝜃∗, 𝜙∗ = argmin
𝜃,𝜙

∑︁
𝜏𝑖 ∈T

LD𝑞
𝜏𝑖

(
𝑓𝜃𝑖 ,𝜙𝑖 |𝜋∗

)
(3)

where T is the task set. According to the chain rule, we use the
second-order gradient to update 𝜃 (or 𝜙) based on query data:

𝜃←𝜃 − 𝛽 · 𝑔𝑠𝑒𝑐𝑜𝑛𝑑
𝜃

=𝜃 − 𝛽 ·
∑︁
𝜏𝑖 ∈T
∇𝜃LD𝑞

𝜏𝑖

(
𝑓𝜃𝑖 ,𝜙𝑖 |𝜋∗

)
=𝜃 − 𝛽 ·

∑︁
𝜏𝑖 ∈T
∇𝜃𝑖LD𝑞

𝜏𝑖

(
𝑓𝜃𝑖 ,𝜙𝑖 |𝜋∗

)
· ∇𝜃 (𝜃𝑖)

=𝜃− 𝛽 ·
∑︁
𝜏𝑖 ∈T
∇𝜃𝑖LD𝑞

𝜏𝑖

(
𝑓𝜃𝑖 ,𝜙𝑖 |𝜋∗

)
·
(
I−𝛼H𝜃

(
LD𝑠

𝜏𝑖

(
𝑓𝜃𝑖 ,𝜙𝑖 |𝜋∗

)))
(4)

where H𝜃 (L) is the Hessian matrix with (H𝜃 (L))𝑖 𝑗 = 𝜕2L/𝜕𝜃𝑖𝜃 𝑗 ;
and 𝜙 can be updated in the same way.

Kindly note that in the prompt learning area, the task head is also
known as the answering function, which connects the prompt to the
answers for downstream tasks to be reformulated. The answering
function can be both tunable or hand-craft templates. In section 3.5,
we also propose a very simple but effective hand-crafted prompt
answering template without any tunable task head.

3.4.3 Overall Learning Process. To improve the learning stability,
we organize these tasks as multi-task episodes where each episode
contains batch tasks including node classification (“𝑛” for short),
edge classification (“ℓ” for short), and graph classification (“𝑔” for
short). Let E𝑖 = (TE𝑖 ,LE𝑖 ,SE𝑖 ,QE𝑖) be amulti-task episode.We de-
fine task batch TE𝑖 = {T

(𝑔)
E𝑖 ,T (𝑛)E𝑖 ,T (ℓ)E𝑖 }where each subset T

(⊳)
E𝑖 =

{𝜏⊳1, · · · , 𝜏⊳𝑡⊳ }; loss function sets LE𝑖 = {L (𝑔) ,L (𝑛) ,L (ℓ) }, sup-
porting data SE𝑖 = {S (𝑔)E𝑖 ,S

(𝑛)
E𝑖 ,S

(ℓ)
E𝑖 } where each subset S (⊳)E𝑖 =

{D𝑠
𝜏⊳1 , · · · ,D

𝑠
𝜏⊳𝑡⊳
}, and query dataQE𝑖 = {Q

(𝑔)
E𝑖 ,Q

(𝑛)
E𝑖 ,Q

(ℓ)
E𝑖 }where

S (⊳)E𝑖 = {D𝑞
𝜏⊳1 , · · · ,D

𝑞
𝜏⊳𝑡⊳
}. Then the multi-task prompting is pre-

sented in Algorithm 1. We treat each node/edge/graph class as
a binary classification task so that they can share the same task
head. Note that our method can also deal with other tasks beyond
classification with only a few adaptations (see Appendix A).

3.5 Why It Works?
3.5.1 Connection to Existing Work. A prior study on graph prompt
is proposed by [27], namely GPPT. They use edge prediction as
a pre-training pretext and reformulate node classification to the
pretext by designing labeled tokens added to the original graph.
The compound graph will be sent to the pre-trained model again
to predict the link connecting each node to the label tokens. Their
work somehow is a special case of our method when our prompt

Algorithm 1: Overall Learning Process
Input: Overall pipeline 𝑓𝜃,𝜙 |𝜋∗ with prompt parameter 𝜃 ,

pre-trained model with frozen parameter 𝜋∗, and
task head parameterized by 𝜙 ; Multi-task episodes
E = {E1, · · · , E𝑛};

Output: Optimal pipeline 𝑓𝜃 ∗,𝜙∗ |𝜋∗
1 Initialize 𝜃 and 𝜙
2 while not done do

// inner adaptation

3 Sample E𝑖 ∈ E where E𝑖 = (TE𝑖 ,LE𝑖 ,SE𝑖 ,QE𝑖)
4 for 𝜏⊳𝑡 ∈ TE𝑖 , ⊳ = 𝑔, 𝑛, ℓ do
5 𝜃𝜏⊳𝑡 , 𝜙𝜏⊳𝑡 ← 𝜃, 𝜙

6 𝜃𝜏⊳𝑡 ← 𝜃𝜏⊳𝑡 − 𝛼∇𝜃𝜏⊳𝑡 L
(⊳)
D𝑠

𝜏⊳𝑡

(
𝑓𝜃𝜏⊳𝑡 ,𝜙𝜏⊳𝑡 |𝜋∗

)
7 𝜙𝜏⊳𝑡 ← 𝜙𝜏⊳𝑡 − 𝛼∇𝜙𝜏⊳𝑡

L (⊳)D𝑠
𝜏⊳𝑡

(
𝑓𝜃𝜏⊳𝑡 ,𝜙𝜏⊳𝑡 |𝜋∗

)
8 end

// outer meta update

9 Update 𝜃, 𝜙 by Equation (4) on
QE𝑖 = {D

𝑞
𝜏⊳𝑡 |𝜏⊳𝑡 ∈ TE𝑖 , ⊳ = 𝑔, 𝑛, ℓ}

10 end
11 return 𝑓𝜃 ∗,𝜙∗ |𝜋∗

graph only contains isolated tokens, each of which corresponds to a
node category. However, there are at least three notable differences:
(1) GPPT is not flexible to manipulate original graphs; (2) GPPT is
only applicable for node classification; and (3) GPPT only supports
edge prediction task as the pretext but is not compatible with more
advanced graph-level pre-training strategies such as GraphCL [36],
UGRAPHEMB [2], SimGRACE [35] etc. We further discuss these
issues w.r.t. flexibility, efficiency, and compatibility as below.

3.5.2 Flexibility. The nature of prompting is to manipulate the
input data to match the pretext. Therefore, the flexibility of data
operations is the bottleneck of prompting performance. Let 𝑔 be
any graph-level transformation such as “changing node features”,
“adding or removing edges/subgraphs” etc., and 𝜑∗ be the frozen
pre-trained graph model. For any graph G with adjacency matrix A
and node feature matrix X, Fang et al. [6] have proved that we can
always learn an appropriate prompt token 𝑝∗ making the following
equation stand:

𝜑∗
(
A,X + 𝑝∗

)
= 𝜑∗ (𝑔(A,X)) +𝑂𝑝𝜑 (5)

This means we can learn an appropriate token applied to the orig-
inal graph to imitate any graph manipulation. Here 𝑂𝑝𝜑 denotes
the error bound between the manipulated graph and the prompting
graph w.r.t. their representations from the pre-trained graph model.
This error bound is related to some non-linear layers of the model
(unchangeable) and the quality of the learned prompt (changeable),
which is promising to be further narrowed down by a more ad-
vanced prompt scheme. In this paper, we extend the standalone
token to a prompt graph that has multiple prompt tokens with
learnable inner structures. Unlike the indiscriminate inserting in
Equation (5) (“X + 𝑝∗” means the prompt token should be added
to every node of the original graph), the inserting pattern of our
proposed prompt graph is highly customized. Let𝜓 (G,G𝑝) denote

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan

the inserting pattern defined in section 3.3; G is the original graph,
and G𝑝 is the prompt graph, then we can learn an optimal prompt
graph G∗𝑝 to extend Equation (5) as follows:

𝜑∗
(
𝜓 (G,G∗𝑝)

)
= 𝜑∗ (g(A,X)) +𝑂∗𝑝𝜑 (6)

By efficient tuning, the new error bound 𝑂∗𝑝𝜑 can be further re-
duced. In section 4.6, we empirically demonstrate that 𝑂∗𝑝𝜑 can be
significantly smaller than 𝑂𝑝𝜑 via efficient training. That means
our method supports more flexible transformations on graphs to
match various pre-training strategies.

3.5.3 Efficiency. Assume an input graph has 𝑁 nodes and𝑀 edges
and the prompt graph has 𝑛 tokens with𝑚 edges. Let the graph
model contain 𝐿 layers and the maximum dimension of one layer be
𝑑 . The parameter complexity of the prompt graph is only𝑂 (𝑛𝑑). In
contrast, some typical graph models (e.g., GAT [32]) usually contain
𝑂 (𝐿𝐾𝑑2 + 𝐿𝐾𝑑) parameters to generate node embedding and addi-
tional 𝑂 (𝐾𝑑) parameters to obtain the whole graph representation
(𝐾 is the multi-head number). The parameters may be even larger in
other graph neural networks (e.g., graph transformer [37]). In our
prompt learning framework, we only need to tune the prompt with
the pre-trained graph model frozen, making the training process
converge faster than traditional transfer tuning.

For the time complexity, a typical graph model (e.g., GCN [34])
usually needs𝑂 (𝐿𝑁𝑑2+𝐿𝑀𝑑+𝑁𝑑) time to generate node embedding
viamessage passing and then obtain thewhole graph representation
(e.g., 𝑂 (𝑁𝑑) for summation pooling). By inserting the prompt into
the original graph, the total time is𝑂 (𝐿(𝑛+𝑁)𝑑2+𝐿(𝑚+𝑀)𝑑+(𝑛+𝑁)𝑑).
Compared with the original time, the additional time cost is only
𝑂 (𝐿𝑛𝑑2+𝐿𝑚𝑑+𝑛𝑑) where 𝑛 ≪ 𝑑, 𝑛 ≪ 𝑁,𝑚 ≪ 𝑀 .

Besides the efficient parameter and time cost, our work is also
memory friendly. Taking node classification as an example, the
memory cost of a graph model largely includes parameters, graph
features, and graph structure information. As previously discussed,
our method only needs to cache the prompt parameters, which are
far smaller than the original graph model. For the graph features
and structures, traditional methods usually need to feed the whole
graph into a graph model, which needs huge memory to cache these
contents. However, we only need to feed an induced graph to the
model for each node, the size of which is usually far smaller than
the original graph. Notice that in many real-world applications, we
are often interested in only a few parts of the total nodes, which
means our method can stop timely if there is no more node to be
predicted and we do not need to propagate messages on the whole
graph either. This is particularly helpful for large-scale data.

3.5.4 Compatibility. Unlike GPPT, which can only use binary edge
prediction as a pretext, and is only applicable for node classifica-
tion as downstream tasks, our framework can support node-level,
edge-level, and graph-level downstream tasks, and adopt various
graph-level pretexts with only a few steps of tuning. Besides, when
transferring the model to different tasks, traditional approaches usu-
ally need to additionally tune a task head. In contrast, our method
focuses on the input data manipulation and it relies less on the
downstream tasks. This means we have a larger tolerance for the
task head. For example, in section 4.3, we study the transferability
from other domains or tasks but we only adapt our prompt, leaving

the source task head unchanged. We can even select some specific
pretext and customize the details of our prompt without any tuned
task head. Here we present a case that does not need to tune a task
head and we evaluate its feasibility in section 4.4.

Prompt without Task Head Tuning:
Pretext: GraphCL [36], a graph contrastive learning task
that tries to maximize the agreement between a pair of
views from the same graph.
Downstream Tasks: node/edge/graph classification.
Prompt Answer: node classification. Assume there are 𝑘
categories for the nodes. We design the prompt graph with
𝑘 sub-graphs (a.k.a sub-prompts) where each sub-graph has
𝑛 tokens. Each sub-graph corresponds to one node category.
Then we can generate 𝑘 graph views for all input graphs.
We classify the target node with label ℓ (ℓ = 1, 2, · · · , 𝑘) if
the ℓ-th graph view is closest to the induced graph. It is
similar to edge/graph classification.

Interestingly, by shrinking the prompt graph as isolate tokens
aligned with node classes and replacing the induced graphs with
the whole graph, our prompt format can degenerate to GPPT, which
means we can also leverage edge-level pretext for node classifica-
tion. Since this format is exactly the same as GPPT, we will not
discuss it anymore. Instead, we directly compare GPPT on node
classification with our method.

4 EVALUATION
In this section, we extensively evaluate our method with other ap-
proaches on node-level, edge-level, and graph-level tasks of graphs.
In particular, we wish to answer the following research questions:
Q1: How effective is our method under the few-shot learning back-
ground for multiple graph tasks? Q2: How adaptable is our method
when transferred to other domains or tasks? Q3: How do the main
components of our method impact the performance? Q4: How effi-
cient is our model compared with traditional approaches? Q5: How
powerful is our method when we manipulate graphs?

4.1 Experimental Settings
4.1.1 Datasets. : We compare our methods with other approaches
on five public datasets including Cora [34], CiteSeer [34], Reddit [8],
Amazon [23], and Pubmed [34]. Detailed statistics are presented
in Table 1 where the last column refers to the number of node
classes. To conduct edge-level and graph-level tasks, we sample
edges and subgraphs from the original data where the label of an
edge is decided by its two endpoints and the subgraph label follows
the majority of the subgraph nodes. For example, if nodes have 3
different classes, say 𝑐1, 𝑐2, 𝑐3, then edge-level tasks contain at least
6 categories (𝑐1, 𝑐2, 𝑐3, 𝑐1𝑐2, 𝑐1𝑐3, 𝑐2𝑐3). We also evaluate additional
graph classification and link prediction onmore specialized datasets
where the graph label and the link label are inborn and not related
to any node (see Appendix A).

4.1.2 Approaches. Compared approaches are from three categories:
(1) Supervised methods: these methods directly train a GNN
model on a specific task and then directly infer the result. We here
take three famous GNN models including GAT [32], GCN [34],
and Graph Transformer [25] (short as GT). These GNN models

All in One: Multi-Task Prompting for Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 1: Statistics of datasets.

Dataset #Nodes #Edges #Features #Labels

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 9,104 3,703 6
Reddit 232,965 23,213,838 602 41
Amazon 13,752 491,722 767 10
Pubmed 19,717 88,648 500 3

are also included as the backbones of our prompt methods. (2)
Pre-training with fine-tuning: These methods first pre-train a
GNN model in a self-supervised way such as GraphCL [36] and
SimGRACE [35], then the pre-trained model will be fine-tuned for
a new downstream task. (3) Prompt methods: With a pre-trained
model frozen and a learnable prompt graph, our prompt method
aims to change the input graph and reformulate the downstream
task to fit the pre-training strategies.

4.1.3 Implementations. We set the number of graph neural layers
as 2 with a hidden dimension of 100. To study the transferability
across different graph data, we use SVD (Singular Value Decompo-
sition) to reduce the initial features to 100 dimensions. The token
number of our prompt graph is set as 10. We also discuss the impact
of token numbers in section 4.4 where we change the token number
from 1 to 20. We use the Adam optimizer for all approaches. The
learning rate is set as 0.001 for most datasets. In the meta-learning
stage, we split all the node-level, edge-level, and graph-level tasks
randomly in 1:1 for meta-training and meta-testing. Reported re-
sults are averaged on all tested tasks. More implementation details
are shown in Appendix A, in which we also analyze the perfor-
mance on more datasets and more kinds of tasks such as regression,
link prediction, and so on.

4.2 Multi-Task Performance with Few-shot
Learning Settings (RQ1)

We compared our prompt-based methods with other mainstream
training schemes on node-level, edge-level, and graph-level tasks
under the few-shot setting. We repeat the evaluation 5 times and
report the average results in Table 2, Table 12 (Appendix A), and
Table 13 (Appendix A). From the results, we can observe that most
supervised methods are very hard to achieve better performance
compared with pre-train methods and prompt methods. This is
because the empirical annotations required by supervised frame-
works in the few-shot setting are very limited, leading to poor
performance. In contrast, pre-training approaches contain more
prior knowledge, making the graph model rely less on data labels.
However, to achieve better results on a specific task, we usually
need to carefully select an appropriate pre-training approach and
carefully tune the model to match the target task, but this huge
effort is not ensured to be applicable to other tasks. The gap be-
tween pre-training strategies and downstream tasks is still very
large, making the graph model very hard to transfer knowledge
on multi-task settings (we further discuss the transferability in sec-
tion 4.3.) Compared with pre-training approaches, our solutions
further improve the compatibility of graph models. The reported
improvements range from 1.10% to 8.81% on node-level tasks, 1.28%

to 12.26% on edge-level tasks, and 0.14% to 10.77% on graph-level
tasks. In particular, we also compared our node-level performance
with the previously mentioned node-level prompt model GPPT in
Table 2. Kindly note that our experiment settings are totally dif-
ferent from GPPT. In GPPT, they study the few-shot problem by
masking 30% or 50% data labels. However, in our paper, we propose
a more challenging problem: how does the model perform if we
further reduce the label data? So in our experiment, each class only
has 100 labeled samples. This different setting makes our labeled
ratio approximately only 25% on Cora, 18% on CiteSeer, 1.7% on
Reddit, 7.3% on Amazon, and 1.5% on Pubmed, which are far less
than the reported GPPT (50% labeled).

4.3 Transferability Analysis (RQ2)
To evaluate the transferability, we compared our method with the
hard transfer method and the fine-tuning method. Here the hard
transfer method means we seek the source task model which has
the same task head as the target task and then we directly conduct
the model inference on the new task. The fine-tune method means
we load the source task model and then tune the task head for the
new task. We evaluate the transferability from two perspectives: (1)
how effectively is the model transferred to different tasks within
the same domain? and (2) how effectively is the model transferred
to different domains?

4.3.1 Transferability to Different Level Tasks. Here we pre-train
the graph neural network on Amazon, then conduct the model on
two source tasks (graph level and node level), and further evaluate
the performance on the target task (edge level). For simplicity, both
source tasks and the target task are built as binary classifications
with 1 : 1 positive and negative samples (we randomly select a class
as the positive label and sample negatives from the rest). We report
the results in Table 3, from which we have two observations: First,
our prompt method significantly outperforms the other approaches
and the prediction results make sense. In contrast, the problem of
the hard transfer method is that the source model sometimes can
not well decide on the target tasks because the target classes may
be far away from the source classes. This may even cause negative
transfer results (results that are lower than random guess). In most
cases, the fine-tuning method can output meaningful results with
a few steps of tuning but it can still encounter a negative transfer
problem. Second, the graph-level task has better adaptability than
the node-level task for the edge-level target, which is in line with
our previous intuition presented in Figure 3 (section 3.2).

4.3.2 Transferability to Different Domains. We also conduct the
model on Amazon and PubMed as source domains, then load the
model states from these source domains and report the performance
on the target domain (Cora). Since different datasets have various
input feature dimensions, we here use SVD to unify input features
from all domains as 100 dimensions. Results are shown in Table 4,
from which we can find that the good transferability of our prompt
also exists when we deal with different domains.

4.4 Ablation Study (RQ3)
In this section, we compare our complete framework with four
variants: “w/o meta” is the prompt method without meta-learning

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan

Table 2: Node-level performance (%) with 100-shot setting. IMP (%): the average improvement of prompt over the rest.

Training
schemes Methods Cora CiteSeer Reddit Amazon Pubmed

Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC

supervised
GAT 74.45 73.21 82.97 83.00 83.20 89.33 55.64 62.03 65.38 79.00 73.42 97.81 75.00 77.56 79.72
GCN 77.55 77.45 83.71 88.00 81.79 94.79 54.38 52.47 56.82 95.36 93.99 96.23 53.64 66.67 69.89
GT 74.25 75.21 82.04 86.33 85.62 90.13 61.50 61.38 65.56 85.50 86.01 93.01 51.50 67.34 71.91

pre-train
+

fine-tune

GraphCL+GAT 76.05 76.78 81.96 87.64 88.40 89.93 57.37 66.42 67.43 78.67 72.26 95.65 76.03 77.05 80.02
GraphCL+GCN 78.75 79.13 84.90 87.49 89.36 90.25 55.00 65.52 74.65 96.00 95.92 98.33 69.37 70.00 74.74
GraphCL+GT 73.80 74.12 82.77 88.50 88.92 91.25 63.50 66.06 68.04 94.39 93.62 96.97 75.00 78.45 75.05

SimGRACE+GAT 76.85 77.48 83.37 90.50 91.00 91.56 56.59 65.47 67.77 84.50 84.73 89.69 72.50 68.21 81.97
SimGRACE+GCN 77.20 76.39 83.13 83.50 84.21 93.22 58.00 55.81 56.93 95.00 94.50 98.03 77.50 75.71 87.53
SimGRACE+GT 77.40 78.11 82.95 87.50 87.05 91.85 66.00 69.95 70.03 79.00 73.42 97.58 70.50 73.30 74.22

prompt

GraphCL+GAT 76.50 77.26 82.99 88.00 90.52 91.82 57.84 67.02 75.33 80.01 75.62 97.96 77.50 78.26 83.02
GraphCL+GCN 79.20 79.62 85.29 88.50 91.59 91.43 56.00 68.57 78.82 96.50 96.37 98.70 72.50 72.64 79.57
GraphCL+GT 75.00 76.00 83.36 91.00 91.00 93.29 65.50 66.08 68.86 95.50 95.43 97.56 76.50 79.11 76.00

SimGRACE+GAT 76.95 78.51 83.55 93.00 93.14 92.44 57.63 66.64 69.43 95.50 95.43 97.56 73.00 74.04 81.89
SimGRACE+GCN 77.85 76.57 83.79 90.00 89.47 94.87 59.50 55.97 59.46 95.00 95.24 98.42 78.00 78.22 87.66
SimGRACE+GT 78.75 79.53 85.03 91.00 91.26 95.62 69.50 71.43 70.75 86.00 83.72 98.24 73.00 73.79 76.64

IMP (%) 1.47 1.94 1.10 3.81 5.25 2.05 3.97 5.04 6.98 4.49 5.84 2.24 8.81 4.55 4.62

Reported Acc of GPPT (Label Ratio 50%) 77.16 – – 65.81 – – 92.13 – – 86.80 – – 72.23 – –
appr. Label Ratio of our 100-shot setting ∼ 25% ∼ 18% ∼ 1.7% ∼ 7.3% ∼ 1.5%

Table 3: Transferability (%) on Amazon from different level
tasks spaces. Source tasks: graph-level tasks and node-level
tasks. Target task: edge-level tasks.

Source task Methods Accuracy F1-score AUC score

graph level
hard 51.50 65.96 40.34
fine-tune 62.50 70.59 53.91
prompt 70.50 71.22 74.02

node level
hard 40.50 11.85 29.48
fine-tune 46.00 54.24 37.26
prompt 59.50 68.73 55.90

Table 4: Transferability (%) from different domains. Source
domains: Amazon and PubMed. Target domain: Cora

Source
Domains Amazon PubMed

Tasks hard fine-tune prompt hard fine-tune prompt

node
level

Acc 26.9 64.14 65.07 55.62 57.93 62.07
F1 13.11 77.59 80.23 66.33 70.00 76.60

AUC 17.56 88.79 92.59 82.34 83.34 88.46

edge
level

Acc 17.00 77.00 82.00 10.00 90.50 96.50
F1 10.51 81.58 84.62 2.17 89.73 91.80

AUC 4.26 94.27 96.19 6.15 93.89 94.70

graph
level

Acc 46.00 87.50 88.00 50.00 91.00 95.50
F1 62.76 89.11 88.12 10.00 93.90 95.60

AUC 54.23 86.33 94.99 90.85 91.47 98.47

step; “w/o h” is our method without task head tuning, which is
previously introduced in section 3.5.4; “w/o token structure” is
the prompt where all the tokens are treated as isolated without
any inner connection; and “w/o inserting” is the prompt without

60.00

70.00

80.00

90.00

100.00

Acc F1 AUC Acc F1 AUC Acc F1 AUC

node-level edge-level graph-level

full w/o meta w/o h w/o token structure w/o inserting

Figure 5: Effectiveness of main components

any across links between prompt tokens and the input graphs. We
report the performance in Figure 5, from which we can find the
meta-learning and token structure all contribute significantly to the
final results. In particular, the inserting pattern between a prompt
graph and the input graph plays a very crucial role in the final
performance. As previously discussed, the purpose of the prompt-
based method is to relieve the difficulty of traditional “pre-train,
fine-tuning” by filling the gap between the pre-training model and
the task head. This means the prompt graph is proposed to further
improve the fine-tuning performance. This is particularly important
when we transfer the model across different tasks/domains, which
proposes harder demand for the task head. As suggested in Figure
5, even when we totally remove the tunable task head, the “w/o h”
variant can still perform very competitively, which suggests the
powerful capability of bridging upstream and downstream tasks.

4.5 Efficiency Analysis (RQ4)
Figure 6 presents the impact of increasing token number on the
model performance, from which we can find that most tasks can
reach satisfactory performance with very limited tokens, making

All in One: Multi-Task Prompting for Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

the complexity of the prompt graph very small. The limited to-
ken numbers make our tunable parameter space far smaller than
traditional methods, which can be seen in Table 5. This means
our method can be efficiently trained with a few steps of tuning.
As shown in Figure 7, the prompt-based method converges faster
than traditional pre-train and supervised methods, which further
suggests the efficiency advantages of our method.

Table 5: Tunable parameters comparison. RED (%): average
reduction of the prompt method to others.

Methods Cora CiteSeer Reddit Amazon Pubmed RED (%)

GAT ∼ 155K ∼ 382K ∼ 75K ∼ 88K ∼ 61K 95.4↓
GCN ∼ 154K ∼ 381K ∼ 75K ∼ 88K ∼ 61K 95.4↓
GT ∼ 615K ∼ 1.52M ∼ 286K ∼ 349K ∼ 241K 98.8↓

prompt ∼ 7K ∼ 19K ∼ 3K ∼ 4K ∼ 3K –

80.00

90.00

100.00

1 5 10 15 20

node-level Acc node-level F1 node-level AUC
edge-level Acc edge-level F1 edge-level AUC

Figure 6: Impact of token numbers

4.6 Flexibility on Graph Transformation (RQ5)
As discussed in section 3.5.2, the flexibility of data transformation
is the bottleneck of prompt-based methods. Here we manipulate
several graphs by dropping nodes, dropping edges, and masking
features, then we calculate the error bound mentioned in Equa-
tion 5 and 6. We compare the original error with the naive prompt
mentioned in Equation 5, and our prompt graph with 3, 5, and
10 tokens. As shown in Table 6, our designed prompt graph sig-
nificantly reduces the error between the original graph and the
manipulated graph. This means our method is more powerful to
stimulate various graph transformations and can further support
significant improvement for downstream tasks. This capability can
also be observed in the graph visualization from two approaches.
As shown in Figure 8, the graph representations from a pre-trained
model present lower resolution to node classes compared with our
prompted graph.

5 CONCLUSION
In this paper, we study the multi-task problem of graph prompts
with few-shot settings. We propose a novel method to reformulate
different-level tasks to unified ones and further design an effective
prompt graph with a meta-learning technique. We extensively eval-
uate the performance of our method. Experiments demonstrate the
effectiveness of our framework.

0 10 20 30 40 50
Epoch

0.4

0.5

0.6

0.7

Lo
ss

supervised
pretrain
prompt

Figure 7: Training losses with epochs. Mean values and 65%
confidence intervals by 5 repeats with different seeds.

Table 6: Error bound discussed by section 3.5.2 RED (%): aver-
age reduction of each method to the original error.

Prompt Solutions Token
Number

Drop
Nodes

Drop
Edges

Mask
Features RED (%)

Original Error
(without prompt) 0 0.9917 2.6330 6.8209 -

Naive Prompt
(Equation 5) 1 0.8710 0.5241 2.0835 66.70↓

Our Prompt Graph
(with token, structure,
and inserting patterns)

3 0.0875 0.2337 0.6542 90.66↓
5 0.0685 0.1513 0.4372 93.71↓
10 0.0859 0.1144 0.2600 95.59↓

20 10 0 10 20

30

20

10

0

10

20

(a) pre-trained

30 20 10 0 10 20 30

10

5

0

5

10

15

(b) prompt

Figure 8: Visualization of graph representations.

ACKNOWLEDGMENTS
This research is supported in part by project #MMT-p2-23 of the
Shun Hing Institute of Advanced Engineering, The Chinese Univer-
sity of Hong Kong, by grants from the Research Grant Council of
the Hong Kong Special Administrative Region, China (No. CUHK
14217622), NSFC (No. 61972087, No. 62206067, No. U1936205, No.
62172300, No. 62202336), Guangzhou-HKUST(GZ) Joint Funding
Scheme (No. 2023A03J0673), National Key R&D Program of China
(No. 2022YFB3104300, No. 2021YFC3300300), the Fundamental Re-
search Funds for the Central Universities (No. ZD-21-202101), and
Open Research Projects of Zhejiang Lab (No. 2021KH0AB04). The
first author, Dr. Xiangguo Sun, in particular, wants to thank
his parents for their kind support during his tough period.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan

REFERENCES
[1] Takuya Akiba, Takanori Hayashi, Nozomi Nori, Yoichi Iwata, and Yuichi Yoshida.

2015. Efficient top-k shortest-path distance queries on large networks by pruned
landmark labeling. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 29.

[2] Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen,
Yizhou Sun, and Wei Wang. 2019. Unsupervised inductive graph-level represen-
tation learning via graph-graph proximity. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence. 1988–1994.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[4] Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys, and
Katarzyna Musial. 2020. Multi-level graph convolutional networks for cross-
platform anchor link prediction. In Proceedings of the 26th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining. 1503–1511.

[5] Junru Chen, Yang Yang, Tao Yu, Yingying Fan, Xiaolong Mo, and Carl Yang. 2022.
BrainNet: EpilepticWaveDetection from SEEGwithHierarchical GraphDiffusion
Learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 2741–2751.

[6] Taoran Fang, Yunchao Zhang, Yang Yang, and Chunping Wang. 2022. Prompt
Tuning for Graph Neural Networks. arXiv preprint arXiv:2209.15240 (2022).

[7] Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Making Pre-trained Language
Models Better Few-shot Learners. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics. 3816–3830.

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[9] Bowen Hao, Hongzhi Yin, Jing Zhang, Cuiping Li, and Hong Chen. 2022. A Multi-
Strategy based Pre-Training Method for Cold-Start Recommendation. ACM
Transactions on Information Systems (2022).

[10] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang,
and Jie Tang. 2022. GraphMAE: Self-Supervised Masked Graph Autoencoders.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 594–604.

[11] WHu, B Liu, J Gomes, M Zitnik, P Liang, V Pande, and J Leskovec. 2020. Strategies
For Pre-training Graph Neural Networks. In International Conference on Learning
Representations (ICLR).

[12] Cheng Jiashun, Li Man, Li Jia, and Fugee Tsung. 2023. Wiener Graph Deconvolu-
tional Network Improves Graph Self-Supervised Learning. In Proceedings of the
AAAI conference on artificial intelligence.

[13] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, SuhangWang, Zitao Liu, and Jiliang
Tang. 2020. Self-supervised learning on graphs: Deep insights and new direction.
arXiv preprint arXiv:2006.10141 (2020).

[14] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale for
Parameter-Efficient Prompt Tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. 3045–3059.

[15] Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, and
Lujia Pan. 2019. Predicting path failure in time-evolving graphs. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1279–1289.

[16] Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous
Prompts for Generation. In Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics. 4582–4597.

[17] Yan Ling, Jianfei Yu, and Rui Xia. 2022. Vision-Language Pre-Training for Mul-
timodal Aspect-Based Sentiment Analysis. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics. 2149–2159.

[18] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Gra-
ham Neubig. 2021. Pre-train, prompt, and predict: A systematic survey of prompt-
ing methods in natural language processing. arXiv preprint arXiv:2107.13586
(2021).

[19] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie
Tang. 2022. P-Tuning: Prompt Tuning Can Be Comparable to Fine-tuning Across
Scales and Tasks. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). 61–68.

[20] Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu
Nguyen, Oscar Sainz, Eneko Agirre, Ilana Heinz, and Dan Roth. 2021. Recent

advances in natural language processing via large pre-trained language models:
A survey. arXiv preprint arXiv:2111.01243 (2021).

[21] Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin, Ning Ding, Zhiyuan Liu,
Juanzi Li, Lei Hou, Peng Li, Maosong Sun, et al. 2021. Exploring low-dimensional
intrinsic task subspace via prompt tuning. arXiv preprint arXiv:2110.07867 (2021).

[22] Anna Rogers, Olga Kovaleva, Matthew Downey, and Anna Rumshisky. 2020.
Getting closer to AI complete question answering: A set of prerequisite real tasks.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 8722–8731.

[23] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[24] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and
Peng Cui. 2021. Towards out-of-distribution generalization: A survey. arXiv
preprint arXiv:2108.13624 (2021).

[25] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu
Sun. 2020. Masked label prediction: Unified message passing model for semi-
supervised classification. arXiv preprint arXiv:2009.03509 (2020).

[26] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer
Singh. 2020. AutoPrompt: Eliciting Knowledge from Language Models with
Automatically Generated Prompts. In Empirical Methods in Natural Language
Processing (EMNLP).

[27] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. 2022. GPPT:
Graph pre-training and prompt tuning to generalize graph neural networks. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 1717–1727.

[28] Xiangguo Sun, Hong Cheng, Bo Liu, Jia Li, Hongyang Chen, Guandong Xu, and
Hongzhi Yin. 2023. Self-supervised Hypergraph Representation Learning for
Sociological Analysis. IEEE Transactions on Knowledge and Data Engineering
(2023).

[29] Xiangguo Sun, Hongzhi Yin, Bo Liu, Hongxu Chen, Qing Meng, Wang Han, and
Jiuxin Cao. 2021. Multi-level hyperedge distillation for social linking prediction
on sparsely observed networks. In Proceedings of the Web Conference 2021. 2934–
2945.

[30] Xiangguo Sun, Hongzhi Yin, Bo Liu, Qing Meng, Jiuxin Cao, Alexander Zhou,
and Hongxu Chen. 2022. Structure Learning Via Meta-Hyperedge for Dynamic
Rumor Detection. IEEE Transactions on Knowledge and Data Engineering (2022).

[31] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. 2022. Rethinking Graph Neu-
ral Networks for Anomaly Detection. In International Conference on Machine
Learning.

[32] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations.

[33] Liyuan Wang, Mingtian Zhang, Zhongfan Jia, Qian Li, Chenglong Bao, Kaisheng
Ma, Jun Zhu, and Yi Zhong. 2021. Afec: Active forgetting of negative transfer in
continual learning. Advances in Neural Information Processing Systems 34 (2021),
22379–22391.

[34] MaxWelling and Thomas N Kipf. 2016. Semi-supervised classification with graph
convolutional networks. In J. International Conference on Learning Representations
(ICLR 2017).

[35] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. 2022. SimGRACE: A
Simple Framework for Graph Contrastive Learning without Data Augmentation.
In Proceedings of the ACM Web Conference 2022. 1070–1079.

[36] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
Neural Information Processing Systems 33 (2020), 5812–5823.

[37] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.
2019. Graph transformer networks. Advances in neural information processing
systems 32 (2019).

[38] Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021. Factual Probing Is [MASK]:
Learning vs. Learning to Recall. In NAACL-HLT. 5017–5033.

[39] Andy Diwen Zhu, Xiaokui Xiao, Sibo Wang, and Wenqing Lin. 2013. Efficient
single-source shortest path and distance queries on large graphs. In Proceedings
of the 19th ACM SIGKDD international conference on Knowledge discovery and
data mining. 998–1006.

[40] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.
Graph contrastive learning with adaptive augmentation. In Proceedings of the
Web Conference 2021. 2069–2080.

All in One: Multi-Task Prompting for Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 9: Additional graph-level classification.

Methods ProteinsFull (100 shots) ENZYMES (50 shots)
Acc (%) Macro F1 (%) Acc (%) Macro F1 (%)

Supervised 66.64 65.03 31.33 30.25
Pre-train + Fine-tune 66.50 66.43 34.67 33.94

Prompt 70.50 70.17 35.00 34.92
Prompt w/o h 68.50 68.50 36.67 34.05

Table 10: Graph/edge-level regression with few-shot settings.

Tasks Graph Regression Edge Regression
Datasets QM9 (100 shots) MovieLens (100 shots)
Methods MAE MSE MAE MSE

Supervised 0.3006 0.1327 0.2285 0.0895
Pre-train + Fine-tune 0.1539 0.0351 0.2171 0.0774

Prompt 0.1384 0.0295 0.1949 0.0620
Prompt w/o h 0.1424 0.0341 0.2120 0.0744

Table 7: Statistics of Additional Datasets

Dataset #Nodes #Edges #Features #Labels #Graphs

ENZYMES 19,580 74,564 21 6 600
ProteinsFull 43,471 162,088 32 2 1,113

Movielens 10,352 100,836 100 - 1
QM9 2,333,625 4,823,498 16 - 129,433

PersonalityCafe 100,340 3,788,032 100 0 1
Facebook 4,039 88,234 1,283 0 1

Table 8: Multi-class node classification (100-shots)

Methods Cora CiteSeer
Acc (%) Macro F1 (%) Acc (%) Macro F1 (%)

Supervised 74.11 73.26 77.33 77.64

Pre-train and Fine-tune 77.97 77.63 79.67 79.83

Prompt 80.12 79.75 80.50 80.65
Prompt w/o h 78.55 78.18 80.00 80.05

Reported Acc of GPPT
(Label Ratio 50%) 77.16 - 65.81 -

A APPENDIX
In this section, we supplement more experiments to evaluate the
effectiveness of our framework further. The source code is publicly
available at https://anonymous.4open.science/r/mpg

Additional Datasets Besides the datasets mentioned in the
main experiments of our paper, we here supplement more datasets
in Table 7 to further evaluate the effectiveness of our framework.
Specifically, ENZYMES and ProteinsFull are two molecule/protein
datasets that are used in our additional graph-level classification
tasks. Movielens and QM9 are used to evaluate the performance of
our method on edge-level and graph-level regression, respectively.

In particular, Movielens contains user’s rating scores to the movies,
each edge in which has a score value ranging from 0 to 5. QM9 is a
molecule graph dataset where each graph has 19 regression targets,
which are treated as graph-level multi-output regression. Person-
alityCafe and Facebook datasets are used to test the performance
of link prediction, both of which are social networks where edges
denote the following/quoting relations.

Multi-label v.s. Multi-class Classification In the main experi-
ments, we treat the classification task as a multi-label problem. Here
we present the experimental results under a multi-class setting. As
reported in Table 8, our prompt-based method still outperforms the
rest methods.

Additional Graph-level Classification Here, we evaluate the
graph-level classification performance where the graph label is not
impacted by nodes’ attributes. As shown in Table 9, our method is
more effective in the multi-class graph classification, especially in
the few-shot setting.

Edge/Graph-level Regression Beyond classification tasks, our
method can also support to improve graph models on regression
tasks. Here, we evaluate the regression performance of both graph-
level (QM9) and edge-level (MovieLens) datasets by MAE (mean
absolute error) and MSE (mean squared error). We only feed 100-
shot edge induced graphs for the model and the results are shown
in Table 10, from which we can observe that our prompt-based
methods outperform traditional approaches.

Link Prediction Beyond edge classification, link prediction is
also a widely studied problem in the graph learning area. Here, the
edges are split into three parts: (1) 80% of the edges are for message
passing only. (2) 10% of the rest edges as the supervision training
set. and (3) the rest edges as the testing set. For each edge in the
training set and the testing set, we treat these edges as positive
samples and sample non-adjacent nodes as negative samples. We
generate the edge-induced graph for these node pairs according to
the first part edges. The graph label is assigned as positive if the
node pairs have a positive edge and vice versa. To further evaluate
our method’s potential in the extremely limited setting, we only
sample 100 positive edges from the training set to train our model.
In the testing stage, each positive edge has 100 negative edges.
We evaluate the performance by MRR (mean reciprocal rank), and
Hit Ratio@ 1, 5, 10. Results from Table 11 demonstrate that the
performance of our prompt-based method still keeps the best in
most cases.

Table 11: Evaluation on link prediction (100-shot settings)

Datasets PersonalityCafe Facebook
Methods MRR Hit@1 Hit@5 Hit@10 MRR Hit@1 Hit@5 Hit@10

Supervised 0.18 0.04 0.24 0.56 0.13 0.06 0.17 0.35

Pre-train
+ Fine-tune 0.13 0.05 0.12 0.34 0.10 0.02 0.16 0.33

Prompt 0.20 0.07 0.32 0.60 0.19 0.10 0.23 0.39
Prompt w/o h 0.20 0.06 0.30 0.50 0.15 0.09 0.15 0.33

Label Ratio ∼ 0.003% (training)
∼ 80%(message passing)

∼ 0.1% (training)
∼ 80%(message passing)

https://anonymous.4open.science/r/mpg

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan

Table 12: Edge-level performance (%) with 100-shot setting. IMP (%): the average improvement of prompt over the rest.

Training
schemes Methods Cora CiteSeer Reddit Amazon Pubmed

Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC

supervised
GAT 84.30 83.35 85.43 68.63 82.79 89.98 93.50 93.03 94.48 85.00 82.67 88.78 80.05 77.07 79.26
GCN 83.85 84.90 85.90 66.67 81.01 89.62 83.50 84.51 91.43 89.00 89.81 98.85 79.00 77.73 80.19
GT 85.95 86.01 87.25 69.70 83.03 82.46 95.50 94.52 96.89 94.00 93.62 99.34 74.50 65.77 85.19

pre-train
+

fine-tune

GraphCL+GAT 85.64 85.97 87.22 72.67 82.85 92.98 94.00 93.75 98.43 86.50 86.96 84.47 85.54 83.92 91.78
GraphCL+GCN 86.36 85.82 86.39 70.67 81.82 90.00 94.00 93.94 97.04 86.50 84.92 98.41 80.00 78.05 85.21
GraphCL+GT 85.79 86.27 87.51 86.01 85.38 88.58 96.67 95.38 97.65 96.50 97.42 98.12 85.50 87.11 81.68

SimGRACE+GAT 86.85 86.80 88.12 85.33 85.26 90.04 95.50 95.54 97.11 87.50 86.34 88.65 80.01 81.03 86.89
SimGRACE+GCN 85.62 85.38 87.83 89.33 86.34 95.10 88.00 87.88 94.49 98.45 97.57 98.29 80.50 82.58 91.22
SimGRACE+GT 86.35 87.03 88.47 86.00 89.52 90.42 97.50 95.54 96.92 96.50 96.45 99.09 81.00 79.57 85.69

prompt

GraphCL+GAT 86.85 86.88 87.92 76.67 83.00 96.22 95.36 94.50 98.65 88.50 86.00 87.15 86.50 84.75 92.61
GraphCL+GCN 86.87 86.80 87.79 76.67 82.37 93.54 95.50 95.52 97.75 86.96 85.63 98.66 81.50 78.61 86.11
GraphCL+GT 87.02 86.90 87.97 86.67 88.00 91.10 97.03 95.94 98.62 98.50 98.48 98.53 86.50 87.78 82.21

SimGRACE+GAT 87.37 87.33 88.37 91.33 92.30 95.18 95.72 96.69 97.64 95.50 95.38 98.89 80.50 82.03 87.86
SimGRACE+GCN 86.85 86.80 88.67 93.47 97.69 97.08 88.00 88.12 95.10 98.50 98.52 98.55 81.00 83.76 91.41
SimGRACE+GT 87.30 87.24 88.74 95.33 96.52 94.46 98.00 98.02 99.38 98.50 98.52 99.10 82.50 80.45 87.61

IMP(%) 1.65 1.48 1.28 12.26 6.84 5.21 1.94 2.29 1.88 3.63 3.44 2.03 2.98 4.66 3.21

Table 13: Graph-level performance (%) with 100-shot setting. IMP (%): the average improvement of prompt over the rest.

Training
schemes Methods Cora CiteSeer Reddit Amazon Pubmed

Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC

supervised
GAT 84.40 86.44 87.60 86.50 84.75 91.75 79.50 79.76 82.11 93.05 94.04 93.95 69.86 72.30 66.92
GCN 83.95 86.01 88.64 85.00 82.56 93.33 64.00 70.00 78.60 91.20 91.27 94.33 61.30 59.97 66.29
GT 85.85 85.90 89.59 77.50 75.85 89.72 69.62 68.01 66.32 90.33 91.39 94.39 60.30 60.88 67.62

pre-train
+

fine-tune

GraphCL+GAT 85.50 85.54 89.31 83.00 85.47 92.13 72.03 72.82 83.23 92.15 92.18 94.78 85.50 85.50 86.33
GraphCL+GCN 85.50 85.59 87.94 86.50 84.57 94.56 71.00 71.90 80.33 93.58 93.55 94.93 78.75 77.29 89.40
GraphCL+GT 85.95 85.05 87.92 84.50 81.87 88.36 69.63 70.06 81.35 91.68 91.55 94.78 86.85 86.93 88.91

SimGRACE+GAT 86.04 86.33 88.55 83.50 85.84 90.09 81.32 81.64 88.61 93.58 93.57 93.91 87.33 86.70 88.02
SimGRACE+GCN 85.95 86.05 89.33 84.50 86.46 91.60 80.50 81.52 89.11 90.73 90.52 94.85 85.26 84.64 86.99
SimGRACE+GT 86.40 86.47 89.64 81.00 81.54 89.81 69.50 70.97 77.11 92.63 92.56 94.04 85.95 86.05 89.37

prompt

GraphCL+GAT 86.40 86.47 89.46 86.50 89.93 92.24 73.36 73.32 84.77 94.08 94.02 94.20 85.95 85.97 87.17
GraphCL+GCN 85.95 86.01 88.95 87.00 85.87 95.35 72.50 72.91 81.37 94.05 94.05 94.98 84.60 84.43 88.96
GraphCL+GT 86.05 85.17 88.93 85.50 85.28 88.60 72.63 70.97 82.39 92.63 92.64 94.82 87.03 86.96 89.10

SimGRACE+GAT 86.67 86.36 89.51 87.50 88.37 91.47 82.62 83.33 89.41 93.35 94.66 94.61 87.75 87.69 88.88
SimGRACE+GCN 86.85 86.90 89.95 85.00 85.85 91.95 81.00 82.24 89.43 93.95 92.06 93.89 85.50 85.54 87.30
SimGRACE+GT 86.85 86.87 89.75 87.50 86.63 90.85 76.50 80.82 86.84 94.05 94.06 94.96 86.40 86.50 89.74

IMP(%) 1.12 0.43 0.79 3.52 4.54 0.53 4.69 4.31 6.13 1.72 1.39 0.14 10.66 10.77 9.16

	Abstract
	1 Introduction
	2 Background
	3 Multi-task Prompting on Graphs
	3.1 Overview of Our Framework
	3.2 Reformulating Downstream Tasks
	3.3 Prompt Graph Design
	3.4 Multi-task Prompting via Meta Learning
	3.5 Why It Works?

	4 Evaluation
	4.1 Experimental Settings
	4.2 Multi-Task Performance with Few-shot Learning Settings (RQ1)
	4.3 Transferability Analysis (RQ2)
	4.4 Ablation Study (RQ3)
	4.5 Efficiency Analysis (RQ4)
	4.6 Flexibility on Graph Transformation (RQ5)

	5 Conclusion
	Acknowledgments
	References
	A Appendix

