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ABSTRACT
We propose a communication and computation efficient second-

order method for distributed optimization. For each iteration, our

method only requires O(𝑑) communication complexity, where 𝑑

is the problem dimension. We also provide theoretical analysis

to show the proposed method has the similar convergence rate

as the classical second-order optimization algorithms. Concretely,

our method can find

(
𝜖,
√
𝑑𝐿𝜖

)
-second-order stationary points for

nonconvex problem by O
(√
𝑑𝐿 𝜖−3/2

)
iterations, where 𝐿 is the

Lipschitz constant of Hessian.Moreover, it enjoys a local superlinear

convergence under the strongly-convex assumption. Experiments

on both convex and nonconvex problems show that our proposed

method performs significantly better than baselines.
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1 INTRODUCTION
Distributed optimization has received lots of attention in machine

learning and data mining communities [3, 4, 13, 17, 20, 28, 31, 33, 35].

Its major attractive feature is that it allows solving large-scale

problems in a parallel fashion, which significantly improves the

efficiency for training the models [14, 15, 34]. This paper considers
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the distributed optimization problem of the form

min

x∈R𝑑
𝑓 (x) ≜ 1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖 (x), (1)

where 𝑑 is the problem dimension, 𝑛 is the number of clients and 𝑓𝑖
is the smooth local function associated with the 𝑖-th client. We

focus on the scenario that each client can access its local function

and communicate with a central server.

The first-order methods are popular in such distributed setting

[1, 11, 12, 16, 18, 19, 22]. For each iteration of these methods, the

clients compute the gradients of their local functions in parallel and

the server updates the variable after receiving the local information

from clients, which results the computation on each machine be

efficient. The main drawback of first-order methods is that they

require a large amount of iterations to find an accurate solution. As

a consequence, factors like bandwidth limitation and latency in the

network leads to expensive communication cost in total.

The classical second-order methods have superior convergence

rates [22, 24] than the first-order methods. However, their exten-

sion to a distributed setting is non-trivial. The key challenge is how

to deliver the second-order information efficiently. One straight-

forward strategy is to perform classical Newton-type step on the

server within the aggregate Hessian, but this requires O(𝑑2) com-

munication complexity at each iteration, which is unacceptable in

distributed settings.

Several previous works address the communication issues in

distributed second-order optimization. They avoid O(𝑑2) commu-

nication cost per iteration but have several other shortcomings. We

briefly review three main approaches as follows.

• For the first one, each client performs Newton step with its local

Hessian and sends the descent direction to the server, then the

server aggregates all of local descent directions to update the

global variable [6, 8, 25, 27, 32, 37]. Their convergence rates

depend on the assumption of specific structure of the problems

or data similarity. In general case, their theoretical results are

no stronger than first-order methods.

• For the second one, the algorithms formulate a Newton step

by a (regularized) quadratic sub-problem and solve it with dis-

tributed first-order methods [25, 30, 36, 38]. The procedure of

solving sub-problem introduces additional computation and

communication complexity, which increases the total cost and

leads to complicated implementation.
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• For the third one, each client keeps the local second-order in-

formation whose change at each iteration can be stored in O(𝑑)
space complexity, which leads to the efficient communication [10,

26, 29]. However, the storage of local second-order information

on each client requires O(𝑑2) space complexity. Additionally,

the convergence guarantees of these methods require strong

assumptions such as Lipschitz continuity of each local Hessian.

Furthermore, most existing distributed second-ordermethods are

designed for convex optimization problems [6, 10, 26, 27, 29, 30, 32,

36–38]. Few works consider the theory for nonconvex case [8, 25].

Reddi et al. [25] provided non-asymptotic convergence rate to find

approximate first-order stationary point of nonconvex objective

function by distributed second-order method, but the convergence

result has no advantage over first-order methods. Ghosh et al. [8]

proposed a distributed cubic-regularized Newton method to find

the approximate second-order stationary point, while its conver-

gence guarantee requires very strong assumption that all of the

local Hessians during iterations are sufficiently close to the global

Hessian.

In this paper, we provide a novel mechanism to reduce the com-

munication cost for distributed second-order optimization. It only

communicates by gradients and Hessian-vector products. Con-

cretely, the server forms a cubic-regularized Newton step [7, 23]

based on the current aggregated gradient and the delayed Hessian

which is formed by Hessian-vector products received in recent iter-

ations. As a result, we propose a Communication and Computation

Efficient DistributEd Newton (C2EDEN) method, which has the

following attractive properties.

• It only requires O(𝑑) communication complexity at each

iteration, matching the cost of first-order methods.

• It has simple local update rule, which does not require any

subroutine with additional communication cost. Further-

more, the client avoids storing the local Hessian with O(𝑑2)
storage complexity.

• It can find an

(
𝜖,
√
𝑑𝐿𝜖

)
-second-order stationary pointwithin

O
(√
𝑑𝐿 𝜖−3/2

)
iterations for nonconvex problem, and exhibit

local superlinear convergence for strongly-convex problem.

• Its convergence guarantees do not require additional assump-

tions such as Lipschitz continuouity of the local Hessian or

strong convexity of the local function.

We summarize the main theoretical results of C2EDEN and related

work in Table 1. We also provide numerical experiments on both

convex and nonconvex problems to show the empirical superiority

for the proposed method.

Paper Organization. The remainder of the paper is organized as

follows. In Section 2 presents preliminaries. Section 3 provide the

details of C2EDEN method and provides the convergence analysis.

Section 4 validates our algorithm empirically to show its superiority.

Finally, we conclude our work in Section 5.

2 PRELIMINARIES
We use ∥ · ∥ to present spectral norm and Euclidean norm of ma-

trix and vector respectively. We denote the standard basis for R𝑑

by {e1, . . . , e𝑑 } and let I be the identity matrix. Given matrix H ∈
R𝑑×𝑑 , we write its 𝑗-th column as H( 𝑗), which is equal to He𝑗 . We

also denote the smallest eigenvalue of symmetric matrix by 𝜆min (·).

Throughout this paper, we make the following assumption.

Assumption 2.1. We assume each local function 𝑓𝑖 ( · ) is twice
differentiable and the objective 𝑓 ( · ) has a Lipschitz continuous

Hessian, i.e., there exists constant 𝐿 > 0 such that

∥∇2 𝑓 (x) − ∇2 𝑓 (y)∥ ≤ 𝐿∥x − y∥ (2)

for any x, y ∈ R𝑑 .

Comparedwith assuming each local Hessian∇2 𝑓𝑖 (·) is𝐿-Lipschitz
continuous [9, 10, 25–27, 29, 37, 38], the Lipschitz continuity on the

global Hessian ∇𝑓 2 ( · ) in Assumption 2.1 is much weaker.

For the nonconvex case, we assume the global objective is lower

bounded.

Assumption 2.2. We assume the global objective 𝑓 ( · ) is lower
bounded, i.e., we have 𝑓 ∗ ≜ infx∈R𝑑 𝑓 (x) > −∞.

We also consider the specific case in which the global objective

is strongly-convex.

Assumption 2.3. We assume the global objective 𝑓 ( · ) is strongly-
convex, i.e., there exists a constant 𝜇 > 0 such that ∇2 𝑓 (x) ⪰ 𝜇I for
any x ∈ R𝑑 .

Note that all existing superlinear convergent distributed second-

order methods require the strongly-convex assumption on each

local function 𝑓𝑖 ( · ) [9, 10, 26, 29], while our Assumption 2.3 only

requires the strong convexity of the global objective.

This paper studies second-order optimization on both convex

and nonconvex problems. For the convex case, we target to find

approximate first-order stationary point.

Definition 2.4. We call x is an 𝜖-first-order stationary point of 𝑓 (·)
if it satisfies ∥∇𝑓 (x)∥ ≤ 𝜖 .

For the nonconvex case, finding global solution is intractable

and the first-order stationary point may lead to the undesired sad-

dle point. Hence, we target to find the approximate second-order

stationary point to characterize the local optimality.

Definition 2.5. We call x is an (𝜖, 𝛿)-second-order stationary point
of 𝑓 (·) if it satisfies ∥∇𝑓 (x)∥ ≤ 𝜖 and ∇2 𝑓 (x) ⪰ −𝛿I.

3 ALGORITHM AND MAIN RESULTS
We first introduce our Communication and Computation Efficient

DistributEd Newton (C2EDEN) method and the main ideas, then

we provide the convergence guarantees.

3.1 The C2EDEN Method
We present the details of C2EDEN in Algorithm 1, where the no-

tation 𝑘%𝑑 presents the remainder of 𝑘 divided by 𝑑 ,𝑀 > 0 is the

cubic-regularized parameter and we use

T𝑀 (g,A; x)

= argmin

y∈R𝑑

{
⟨g, y − x⟩ + 1

2

⟨A(y − x), y − x⟩ + 𝑀
6

∥y − x∥3
}

(3)

to present the solution of the cubic-regularized sub-problem for a

given vector g ∈ R𝑑 and a symmetric matrix A ∈ R𝑑×𝑑 .
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Table 1: We summarize the distributed optimization algorithms by their communication complexity per iteration, space
complexity on each client, global convergence in the general nonconvex (NC) case, local convergence in the strongly-convex
(SC) case and additional assumption for convergence guarantee.

Method Communication
Complexity

Space
Complexity

Global Convergence
(NC)

Local Superlinear
Convergence

(SC)

No Additional Assumption
for Convergence

First-Order Methods

[18, 22]
O(𝑑 ) O (𝑑 ) O (𝜖−2 ) ✗ ✓

Distributed-(Cubic)-Newton

[21, 23]
O(𝑑2 ) O (𝑑2 ) O (𝜖−3/2 ) ✓ ✓

AIDE
(a)

[25]

O(𝑑 ) O (𝑑 ) ✗ ✗ ✗ (f), (g)

Disco/Accelerated ADAN
(a)

[36, 38]

O(𝑑 ) O (𝑑 ) ✗ ✗ ✗ (b)

(Inexact)-DANE/DANE-HB

[25, 27, 37]
O(𝑑 ) O (𝑑 ) O (𝜖−2 ) (d) ✗ ✗ (b), (f), (g)

GIANT

[32]
O(𝑑 ) O (𝑑 ) ✗ ✗ ✗ (b)

Local CRN

[8]
O(𝑑 ) O (𝑑 ) O (𝜖−3/2 ) (e) ✗ ✗ (b)

Compressed Distributed Newton

[9, 10, 26]
O(𝑑 ) O (𝑑2 ) ✗ ✓ (c) ✗(h)

Distributed-Quasi-Newton

[29]
O(𝑑 ) O (𝑑2 ) ✗ ✓ ✗(f), (g), (h)

C2EDEN

Algorithm 1
O(𝑑 ) O (𝑑 ) O (𝜖−3/2 ) ✓ ✓

(a)
The method(s) have to solve a sub-problem at each iteration, which requires additional communication complexity.

(b)
The method(s) require data similarity to guarantee their convergence.

(c)
The local superlinear convergence requires all of the local client Hessian estimator be close to ∇2 𝑓𝑖 (x∗ ) at each iteration.

(d)
The global convergence rate is only established for finding approximate first-order stationary point.

(e)
The global convergence rate requires very strong assumption such that ∥∇𝑓𝑖 (x) − ∇𝑓 (x) ∥ ≤ 𝜖 and ∥∇2 𝑓𝑖 (x) − ∇2 𝑓 (x) ∥ ≤

√
𝜖 .

(f)
The convergence guarantee requires each 𝑓𝑖 ( ·) is strongly-convex.

(g)
The convergence guarantee requires each ∇𝑓𝑖 ( ·) is Lipschitz continuous.

(h)
The convergence guarantee requires each ∇2 𝑓𝑖 ( ·) is Lipschitz continuous.

We partition the Hessian at at snapshot point x̃ into 𝑑 columns

∇2 𝑓𝑖 (x̃) =


��� ��� ���

∇2 𝑓𝑖 (x̃)e1 ∇2 𝑓𝑖 (x̃)e2 · · · ∇2 𝑓𝑖 (x̃)e𝑑��� ��� ���
 .

C2EDEN atomize the communication of local ∇2 𝑓𝑖 (x̃) into 𝑑 con-

secutive iterations by sending v𝑖,𝑘 = ∇2 𝑓𝑖 (x̃)e𝑘%𝑑+1 for 𝑖 = 1, . . . , 𝑛

at the 𝑘-th iteration. Note that the cubic-regularized Newton steps

in our method only use the Hessian at snapshot point x̃, which is

updated per 𝑑 iterations. Also note that any iteration of C2EDEN

avoids the construction of a full local Hessian on the client, which

significantly reduces computational cost of accessing the second-

order information. Additionally, the iteration of C2EDEN only com-

municates the local gradient g𝑖,𝑘 and Hessian-vector product v𝑖,𝑘
together, which means each client only requires O(𝑑) communica-

tion complexity and O(𝑑) space complexity to deal with its local

second-order information.

The computational cost of C2EDEN is dominated by computing

Hessian-vector products on clients and solving the cubic-regularized

sub-problem on server. We emphasis that these two steps can be

executed in parallel. Since the computation of x𝑘+1 (line 22) on the

server only depends on previous Hessian at x̃, all of the clients are
allowed to compute v𝑖,𝑘 (line 16) at the same time. Additionally, the

reuse of Hessian at snapshot x̃ leads to a computational complexity

for achieving x𝑘+1 in O(𝑑2) on average [7].

We present the pipeline for one epoch of C2EDEN in Figure 1 to

illustrate our mechanism.

3.2 Convergence Analysis
This section provides theoretical guarantees of C2EDEN for both

nonconvex case and strongly-convex case.

At the 𝑘-th iteration of Algorithm 1 with 𝑘 = 𝑡𝑑 + 𝑞, it performs

the cubic-regularized Newton step on the server by using the matrix

H that is exactly the Hessian at the previous snapshot point x𝑡 (𝑑−1)
and vector gradient g𝑘 that is the gradient at the current point x𝑘 .
Hence, the update rule of C2EDEN on the server can be written as

x𝑘+1 = T𝑀

(
∇𝑓 (x𝑘 ),∇2 𝑓

(
x𝜏 (𝑘 ;𝑑 )

)
; x𝑘

)
, (4)

where 𝜏 (𝑘 ;𝑑) = 𝑑 (⌊𝑘/𝑑⌋ − 1).

3.2.1 The Analysis in Nonconvex Case. For the general non-convex
case, we introduce the auxiliary quantity [7, 23]

𝛾 (x) ≜ max

{
− 1

648𝑀2
𝜆min

(
∇2 𝑓 (x)

)
3

,
1

72

√
2𝑀

∥∇𝑓 (x)∥3/2
}
. (5)

for our analysis.
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Iteration 𝑘 = 𝑡𝑑 · · · · · · 𝑘 = 𝑡𝑑 + (𝑑 − 1)

𝑖-th Client g𝑖,𝑡𝑑 = ∇𝑓𝑖 (x𝑡𝑑 ) v𝑖,𝑡𝑑 = ∇2 𝑓𝑖 (x̃)e1 · · · · · · g𝑖,𝑡𝑑+(𝑑−1) = ∇𝑓𝑖
(
x𝑡𝑑+(𝑑−1)

)
v𝑖,𝑡𝑑+(𝑑−1) = ∇2 𝑓𝑖 (x̃)e𝑑

Server x𝑡𝑑+1 = T𝑀

(
g𝑡𝑑 ,H; x𝑡𝑑

)
· · · · · · x(𝑡+1)𝑑 = T𝑀

(
g𝑡𝑑+(𝑑−1) ,H; x𝑡𝑑+(𝑑−1)

)
Figure 1: We present the pipeline of C2EDEN from its 𝑡𝑑-th iteration to (𝑡𝑑 + (𝑑 − 1))-th iteration, where x̃ = x𝑡𝑑
and H = ∇2 𝑓

(
x(𝑡−1)𝑑

)
. The algorithm atomizes the cost of constructing ∇2 𝑓 (x̃) = ∇2 𝑓 (x𝑡𝑑 ) by computing Hessian-vector

products ∇2 𝑓𝑖 (x̃)e1, . . . ,∇2 𝑓𝑖 (x̃)e𝑑 on clients during these 𝑑 iterations. The server has already obtained matrix H at the (𝑡𝑑 − 1)-th
iteration and the Hessian ∇2 𝑓 (x̃) is constructed for the next epoch, that is from the (𝑡 +1)𝑑-th iteration to the ((𝑡 +1)𝑑 + (𝑑 −1))-th
iteration.

Algorithm 1 C2EDEN (x0, 𝑀, 𝐾)
1: for 𝑘 = 0, 1 · · ·𝑑 − 1 do

2: for 𝑖 = 1, . . . , 𝑛 do in parallel

3: 𝑖-th client:

4: compute v𝑖,𝑘 = ∇2 𝑓𝑖 (x0)e𝑘+1
5: end if

6: server:

7: aggregate H+ (𝑘 + 1) = 1

𝑛

∑𝑛
𝑖=1 v𝑖,𝑘

8: end for

9: x𝑑 = x0
10: for 𝑘 = 𝑑, 𝑑 + 1, . . . , 𝐾 do

11: if 𝑘%𝑑 = 0 then

12: server:

13: update x̃ = x𝑘 and H = H+

14: end if

15: for 𝑖 = 1, . . . , 𝑛 do in parallel

16: 𝑖-th client:

17: compute v𝑖,𝑘 = ∇2 𝑓𝑖 (x̃)e𝑘%𝑑+1
18: compute g𝑖,𝑘 = ∇𝑓𝑖 (x𝑘 )
19: send g𝑖,𝑘 and v𝑖,𝑘
20: end for

21: server:

22: aggregate g𝑘 = 1

𝑛

∑𝑛
𝑖=1 g𝑖,𝑘

23: compute and broadcast x𝑘+1 = T𝑀 (g𝑘 ,H; x𝑘 )
24: aggregate H+ (𝑘%𝑑 + 1) = 1

𝑛

∑𝑛
𝑖=1 v𝑖,𝑘

25: end for

Weprovide the following lemma to show the decrease of function

value by a step of solving cubic-regularized sub-problem.

Lemma 3.1 ([7, Theorem 1]). Suppose Assumption 2.1 holds and we
have𝑀 ≥ 𝐿, then the update T = T𝑀

(
∇𝑓 (x),∇2 𝑓 (z); x

)
holds that

𝑓 (x) − 𝑓 (T) ≥ 𝛾 (T) + 𝑀

48

∥T − x∥3 − 11𝐿3

𝑀2
∥z − x∥3, (6)

for any x, z ∈ R𝑑 .

Then we present some technical lemmas for later analysis.

Lemma 3.2. For any sequence of positive numbers {𝑟𝑘 }𝑘≥0, it holds
for any𝑚 ≥ 1 that (

𝑚−1∑︁
𝑖=0

𝑟𝑖

)
3

≤ 𝑚2

𝑚−1∑︁
𝑖=0

𝑟3𝑖 . (7)

Proof. We directly prove this result by using Jensen’s inequality

that

∑𝑚−1
𝑖=0

(
1

𝑚 𝑟
3

𝑖

)
3

≤ 1

𝑚

∑𝑚−1
𝑖=0 𝑟3

𝑖
. □

Lemma 3.3. For any sequence of positive numbers {𝑟𝑘 }𝑘≥0, it holds
for any𝑚 ≥ 1 that

2𝑚−1∑︁
𝑘=𝑚

(
𝑘∑︁
𝑖=0

𝑟𝑖

)3
≤ 3(𝑚 + 1)3

2𝑚−1∑︁
𝑖=0

𝑟3𝑖 . (8)

Proof. We prove this statement by induction.

For𝑚 = 1, it follows that (𝑟0 + 𝑟1)3
(7)

≤ 4(𝑟3
1
+ 𝑟3

2
) . Suppose the

inequality (8) holds for𝑚 = 1, 2 . . . , 𝑛 − 1, then we have

2𝑛−1∑︁
𝑘=𝑛

(
𝑘∑︁
𝑖=0

𝑟𝑖

)3
=

2𝑛−3∑︁
𝑘=𝑛

(
𝑘∑︁
𝑖=0

𝑟𝑖

)3
+

(
2𝑛−1∑︁
𝑖=0

𝑟𝑖

)
3

+
(
2𝑛−2∑︁
𝑖=0

𝑟𝑖

)
3

≤
2𝑛−3∑︁
𝑘=𝑛−1

(
𝑘∑︁
𝑖=0

𝑟𝑖

)3
+

(
2𝑛−1∑︁
𝑖=0

𝑟𝑖

)
3

+
(
2𝑛−2∑︁
𝑖=0

𝑟𝑖

)
3

(7)

≤
2𝑛−3∑︁
𝑘=𝑛−1

(
𝑘∑︁
𝑖=0

𝑟𝑖

)3
+ (2𝑛)2

2𝑛−1∑︁
𝑖=0

𝑟3𝑖 + (2𝑛 − 1)2
2𝑛−2∑︁
𝑖=0

𝑟3𝑖

(8)

≤ 3𝑛3
2𝑛−3∑︁
𝑖=0

𝑟3𝑖 + 8𝑛2
2𝑛−1∑︁
𝑖=0

𝑟3𝑖 ≤ 3(𝑛 + 1)3
2𝑛−1∑︁
𝑖=0

𝑟3𝑖 ,

which finishes the induction. □

Lemma 3.4. For any sequence of positive numbers {𝑟𝑘 }𝑘≥0, it holds
that

𝑚+𝑝∑︁
𝑘=𝑚

(
𝑘−1∑︁
𝑖=0

𝑟𝑖

)3
≤ 4(𝑚 + 1)3

𝑚+𝑝∑︁
𝑖=0

𝑟3𝑖 (9)

for any𝑚 and 𝑝 such that 1 ≤ 𝑝 ≤ 𝑚.
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Proof. We have

𝑚+𝑝∑︁
𝑘=𝑚

(
𝑘−1∑︁
𝑖=0

𝑟𝑖

)3
≤
𝑚+𝑝∑︁
𝑘=𝑚

(
𝑚+𝑝−1∑︁
𝑖=0

𝑟𝑖

)3
(7)

≤ (𝑚 + 𝑝)2 (𝑝 + 1)
𝑚+𝑝−1∑︁
𝑖=0

𝑟3𝑖 ≤ 4(𝑚 + 1)3
𝑚+𝑝∑︁
𝑖=0

𝑟3𝑖 .

□

Now, we formally present the global convergence of C2EDEN

in the following theorem, which shows that our algorithm can

find an

(
𝜖,
√
𝑑𝐿𝜖

)
-second-order stationary point by O

(√
𝑑𝐿 𝜖−3/2

)
iterations.

Theorem3.5. Suppose Assumption 2.1 and 2.2 hold. Running C2EDEN
(Algorithm 1) with𝑀 = 12𝑑𝐿 holds that

min

𝑑<𝑖≤𝐾
𝛾 (x𝑖 ) ≤

𝑓 (x0) − 𝑓 ∗
𝐾 − 𝑑 , (10)

which means by setting the number iterations as 𝐾 = O
(√
𝑑𝐿𝜖−3/2

)
there exists some x𝑖 with 𝑑 < 𝑖 ≤ 𝐾 such that

∥∇𝑓 (x𝑖 )∥ ≤ 𝜖 and 𝜆min

(
∇2 𝑓 (x𝑖 )

)
≥ −

√
𝑑𝐿𝜖.

Proof. We write the total number of iterations as 𝐾 = 𝑑𝑡 + 𝑝 ,
where 𝑡 = ⌊𝐾/𝑑⌋ and 𝑝 = 𝐾%𝑑 . We denote x𝑑−1 = x𝑑−2 · · · = x0 in
the following analysis. We have

𝑓 (x𝑑 ) − 𝑓 (x𝐾 ) =
𝐾−1∑︁
𝑖=𝑑

𝑓 (x𝑖 ) − 𝑓 (x𝑖+1 )

(6)

≥
𝐾−1∑︁
𝑖=𝑑

(
𝛾 (x𝑖+1 ) +

𝑀

48

∥x𝑖+1 − x𝑖 ∥3 −
11𝐿3

𝑀3
∥x𝑖 − x𝜏 (𝑖 ;𝑑 ) ∥3

)
=

(
𝐾−1∑︁
𝑖=𝑑

𝛾 (x𝑖+1 )
)
+
𝐾−1∑︁
𝑖=𝑑

(
𝑀

48

∥x𝑖+1 − x𝑖 ∥3 −
11𝐿3

𝑀2
∥x𝑖 − x𝜏 (𝑖 ;𝑑 ) ∥3

)
.

(11)

We first focus on the term of

𝐾−1∑︁
𝑖=𝑑

∥x𝑖 − x𝜏 (𝑖;𝑑 ) ∥3 =
𝑑𝑡−1∑︁
𝑖=𝑑

∥x𝑖 − x𝜏 (𝑖;𝑑 ) ∥3︸                   ︷︷                   ︸
𝐴

+
𝑑𝑡+𝑝−1∑︁
𝑖=𝑑𝑡

∥x𝑖 − x𝜏 (𝑖;𝑑 ) ∥3︸                      ︷︷                      ︸
𝐵

.

For any integer 𝑁 ≥ 1, we have

(𝑁+1)𝑑−1∑︁
𝑖=𝑁𝑑

∥x𝑖 − x𝜏 (𝑖;𝑑 ) ∥3 ≤
(𝑁+1)𝑑−1∑︁
𝑖=𝑁𝑑

©­«
𝑖−1∑︁

𝑘=(𝑁−1)𝑑
∥x𝑘+1 − x𝑘 ∥

ª®¬
3

≤3(𝑑 + 1)3
(𝑁+1)𝑑−1∑︁
𝑖=(𝑁−1)𝑑

∥x𝑖+1 − x𝑖 ∥3,

(12)

where the first step comes from the triangle inequality such that

∥x𝑖 − x𝜏 (𝑖;𝑑 ) ∥ =







 𝑖−1∑︁
𝑘=𝜏 (𝑖;𝑑 )

(x𝑘+1 − x𝑘 )







 ≤
𝑖−1∑︁

𝑘=𝜏 (𝑖;𝑑 )
∥x𝑘+1 − x𝑘 ∥,

and the second step is obtained by using Lemma 3.3 with

𝑟𝑘 = ∥x(𝑁−1)𝑑+𝑘+1 − x(𝑁−1)𝑑+𝑘 ∥,

which leads to

(𝑁+1)𝑑−1∑︁
𝑖=𝑁𝑑

©­«
𝑖−1∑︁

𝑘=(𝑁−1)𝑑
∥x𝑘+1 − x𝑘 ∥

ª®¬
3

=

2𝑑−1∑︁
𝑖=𝑑

(
𝑖−1∑︁
𝑘=0

𝑟𝑘

)
3

≤
2𝑑−1∑︁
𝑖=𝑑

(
𝑖∑︁
𝑘=0

𝑟𝑘

)
3

(8)

≤ 3(𝑑 + 1)3
2𝑑−1∑︁
𝑘=0

𝑟3
𝑘

= 3(𝑑 + 1)3
(𝑁+1)𝑑−1∑︁
𝑖=(𝑁−1)𝑑

∥x𝑖+1 − x𝑖 ∥3 .

Hence, we have

𝐴 ≤
𝑡∑︁

𝑁=1

©­«
(𝑁+1)𝑑−1∑︁
𝑖=𝑁𝑑

∥x𝑖 − x𝜏 (𝑖;𝑑 ) ∥3
ª®¬

(12)

≤ 6(𝑑 + 1)3
(𝑡−1)𝑑−1∑︁
𝑘=𝑑

∥x𝑘+1 − x𝑘 ∥3

+ 3(𝑑 + 1)3 ©­«
𝑑−1∑︁
𝑘=0

∥x𝑘+1 − x𝑘 ∥3 +
𝑡𝑑∑︁

𝑘=(𝑡−1)𝑑
∥x𝑘+1 − x𝑘 ∥3

ª®¬ .
Using Lemma 3.4 with 𝑟𝑘 = ∥x𝑑 (𝑡−1)+𝑘+1 − x𝑑 (𝑡−1)+𝑘 ∥, we obtain

𝐵 =

𝑑𝑡+𝑝∑︁
𝑖=𝑑𝑡

∥x𝑖 − x𝑑 (𝑡−1) ∥3 ≤
𝑑+𝑝∑︁
𝑖=𝑑

(
𝑖−1∑︁
𝑘=0

𝑟3
𝑘

)
(9)

≤ 4(𝑚 + 1)3
𝑑𝑡−1∑︁

𝑖=𝑑 (𝑡−1)
∥x𝑖+1 − x𝑖 ∥3 + 4(𝑑 + 1)3

𝑑𝑡+𝑝∑︁
𝑑𝑡

∥x𝑖+1 − x𝑖 ∥3 .

Combining above results, we have

𝐾−1∑︁
𝑖=𝑑

∥x𝑖 − x𝜏 (𝑖;𝑑 ) ∥3 = 𝐴 + 𝐵

≤7(𝑑 + 1)3
𝐾−1∑︁
𝑘=𝑑

∥x𝑘+1 − x𝑘 ∥3 + 3(𝑑 + 1)3
𝑑−1∑︁
𝑘=0

∥x𝑘+1 − x𝑘 ∥3,

(13)

which implies

𝑀

48

𝐾−1∑︁
𝑖=𝑑

(
∥x𝑖+1 − x𝑖 ∥3

)
− 11𝐿3

𝑀2

𝐾−1∑︁
𝑖=𝑑

(
∥x𝑖 − x𝜏 (𝑖;𝑑 ) ∥3

)
(13)

≥
(
𝑀

48

− 77(𝑑 + 1)3𝐿3
𝑀2

) 𝐾−1∑︁
𝑖=𝑑

∥x𝑖+1 − x𝑖 ∥3

− 33𝐿3 (𝑑 + 1)3
𝑀2

𝑑−1∑︁
𝑖=0

∥x𝑖+1 − x𝑖 ∥3 ≥ 0.

The last inequality comes from the facts that we set 𝑀 = 12𝑑𝐿

and x0 = x1 · · · x𝑑−1 = x𝑑 . Connecting above results to inequal-

ity (11), we obtain

𝑓 (x0) − 𝑓 ∗ ≥ 𝑓 (x𝑑 ) − 𝑓 (x𝐾 )

(11)

≥
𝐾−1∑︁
𝑖=𝑑

𝛾 (x𝑖+1) +
𝑀

48

𝐾−1∑︁
𝑖=𝑑

(
∥x𝑖+1 − x𝑖 ∥3

)
− 11𝐿3

𝑀2

𝐾−1∑︁
𝑖=𝑑

∥x𝑖 − x𝜏 (𝑖;𝑑 ) ∥3 ≥
𝐾−1∑︁
𝑖=𝑑

𝛾 (x𝑖+1),
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which proves (10). By setting 𝐾 = O
(√
𝑑𝐿𝜖−3/2

)
, we can find some

x𝑖 with 𝑑 ≤ 𝑖 ≤ 𝐾 such that x𝑖 is a
(
𝜖,
√
𝑑𝐿𝜖

)
-second-order station-

ary point of 𝑓 (·). □

3.2.2 The Analysis in Strongly-Convex Case. The classical second-
order methods enjoy local superlinear convergence for minimizing

the strongly-convex objective on single machine [22–24]. However,

most of distributed second-order methods only achieve linear con-

vergence rate because of the trade-off between the communication

complexity and the convergence rate [25, 27, 32, 36, 38].

In contrast, the efficient communication mechanism of C2EDEN

still keeps the superlinear convergence like classical second-order

methods. The following theorem formally presents this property.

Theorem 3.6. Under Assumption 2.1 and 2.3, running Algorithm 1
with𝑀 ≥ 0 and the initial point x0 such that

∥∇𝑓 (x0)∥ ≤ 𝜇2

2(𝑀 + 3𝐿) , (14)

then for any 𝑘 ≥ 𝑑 , we have

∥∇𝑓 (x𝑘 )∥ ≤ 𝜇2

𝑀 + 3𝐿

(
1

2

)ℎ (𝑘 )
(15)

where ℎ(𝑘) =
(
(1 + 𝑑) ⌊𝑘/𝑑 ⌋%2 + 𝑘%𝑑

)
(1 + 𝑑) ⌊ ⌊𝑘/𝑑 ⌋/2⌋−1 .

Proof. According to the analysis in Section 5 of Doikov et al.

[7], the cubic-regularized update (4) satisfies

∥∇𝑓 (x𝑘+1)∥≤
𝑀 + 3𝐿

2𝜇2
∥∇𝑓 (x𝑘 )∥2 +

𝐿

𝜇2
∥∇𝑓 (x𝑘 )∥∥∇𝑓 (x𝜏 (𝑘 ;𝑑 ) )∥.

We let 𝑐 = 𝑀+3𝐿
𝜇2

and 𝑠 𝑗 = 𝑐 ∥∇𝑓 (x𝑗 )∥, then above inequality can be

written as 𝑠𝑘+1 ≤ 1

2
𝑠2
𝑘
+ 1

2
𝑠𝑘𝑠𝜄 (𝑘 ;𝑑 ) .We first use induction to show

𝑠𝑘+1 ≤ 𝑠𝑘 and 𝑠𝑘 ≤ 1

2

. (16)

hold for any 𝑘 ≥ 𝑑 . For 𝑘 = 𝑑 , the initial condition (14) and the

setting x0 = x1 · · · = x𝑑 in the algorithmmeans 𝑠𝑑+1 ≤ 𝑠2
0
≤ 𝑠0 = 𝑠𝑑

and 𝑠𝑑 = 𝑠0 ≤ 1

2
. Suppose the results of (16) hold for any 𝑘 ≤ 𝑘′ − 1.

Then for 𝑘 = 𝑘′, we have 𝑠𝑘 ′+1 ≤ 1

2
𝑠2
𝑘 ′

+ 1

2
𝑠𝑘 ′𝑠𝜏 (𝑘 ′ ;𝑑 )

(16)

≤ 𝑠𝑘 ′
(16)

≤ 1

2
,

which finish the induction. Thus, we have

𝑠𝑘+1 ≤ 1

2

𝑠2
𝑘
+ 1

2

𝑠𝑘𝑠𝜏 (𝑘 ;𝑑 )
(16)

≤ 𝑠𝑘𝑠𝜏 (𝑘 ;𝑑 ) . (17)

Then we use induction to show

𝑠𝑡𝑑 ≤
(
1

2

) (1+𝑑 ) ⌊ (𝑡+1)/2⌋−1
, (18)

for all 𝑡 ≥ 1. For 𝑡 = 1, we directly have 𝑠𝑑 = 𝑠0 ≤ 1

2
. Suppose the

inequality (18) holds for 𝑡 = 𝑡 ′. For 𝑡 = 𝑡 ′ + 1, we have

𝑠 (𝑡 ′+1)𝑑
(16)

≤ 𝑠 (𝑡 ′+1)𝑑−1𝑠𝑡 ′𝑑−𝑑
(17)

≤ 𝑠 (𝑡 ′+1)𝑑−2𝑠
2

(𝑡 ′−1)𝑑

≤ · · · ≤ 𝑠𝑡 ′𝑑𝑠𝑑(𝑡 ′−1)𝑑
(18)

≤
(
1

2

) (1+𝑑 ) ⌊ (𝑡 ′+1)/2⌋−1 (
1

2

) (1+𝑑 ) ⌊𝑡 ′/2⌋−1𝑑
.

(19)

If 𝑡 ′ is an even number, we can write 𝑡 ′ = 2𝑞 and it holds that

𝑠 (𝑡 ′+1)𝑑
(19)

≤
(
1

2

) (1+𝑑 )𝑞−1+(1+𝑑 )𝑞−1𝑑
=

(
1

2

) (1+𝑑 )𝑞
=

(
1

2

) (1+𝑑 ) ⌊ (𝑡 ′+2)/2⌋−1
.

If 𝑡 ′ is an odd number, we can write 𝑡 ′ = 2𝑞 + 1 and it holds that

𝑠 (𝑡 ′+1)𝑑
(19)

≤
(
1

2

) (1+𝑑 )𝑞+(1+𝑑 )𝑞−1𝑑
≤

(
1

2

) (1+𝑑 )𝑞
=

(
1

2

) (1+𝑑 ) ⌊ (𝑡 ′+2)/2⌋−1
.

Above discussion finishes the induction.

For the 𝑘-th iteration, we write 𝑘 = 𝑑𝑡 + 𝑝 , where 𝑡 = ⌊𝑘/𝑑⌋
and 𝑝 = 𝑘%𝑑 . Then, we have

𝑠𝑘
(17)

≤ 𝑠𝑘−1𝑠 (𝑡−1)𝑑 ≤ 𝑠𝑡𝑑𝑠
𝑝

(𝑡−1)𝑑

(18)

≤
(
1

2

) (1+𝑑 ) ⌊ (𝑡+1)/2⌋−1 (
1

2

) (1+𝑑 ) ⌊𝑡/2⌋−1𝑝
≤

(
1

2

) (
(1+𝑑 )𝑡%2+𝑝

)
(1+𝑑 ) ⌊𝑡/2⌋−1

.

Substituting the definition of 𝑠𝑘 into above result, we obtain (15).

□

Remark 3.7. We can verify the superlinear convergence of C2EDEN

as follows

lim

𝑘→∞
∥∇𝑓 (x𝑘+1)∥
∥∇𝑓 (x𝑘 )∥

= lim

𝑘→∞
𝑠𝑘+1
𝑠𝑘

(17)

≤ lim

𝑘→∞
𝑠𝜏 (𝑘 ;𝑑 )

(15)

= 0.

Remark 3.8. Theorem 3.6 indicates the local superlinear conver-

gence rate of C2CEDEN in strongly-convex case can be obtained

by taking𝑀 = 0, which leads to the step of line 23 in Algorithm 1

has the closed form expression of x𝑘+1 = H−1g𝑘 .

4 EXPERIMENT
In this section, we provide numerical experiments for the proposed

Communication and Computation Efficient DistributEd Newton

(C2EDEN) method on regularized logistic regression. The model is

formulated as the form of (1) with

𝑓𝑖 (x) =
1

𝑚𝑖

𝑚𝑖∑︁
𝑗=1

ln

(
1 + exp (−𝑏𝑖 𝑗x⊤a𝑖 𝑗 )

)
+ 𝜆𝑅(x), (20)

where a𝑖 𝑗 ∈ R𝑑 and 𝑏𝑖 𝑗 ∈ {−1, +1} are the feature and the corre-

sponding label of the 𝑗-th sample on the 𝑖-th client, 𝑚𝑖 denotes

the number of samples on the 𝑖-th client, 𝑅(x) is the regularization
term. We set the hyperparameter 𝜆 = 10

−6
and the number of

clients 𝑛 = 16 and 𝑛 = 32.

Our experiments are conducted onAMDEPYC 7H12 64-Core Pro-

cessor with 512GBmemory
1
. We useMPI 3.3.2 and Python 3.9 to im-

plement the algorithms and the operating system is Ubuntu 20.04.2.

We compare our the proposed C2EDEN with the baseline algo-

rithms that require O(𝑑) communication complexity per iteration

and avoid O(𝑑2) space complexity on the client. All of the datasets

we used are can be downloaded from LIBSVM repository [5].

1
The code for our experiments can be downloaded from https://github.com/7CCLiu/

C2EDEN for reproducibility.

https://github.com/7CCLiu/C2EDEN
https://github.com/7CCLiu/C2EDEN
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Figure 2: The results of the model of nonconvex regularized logistic regression on a9a (𝑛=32).
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Figure 3: The results of the model of nonconvex regularized logistic regression on w8a (𝑛=32).
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Figure 4: The results of the model of nonconvex regularized logistic regression on mushrooms (𝑛=32).
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Figure 5: The results of the model of nonconvex regularized logistic regression on a9a (𝑛=16).

4.1 The Nonconvex Case
We consider logistic regression with the following regularization

𝑅(x) = ∑𝑑
𝑝=1

𝑥2(𝑝 )
1+𝑥2(𝑝 )

, where 𝑥 (𝑝 ) is the 𝑝-th coordinate of x ∈ R𝑑 .

Such setting leads to the objective 𝑓 (·) be nonconvex [2].
We compare the proposed C2EDEN with the distributed gra-

dient descent (GD) [22] and the local cubic-regularized Newton

(LCRN) [8] method. We evaluate all of the algorithms on datasets

“a9a” ,“w8a” and “mushrooms”. For GD, we tune the step-size from

{10−1, 10−2, 10−3}. For C2EDEN and local cubic-Newton, we tune

the regularization parameter𝑀 from {1, 10, 100}.
We present the results for 𝑛 = 32 in Figure 2, 3 and 4 and the

results for 𝑛 = 16 in Figure 5, 6 and 7 by showing the comparison on

the number of iterations and computational time (seconds) against

the function value gap 𝑓 (x𝑘 ) − ˆ𝑓 and gradient norm, where
ˆ𝑓 is the

smallest function value appears in the iterations of all algorithms.

All the figures show that both of the function value gap and the

gradient norm of C2EDEN decrease much faster than the baselines.
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Figure 6: The results of the model of nonconvex regularized logistic regression on w8a (𝑛=16).
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Figure 7: The results of the model of nonconvex regularized logistic regression on mushrooms (𝑛=16).
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Figure 8: The results of the model of ℓ2-regularized logistic regression on a9a (𝑛=32).
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Figure 9: The results of the model of ℓ2-regularized logistic regression on a9a (𝑛=32).

4.2 The Strongly-Convex Case
Thenwe consider logistic regression with the ℓ2-regularization term

𝑅(x) = 1

2
∥x∥2, which leads to the objective be strongly-convex.

We compare the proposed C2EDEN with the distributed acceler-

ated gradient descent (AGD) [22] and the GIANT [32]. We evaluate

all of the algorithms on datasets “a9a”, “phishing” and “splice”. For

AGD, we tune the step size form {10−1, 10−2, 10−3} and tune the

momentum parameter from {0.9, 0.99, 0.999}. We also introduce a

warm-up phrase for GIANT to achieve its region of local conver-

gence.

We present the results for 𝑛 = 32 in Figure 8, 9 and 10 and the

results for 𝑛 = 16 in Figure 11, 12 and Figure 13 by showing the

comparison on the number of communication rounds and com-

putational time (seconds) against function value gap and gradient

norm.

We can observe that C2EDEN performs the superlinear rate from

early iterations (i.e. (c) of Figure 8 after ∇𝑓 (x𝑘 ) ≤ 1e − 2) and it

converges much faster than baselines.
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Figure 10: The results of the model of ℓ2-regularized logistic regression on splice (𝑛=32).
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Figure 11: The results of the model of ℓ2-regularized logistic regression on a9a (𝑛=16).
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Figure 12: The results of the model of ℓ2-regularized logistic regression on phishing (𝑛=16).
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Figure 13: The results of the model of ℓ2-regularized logistic regression on splice (𝑛=16).

5 CONCLUSION
In this work, we propose the Communication and Computation

EfficiEnt Distributed Newton (C2EDEN) method for distributed

optimization. We provide a new mechanism to communicate the

second-order information along with a simple yet efficient update

rule. We prove the proposed method possesses the fast convergence

rate like the classical second-order methods on single machine op-

timization problems. The empirical studies on both convex and

nonconvex optimization problem also support our theoretical anal-

ysis.

For the future work, it is very interesting to generalize our ideas

to the setting of decentralized optimization. It is also possible to

design the stochastic variants of C2EDEN.



KDD ’23, Long Beach, CA, USA,
Liu et al.

REFERENCES
[1] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed

gradient descent. arXiv preprint arXiv:1704.05021, 2017.
[2] Anestis Antoniadis, Irène Gijbels, and Mila Nikolova. Penalized likelihood re-

gression for generalized linear models with non-quadratic penalties. Annals of
the Institute of Statistical Mathematics, 63(3):585–615, 2011.

[3] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.

Distributed optimization and statistical learning via the alternating direction

method of multipliers. Foundations and Trends® in Machine learning, 3(1):1–122,
2011.

[4] Stephen P. Boyd. Convex optimization: from embedded real-time to large-scale

distributed. In KDD, 2011.
[5] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector

machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software and datasets available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[6] Rixon Crane and Fred Roosta. DINGO: Distributed Newton-type method for

gradient-norm optimization. NeurIPS, 2019.
[7] Nikita Doikov, El Mahdi Chayti, and Martin Jaggi. Second-order optimization

with lazy Hessians. arXiv preprint arXiv:2212.00781, 2022.
[8] Avishek Ghosh, Raj Kumar Maity, Arya Mazumdar, and Kannan Ramchandran.

Escaping saddle points in distributed Newton’s method with communication

efficiency and Byzantine resilience. arXiv preprint arXiv:2103.09424, 2021.
[9] Rustem Islamov, XunQian, and Peter Richtárik. Distributed second ordermethods

with fast rates and compressed communication. In ICML, 2021.
[10] Rustem Islamov, Xun Qian, Slavomír Hanzely, Mher Safaryan, and Peter

Richtárik. Distributed Newton-type methods with communication compres-

sion and Bernoulli aggregation. arXiv preprint arXiv:2206.03588, 2022.
[11] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian

Stich, and Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging

for federated learning. In ICML, 2020.
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