arXiv:2306.03032v1 [cs.SI] 5 Jun 2023

Classification of Edge-dependent Labels of Nodes in Hypergraphs

Minyoung Choe Sunwoo Kim
KAIST KAIST
Seoul, Korea Seoul, Korea
minyoung.choe@kaist.ac.kr kswoo097@kaist.ac.kr

ABSTRACT

Ahypergraph is a data structure composed of nodes and hyperedges,
where each hyperedge is an any-sized subset of nodes. Due to the
flexibility in hyperedge size, hypergraphs represent group interac-
tions (e.g., co-authorship by more than two authors) more naturally
and accurately than ordinary graphs. Interestingly, many real-world
systems modeled as hypergraphs contain edge-dependent node
labels, i.e., node labels that vary depending on hyperedges. For
example, on co-authorship datasets, the same author (i.e., a node)
can be the primary author in a paper (i.e., a hyperedge) but the
corresponding author in another paper (i.e., another hyperedge).

In this work, we introduce a classification of edge-dependent
node labels as a new problem. This problem can be used as a bench-
mark task for hypergraph neural networks, which recently have
attracted great attention, and also the usefulness of edge-dependent
node labels has been verified in various applications. To tackle this
problem, we propose WHATSNET, a novel hypergraph neural net-
work that represents the same node differently depending on the
hyperedges it participates in by reflecting its varying importance
in the hyperedges. To this end, WHATSNET models the relations
between nodes within each hyperedge, using their relative central-
ity as positional encodings. In our experiments, we demonstrate
that WHATSNET significantly and consistently outperforms ten
competitors on six real-world hypergraphs, and we also show suc-
cessful applications of WHATSNET to (a) ranking aggregation, (b)
node clustering, and (c) product return prediction.

CCS CONCEPTS

« Information systems — Data mining; Social networks; «
Computing methodologies — Machine learning.

KEYWORDS
Hypergraph, Graph Neural Network, Edge-Dependent Node Label

1 INTRODUCTION

Real-world relationships are complex and often go beyond pairwise
relations. For example, a research paper is usually coauthored by a
group of researchers, and an email is often sent to multiple receivers.
A hypergraph is a natural representation of such group relations
[7, 8, 16, 34, 36]. It consists of nodes and hyperedges, and each hy-
peredge is a set of any number of nodes (see Figure 1). Hypergraph
modeling is used in various fields, including recommendation sys-
tems [22, 50, 61], and physics [21], leading to better performance
than ordinary-graph modeling in node clustering [60], interaction
prediction [64], anomaly detection [35], etc.

To leverage the advantages of hypergraph modeling, several
hypergraph neural networks [3, 5, 12, 17, 20, 26, 27, 62] have been
proposed. They commonly involve propagating node embeddings

Jaemin Yoo Kijung Shin
Carnegie Mellon University KAIST
Pittsburgh, PA, USA Seoul, Korea
jaeminyoo@cmu.edu kijungs@kaist.ac.kr
Authors(Nodes)
Y Bengio (YB) J Weston w)
J Louradour (Ju) A Bordes (AB)
R Collobert (RC) S Bengio (SB)

Publications (Hyperedges)

E1: Curriculum learning
Y Bengio, J Louradour, R Collobert, J Weston - ICML’09
E2: Learning structured embeddings of knowledge bases
A Bordes,] Weston, R Collobert, Y Bengio - AAAI'11

: A parallel mixture of SVMs for very large scale
R Collobert, S Bengio, Y Bengio — NeurlPS'01

(a) Example data: Coauthors in publications

(b) Hypergraph

Figure 1: The three publications by the six authors in (a)
are modeled as the hypergraph with six nodes and three
hyperedges in (b). The labels of nodes indicate the orders of
the authors (First, Last, or Others) in each publication, and
thus they are dependent on hyperedges.

to incident hyperedges for updating, which are subsequently propa-
gated back to the nodes. Most of them have been evaluated on node
classification tasks, focusing on the global properties of nodes.

However, in many real-world hypergraphs, node properties vary
depending on the hyperedges they are involved in. For instance,
in co-authorship, the same researcher can be the primary author
in one paper but the corresponding author in another paper, as
shown in Figure 1. In emails, the same person can be a receiver or
a sender in different emails, and in online Q&A platforms, a person
can be a questioner and an answerer in different posts. These edge-
dependent node properties have proven useful in various tasks, such
as ranking aggregation [13], node clustering [23], product-return
prediction [38], and anomaly detection [35].

In this work, we introduce a classification of edge-dependent
node labels as a new problem for hypergraphs. The problem works
as an effective hypergraph-learning benchmark task that is com-
plementary to common benchmark tasks (e.g., node classification,
hyperedge prediction, and clustering) for three reasons. First, it
evaluates the capability of models in capturing features unique
to hypergraphs. Edge-dependent node labels are unique to hyper-
graphs and cannot be easily expressed if we decompose hyper-
edges into pairwise edges between nodes. Second, as shown in
our experiments, using node and hyperedge embeddings obtained
by existing hypergraph neural networks leads to limited perfor-
mance for the problem. Lastly and most importantly, it has extensive
real-world applications. For example, it can be used to predict the
toxicity of chemical compounds (nodes) in specific reactions (hyper-
edges), offer guidance to students (nodes) who are expected to make
limited contributions in group projects (hyperedges), and classify
homonyms (nodes) based on the context of sentences (hyperedges).
Moreover, the outputs of this problem (i.e., edge-dependent node
properties) have proven to be useful in various applications.

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

In order to tackle the new classification task, we propose WHAT-
sNET (Within-Hyperedge Attention Transformer Network). Most
existing hypergraph neural networks do not explicitly consider
edge-dependent relationships between node pairs within each hy-
peredge. We design WITHINATT, an attention mechanism where
the edge-dependent embedding of each node is computed by attend-
ing to the other nodes in each hyperedge. Inspired by the usefulness
of positional encodings in the attention mechanism, we addition-
ally use the centrality order of nodes within each hyperedge as
the positional encoding, which makes attention in WITHINATT
even more edge-dependent. The effectiveness of WHATSNET on
the proposed task is demonstrated through extensive experiments.

Our contributions are summarized as follows:

e New Problem: To the best of our knowledge, we are the first to
address the problem of classifying edge-dependent node labels.
This problem is based on a unique property of hypergraphs and
closely related to real-world applications.

o Effective Model: To tackle the problem, we design WHATSNET,
anovel hypergraph neural network with attention and positional-
encoding schemes that explicitly consider edge-dependent rela-
tionships between nodes.

o Extensive Experiments: Using six real-world hypergraphs, we
demonstrate the superiority of WHATSNET over 10 competitors
on the considered task. We also show the usefulness of WHAT-
sNET in three applications: ranking aggregation, node clustering,
and product-return prediction.

For reproducibility, we make the code and data available at [14].
The rest of this paper is organized as follows. In Section 2, we
review related works. In Section 3, we introduce preliminaries. In
Section 4, we describe our new problem with its applications. In
Section 5, we present WHATSNET, a hypergraph neural network
for edge-dependent node classification. In Section 6, we provide
experimental results. Lastly, we make conclusions in Section 7.

2 RELATED WORK

In this section, we briefly survey related works on hypergraph
neural networks and positional encodings.

2.1 Hypergraph Neural Networks

Hypergraph neural networks generalize graph neural networks
into higher-order relationships in hypergraphs by allowing propa-
gation between nodes through hyperedges. Early models including
HGNN [20] and HyperGCN [62] first transform a given hypergraph
into an ordinary graph and then apply graph convolutions, losing
high-order relationships embedded in hyperedges. HNHN [17] per-
forms two steps of message passing using a nonlinear function
to prevent equivalence to convolutions on the clique-expanded
graph 1. The first step updates hyperedge embeddings and the sec-
ond updates node embeddings. HNHN can vary weights on the
contribution of incident embeddings during aggregation through
hyperparameters.

HCHA [5] and HAT [27] apply attention mechanisms to improve
the aggregation of the incident node or hyperedge embeddings. The

!A clique-expanded graph is an ordinary graph obtained by replacing each hyperedge
with the clique composed by the constituent nodes.

Minyoung Choe, Sunwoo Kim, Jaemin Yoo, and Kijung Shin

attention weights are calculated from the concatenation of node
and hyperedge embeddings, which change during training.

UniGNN [26] and AllSet [12] generalize graph neural networks to
hypergraphs. UniGCNIL is a special case of UniGNN that addresses
over-smoothing, i.e., the convergence of embeddings of different
nodes in deep (hyper)graph neural networks, by extending GC-
NII [11] to hypergraphs. AllSet is a framework composed of two
multiset functions and generalizes most models, including HGNN,
HyperGCN, HNHN, and HCHA. AllSetTransformer replaces the
multiset function with SetTransformer [37] and aggregates incident
embeddings with attention to global learnable vectors.

A recent study with a similar motivation to ours presents a
framework named HNN [3] for jointly learning hyperedge embed-
dings and a set of hyperedge-dependent node embeddings. But
HNN makes the hyperedge-dependent node embeddings by simply
concatenating the embeddings of nodes and incident hyperedges.

However, the importance of each node may vary depending on
the other nodes it interacts with within each hyperedge, which
may not be captured only by the relationship between the node
and the hyperedge. Most existing hypergraph neural networks
do not explicitly consider edge-dependent relationships between
pairs of nodes within each hyperedge. Such relationships have been
considered in a few studies in a way different from ours, but none
of them directly apply to the considered problem. HyperSAGNN
[67] is designed for hyperedge prediction, and it uses two kinds of
embeddings: (1) static embeddings, which are obtained from node
features independently of hyperedges, and (2) dynamic embeddings,
which are calculated by aggregating the embeddings of the other
nodes within hyperedges using pairwise attentions. The model is
trained to minimize the discrepancy between the static embedding
and dynamic embedding of each node. While HyperSAGNN uses
pairwise attention, its goal is not to obtain hyperedge-dependent
node representations. Higher-order Transformer [29] considers all
subsets of nodes in each hyperedge,? and thus, computational and
memory cost increases exponentially with the size of hyperedges.
The model has been applied only to uniform hypergraphs where
the size of every hyperedge is identical, and it is non-trivial to apply
it to real-world hypergraphs with hyperedges of varying sizes.

2.2 Positional Encodings

It is known that many graph neural networks (GNNs) have diffi-
culty in discriminating the positions of different nodes if the nodes
share similar local structures [65]. To improve the representation
power, various positional encodings for graphs have been proposed.
Such positional encodings, which we call absolute positional en-
codings, are often added or concatenated to the node features, and
they are based on random discriminating features [1, 52], Weis-
feiler-Lehman [66], Laplacian Eigenvectors [6, 18, 33], random
walk [2, 19, 39], etc. Alternatively, GNNs that are able to capture
positional information of nodes [19, 58, 65] can be used.

In Transformer-based GNNs, such positional encodings are usu-
ally used to calculate attention. Graph Transformer [18] and SAN [33]
use Laplacian eigenvectors, while Graph-Bert [66] uses the We-
isfeiler algorithm [46]. Graphormer [63] adds the global degree
centrality to node features to capture both semantic correlations
22€ for each hyperedge e C V, where V is the set of nodes

Classification of Edge-dependent Labels of Nodes in Hypergraphs

and node centrality differences. Its performance supports the effec-
tiveness of employing node centrality as the positional encoding,
which we also use in a different way for positional encoding.

Besides the absolute positional encodings, relative positional en-
codings [51, 53] are also used in Transformer-based GNNs to affect
attention mechanisms based on the relative distance between a node
pair (e.g., between a query and a key). The relative distance can be
computed based on positive definite kernels on graphs [42], learn-
able positional embeddings [41], shortest path distance [49, 63],
multi-step transition probability [68], etc. To the best of our knowl-
edge, positional encodings specialized to hypergraphs have not
been studied. In this work, we propose WITHINORDERPE, where
the centrality order (i.e., ranking) of nodes within each hyperedge
is used to encode the relative position within each hyperedge.

3 PRELIMINARIES

In this section, we introduce concepts necessary to describe our
method. The frequently-used symbols are summarized in Table 1.

3.1 Hypergraphs

Ahypergraph G = (V, E) consists of a set of nodes V = {v1,...,0n}
and a set of hyperedges & = {ey,..., ey} C 2. Each hyperedge
e € & is a non-empty subset of V. Weuse N, = {e € E:v € e} to
denote the set of hyperedges incident to the node v, i.e., the set of
hyperedges that contain .

3.2 Attention Functions

Scaled Dot-Product Attention. For ng query vectors Q € R"a Xd
and ny, key-value vector pairs K € R™*d and V e R"*dwhere
dy and d, represent vector sizes, the scaled dot-product attention
computes the weighted sum of value vectors as follows:

QK™
Vi

where +/dy. is typically used to avoid exploding gradients [57]. Note
that the more similar a query vector and a key vector are (i.e., the
larger their dot product is), the larger the corresponding weight is.
Multihead Attention. The multihead attention [57] of dimension
dj. consists of h attention modules of dimension dj. /h, whose out-
puts are concatenated for the final output, as follows:

Attention(Q,K, V) = softmax()V,

MultiheadAttention(Q,K, V) = Concat(Oq, - - ,Oh)WO,

where O; = Attention(Q;,K;, Vi) = Attention(QW?, KW?, VW}’).
That is, Q, K, and V are mapped into subspaces Q; € R7a*(dic/h)
K; € R%x(i/h) and v; e RM*(do/h) regpectively, by learn-
able parameters W? € Rk (dr/h) ,Wf € Rk*(dk/h) and WY €
RX(do/h) n our experiments, the matrix WO ¢ R*do s fixed
to the identity matrix, and the number of heads h is fixed to 4.
Multihead Attention Block. We use the multihead attention block
(MAB) [57] as a component of our model. It consists of a multihead
attention module, a feed-forward layer, residual connections [25],
and layer normalization [4], as follows:

MAB(Q,K) = LayerNorm(H + FeedForward(H))),

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Table 1: Frequently-used symbols.

Notation ‘ Definition

G = (V,8) | ahypergraph with nodes V and hyperedges &
N,.M the number of nodes and hyperedges
C the number of (unique) edge-dependent node labels
v, e anode v € V and a hyperedgee € &
Yoe the edge-dependent label of node v in hyperedge e.
Ny the set of hyperedges incident to a node v
ILm the number of layers and inducing points
d; the hidden dimension at I-th layer
dy the dimension of WITHINORDERPE
F a node centrality feature matrix
I, trainable inducing points in WITHINATT
xO HD | a node/hyperedge embedding matrix at layer [
Ve, Ey an embedding matrix of e and N,

where H = Layer Norm(Q + MultiheadAttention(Q, K, K)). Note
that the feed-forward layer does not change the dimensionality of
the input matrix.

Attention with Inducing Points. The scaled dot-product atten-
tion module requires all-pair dot-products between the query vec-
tors and key vectors, making its time complexity quadratic, specifi-
cally O(ngny). SetTransformer [37] introduces an attention scheme
that reduces the complexity to be linear. With m < min(ng, n)
trainable inducing points, denoted by I, the all-pair dot-product
MAB(Q,K) is approximated by MAB(Q, MAB(I, K)) whose time
complexity is O(m(ng + ny)). We adopt this strategy in our model
for efficiency.

4 PROBLEM DEFINITION: EDGE-DEPENDENT
NODE CLASSIFICATION IN A HYPERGRAPH

We formally define the edge-dependent node classification problem
and introduce its direct applications to real-world tasks.

4.1 Problem Formulation

In classical node classification, a single label is assigned to a node.
However, in hypergraphs, the labels of nodes can vary depending
on the hyperedges that the nodes belong to. For example, in a co-
authorship hypergraph, the role of a researcher is categorized into
the first, the last, and the middle author, and the position is likely
to change in other publications. In this work, we introduce the
edge-dependent node classification problem, formalized as follows.

PrROBLEM 1 (EDGE-DEPENDENT NODE CLASSIFICATION). Given
(a) a hypergraph G = (V, &), (b) a set of edge-dependent node labels
in& c & (ie, yye,Yv € e,Ve € &), and optionally (c) a node
feature matrix X, the problem is to correctly predict the unknown
edge-dependent node labels in &\ &’ (i.e., Yye, Yo € e,Ye € E\ &)

This problem serves as an effective benchmark task and comple-
ments common hypergraph learning benchmarks for the following
reasons: First, the edge-dependent node labels are unique to hyper-
graphs and cannot be reduced to node labels in the clique-expanded
graphs (see Footnote 1). Thus, we can evaluate the capability of
methods in capturing these unique characteristics of hypergraphs.
Second, as demonstrated in the experiment section 6, existing hy-
pergraph neural networks have limitations in perfectly addressing

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Hypergraph vy v V4 v U3 Va Vs

€1 & H EE NN HET EN H E
e o) 7O
) - :

Inducing Points / \
v V2

X0

V3 vy vs

(a) lllustration of WITHINATT

Minyoung Choe, Sunwoo Kim, Jaemin Yoo, and Kijung Shin

Hyperedge Embedding
in the previous layer

Hyperedge
-

~
WithinOrderPE

Aggre-
gation

Hyperedge
Embeddings
~ ~
Node Hyperedge-dependent
Embeddings Node Embeddings

(b) Architecture of WHATSNET in Hyperedge Embedding Update

Figure 2: (a) In the given hypergraph, which consists of e; = {v1,v2,04}, €2 = {02, 03,04, 05}, WITHINATT is applied to e; and e,
independently. Even though the input feature of the node v, is the same, the output is different within e; and e;. The inducing
points for efficiently calculating pairwise relations are used globally. (b) The embeddings of the nodes in the target hyperedge
are fed into WITHINATT after WITHINORDERPE is added to each. Then, the outputs (i.e., edge-dependent node embeddings) are

aggregated to update the embedding of the target hyperedge.

this problem. Lastly, the predictive outputs (i.e., edge-dependent
node labels) can directly be applied to various applications.

4.2 Applications

Predicted edge-dependent node labels give information about the
importance of nodes within each hyperedge, and leveraging this
information has proven useful in a variety of applications.
Ranking Aggregation. The task is to predict the overall (global)
ranking of entities based on partial (local) rankings. For example, in
amultiplayer game where participants compete in matches, the aim
of the task is to determine the global ranking of players using their
local rankings from matches, enabling fair and competitive matches.
For this task, we can construct a hypergraph where (a) each node
is a player, (b) each hyperedge is a match, (c) and the participants
of a match are labeled based on their contribution levels during the
match, as described in [13]. A similar task can be considered for a
co-authorship dataset. When the contribution level of each author
in each publication is given, which is determined by the order of
authors in each publication, the objective is to infer meaningful
rankings for all authors.

Clustering. Clustering refers to the problem of grouping similar
elements, and the problem is commonly considered for data analy-
sis. Hayashi et al. [23] designed a node clustering algorithm that
leverages edge-dependent node weights, demonstrating its high-
quality clusters for real-world hypergraphs. Edge-dependent node
labels, inferred by resolving Problem 1, can be directly transformed
into node weights for clustering purposes. For example, in a co-
authorship dataset, the weights of authors (nodes), determined by
their positions (e.g., first, last, or others) within each publication
(hyperedge), can be utilized to enhance clustering results.
Product Return Prediction. In E-commerce, predicting customers’
intention to return products is helpful to take proactive actions.
Li et al. [38] showed that the product return probability of each
target basket can be accurately estimated by using hypergraphs
where nodes and hyperedges are baskets and products, respectively,
and baskets are labeled based on the number of each product they
contain. The authors showed that these edge-dependent node labels
are informative in predicting product returns. For instance, multiple
purchases of the same product within a basket may indicate that

the customer purchases the same product with different colors or
sizes, increasing the likelihood of product return.

5 PROPOSED MODEL: WHATSNET

We propose WHATsSNET (Within-Hyperedge Attention Transformer
Network) for edge-dependent node classification, with each layer
consisting of two message passing steps: (1) updating hyperedge
embeddings by aggregating node embeddings belonging to each
hyperedge, and (2) updating node embeddings by aggregating hy-
peredge embeddings that include the corresponding node. In each
step, input embeddings of nodes (or hyperedges) are adapted us-
ing an attention module called WITHINATT, and then aggregated
into hyperedge (or node) embeddings. WITHINATT considers edge-
dependent (or node-dependent) relations between adjacent nodes
(or hyperedges) by incorporating edge-dependent positional encod-
ings named WITHINORDERPE. The embeddings generated from the
final layer are utilized to predict edge-dependent node labels.

5.1 WITHINATT: Attention to Other Nodes
within Hyperedges

In many real-world hypergraphs, the importance or role of a node is
shaped by the other nodes within the same hyperedge. For instance,
if a grown-up researcher co-authors a paper only with students,
she is likely to be the last author of the paper. Conversely, if she
co-authors with other grown-up researchers, then the probability
of her being the last author of that paper is relatively low.

Motivated by this observation, we devise WITHINATT based on
Transformer [57], and it adapts a node embedding by attending to
the other nodes in the same hyperedge. Specifically, it uses a set
of node embeddings as queries, keys, and values in the attention
mechanism. It, thereby, models and utilizes relations between nodes
by taking the dot-product of all node pairs within the hyperedge.

However, calculating the dot-product for every node pair has
computational complexity quadratic in the hyperedge size, making
it challenging to use in large-scale real-world hypergraphs. To
overcome this issue, we adopt the inducing point method (described
in Section 3.2) in SetTransformer [37], which performs comparably
to all-pair attention while being significantly more efficient.

Classification of Edge-dependent Labels of Nodes in Hypergraphs

Let Vgl) = {Xl(ll) : u € e} denote the set of the embeddings of
nodes in a hyperedge e in the I-th layer, which are in the form of a

matrix in RI€/%dr. Along with Vg), WITHINATT uses m number of
d;-dimensional trainable inducing points I, € R™>*% where m is
typically much smaller than max.cg |e|. In our experiments, m is
fixed to 4. Then, WITHINATT is formally expressed as follows:

witawATT(V: 1,,) = MAB(VY, MAB(1,,, VP)). (1)

Even though I,, is shared across all hyperedges, training the in-
ducing points can be seen as finding a proper projection function
for any input onto a lower-dimensional space. Additionally, the
inner MAB (defined in Section 3.2) would summarize the node em-
beddings in e using the well-trained I,,. Through these outputs,
the outer MAB would generate edge-dependent representations of
nodes within e, leveraging the attention between the input node
embeddings and the summary of them. Consequently, the resulting
representations serve as an approximation of the attention between
all node pairs while avoiding the quadratic complexity.

5.2 WITHINORDERPE: Using Centrality for
Positional Encoding

We expect that edge-dependent node labels are closely related to
the relative positions of nodes within each hyperedge, which can be
measured, for example, by centrality relative to the other nodes in
each hyperedge. For instance, in co-authorship datasets, degree cen-
trality indicates the number of papers authored by each researcher.
Hence, the author with the highest centrality among all authors of
a paper is more likely to be the last author.

Based on this reasoning, we devise WITHINORDERPE, a positional
encoding that facilitates edge-dependent attention between nodes
within each hyperedge. Specifically, we use the relative order of
node centrality within the hyperedge for WITHINORDERPE. We
define the order of each element a in a set A as follows:

Order(a, A) = Z 1(a’ < a). (2)

a’ €A
Then, given node centralities F € RNVX4f where d ¢ is the number
of centrality measures, corresponding to the dimensionality of
positional encodings, we define WITHINORDERPE of a node v within
a hyperedge e as follows:

dr 1

WrITHINORDERPE (v, ¢; F) =, B
=l e

Order(Fy i, {Fy,i : Vu € e}),
(3)

where || represents the concatenation of the orders with respect
to different centrality measures. We simply add WiTHINORDERPE
to the node embeddings and feed them into WITHINATT. In our
experiments, we leverage four types of node centrality: degree,
eigenvector centrality, PageRank, and coreness. Details of them are
provided in Appendix B.2.

Similarly, for the message passing from hyperedges to nodes,
we explicitly give the target node’s order within the source hyper-
edge. In other words, the same position encoding is used for each
hyperedge-node pair in both directions of message passing. This is
because the role of a hyperedge e with respect to the target node
v € e is also affected by the importance of node v in e.

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

5.3 WHATSNET: Our Final Model

We introduce WHATSNET, a hypergraph neural network that in-
tegrates the afore-described modules. In each layer, hyperedge
embeddings are first updated and then node embeddings are up-
dated. Before updating hyperedge embeddings, edge-dependent
node embeddings are computed by incorporating edge-dependent
relationships between nodes within each hyperedge via WiTHI-
NATT (Eq. (5)) and WiTHINORDERPE (Eq. (4)). The hyperedge em-
bedding is then updated by aggregating these edge-dependent node
embeddings with weights determined by the dot-product with the
hyperedge embedding from the previous layer. This process can be
simplified using MAB (defined in Section 3.2) (Eq. (6)). Specifically,

a hyperedge e’s embedding Hgl) is updated as follows:
Vgga = {Xz()l_1> @ WITHINORDERPE (v, €)) : v € e}, (4)
Vgl) = WITHINATT(VgB)a), (5)

1 = MaBE!, V) (©)
The notation B denotes the addition of positional encodings and
embeddings, after matching the dimension of the former with that
of the latter through a learnable weight matrix, W € REFXdi-1 3,
Similarly, node embeddings are updated by aggregating (Eq. (9))
node-dependent hyperedge embeddings from WiTHINATT (Eq. (8))
and WITHINORDERPE (Eq. (7)). Specifically, a node v’s embedding
Xz(,l) is updated as follows:

Eglé = {Hgl) B8 WITHINORDERPE(v, €)) : e € Ny}, (7)
ESY = WirinATT(E()), ®)
xg) = mab(x' ™, E))

One can stack more than one WITHINATT module before aggre-
gation to make attention between nodes within each hyperedge
even more edge-dependent. We stack two WITHINATT modules in
our experiments.

5.4 Application to Edge-Dependent Node
Classification

Given node and hyperedge embeddings, we predict edge-dependent
node labels with a single-layer perceptron classifier, denoted as i/,
which takes the concatenation of node and hyperedge embeddings
as its input. Let XL and H®) be the node and hyperedge embed-
dings generated from the last L-th layer of WHATSNET respectively.
Then, the label of a node v in a hyperedge e is predicted as follows:

(o) = argmax(Y([X5" | H). (10)
Eq. (10) can readily be applied to other hypergraph neural networks,
such as HNHN [17], that generate separate node and hyperedge em-
beddings as their outputs. Thus, any accuracy gain of WHATSNET
with Eq. (10), compared to such models, is attributed to its ability
to generate more informative node and hyperedge embeddings.
Alternatively, one can utilize intermediate edge-dependent node
embeddings VeL) € Rlelxdr jp Eq. (5), which are generated inside
a WHATSNET layer:

_ (L
J(ve) = argmax(P(VeH [0])) (11)
3Formally, AB B = A + BW where A € R"*4A B € R"*9B and W € R9B*4A

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Minyoung Choe, Sunwoo Kim, Jaemin Yoo, and Kijung Shin

Table 2: Summary of real-world hypergraphs with edge-dependent labels.

Dataset Num. of Num. of Max. of Max. of Sum of Num. of Num.of Num.of Corr. Avg.
Nodes Hyperedges Node Deg. Hyperedge Size Hyperedge Size | Class 0 Class 1 Class 2w/ Centrality ~Entropy
Coauth-DBLP 108,484 91,266 236 36 321,011 91,266 138,479 91,266 0.19 0.13
Coauth-AMiner | 1,712,433 2,037,605 752 115 5,129,998 | 2,037,605 1,652,332 1,503,061 0.24 0.13
Email-Enron 21,251 101,124 18,168 948 1,186,521 635,268 450,129 101,124 0.10 0.28
Email-Eu 986 209,508 8,659 59 541,842 209,508 332,334 - 0.24 0.48
Stack-Biology 15,490 26,823 1,318 12 56,257 26,290 18,444 11,523 0.29 0.10
Stack-Physics 80,936 200,811 6,332 48 479,809 194,575 201,121 84,113 0.30 0.12

where [0] means indexing the vector corresponding to node v. In
this way, one can avoid conductin% the explicit concatenation with
hyperedge embeddings, since VEL already has such information.
Table 11 in Appendix B compares the two approaches of Eq. (10)
and (11).# There is no clear superiority between the two choices,
and both of them consistently outperform the best competitor. Still,
we choose the first approach as our default choice because it is
more general and memory-efficient: we can store the node and
hyperedge embeddings separately and then concatenate them for
any downstream task utilizing edge-dependent node embeddings.

5.5 Complexity Analysis

We analyze the time and space complexities of WHATSNET.
Time Complexity. WITHINATT requires dot products between
the input embeddings and inducing points, and the aggregation
involves dot products between the input embeddings and a sin-
gle query. Thus, the total time complexity of the inference step of
WHATSNET without WITHINORDERPE is O(ZIL=1 (Xecs(lelmdy) +

Yvey (INglmd;))) = O(m Zle d; Yecs le]), where the last equal-
ity is from) cqy INy| = Yees lel. As for WITHINORDERPE, we first
compute four node centralities of each node (spec., degree, core-
ness, eigenvector centrality, and PageRank), whose complexity is
O(Yecg lel) (see Appendix C for details). Next, we compute the or-
der of nodes within hyperedges by sorting nodes based on each cen-
trality value, whose time complexity is O(3.c g |e]log |e]). Thus,
the complexity of computing WiTHINORDERPE is O(} . g || log [e]),
and the total time complexity of WHATSNET with WITHINORDERPE
is O(m T, d Sec lel + Tecs lellog lel).
Space Complexity. We consider full-batch training. Storing the
input hypergraph G = (V, &) and the d-dimensional positional
encodings obtained by WiTHINORDERPE requires O(dy Yecg lel)
space. We first consider the message passing from nodes to hyper-
edges at the [-th layer. WITHINATT requires (a) node embeddings,
whose size O(|V|d;), (b) a weight matrix for adjusting the dimension
of positional encodings, whose size is O(dd;), and (c) m induc-
ing points of d; dimension, whose size is O(md;). It also requires
two attention matrices between the inputs and m inducing points,
whose sizes are |e| by m and m by |e| for each hyperedge e. Thus,
the additional space required for the node-to-hyperedge message
passing is O(md; + dpd; + |V|dj + m Jec g le]).

Similarly, the message passing from hyperedges to nodes at the
I-th layer requires O(md; + dgdj + |E|d] + m Zyey [Nol). Since

4We remove WITHINORDERPE from the last layer of WHATSNET when applying
the approach of Eq. (11), because if not, the node centralities affect the classification
performance too much.

which is O(N + M) instead of O(NM) when N nodes and M hyperedges exist.

Yoev INol = Yecg lel, the total space complexity of WHATSNET
with L layers is O((m+dp+|V|+|8]) T}, di+(Lm+df) Tecg lel).

5.6 Comparison to Existing Models

To efficiently capture the edge-dependent relationships between
node pairs within hyperedges, we incorporate the encoder part
of SetTransformer [37] as a component of the message passing in
our model. It is important to note that SetTransformer is primarily
designed to obtain proper representations of sets, and its primary
focus is not on hypergraph representation learning.

While both WHATSNET and SetTransformer aggregate input
embeddings using a weighted sum, there are notable differences in
the aggregation methods. SetTransformer uses weights obtained by
attending to a global learnable parameter, whereas WHATSNET at-
tends to the previous embedding of the target. Additionally, WHAT-
SNET incorporates WITHINORDERPE into attention, enhancing its
ability to capture edge-dependent relationships within hyperedges.

There is another approach, called AllSetTransformer [12], which
integrates SetTransformer into hypergraph neural networks. How-
ever, it should be noted that AllSetTransformer does not adopt the
encoder part of SetTransformer but instead adopts its decoder with
modifications to the number of stacking feed-forward layers in the
multi-head attention block. Therefore, the usage of SetTransformer
in AllSetTransformer differs from how WHATSNET utilizes it.

6 EXPERIMENTAL RESULTS
We evaluate WHATSNET by answering the following questions:

e Q1. Does WHATSNET accurately predict the edge-dependent
labels of nodes?

e Q2. Does WHATSNET classify the same node differently depend-
ing on hyperedges?

e Q3. Does each component of WHATsSNET make a meaningful
contribution to the performance?

e Q4. How can we apply WHATSNET to real-world downstream
tasks? Does WHATSNET show usefulness in these tasks?

6.1 Experimental settings

Datasets. We use six real-world hypergraphs from three domains:

e Co-authorship (DBLP [54] and AMinerAuthor®): Each hyper-
edge indicates a publication, and the nodes in it are the authors of
the publication. Edge-dependent node labels indicate the orders
of authors (first, last, or others) in each publication. We exclude
publications where the authors are in alphabetical order, which
may not reflect the difference in the authors’ contributions.

®https://www.aminer.org/aminernetwork

Classification of Edge-dependent Labels of Nodes in Hypergraphs

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Table 3: Results of Edge-Dependent Node Classification: Mean and standard deviation of Micro-F1 and Macro-F1 scores over
five independent runs are reported. Best scores are in bold. Note that WHATSNET performs best in all datasets.

Dataset Metric | BaselineU BaselineP | HNHN HGNN HCHA HAT UniGCNII HNN | HST AST || WHATSsNET
Coauth- MicroF1 | 0333 +0.001 0346 +0.001 | 0.486 +0.004 0540 +0.004 0451+ 0.007 0503 +0.004 0497 +0.003 0.488 +0.006 | 0.564 +0.004 0.495 % 0.038 || 0.605 + 0.002
DBLP MacroF1 | 0.330 +0.001 0332+ 0.001 | 0.478 +0.008 0519 =0.002 0.334 +0.048 0.483 +0.006 0476+ 0.002 0482 +0.006 | 0.549 +0.003 0487 % 0.040 || 0.595 + 0.002
Coauth- MicroF1 | 0334 +0.000 0339 +0.000 | 0.520 +0.002 0566 +0.002 0.468 +0.020 0.543 +0.002 0.520 +0.001 ~ 0.543 +0.002 | 0.596 +0.007 ~0.577 % 0.005 || 0.630 + 0.005
AMiner MacroF1 | 0.332 +0.000 0333 0.000 | 0.514+0.002 0551 +0.004 0447 £0.040 0.533 +0.003 0507 +0.001 0.533+0.002 | 0.583 +0.008 0570 = 0.002 || 0.623 + 0.007
Email- MicroF1 | 0334 +0.001 0439 +0.001 | 0738 +0.028 0725+ 0.004 0.666+0.010 0817 +0.001 0.734+0.010 0.763 £ 0.003 | 0.779 +0.067 0.796 % 0.014 || 0.826 + 0.001
Enron MacroF1 | 0.300 +0.001 0333 % 0.001 | 0.637 +0.023 0.674=0.003 0464 £0.002 0.753 +0.004 0.656 +0.010 0.679 +0.007 | 0.681+0.123 0719 = 0.020 || 0.760 0.004
Email- MicroF1 | 0.500 +0.001 0525 +0.001 | 0.643 +0.004 0.633 +0.001 0.620 +0.000 0.669 0.001 0.630 0.005 OutOfMemory | 0.671+ 0.001 0.666 % 0.005 || 0.671 = 0.000
Eu MacroF1 | 0.493 =0.001 0499 +0.001 | 0.552 0.014 0.533 +0.008 0.497 +0.001 0.638 +0.002 0565+ 0.013 OutOfMemory | 0.640 =0.002 0.624 + 0.021 || 0.646 + 0.003
Stack- MicroF1 | 0335 +0.000 0368 +0.001 | 0.640 +0.005 0.689 +0.002 0589 +0.007 0.661+0.005 0.610 +0.004 0.618 £ 0.015 | 0.694 +0.002 0571+ 0.054 || 0.742 + 0.003
Biology MacroF1 | 0326 +0.000 0334 +0.003 | 0.592 +0.006 0.624 +0.007 0465 +0.060 0.606 0.005 0.433+0.007 ~ 0.568 +0.013 | 0.631 +0.006 0.446 + 0.081 || 0.686 = 0.004
Stack- MicroF1 | 0333 +£0.001 0370 +0.000 | 0.506 +0.053 0.686 + 0.004 0.622 +0.003 0.708 +0.005 0.671+0.022 ~ 0.683 £ 0.005 | 0.755+0.010 0.728 % 0.039 || 0.770 = 0.003
Physics MacroF1 | 0322 +0.001 0332 +0.000 | 0.422 +0.043 0.630 +0.002 0481 +0.007 0.643+0.009 0492+0.016 0.617 £0.005 | 0.666 +0.013 0.646 + 0.046 || 0.707 = 0.004

o Email (Enron’ and Eu [48]): Each hyperedge represents an email,
and the nodes in it represent the people involved in the email.
Edge-dependent labels distinguish (1) the sender, (2) the receivers,
and (3) the CC’ed.

o StackOverflow (Biology® and Physics®): Each hyperedge repre-
sents a post, and the nodes in it are the users contributing to this
post. Edge-dependent labels distinguish (1) the questioner, (2)
answerers chosen by the questioner, and (3) the other answerers.

Table 2 shows some statistics for the datasets. We measure the
correlation coefficient between within-edge node-centrality orders
and edge-dependent node labels, using the average of Cramer’s
coefficient matrix [15]. We also report the average entropy in each
node’s label distribution. Note that the average entropy is non-zero
in all datasets, implying that node labels do vary across hyperedges.
Competitors. We implemented all models using Deep Graph Li-
brary (DGL) [59]. In all competitors, edge-dependent labels are
predicted by a single-layer perceptron from the concatenation of
the global embeddings of nodes and hyperedges, as in ours (Eq. (10)).
As competitors, we use seven hypergraph neural networks that gen-
erate both hyperedge and node embeddings and thus can be used
for edge-dependent node classification: HNHN [17], HGNN [20],
HCHA [5], HNN [3], HAT [27], UniGCNII [26], and AllSetTrans-
former (AST) [12]. We do not include HyperGCN [62] as a com-
petitor because it does not provide hyperedge embeddings. In addi-
tion, we consider HypergraphSetTransformer (HST), which extends
SetTransformer [37] to hypergraphs by applying it to obtain the
representations of sets of incident nodes and hyperedges in the
two stages of message passing. Lastly, we consider two simple ap-
proaches for comparison: (a) BaselineU, which predicts node labels
uniformly at random, and (b) BaselineP, which randomly assigns
labels proportionally to their global distribution.

Other Settings. Since external features are absent, we create initial
node features by adopting 2nd-order random walks on hypergraphs
as in [67]. Specifically, we construct fixed-length random walks for
each node and obtain embeddings using a skip-gram model [43,
44]. All parameters are initialized via Xavier initialization [24] and
trained with Adam optimizer [30]. WiTHINORDERPE incorporates
four centrality measures: degree, coreness, eigenvector centrality,
and PageRank (refer to Appendix B.2). We randomly divide all
hyperedges in each hypergraph into training (60%), validation (20%),

"https://www.cs.cmu.edu/ enron/
8https://archive.org/download/stackexchange

and test (20%) sets. For the edge-dependent node classification
task, we stop training when the number of epochs reaches 100
or the accuracy on the validation set no longer improves for 25
epochs. Whereas, for downstream tasks, we stop training when the
number of epochs reaches 300 or the mean of Micro-F1 and Macro-
F1 scores does not change for 10 epochs. We use the search space
described in Appendix A for hyperparameter tuning. We select the
hyperparameter values that maximize the mean of Micro-F1 and
Macro-F1 scores on the validation set and report its performance
on the test set over five independent runs.

6.2 Q1. Edge-Dependent Node Classification

To evaluate the performance of WHATSNET for the edge-dependent
node classification, we measure the predictive performances using
Micro-F1 and Macro-F1 scores on test data, averaged over five
runs. Table 3 shows that WHATSNET consistently achieves the
highest scores in terms of both Micro-F1 and Macro-F1. While HST
performs well overall and ranks second, the statistical analysis
using the Wilcoxon signed-rank test indicates that WHATSNET is
significantly better than HST with a p-value less than 0.05 in almost
all cases (only except for Macro-F1 in Email-Enron and Micro-F1 in
Email-Eu). Some other models, including HGNN and HAT, perform
well on specific datasets but fail to achieve overall success. HNN
runs out of memory on the email-Eu dataset due to the large size
of the random-walk hyperedge transition matrix.”

We would like to emphasize that HST, AST, and WHATSNET
utilize different aggregation methods, and relationships among
nodes within each hyperedge (or among hyperedges incident to
each node) are explicitly considered only in HST and WHATSNET.
Additionally, positional encoding is used only in WHATSNET (see
Section 5.6). Thus, the fact that AST underperforms HST and WHAT-
SNET supports the effectiveness of WiTHINATT, and the fact that
WHATSNET outperforms HST supports the usefulness of WrTHI-
NORDERPE and our aggregation method.

Figure 3 visually demonstrates the effectiveness of WHATSNET
using the Coauthorship-DBLP dataset. The visualization showcases
(a) the embeddings of hyperedges containing a specific node and
(b) the concatenated embeddings of all incident pairs of nodes and
hyperedges in the test set. Notably, the embeddings exhibit clear
distinctions based on the edge-dependent labels.

Implementation details of HNN can be found in [14].

KDD ’23, August 6-10, 2023, Long Beach, CA, USA Minyoung Choe, Sunwoo Kim, Jaemin Yoo, and Kijung Shin

Table 4: Jensen-Shannon divergence (JSD) between Ground-truth and Predicted Node Label Distributions: The average and
standard deviation of the average JSD over five independent runs are reported. The lower JSD is, the better a model preserves
node-level label distributions. Best scores are in bold. WHATSNET yields the lowest JSD in all datasets.

Dataset | BaselineU BaselineP | HNHN HGNN HCHA HAT UniGCNII HNN | HST AST || WHATsNer
Coauth-DBLP | 0.532 +0.002 0.518 +0.002 | 0.450 +0.002 0.394 + 0.005 0.450 + 0.002 0.429 + 0.004 0.449 + 0.006 0.450 + 0.003 | 0.388 + 0.006 0.453 + 0.038 || 0.350 0.002
Coauth-AMiner | 0.529 + 0.000 0.523 £ 0.000 | 0.440 + 0.003 0.372 £ 0.002 0.462 + 0.002 0.414 + 0.003 0.424 + 0.002 0.411 £ 0.003 0.356 £ 0.005 0.382 + 0.009 || 0.328 + 0.004
Email-Enron 0.486 +0.002 0.395 + 0.001 | 0.162 +0.003 0.212 +0.007 0.291 + 0.007 0.157 + 0.004 0.187 +0.002 0.205 + 0.002 | 0.302 +0.233 0.178 + 0.019 || 0.136 = 0.001
Email-Eu 0.199 + 0.006 0.164 + 0.004 | 0.232 £ 0.009 0.291 + 0.001 0.268 + 0.002 0.154 + 0.004 0.300 + 0.004 OutOfMemory 0.158 £ 0.005 0.168 + 0.015 0.151 + 0.009
Stack-Biology 0.536 + 0.001 0.467 + 0.003 | 0.266 + 0.007 0.202 + 0.003 0.237 £ 0.016 0.235 + 0.006 0.263 + 0.004 0.311 + 0.026 0.200 + 0.002 0.259 + 0.022 0.152 + 0.002
Stack-Physics | 0.532 + 0.001 0.482 + 0.001 | 0.286 + 0.036 0.219 +0.008 0.289 + 0.004 0.227 + 0.006 0.285 + 0.050 0.292 + 0.005 | 0.162 + 0.008 0.185 + 0.021 || 0.141 + 0.003

Table 5: Real-World Applications of WHATSNET: In the three considered applications, utilizing hypergraphs with edge-
dependent node labels predicted by WHATSNET (1) consistently outperforms using hypergraphs without such labels, (2)
tends to outperform using edge-dependent node labels obtained by AST or HST (especially for clustering), and (3) performs
comparably to and sometimes even better (especially for ranking aggregation) than using ground-truth labels.

(a) Ranking Aggregation (Accuracy) (b) Clustering (NMI: The higher, the better) (c) Product Return Prediction (F1)
Method ‘ Halo H-Index Method ‘ DBLP AMiner Method ‘ Synthetic E-tail
W [13] w/ Ground Truth ‘ 0.711 0.675 RDC-Spec [23] w/ GroundTruth ‘ 0.221 0.359 HyperGO [38] w/ GroundTruth ‘ 0.738
W [13] w/ WHATsSNET 0.714 0.693 RDC-Spec [23] w/ WHATsSNET | 0.184 0.352 HyperGO [38] w/ WHATSNET 0.723
W [13] w/ HST 0707 0.695 RDC-Spec [23] w/ HST 0166 0.339 HyperGO [38] w/ HST 0.724
W [13] w/ AST 0706 0.696 RDC-Spec [23] w/ AST 0168 0.332 HyperGO [38] w/ AST 0.721
W [13] w/o Labels | 0532 0.654 RDC-Spec [23] w/o Labels | 0163 0338 HyperGO [38] w/o Labels \ 0.718

Table 6: Ablation Study of WHATSsSNET: The performance of .
WHATSNET is largely improved by WITHINATT and WITHI- 6.4 Q3. Ablation Study of WHATsNET

NORDERPE, as shown in the average rankings of models. For an ablation study, we compare the performance of WHATSNET
with two variants of it in Table 6: (a) WHATSNET w/o WiTHINATT,

where WITHINATT is removed and only the aggregation is used for

Dataset Metric ‘w/o WITHINATT w/0o WITHINORDERPE =~ WHATSNET

Coauth- MicroF1 | 0.581 = 0.004 0.591 + 0.003 0.605 + 0.002 message passing, and (b) WHATSNET w/o WiTHINORDERPE, which
DBLP MacroF1 0.577 + 0.003 0.584 + 0.003 0.595 + 0.002 . . .
computes WITHINATT without positional encodings.

Coauth- MicroF1 | 0.604 £ 0.010 0.583 = 0.095 0.630 + 0.005 .
AMiner MacroF1 | 0592 + 0.013 0.536 + 0.174 0.623 + 0.007 Importance of WITHINATT. As shown in Table 6, WHATSNET
Email- MicroF1 | 0.812 « 0.008 0.825 £ 0.001 0.826 % 0.001 consistently outperforms the variant without WiTHINATT. This
Enron MacroF1 | 0747 = 0.014 0.762 + 0.004 0.760 =+ 0.004 result demonstrates the importance of WiTHINATT in achieving
Email- MicroF1 0.651 + 0.019 0.670 + 0.000 0.671 + 0.000 accurate edge-dependent node label classification. That is, consider-
Ey MacroF1 | 0.630 +0.018 0.638 + 0.002 0.646 + 0.003 ing relationships among nodes within each hyperedge is crucial for
Stack- MicroF1 | 0723 +0.002 0.732 = 0.002 0.742 = 0.003 precise classification. In Appendix B.3, we also empirically confirm

iol . . .
Biology MacroF1 | 0.656 +0.005 0.672 + 0.004 0686 + 0.004 that the improvement is also contributed by WiTHINATT among
gthaCk_' MicroF1 ‘ 0752 + 0.005 0.765 + 0.002 0.770 + 0.003 hyperedges containing each node, by using a variant without it.

ysics MacroF1 | 0.675 £ 0.010 0.688 = 0.008 0.707 + 0.004 ; . . .
e Figure 4 visually illustrates the effectiveness of WITHINATT by

QVGkg MicroF1 2.83 2.17 1.00 demonstrating WITHINATT makes node embeddings better distin-

anking MacroF1 2.83 2.00 117 .

¢ Macro guished based on edge-dependent labels.

6.3 Q2. Node Label Distribution Preservation Usefulness of WITHINORDERPE. Table 6 also indicates that WHAT-
SNET also performs better than the variant without WITHINORDERPE

in terms of both Micro F1 and Macro F1 scores across most datasets.
This result supports that WITHINORDERPE contributes to the im-
provement in performance. However, in the Email-Enron dataset,
WITHINORDERPE does not have a significant impact, which aligns
with the lowest correlation between node labels and node centrality
orders in Table 2. In Appendix B.1, we show that WITHINORDERPE
outperforms several positional encoding schemes, including global
node-centrality ranks.

In the task of edge-dependent node classification, each node may
have different labels for different edges. That is, each node has
its own ground-truth label distribution (node-level label distribu-
tion), which describes how many times it has each label. In this
experiment, we aim to check how well WHATSNET preserves such
node-level label distributions compared to the other baseline ap-
proaches. To this end, we measure the Jensen-Shannon divergence
(JSD) [40] between the ground-truth and the predicted node-level
label distribution for each node in the test data. The average JSD
over all nodes is used as a metric to evaluate how well the model

captures the ground-truth node-level label distributions. As shown 6.5 Q4. Usefulness in Downstream Tasks

in Table 4, WHATsNET outperforms all other models, with the To evaluate the usefulness of WHATSNET, we conduct experiments
lowest JSD in all datasets. This result suggests that WHATSNET on three downstream tasks: ranking aggregation, clustering, and
preserves well the ground-truth node-level label distributions. product return prediction (see Section 4.2). We compare the per-

formance of the tasks using three different types of inputs: hy-
pergraphs with (a) ground-truth edge-dependent node labels, (b)

Classification of Edge-dependent Labels of Nodes in Hypergraphs

ricgelKOPRMOS Hans-Peter Kriegel

kriegelKSZ09 -
kriegelKMPS03

S~

Middle author in
()

BerneckerEKRZ12
. '— =» | EmrichKkMRZ12
Last author in EmrichKNRSZ12

AssfalgBK0O6
BohmBBK0O <~ ? ®
YuXEKO1

(a) Embeddings of publications containing
"Hans-Peter Kriegel"

(b) All concatenated em-
beddings of incident hy-
peredges and nodes
Figure 3: Visualization of embeddings from WHATSNET. (a)
The embeddings of all publications of “Hans-Peter Kriegel”
visualized using LDA. (b) The concatenated embeddings of
all incident pairs of nodes and hyperedges in the test set,
visualized in the same manner. Note that they are clearly
clustered based on the edge-dependent labels.

labels predicted by hypergraph neural networks (spec., WHAT-
sNET, HST, and AST) trained for our problem (i.e., edge-dependent
node classification problem), and (c) no labels, respectively. We aim
to demonstrate that even imperfect edge-dependent node labels
predicted by the trained model (especially, by WHATSNET) lead
to better performances, compared to those without labels. Refer to
[14] for details of the edge-dependent node labels used in each task.
Ranking Aggregation. This task aims to correctly predict the
global node ranks using local node ranks in subsets (hyperedges).
We use a recent random-walk-based method [13], where a random
walker selects a node in each hyperedge proportionally to its rank
within it, and the global node ranking is determined by the sta-
tionary distribution. We use two real-world datasets: (1) the Halo 2
game dataset, where scores (edge-dependent node labels) of players
(nodes) in matches (hyperedges) of up to 8 players are given, and
the global rankings of players need to be inferred; (2) the AMiner
dataset, where the order of authorship (i.e., edge-dependent labels)
in each publication is given to predict the rankings of all authors
in terms of their H-index. For evaluation, we measure the accuracy
in identifying the node with a higher rank for each node pair.
Clustering. From two co-authorship datasets, (1) DBLP and (2)
AMiner, we group publications by venues as their ground-truth
clusters. We use RDC-Spec [23], a well-performing method that
uses spectral clustering and weighs authors differently according to
their order (edge-dependent label) in each publication, as the back-
bone hypergraph clustering algorithm. For evaluation, we measure
Normalized mutual information (NMI).

Product Return Prediction. We use a state-of-the-art method,
HyperGo [38], as the predictor for the returned product. It utilizes
the information about the count of products in each basket, which
corresponds to edge-dependent labels. We evaluate by F1 score of
the predicted return probability of products in each target basket.

Results. As shown in Table 5, across all the examined applications,
the utilization of imperfect edge-dependent node labels predicted by
WHATSNET consistently leads to performance improvements com-
pared to the results obtained without labels. Furthermore, these en-
hancements generally surpass those achieved by HST and AST. Sur-
prisingly, in ranking aggregation, the performance is even higher
than what is achieved by using ground-truth labels. We would like
to emphasize that WHATSNET can be applied to any algorithm that

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

(a) Before WITHINATT
Figure 4: Visualization of the effect of WITHINATT. Node

(b) After WITHINATT

embeddings in StackOverflow-Biology (a) before and (b) after
the WITHINATT module are visualized using LDA. WITHI-
NATT makes node embeddings better distinguished based
on edge-dependent labels, represented by different colors.

utilizes edge-dependent labels, and WHATSNET is not specialized to
any of the methods considered for the tasks. The three application
tasks are described in greater detail in [14].

7 CONCLUSIONS

In this work, we propose the edge-dependent node classification
problem, which is a new benchmark task for hypergraph neural
networks with various real-life applications. In order to tackle this
problem, we devise WHATSNET, a hypergraph neural network
for considering edge-dependent relationships between node pairs
within each hyperedge. In our experiments with 6 real-world hy-
pergraphs, WHATSNET consistently outperformed 10 competitors.
Our contributions are summarized as follows:

o New Problem: We formulate the edge-dependent node classifica-
tion problem with six real-world datasets and three applications.

o Effective Model: We propose WHATSNET, a novel hypergraph
neural network equipped with the WiTHINATT module and
WITHINORDERPE. They are designed to capture edge-dependent
relationships between node pairs within each hyperedge.

e Extensive Experiment: We empirically show the advantage of
WHATSNET over 10 competitors and the effectiveness of each
component of it. We also demonstrated the usefulness of WHAT-
sNET in three applications.

For reproducibility, we make the code and data available at [14].
Acknowledgements. This work was supported by National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIT) (No.
NRF-2020R1C1C1008296) and Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (No. 2022-0-00157, Robust, Fair, Extensible Data-Centric
Continual Learning) (No. 2019-0-00075, Artificial Intelligence Graduate
School Program (KAIST)).

REFERENCES

[1] Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. 2020.
The surprising power of graph neural networks with random node initialization.
arXiv preprint arXiv:2010.01179 (2020).

[2] Amir Hosein Khas Ahmadi. 2020. Memory-based graph networks. Ph.D. Disserta-
tion. University of Toronto (Canada).

[3] Ryan Aponte, Ryan A Rossi, Shunan Guo, Jane Hoffswell, Nedim Lipka, Chang
Xiao, Gromit Chan, Eunyee Koh, and Nesreen Ahmed. 2022. A Hypergraph Neural
Network Framework for Learning Hyperedge-Dependent Node Embeddings.
arXiv preprint arXiv:2212.14077 (2022).

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv:1607.06450 (2016).

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

[11]
[12]

[13

[14]

[15]
[16]

[17

(18]

[19]

[20

[21]

oo
Rk

[23

[24]

[25]
[26]

[27

[28]
[29]
[30]

(31

[32]

[35]
[36]

[37]

Song Bai, Feihu Zhang, and Philip HS Torr. 2021. Hypergraph convolution and
hypergraph attention. Pattern Recognition 110 (2021), 107637.

Mikhail Belkin and Partha Niyogi. 2003. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation 15, 6 (2003), 1373-1396.
Austin R Benson, Rediet Abebe, Michael T Schaub, Ali Jadbabaie, and Jon Klein-
berg. 2018. Simplicial closure and higher-order link prediction. Proceedings of
the National Academy of Sciences 115, 48 (2018), E11221-E11230.

Austin R Benson, Ravi Kumar, and Andrew Tomkins. 2018. Sequences of sets. In
KDD.

Phillip Bonacich. 1987. Power and centrality: A family of measures. AJS 92,5
(1987), 1170-1182.

Fanchen Bu, Geon Lee, and Kijung Shin. 2023. Hypercore Decomposition for
Non-Fragile Hyperedges: Concepts, Algorithms, Observations, and Applications.
arXiv preprint arXiv:2301.08440 (2023).

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In ICML.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. 2022. You are allset:
A multiset function framework for hypergraph neural networks. In ICLR.
Uthsav Chitra and Benjamin Raphael. 2019. Random walks on hypergraphs with
edge-dependent vertex weights. In ICML.

Minyoung Choe, Sunwoo Kim, Jaemin Yoo, and Kijung Shin. 2023. Classification
of Edge-dependent Labels of Nodes in Hypergraphs (Code, Datasets, and Online
Appendix). https://github.com/young917/EdgeDependentNodeLabel

Harold Cramer. 1946. Mathematical methods of statistics, Princeton Univ. PUP
(1946).

Manh Tuan Do, Se-eun Yoon, Bryan Hooi, and Kijung Shin. 2020. Structural
patterns and generative models of real-world hypergraphs. In KDD.

Yihe Dong, Will Sawin, and Yoshua Bengio. 2020. HNHN: hypergraph networks
with hyperedge neurons. In ICML Graph Representation Learning and Beyond
Workshop.

Vijay Prakash Dwivedi and Xavier Bresson. 2021. A generalization of transformer
networks to graphs. In AAAI Workshop on Deep Learning on Graphs: Methods and
Applications.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. 2022. Graph neural networks with learnable structural and
positional representations. In ICLR.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hy-
pergraph neural networks. In AAAL

Xuemei Gu, Lijun Chen, and Mario Krenn. 2020. Quantum experiments and hy-
pergraphs: Multiphoton sources for quantum interference, quantum computation,
and quantum entanglement. PRA 101, 3 (2020), 033816.

Deepesh Hada, Shirish Shevade, et al. 2021. HyperTeNet: Hypergraph and
Transformer-based Neural Network for Personalized List Continuation. In ICDM.
Koby Hayashi, Sinan G Aksoy, Cheong Hee Park, and Haesun Park. 2020. Hy-
pergraph random walks, laplacians, and clustering. In CIKM.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In ICCV.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR.

Jing Huang and Jie Yang. 2021. Unignn: a unified framework for graph and
hypergraph neural networks. In IJCAL

Hyunjin Hwang, Seungwoo Lee, and Kijung Shin. 2021. HyFER: A Framework
for Making Hypergraph Learning Easy, Scalable and Benchmarkable. In WWW
Workshop on Graph Learning Benchmarks.

Jiayang Jiang, Michael Mitzenmacher, and Justin Thaler. 2017. Parallel peeling
algorithms. TOPC 3, 1 (2017), 1-27.

Jinwoo Kim, Saeyoon Oh, and Seunghoon Hong. 2021. Transformers Generalize
DeepSets and Can be Extended to Graphs & Hypergraphs. In NeurIPS.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In ICLR.

Risi Kondor and Jean-Philippe Vert. 2004. Diffusion kernels. kernel methods in
computational biology (2004), 171-192.

Kirill Kovalenko, Miguel Romance, Ekaterina Vasilyeva, David Aleja, Regino
Criado, Daniil Musatov, Andrei M Raigorodskii, Julio Flores, Ivan Samoylenko,
Karin Alfaro-Bittner, et al. 2022. Vector centrality in hypergraphs. Chaos, Solitons
& Fractals 162 (2022), 112397.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Pru-
dencio Tossou. 2021. Rethinking graph transformers with spectral attention. In
NeurIPS.

Geon Lee, Minyoung Choe, and Kijung Shin. 2021. How do hyperedges overlap
in real-world hypergraphs?-patterns, measures, and generators. In WWW.
Geon Lee, Minyoung Choe, and Kijung Shin. 2022. HashNWalk: Hash and
Random Walk Based Anomaly Detection in Hyperedge Streams. In IJCAL
Geon Lee, Jihoon Ko, and Kijung Shin. 2020. Hypergraph motifs: concepts,
algorithms, and discoveries. PVLDB 13, 12 (2020), 2256—-2269.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and
Yee Whye Teh. 2019. Set transformer: A framework for attention-based

[38

[39]

[40]

(41

[42

[43

[44]

[45

[46

(50

[51

o
20,

=
2

o
!

o
&,

[63]

[64]

[65]

[66]

[67]

[68]

Minyoung Choe, Sunwoo Kim, Jaemin Yoo, and Kijung Shin

permutation-invariant neural networks. In ICML.

Jianbo Li, Jingrui He, and Yada Zhu. 2018. E-tail product return prediction via
hypergraph-based local graph cut. In KDD.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. 2020. Distance encod-
ing: Design provably more powerful neural networks for graph representation
learning. In NeurIPS.

Jianhua Lin. 1991. Divergence measures based on the Shannon entropy. IEEE
Transactions on Information theory 37, 1 (1991), 145-151.

Liheng Ma, Reihaneh Rabbany, and Adriana Romero-Soriano. 2021. Graph atten-
tion networks with positional embeddings. In PAKDD.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. 2021. Graphit:
Encoding graph structure in transformers. arXiv:2106.05667 (2021).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv:1301.3781 (2013).
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NeurIPS.

Michael Molloy. 2005. Cores in random hypergraphs and Boolean formulas.
Random Structures & Algorithms 27, 1 (2005), 124-135.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In ICML.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

Ashwin Paranjape, Austin R Benson, and Jure Leskovec. 2017. Motifs in temporal
networks. In WSDM. 601-610.

Wonpyo Park, Woong-Gi Chang, Donggeon Lee, Juntae Kim, et al. 2022. GRPE:
Relative Positional Encoding for Graph Transformer. In ICLR Machine Learning
for Drug Discovery Workshop.

Ruihong Qiu, Zi Huang, Tong Chen, and Hongzhi Yin. 2021. Exploiting positional
information for session-based recommendation. TOIS 40, 2 (2021), 1-24.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yangi Zhou, Wei Li, Peter J Liu, et al. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer. JMLR 21, 140
(2020), 1-67.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. 2021. Random features
strengthen graph neural networks. In SDM.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with
relative position representations. In NAACL.

A Swati, S Ashish, M Nitish, K Rohan, and C Denzil. 2016. Dblp records and
entries for key computer science conferences.

Francesco Tudisco and Desmond] Higham. 2021. Node and edge nonlinear
eigenvector centrality for hypergraphs. Communications Physics 4, 1 (2021), 201.
Francesco Tudisco and Desmond] Higham. 2023. Core-periphery detection in
hypergraphs. SIMODS 5, 1 (2023), 1-21.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. 2022. Equivariant and
stable positional encoding for more powerful graph neural networks. In ICLR.
Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-centric,
highly-performant package for graph neural networks. arXiv:1909.01315 (2019).
Michael M Wolf, Alicia M Klinvex, and Daniel M Dunlavy. 2016. Advantages to
modeling relational data using hypergraphs versus graphs. In HPEC.

Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Lizhen Cui, and Xiangliang
Zhang. 2021. Self-supervised hypergraph convolutional networks for session-
based recommendation. In AAAL

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand
Louis, and Partha Talukdar. 2019. Hypergen: A new method for training graph
convolutional networks on hypergraphs. In NeurIPS.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do transformers really perform badly for
graph representation?. In NeurIPS.

Se-eun Yoon, Hyungseok Song, Kijung Shin, and Yung Yi. 2020. How much and
when do we need higher-order information in hypergraphs? a case study on
hyperedge prediction. In WWW.

Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware graph neural
networks. In ICML.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. 2020. Graph-bert:
Only attention is needed for learning graph representations. arXiv:2001.05140
(2020).

R Zhang, Y Zou, and J Ma. 2020. Hyper-SAGNN: a self-attention based graph
neural network for hypergraphs. In ICLR.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun,
Xing Xie, and Yanfang Ye. 2021. Gophormer: Ego-Graph Transformer for Node
Classification. arXiv:2110.13094 (2021).

https://github.com/young917/EdgeDependentNodeLabel

Classification of Edge-dependent Labels of Nodes in Hypergraphs

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Table 7: Search spaces of hyperparameters.

Datasets for Problem 1

Datasets for Downstream Tasks

H;

yperparameter Coauth-AMiner The others ‘ Ranking Halo Ranking H-Index Clustering DBLP Clustering AMiner Synthetic E-tail
Learning rate 0.001, 0.0001 0.001, 0.0001 0.0001, 0.001 0.0001, 0.0005 0.0001, 0.0005, 0.005 0.0001, 0.0005 0.001, 0.003, 0.005, 0.01, 0.03, 0.05
Size of batch 256, 512 64,128 128, 256 32, 64,128 32, 64,128 32, 64, 128 64, 128, 256, 512

Number of layers 1,2* 1,2 1 1,2 1,2 1,2

*: We use 1 layer for WHATsSNET, AST, and HST.

A PARAMETER SETTING

The search spaces of hyperparameters are given in Table 7. For all
models, we fix the hidden dimension to 64, the final embedding
dimension to 128, the number of the inducing points to 4, the
number of attention layers to 2, and the dropout ratio to 0.7.

We employ sampling for efficiency in hyperedge-to-node mes-
sage passing (but not in node-to-hyperedge message passing) and
set the size of sampling (i.e. a set of hyperedges sampled among
those incidents to each node) as follows: (a) All methods do not use
sampling in Coauthorship-DBLP, (b) HST, AST, and WHATSNET
sample 40 hyperedges in the other datasets, and (c) HNHN, HGNN,
HCHA, HAT, and UniGCNII do not sample in StackOverflow-Biology
but sample 40 or 100 hyperedges in the other datasets.

Exceptionally, for HCHA [5] and HNN ([3], we use full-batch
training without sampling. For a fair comparison, we tune their hy-
perparameters in a larger search space: {0.005, 0, 01, 0.03,0.05,0.1}
for learning rates, {1, 2} for the number of layers, and {0.3,0.5,0.7}
for dropout ratios, while we fix the dimension of final node and
hyperedge embeddings to 128, the hidden dimension to 64, and the
number of epochs to 300 with early stopping.

B ADDITIONAL ABLATION STUDIES

B.1 Positional Encoding

We examine the usefulness of WITHINORDERPE by replacing it with
alternative positional encoding schemes for graph neural networks
(see Section 2.2). In our study, we initialize node features using
random walks (see Section 6.1) so that they capture global posi-
tional information. Thus, we compare WiTHINORDERPE with two
relative positional encodings: Shaw et al. [53] and GraphIT [42],
using diffusion kernels [31] (DK) and the p-step random-walk ker-
nel [42] (PRWK) for calculating distances between nodes. We also
consider learnable positional encodings called LSPE [19], which
are added to node embeddings (as WITHINORDERPE is added) and
updated together with other parameters. In addition, we consider
WholeOrderPE, a variant of WITHINORDERPE that uses the global
centrality order among all nodes, instead of the relative order within
each hyperedge. Since the relative positional encoding methods
pose challenges when used with inducing points, we do not employ
inducing points consistently, and for WHATSNET, we consider two
versions with and without inducing points. The base model for
comparing positional encoding schemes is defined as follows:

v\ = mapv =V, vV, pg) 12)
aY = map@E!, V) (13)
xD = MAB(x, WrrrinATT(E()) (14)

Only Eq. (12) depends on positional encoding schemes PE. To specif-
ically investigate the impact of node positional encoding schemes,
we do not employ any positional encodings for hyperedges.

The results are shown in Table 8, where WITHINORDERPE outper-
forms all other positional encoding methods, particularly surpass-
ing WholeOrderPE. This highlights the effectiveness of incorporat-
ing relative order within hyperedges for positional encodings. It is
worth noting that WHATSNET with inducing points, which offers
improved efficiency, achieves competitive performance compared
to WHATSNET without inducing points.

B.2 Node-centrality measures

We investigate the impact of node-centrality measures used in
WiITHINORDERPE on the performance of WHATsNET. We consider
individually the following seven node-centrality measures:

e Degree: The number of hyperedges a node belongs to.

e Coreness [10, 28, 45]: The maximum k such that a node belongs
to the k-core which is the maximal sub-hypergraph where every
node has at least degree k within it.

e Eigenvector Centrality [9] and PageRank [47]: The eigenvec-

tor centrality and the PageRank score on a clique-expanded graph

where each edge weight w,, = [{e € E:v € eandu € e}|.

H-Coreness [56]: Hypergraph core-periphery scores determin-

ing the proximity of nodes to the hypergraph core.

e H-Eigenvector [55]: Node and hyperedge centralities on hy-
pergraphs using the max centrality model. Different positional
encodings are used for different message-passing directions.

e Vector Centrality [32]: A vectorial measure of the roles of each
node at different orders of interactions. The dimension of this
measure is one less than the maximum hyperedge size.

In WHATSNET, we use only four centrality measures (spec., degree,
coreness, eigenvector, and PageRank) for computational efficiency
(see Appendix C for details). We additionally consider WHATSNET-
all, which uses all seven centrality measures together. Table 9 shows
that the performance of WHATSNET is not highly sensitive to the
choice of node centrality measures, and especially it consistently
outperforms HST (the strongest baseline approach) regardless of
the choice of centrality measures. Moreover, the results indicate
that increasing the dimensionality of WITHINORDERPE tends to
lead to performance improvement, which is evident from the high
performance of vector centrality, WHATsSNET, and WHATsNET-all,
which utilize higher-dimensional WiTHINORDERPE.

B.3 Advantage of using WITHINATT for both
directions

Recall that we devise the WITHINATT with the intention of cap-
turing edge-dependent relationships between nodes within each
hyperedge. However, we also utilize this module for the propaga-
tion from hyperedges to nodes. To validate the effectiveness of
using WITHINATT in both directions, we replace the message pass-
ing from hyperedges to nodes with the aggregation methods used
in HNHN (WHATSNET + HNHN) and HAT (WHATSNET + HAT).

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Minyoung Choe, Sunwoo Kim, Jaemin Yoo, and Kijung Shin

Table 8: Comparison of positional encoding schemes. The symbol I,, denotes inducing points.

Dataset Positional Encodings WiITHINORDERPE
atase w/o PE GraphIT/DK ~ GraphIT/PRWK ~ Shaw/DK Shaw/PRWK LSPE WholeOrderPE w/o Iy, w/ Ly
Stack MicroF1 | 0.732 £ 0.002 0.719 +£0.006 0.710 £ 0.004 ~ 0.731 +0.003 0.456 + 0.014 0.727 + 0.003 0.732 + 0.003 0.737 +0.006 0.737 + 0.003
Biology MacroF1 | 0.672 + 0.004 0.645 + 0.012 0.638 £ 0.012 0.667 £ 0.005 0.338 £ 0.038 0.658 £ 0.010 0.669 = 0.011 0.680 £ 0.005 0.679 £ 0.007

Table 9: Comparison of node-centrality measures that can be used for WITHINORDERPE.

Dataset ‘ Degree Coreness Eigenvector

PageRank ‘ H-Coreness H-Eigenvector Vector Centrality‘

WHATsNEr WHATSsNET-all

Stack MicroF1 | 0.735 £ 0.001 0.739 +0.005 0.738 + 0.003 0.741 + 0.003
Biology MacroF1 | 0.678 +0.004 0.685 +0.010 0.681 = 0.004 0.681 + 0.004

0.738 £ 0.005 0.738 + 0.004
0.683 £0.008 0.681 + 0.006

0.742 £ 0.003
0.686 + 0.004

0.745 + 0.002

0.745 + 0.002
0.690 = 0.005

0.687 = 0.003

Table 10: Effect of the number of inducing points and comparison of architectures for hyperedge-to-node message passing.

Dataset

Number of Inducing Points
2 4 8

‘ ‘ HNHN

MSG. Passing from Hyperedge to Node
HAT WHATSNET + HNHN ~ WHATSNET + HAT ~ WHATSNET

Stack MicroF1
0.682 + 0.006 0.686 + 0.004 0.688 + 0.002

Biology MacroF1

0.740 £ 0.002 0.742 £ 0.003 0.742 + 0.003 0.640 = 0.005 0.661 £ 0.005
0.592 + 0.006 0.606 + 0.005

0.645 = 0.023
0.583 + 0.029

0.670 = 0.015
0.618 + 0.010

0.742 + 0.003
0.686 + 0.004

Table 11: Effect of inputs to the final classifier

Dataset Metric ‘Best Competitor WHATSNET-IM ~ WHATSNET

Coauth- MicroF1 | 0.564 + 0.004 0.602 + 0.002 0.605 + 0.002
DBLP MacroF1 | 0.549 = 0.003 0.592 +0.002 0.595 = 0.002
Coauth- MicroF1 0.596 = 0.007 0.637 £0.003 0.630 + 0.005
AMiner MacroF1 | 0.583 + 0.008 0.631+0.003 0.623 + 0.007
Email- MicroF1 | 0.779 + 0.067 0.858 £ 0.001 0.826 + 0.001
Enron MacroF1 | 0.681 +0.123 0.796 + 0.004 0.760 + 0.004
Email- MicroF1 0.671 + 0.001 0.687 +0.004 0.671 + 0.000
Eu MacroF1 | 0.640 + 0.002 0.660 + 0.009 0.646 + 0.003
Stack- MicroF1 | 0.694 + 0.002 0.736 £ 0.003 0.742 + 0.003
Biology MacroF1 | 0.631 + 0.006 0.679 £ 0.007 0.686 + 0.004
Stack- MicroF1 0.755 + 0.010 0.769 + 0.001 0.770 = 0.003
Physics MacroF1 | 0.666 + 0.013 0.692 £0.011 0.707 + 0.004

Table 10 demonstrates that WHATSNET outperforms both WHAT-
SNET + HNHN and WHATSsNET + HAT, providing justification for
employing the WITHINATT module in both directions. It is also
worth noting that WHATSNET + HNHN and WHATSNET + HAT
outperform their corresponding vanilla models, HNHN and HAT.

B.4 The number of inducing points

We explore how the performance of WHATSNET changes with
respect to the numbers of inducing points (2, 4, and 8). Table 10
shows that the performance improves as more inducing points
are employed. However, considering memory constraints, using 4
inducing points is favorable as it requires half the memory while
achieving comparable performance to using 8 inducing points.

B.5 Inputs to the final classifier

As discussed in Section 5.4, we consider two possible inputs for a
single-layer perceptron classifier: (a) intermediate edge-dependent
node embeddings, referred to as WHATSNET-IM, which are gen-
erated by WITHINATT inside a WHATSNET (Eq. (11)) and (b) the
concatenation of final output node and hyperedge embeddings from

WHATSNET (Eq. (10)). Table 11 indicates that one approach does not
consistently outperform the other; WHATSNET-IM performs bet-
ter in Coauth-AMiner, Email-Enron, and Email-Eu datasets, while

WHATSNET performs better in the remaining three datasets. It is
also worth noting that both approaches are superior to HST, which

is overall the best competitor.

C TIME COMPLEXITY OF NODE CENTRALITY
MEASURES

We analyze the time complexity of computing each node’s centrality
using each of the four node measures used for WITHINORDERPE
in WHATSNET. We assume O(|V| + |E]) € O(Decg le]) for a
hypergraph G = (V, &) for simplicity.

Degree. The time complexity is O(3.cg |e]) if we increment the
degree of each of |e| members of each hyperedge e € &.
Coreness. The time complexity is O(3.cg le]), as proven in The-
orem 1 of [10].

Eigenvector centrality. The time complexity is O(X.cg le]). If
we let I be the |'V| by |&| incidence matrix of G and nnz(I) be the
number of non-zero entries (i.e., nnz(I) = Y, .c g |e|), the eigenvec-
tor centralities of all nodes in the clique-expanded graph, whose
adjacency matrix is A = IIT, are equivalent to the leading left
singular vector of I. This can be computed by Power Iteration in
O(nnz(I)T) time, where T is the maximum number of iterations.
In practice (and in our setting), T is set to a constant, and thus the
time complexity is O(nnz(I)) = O(Y.cg lel), which is even lower
than that of materializing the clique-expanded graph.

PageRank. The time complexity is also O(3 < g |e|) since its cal-
culation is almost the same as that of the eigenvector centrality. We
repeat (at most T times) computing r « BIITr+ (1 - f)1 fora |V|-
dimensional vector r and a constant 8. Note that computing II”r
can be done in O(nnz(I)) time by two steps: (1) computingr’ « It
and (2) computing Ir’. Since T is set to a constant in practice (and
in our setting), the time complexity is O(nnz(I)) = O(X.cg lel)-

	Abstract
	1 Introduction
	2 Related Work
	2.1 Hypergraph Neural Networks
	2.2 Positional Encodings

	3 Preliminaries
	3.1 Hypergraphs
	3.2 Attention Functions

	4 Problem Definition: Edge-dependent Node Classification in a Hypergraph
	4.1 Problem Formulation
	4.2 Applications

	5 Proposed Model: WHATsNet
	5.1 WithinATT: Attention to Other Nodes within Hyperedges
	5.2 WithinOrderPE: Using Centrality for Positional Encoding
	5.3 WHATsNet: Our Final Model
	5.4 Application to Edge-Dependent Node Classification
	5.5 Complexity Analysis
	5.6 Comparison to Existing Models

	6 Experimental Results
	6.1 Experimental settings
	6.2 Q1. Edge-Dependent Node Classification
	6.3 Q2. Node Label Distribution Preservation
	6.4 Q3. Ablation Study of WHATsNet
	6.5 Q4. Usefulness in Downstream Tasks

	7 Conclusions
	References
	A Parameter Setting
	B Additional Ablation Studies
	B.1 Positional Encoding
	B.2 Node-centrality measures
	B.3 Advantage of using WithinATT for both directions
	B.4 The number of inducing points
	B.5 Inputs to the final classifier

	C Time complexity of node centrality measures

