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ABSTRACT
The multi-criteria (MC) recommender system, which leverages MC

rating information in a wide range of e-commerce areas, is ubiq-

uitous nowadays. Surprisingly, although graph neural networks

(GNNs) have been widely applied to develop various recommender

systems due to GNN’s high expressive capability in learning graph

representations, it has been still unexplored how to design MC

recommender systems with GNNs. In light of this, we make the

first attempt towards designing a GNN-aided MC recommender sys-

tem. Specifically, rather than straightforwardly adopting existing

GNN-based recommendation methods, we devise a novel crite-
ria preference-aware light graph convolution (CPA-LGC) method,

which is capable of precisely capturing the criteria preference of

users as well as the collaborative signal in complex high-order

connectivities. To this end, we first construct an MC expansion
graph that transforms user–item MC ratings into an expanded bi-

partite graph to potentially learn from the collaborative signal in

MC ratings. Next, to strengthen the capability of criteria prefer-

ence awareness, CPA-LGC incorporates newly characterized em-

beddings, including user-specific criteria-preference embeddings and
item-specific criterion embeddings, into our graph convolutionmodel.

Through comprehensive evaluations using four real-world datasets,

we demonstrate (a) the superiority over benchmark MC recommen-

dation methods and benchmark recommendation methods using

GNNs with tremendous gains, (b) the effectiveness of core compo-

nents in CPA-LGC, and (c) the computational efficiency.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
The so-called multi-criteria (MC) recommender system has been in-

creasingly valuable for improving the recommendation accuracy

based on enriched information in terms of criteria ratings of each
item in a wide range of service areas such as restaurants, hotels,

movies, music, etc. [18, 22, 29, 31, 36, 38]. MC recommender sys-

tems usually have a better ability in recommending relevant items

to a user, compared to single rating systems, while better repre-

senting predilections of users [9, 18, 22, 31, 36, 51]. For instance,

as illustrated in Figure 1a, a user can provide four criteria ratings

(including overall ratings) in a hotel domain with the criterion being

price, kindness, and cleanliness.

On one hand, collaborative filtering (CF), which exploits similar

patterns learned from user–item historical interactions to recom-

mend the most relevant items to a user, has emerged as one of

the most common approaches to building recommender systems

[13, 28, 40, 42]. Due to its effectiveness and ease of implementation,

most of existing MC recommender systems have been developed

using various CF-based techniques such as matrix factorization

[5, 9, 51] and deep neural networks [31, 36, 37]. However, such

prior studies are unable to explicitly capture the collaborative sig-

nal in complex contextual semantics across MC ratings.

On the other hand, graph neural networks (GNNs) have been

applied to a wide range of recommendation tasks (e.g., LightGCN
[13] in single-rating recommendation, SURGE [2] in sequential

recommendation, MBGC [19] in multi-behavior recommendation,

and SR-GNN [45] in session recommendation) due to GNN’s high

expressive capability in learning high-order proximity among users

and items, resulting in accurate recommendation results. Surpris-

ingly, albeit their state-of-the-art performance, there has been no

prior attempt to design MC recommender systems using GNNs.
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(a) (b)

Figure 1: An illustration showing (a) four criteria ratings in
a hotel domain, and (b) the corresponding MC expansion
graph.

In this context, even with a number of studies on CF-based MC

recommendation [9, 31, 36, 37], a natural question arising is: “Is it

beneficial to take advantage of GNNs for solving the MC recom-

mendation problem in terms of both effectiveness and efficiency?"
To answer this question, we make the first attempt towards de-

signing a lightweight GNN-aided MC recommender system. Rather

than straightforwardly adopting existing GNN-based recommenda-

tionmethods forMC recommendation, we devise our ownmethodol-

ogy, built upon new design principles and comprehensive empirical

findings. To this end, we outline two design challenges that must be

addressed when building a new GNN-based MC recommendation

method:

• Graph construction:which graph type should be taken into
account to explore the collaborative signal in MC ratings;

• Criteria preference awareness: how to maximally grasp

the criteria preference of users through graph convolution.

(Idea 1) In designing recommender systems only using single rat-

ings, it is natural to construct a bipartite graph by establishing

edges based on user–item interactions as in [1, 13, 35, 40, 47]. On

the other hand, in MC recommender systems, rather than using

one bipartite graph, the graph construction step accompanies non-

straightforward design choices along with MC ratings. To har-

ness the expressive capability of GNNs in learning representations,

GNNs should be able to leverage the complex behavioral similarity

in the high-order connectivities acrossMC ratings. Modeling MC

ratings as a multi-graph with multi-relations can be one possible

option. However, GNNs designed for such heterogeneous graphs

mostly require excessive computational costs or handcrafted meta-

paths [11, 27, 41], which are undesirable as our design principle

since we aim to build a lightweight model with few learnable pa-

rameters. As an alternative, we present an MC expansion graph
that transforms MC ratings into an expanded bipartite graph to

potentially learn from the collaborative signal in MC ratings. Con-

cretely, in the constructed graph, each item is expanded to different

criterion-item nodes. Figure 1b illustrates the MC expansion graph

constructed by creating some edges, corresponding to high ratings,

i.e., the rating scores of 3–5, between a user node and criterion-item
nodes. Our graph construction enables multi-layer GNNs to effec-

tively capture complex contextual semantics existing among MC

ratings.

(Idea 2) We are interested in designing a GNN model that is capa-

ble of making full use of MC rating information based on the con-

structed MC expansion graph. Meanwhile, users tend to make deci-

sions according to their preferences w.r.t. one or multiple aspects

(criteria) of items [31, 36]. For example, in a hotel recommender

system, some users may prefer a hotel based on its cleanliness while

others may like the same hotel for its price, check-in service, or any

other combinations of the distinct attributes of that hotel. In light

of this, it is of paramount importance to be aware of the criteria

preference of each user when we learn representations through

graph convolution. As one of our main contributions, we propose a

novel GNN architecture, criteria preference-aware light graph con-

volution (CPA-LGC), which is capable of precisely capturing the

criteria preference of users as well as the collaborative signal in

complex high-order connectivities on the MC expansion graph at

a fine-grained level. To reinforce the capability of criteria prefer-

ence awareness, we newly characterize two embeddings, including

user-specific criteria-preference (UCP) embeddings and item-specific
criteria (IC) embeddings, and incorporate them into the graph con-

volution model. Then, CPA-LGC predicts the user preference by dis-

covering the final representations of user nodes and criterion-item

nodes that accommodate the two newly characterized embeddings.

To validate the effectiveness of CPA-LGC, we comprehensively

conduct empirical evaluations using large-scale benchmark datasets

(e.g., x23.0, x5.5, and x12.8 scale of the datasets used in [37], [31], and
[36] in terms of the number of overall ratings, respectively). Most

importantly, experimental results demonstrate that our method

significantly and consistently outperforms the best MC recom-

mendation competitor and the best GNN-based recommendation

competitor up to 141.20% and 58.66%, respectively, in terms of the

precision.

Our main contributions are summarized as follows:

• Novel methodology: We propose an MC recommendation

method using a novel GNN architecture, named as CPA-
LGC, that deliberately captures 1) the collaborative signal in

complex high-order connectivities from constructing ourMC

expansion graph and 2) the criteria preference of users from

accommodating two new embeddings (i.e., UCP embeddings

and IC embeddings).

• Analysis and evaluation:We validate the rationality and

effectiveness of CPA-LGC through extensive experiments on

four real-world datasets. We demonstrate (a) the superiority

over eleven state-of-the-art recommendation methods by a

significant margin, (b) the impact of key hyperparameters, (c)

the influence of each component in CPA-LGC, (d) the degree
of over-smoothing alleviation, and (e) the computational

efficiency with linear complexity in the number of ratings.

2 PROBLEM DEFINITION
In this section, we formally define the top-𝐾 MC recommendation,

along with basic notations. Let 𝑢 ∈ U and 𝑖 ∈ I denote a user and

an item, respectively, whereU and I denote the sets of all users

and all items, respectively.N𝑢 ⊂ I denotes a set of items interacted

by user 𝑢. Then, the top-𝐾 MC recommendation problem is defined

as follows:

Definition 1: (Top-𝐾 MC recommendation) Given 𝑢 ∈ U and

𝑖 ∈ I, and 𝐶 + 1 user–item ratings R0 × R1 × ... × R𝐶 including an

overall rating R0, the top-𝐾 MC recommendation aims to recom-

mend top-𝐾 items that user 𝑢 ∈ U is most likely to prefer among

his/her non-interacted items in I \ N𝑢 w.r.t. the overall rating by
using all 𝐶 + 1 user-item MC ratings.
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(a)
(b)

(c)

Figure 2: An example illustrating (a) a rating instance with
three criteria ratings, (b) three graphs, each of which is con-
structed by ratings per criterion, and (c) our MC expansion
graph. In (b) and (c), edges corresponding to the rating scores
of 3–5 are created and newly-involved nodes in each GNN
layer for target user 𝑢1 are marked with different colors.

3 PROPOSED METHOD: CPA-LGC
In this section, we describe our methodology, which includes how

to construct an MC expansion graph and how to learn criteria

preference awareness alongside our proposed CPA-LGC method.

Then, we present the optimization in CPA-LGC. Moreover, we

provide the model analysis including the computational complexity

of CPA-LGC and the relationship with R-GCN.

3.1 Graph Construction
Construction of an MC expansion graph. A naïve graph con-

struction approach using MC rating information would be to con-

struct𝐶 +1 separate bipartite graphs based on MC ratings including

overall ratings. However, in this case, complex contextual semantics

existing among multiple user–item interactions cannot be captured

via multi-layer GNNs. Figure 2a illustrates a rating instance of hotel

𝑖1 with three criteria ratings in the 1–5 rating scale, where two

users 𝑢1 and 𝑢2 reveal a rather complex behavioral similarity in

that they express the same opinions in terms of the cleanliness,

but not in terms of the price. Figure 2b visualizes three separate

bipartite graphs, each of which is constructed by creating some

edges, corresponding to high ratings (i.e., the rating scores of 3–5),

between users and items for each criterion. However, this naïve

graph construction fails to capture the complex behavioral sim-

ilarity in the high-order connectivities across MC ratings when

multi-layer GNNs are employed independently on each graph. For

example, the rating information of user 𝑢2 w.r.t. the price cannot be
propagated to other graphs where overall and cleanliness ratings

are concerned, which limits the high expressive capability of GNNs

for acquiring richer representations.

To overcome this inherent limitation, we design a new bipartite

graph, namely an MC expansion graph, in which each item is ex-

panded to𝐶+1 different criterion-item nodes, as illustrated in Figure

2c. If a user provided a high rating or had a positive interaction for

a particular criterion, then an edge between the corresponding user

and criterion-item nodes is created. Formally, given a set of criterion-

item nodes positively rated by user 𝑢 w.r.t. criterion 𝑐 , denoted as

N𝑐𝑢 , the resulting MC expansion graph is denoted as G = (V, E),
where V and E = {(𝑢, 𝑖𝑐 ) |𝑢 ∈ U, 𝑖𝑐 ∈ N𝑐𝑢 , 𝑐 = 0, 1, · · · ,𝐶} are
the sets of nodes and edges in the graph, respectively. In our set-

ting, the union of all criterion-item node sets positively rated by

user 𝑢 is denoted as N𝑢 =
⋃𝐶
𝑐=0N𝑐𝑢 . Note that the graph G can

be modeled as a weighted graph so that MC rating information is

leveraged more precisely. Our MC expansion graph construction en-

ables us to exploit complex high-order proximity among user nodes

and criterion-item nodes with the aid of GNNs. In other words,

by feeding the MC expansion graph into GNNs, it is possible to

effectively capture the collaborative signal in complex high-order

connectivities (i.e., complex contextual semantics existing among

multiple user–item interactions). Figure 2c visualizes our MC ex-

pansion graph in which edges corresponding to the rating scores

of 3–5 are created. If a 3-layer GNN is applied to the graph, then

we are capable of generating user/criterion-item representations

that reflect high-order connectivity information. As an example,

information of a complex behavioral similarity, such as “for hotel 𝑖1,

two users 𝑢1 and 𝑢2 have the same preference for cleanliness, but

different preferences for price", can be incorporated into a vector

representation of target user 𝑢1 through graph convolution.

Over-smoothing effect in the MC expansion graph. While

stacking multiple layers in GNNs is beneficial in capturing the high-

order structural information, it may lead to the problem of over-

smoothing where node representations converge to a certain value

and thus become less distinguishable [4, 24]. This holds particularly

strong validity for nodes of a higher degree [4, 26], which exhibit

a higher convergence rate w.r.t. the number of layers in GNNs [4].

In the MC expansion graph, the over-smoothing effect may be

intensified due to an increased number of item neighbors for each

user. To alleviate this problem, we design an additional module to

be added to each GNN layer, which will be specified in the following

subsection.

3.2 Criteria Preference-Aware Architecture
In this subsection, we elaborate on the four key components of

CPA-LGC. The schematic overview of CPA-LGC is illustrated in

Figure 3.

3.2.1 Layer-wise Over-smoothing Alleviation. As stated in Section

3.1, our MC expansion graph construction may potentially intensify

over-smoothing in GNNs. To solve this issue, we employ a layer-wise
over-smoothing alleviation strategy. In our study, we adopt PairNorm
[48] as a simple normalization technique such that all pairwise

distances between node representations remain unchanged across

layers. PairNorm is composed of centering and rescaling steps for

each node 𝑣 ∈ V in G and is expressed as follows:

m(𝑙 )𝑣 = e(𝑙 )𝑣 −
1

|V|

|V |∑︁
𝑖=1

e(𝑙 )
𝑖

¤e(𝑙 )𝑣 = 𝑠
√︁
|V| m(𝑙 )𝑣√︃

∥E(𝑙 ) ∥2
𝐹

,

(1)

where e(𝑙 )𝑣 is the representation of node 𝑣 after the 𝑙-th layer propa-

gation, whichwill be specified in later;m(𝑙 )𝑣 is the centered represen-

tation of node 𝑣 after the 𝑙-th layer propagation; ¤e(𝑙 )𝑣 is the output of

the PairNorm operation 𝑓 (·), that is, ¤e(𝑙 )𝑣 = 𝑓 (e(𝑙 )𝑣 ); E(𝑙 ) ∈ R |V |×𝑑
is the node representation matrix after the 𝑙-th layer propagation

given the 𝑑-dimensional latent representation vector of each node;
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Figure 3: The schematic overview of CPA-LGC.

∥ · ∥𝐹 is the Frobenius norm of a matrix; and 𝑠 is the scaling hyperpa-

rameter that controls the total pairwise squared distance between

node representations. In CPA-LGC, we use 𝑓 (·) after each GNN

layer (see Figure 3), so as to prevent the over-smoothing that may

be potentially intensified by the increased degree of each node in

the MC expansion graph.

3.2.2 LGC for User/Criterion-Item Embeddings. It is known that

lightweightGCN-basedmodels (see [3, 13, 28] and references therein),

which simplify GCNs by removing feature transformations and/or

nonlinear activations, are quite effective in achieving state-of-the-

art performance for single rating recommender system. Since utiliz-

ing MC ratings inherently accompanies expensive computational

overheads compared to the case of single ratings, it is also vital to

adopt a lightweight model for designing MC recommender systems

with GNNs while guaranteeing satisfactory performance. In light

of this, we build a simple yet effective layer-wise LGC operation in

the MC expansion graph, which is formulated as:

e(𝑙 )𝑢 =
∑︁
𝑖𝑐 ∈N𝑢

𝑤𝑢,𝑖𝑐√︁∑
𝑖𝑐 ∈N𝑢

𝑤𝑢,𝑖𝑐
√︃∑

𝑣∈N𝑖𝑐
𝑤𝑣,𝑖𝑐

¤e(𝑙−1)
𝑖𝑐

e(𝑙 )
𝑖𝑐

=
∑︁

𝑢∈N𝑖𝑐

𝑤𝑢,𝑖𝑐√︃∑
𝑢∈N𝑖𝑐

𝑤𝑢,𝑖𝑐
√︃∑

𝑗𝑟 ∈N𝑢
𝑤𝑢,𝑗𝑟

¤e(𝑙−1)𝑢 ,

(2)

where e(𝑙 )𝑢 and e(𝑙 )
𝑖𝑐

indicate the representations of user node 𝑢 and

criterion-item node 𝑖𝑐 , respectively, after the 𝑙-th layer propagation

(see the left part of Figure 3);
1 𝑤𝑢,𝑖𝑐 is the edge weight between

1e(0)𝑢 and e(0)
𝑖𝑐

are the ID embeddings of user node 𝑢 and criterion-item node 𝑖𝑐 ,

respectively.

Figure 4: A motivating example describing user criteria pref-
erence can be captured via graph convolution. Here, the dif-
ferent IC embeddings are described with different colors and
patterns.

node pair (𝑢, 𝑖𝑐 ); and the denominator in Eq. (2) is the symmetric

normalization term, which basically follows the design of standard

GCN [21], to prevent the scale of embeddings from increasing

over layers in the weighted graph. Note that ¤e(𝑙 )𝑢 = 𝑓 (e(𝑙 )𝑢 ) and
¤e(𝑙 )
𝑖𝑐

= 𝑓 (e(𝑙 )
𝑖𝑐
).

3.2.3 LGC for UCP/IC Embeddings. As a core component of CPA-
LGC, to precisely capture the criteria preference of users, we newly
characterize two types of embeddings, including UCP embeddings
and IC embeddings, into our graph convolution model. To generate

these newly characterized representations, we formulate the layer-

wise LGC operation in the MC expansion graph as follows:

p(𝑙 )𝑢 =
∑︁
𝑖𝑐 ∈N𝑢

𝑤𝑢,𝑖𝑐√︁∑
𝑖𝑐 ∈N𝑢

𝑤𝑢,𝑖𝑐
√︃∑

𝑣∈N𝑖𝑐
𝑤𝑣,𝑖𝑐

¤p(𝑙−1)
𝑖𝑐

p(𝑙 )
𝑖𝑐

=
∑︁

𝑢∈N𝑖𝑐

𝑤𝑢,𝑖𝑐√︃∑
𝑢∈N𝑖𝑐

𝑤𝑢,𝑖𝑐
√︃∑

𝑗𝑟 ∈N𝑢
𝑤𝑢,𝑗𝑟

¤p(𝑙−1)𝑢 ,

(3)

where p(𝑙 )𝑢 and p(𝑙 )
𝑖𝑐

are the UCP embedding of user node 𝑢 and the

IC embedding of criterion-item node 𝑖𝑐 , respectively, after the 𝑙-th

layer propagation (see the right part of Figure 3); the denominator

in Eq. (3) is the symmetric normalization term; and ¤p(𝑙 )𝑢 = 𝑓 (p(𝑙 )𝑢 )
and ¤p(𝑙 )

𝑖𝑐
= 𝑓 (p(𝑙 )

𝑖𝑐
). For efficient memory management, we set the

initial IC embeddings p(0)
𝑖𝑐

belonging to the same criterion 𝑐 to

be the same, generating 𝐶 + 1 different initial embeddings that

act as distinct labels without being clustered with each other. As

depicted in Figure 3, we utilize the stop-gradient operation in the

feed-forward process of the IC embeddings p(𝑙 )
𝑖𝑐

to prevent back-

propagation of gradients and unnecessarily excessive computation.

Now, let us explain the interplay between two embeddings p(𝑙 )𝑢
and p(𝑙 )

𝑖𝑐
via graph convolution. Due to the fact that stacking multi-

ple layers in GNNs results in an increased similarity of represen-

tations among connected nodes [48], a user node 𝑢 connected to

a number of different criterion-item nodes belonging to the same
criterion 𝑐 will have its UCP embedding p(𝑙 )𝑢 that is co-located to

the corresponding IC embeddings in the embedding space. Fig-

ure 4 illustrates a motivating example where two users 𝑢1 and 𝑢2
in the given graph are connected to several criterion-item nodes

for criterion 1 and criterion 3, respectively; through 𝐿-layer graph

convolution, the UCP embeddings p(𝐿)𝑢1 and p(𝐿)𝑢2 are more closely

located to the IC embeddings whose related criterion is 1 and 3,
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respectively.
2
By harnessing the UCP embeddings and IC embed-

dings as well as user/criterion-item embeddings in the prediction

stage, we are capable of achieving higher accuracy of MC recom-

mendation, which will be verified in Section 4.2.

3.2.4 Layer Combination and Prediction. The layer combination op-

eration is known to be effective in the sense of capturing different se-

mantics for each layer and alleviating the potential over-smoothing

problem [13, 40, 46]. Thus, CPA-LGC leverages the layer combina-

tion (i.e., layer aggregation) to obtain the combined embeddings,

while setting the importance of each layer-wise representation uni-

formly since such a setting leads to good performance in general

[13]. The combined representations after 𝐿-layer propagation are

expressed as

e∗𝑢 =
1

𝐿

𝐿∑︁
𝑙=0

¤e(𝑙 )𝑢 ; e∗𝑖𝑐 =
1

𝐿

𝐿∑︁
𝑙=0

¤e(𝑙 )
𝑖𝑐

; p∗𝑢 =
1

𝐿

𝐿∑︁
𝑙=0

¤p(𝑙 )𝑢 ; p∗𝑖𝑐 =
1

𝐿

𝐿∑︁
𝑙=0

¤p(𝑙 )
𝑖𝑐
,

(4)

where e∗𝑢 and e∗
𝑖𝑐

are the combined embeddings of user 𝑢 and

criterion-item node 𝑖𝑐 , respectively; p∗𝑢 and p∗
𝑖𝑐
are the combined

UCP embedding of user node 𝑢 and the combined IC embedding of

criterion-item node 𝑖𝑐 , respectively.

Next, CPA-LGC predicts user 𝑢’s preference for target criterion-

item node 𝑖𝑐 . To this end, we first form the final representations of a

user and a criterion-item node as ¤e∗𝑢 + ¤p∗𝑢 and ¤e∗
𝑖𝑐
+ ¤p∗

𝑖𝑐
, respectively,

where ¤e∗𝑢 = 𝑓 (e∗𝑢 ), ¤p∗𝑢 = 𝑓 (p∗𝑢 ), ¤e∗𝑖𝑐 = 𝑓 (e∗
𝑖𝑐
), and ¤p∗

𝑖𝑐
= 𝑓 (p∗

𝑖𝑐
).

Then, we compute the matching score 𝑦𝑢,𝑖𝑐 between the final em-

bedding of user 𝑢 and the final embedding of criterion-item node

𝑖𝑐 via the dot-product as follows:

𝑦𝑢,𝑖𝑐 = ( ¤e∗𝑢 + ¤p∗𝑢 ) · ( ¤e∗𝑖𝑐 + ¤p
∗
𝑖𝑐 )
⊤ . (5)

It is worth noting that we only take into account𝑦𝑢,𝑖0 for prediction

since we are interested in predicting the preference of user 𝑢 for

target item 𝑖 w.r.t. the overall rating.

3.3 Optimization
In CPA-LGC, we adopt the Bayesian personalized ranking (BPR)

loss [33], which is widely used for optimizing general recommender

systems [12–14, 39, 40], to learn the trainable parameters of CPA-
LGC. The BPR loss is built upon the assumption that the preference

for the interacted item of a user is likely to be higher than that

for the non-interacted item of a user. Then, our loss function is

formulated as follows:

−
|U |∑︁
𝑢=1

∑︁
𝑖𝑐 ∈N𝑢

∑︁
𝑗𝑟 ∉N𝑢

ln𝜎
(
𝑦𝑢,𝑖𝑐 − 𝑦𝑢,𝑗𝑟

)
+ 𝜆∥Θ∥2

2
, (6)

where Θ is all trainable parameters in the model, and 𝜆 is a hyper-

parameter that controls the 𝐿2 regularization strength.

3.4 Model Analysis
3.4.1 Complexity Analysis. We theoretically analyze the compu-

tational complexity of the CPA-LGC method with given graph

G = (V, E) and 𝑑-dimensional embeddings.

2
In general, IC embeddings p(𝑙 )

𝑖𝑐
are not necessarily the same for different 𝑖𝑐 ’s belonging

to the same criterion 𝑐 .

Theorem 3.1. The computational complexity of CPA-LGC is at
most linear in |E |.

Note that the complexity of CPA-LGC scales linearly with the

number of user–item interactions (i.e., overall ratings) due to the
fact that |E |, corresponding to the number of MC ratings, is at

most 𝐶 + 1 times the number of ratings. We empirically validate

the average runtime complexity of CPA-LGC in Appendix B.4.

3.4.2 Relationship with R-GCN. We bridge LGC on the MC expan-

sion graph and R-GCN [34], a GNN architecture that was designed

for handling multiple relations in multi-graphs. A multi-graph is

denoted as 𝐺̃ = ( ˜V, ˜E, ˜C) with nodes 𝑣, 𝑗 ∈ ˜V and relations

(𝑣, 𝑐, 𝑗) ∈ ˜E, where 𝑐 ∈ ˜C is a relation type. By regarding the

MC in ratings as multi-relations, the layer-wise message passing

operation in R-GCN from user 𝑢’s perspective is expressed as

e(𝑙 )𝑢 = 𝜎
©­«
∑︁
𝑐∈C

∑︁
𝑖∈N𝑐

𝑢

1

|N𝑐𝑢 |
W(𝑙−1)𝑐 e(𝑙−1)

𝑖
+W(𝑙−1)

0
e(𝑙−1)𝑢

ª®¬ , (7)

where e(𝑙 )𝑢 and e(𝑙 )
𝑖

are the representations of user𝑢 and item 𝑖 after

the 𝑙-th layer propagation; 𝜎 is the non-linear activation function;

N𝑐𝑢 denotes the set of neighbors of node 𝑢 under relation 𝑐 ∈ ˜C;
and W(𝑙 )

0
and W(𝑙 )𝑐 are transformation matrices of self-connection

and relation 𝑐 at the 𝑙-th layer, respectively. Now, we establish a

relationship between CPA-LGC and R-GCN by passing through

several processes. First, we eliminate the non-linear activation, self-

connection, and transformation matrix of relation 𝑐 . Second, we

concretize relation 𝑐 via item embeddings e(𝑙 )
𝑖

(i.e., e(𝑙 )
𝑖𝑐

). Then, Eq.

(7) can be converted to

e(𝑙 )𝑢 =
∑︁
𝑐∈C

∑︁
𝑖∈N𝑐

𝑢

1

|N𝑐𝑢 |
e(𝑙−1)
𝑖𝑐

, (8)

which indicates that the user embedding at the 𝑙-th layer can be

calculated by aggregating information as the weighted sum of all

the item embeddings related to a certain criterion at the previous

layer. Therefore, LGC on the MC expansion graph in CPA-LGC,
can also be viewed as a simplified R-GCN with the relation transfer,

allowing us to capture the collaborative signal in MC ratings along

with far fewer parameters.

4 EXPERIMENTAL EVALUATION
In this section, we systematically conduct extensive experiments

to address the key research questions (RQs) outlined below:

• RQ1: How much does CPA-LGC improve the top-𝐾 recom-

mendation over benchmark MC recommendation methods?

• RQ2: How much does CPA-LGC improve the top-𝐾 recom-

mendation over benchmark GNN-based recommendation

methods?

• RQ3: How do key parameters affect the performance of

CPA-LGC?
• RQ4: How does each component in CPA-LGC contribute to

the recommendation accuracy?

• RQ5: How does the MC expansion graph alleviate the over-

smoothing effect alongside CPA-LGC?
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Table 1: Statistics of the four datasets used in our experiments.
Here, 𝛾 denotes the ratio of the number of MC ratings to the
number of overall ratings.

Dataset
# of
users

# of
items

# of
overall ratings

# of
MC ratings 𝐶 𝛾

TA 4,265 6,275 34,383 202,859 7 5.9

YM 1,821 1,472 46,176 175,468 4 3.8

RB 4,017 3,422 159,755 607,067 4 3.8

YP 58,971 19,820 445,724 1,408,487 3 3.1

4.1 Experimental Settings
Datasets. We conduct experiments on four real-world datasets,

which are widely used in studies on MC recommendation [9, 23,

31, 36, 37, 51]: TripAdvisor (TA), Yahoo!Movie (YM), RateBeer (RB),

and Yelp-2022 (YP). Here, Yahoo!Movie was collected by requesting

the authors of [18], and the other three datasets are publicly avail-

able. It is noteworthy that we use relatively large-scale datasets in

comparison to prior studies [9, 23, 36, 37, 51]. To ensure data qual-

ity, we use each user/item having at least five interactions. Table 1

summarizes some statistics of the four datasets. We provide further

details of the datasets in Appendix B.1.

Competitors. To comprehensively demonstrate the superiority of

CPA-LGC, we present five MC recommendation methods (Extand-

edSAE [37], UBM [51], DMCF [31], AEMC [36], and CFM [9]) and

six GNN-based recommendation methods (GC-MC [1], SpectralCF

[50], NGCF [40], DGCF [42], LightGCN [13], and LightGCN
MC

).

Specifically, for the five GNN-based recommendation methods

except for LightGCN
MC

, we use only overall ratings since those

five were originally designed by leveraging single ratings. In our

study, we additionally present a variant of LightGCN, dubbed

LightGCN
MC

, which applies LightGCN [13] to each of𝐶+1 bipartite
graphs constructed by the MC ratings and then concatenates the

output representations of user/item nodes for the final prediction.

The schematic overview of LightGCN
MC

is visualized in Figure 10

of Appendix B.2.

Evaluation protocols.We randomly select 70% of the interactions

of each user for the training set, the other 10% for the validation

set, and the remaining 20% for the test set. To evaluate the accuracy

of top-𝐾 MC recommendation, we use the precision, recall, and

normalized discounted cumulative gain (NDCG) as performance

metrics, where𝐾 is set to 5 and 10 by default. In the inference phase,

we view user–item interactions in terms of the overall rating in the

test set as positive and evaluate how well each method can rank the

items in the test set higher than all unobserved items. We report

the average of values obtained by performing the 10 independent

evaluations for each measure.

Implementation details. Unless otherwise stated, we set the

dimensionality of the embedding, 𝑑 , to 64 for all models as in

[13, 40]. The model parameters including UCP and IC embeddings

in CPA-LGC are initialized with the Xavier method [10]. We use

the Adam optimizer [20], where the mini-batch size is set to 1024.

We use the best hyperparameters of competitors and CPA-LGC
obtained by extensive grid search on the validation set in the

following ranges: {1𝑒−4, 5𝑒−4, 1𝑒−3, 5𝑒−3, 1𝑒−2} for the learning

rate; {1𝑒−5, 1𝑒−4, 1𝑒−3, 1𝑒−2} for the regularization strength 𝜆; and

{1, 2, 3, 4, 5} for the number of GNN layers, 𝐿, in the six GNN-based

competitors and CPA-LGC. In consequence, we set the hyperpa-

rameters as follows: learning rate= 1𝑒−3; 𝜆 = 1𝑒−3; and 𝐿 = 1

for YM and 𝐿 = 3 for other datasets. In CPA-LGC, to accentuate

the importance of overall ratings, the edge weight associated with

connections to criterion-item nodes for criterion 0 (i.e.,𝑤𝑢,𝑖0 in Eqs.

(2) and (3)) is set as 𝛼 while the edge weight for other existing edges

is set as 1. The value of 𝛼 is searched in range of {0.5, 1, 1.5, 2, 2.5},
and we set 𝛼 = 1.5 for all the datasets unless otherwise specified. In

PairNorm, scaling parameter 𝑠 in Eq. (1) is set to 1. Additionally, we

exclude 𝑓 (·) for the YP dataset as YP reveals the smallest 𝛾 (see Ta-

ble 1), which represents the ratio of the number of overall ratings to

the number of MC ratings, and a smaller value of 𝛾 would lead to a

less over-smoothness degree. We implemented CPA-LGC based on

Recbole [49], an open-sourced recommendation library. All experi-

ments are carried out with Intel (R) 12-Core (TM) i7-9700K CPUs

@ 3.60 GHz and GPU of NVIDIA GeForce RTX 3080. Our source

code is available at https://github.com/jindeok/CPA-LGC-Recbole.

4.2 Results and Analysis
In RQ1–RQ4, we provide experimental results on all datasets. For

RQ5, we show here only the results on TA due to space limita-

tions, since the results on other datasets showed similar tenden-

cies to those on TA. We evaluate the performance in terms of the

NDCG@10 in RQ3–RQ4. Additionally, we highlight the best and

the second-best methods in each column of the following tables in

bold and underline, respectively.

RQ1: Comparison with five MC recommendation competi-
tors. We validate the superiority of CPA-LGC over five MC rec-

ommendation competitors through extensive experiments on the

four datasets. Table 2 shows the results of all MC recommendation

competitors and CPA-LGC. Our findings are as follows:

(i) Expected but surprisingly, CPA-LGC significantly and con-
sistently outperform all MC recommendation competitors

on all datasets regardless of the metrics. Specifically, on TA,

YM, RB, and YP, CPA-LGC outperforms best competitors by

large margins by up to 104.09%, 49.93%, 136.37%, and 100.00%

in terms of the Precision@5, respectively;

(ii) Unlike two-stage approaches (UBM, DMCF, and AEMC) that

predict MC ratings excluding overall ratings and then in-

tegrate them to infer overall ratings, CFM is a collective

matrix factorization method, which robustly shows better

results. It means that jointly predicting the overall rating

and other MC ratings via CF can be effective for the top-𝐾

MC recommendation;

(iii) Deep neural network-based methods (ExtendedSAE, DMCF,

and AEMC) show satisfactory performance in some cases.

Specifically, ExtendedSAE exhibits superb results among

the competitors on YM, which is the smallest dataset in

terms of the numbers of users and items. However, Extend-

edSAE faces an out-of-memory (OOM) problem in the largest

dataset, YP, due to its high input/output dimension calcu-

lated as the product of the numbers of users and items in the

dataset, causing a significant space complexity;

(iv) Since the competitors do not use GNNs, they result in far

inferior performance compared to CPA-LGC due to their
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Table 2: Performance comparison among CPA-LGC and benchmark MC recommendation methods for the four benchmark
datasets. Here, the best (𝑋 ) and second-best performers (𝑌 ) are highlighted in bold and underline, respectively. The gain against
the second performer is calculated by 𝑋−𝑌

𝑌
× 100 (%).

Method Metric

TA YM RB YP

𝐾 = 5 𝐾 = 10 𝐾 = 5 𝐾 = 10 𝐾 = 5 𝐾 = 10 𝐾 = 5 𝐾 = 10

ExtendedSAE

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 0.0012 0.0011 0.0675 0.0480 0.0210 0.0273 OOM OOM

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 0.0031 0.0092 0.0694 0.1000 0.0144 0.0374 OOM OOM

𝑁𝐷𝐶𝐺@𝐾 0.0012 0.0043 0.1072 0.1154 0.0285 0.0435 OOM OOM

UBM

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 0.0158 0.0122 0.0160 0.0223 0.0250 0.0288 0.0137 0.0125

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 0.0443 0.0533 0.0264 0.0294 0.0174 0.0355 0.0386 0.0713

𝑁𝐷𝐶𝐺@𝐾 0.0351 0.0346 0.0202 0.0245 0.0301 0.0440 0.0248 0.0341

DMCF

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 0.0167 0.0137 0.0334 0.0242 0.0816 0.0721 0.0090 0.0075

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 0.0174 0.0232 0.0333 0.0470 0.0493 0.0887 0.0102 0.0248

𝑁𝐷𝐶𝐺@𝐾 0.0115 0.0243 0.0541 0.0614 0.1104 0.1317 0.0304 0.0408

AEMC

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 0.0156 0.0154 0.0358 0.0257 0.0997 0.0807 0.0093 0.0064

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 0.0172 0.0251 0.0398 0.0540 0.0671 0.1090 0.0437 0.0671

𝑁𝐷𝐶𝐺@𝐾 0.0207 0.0241 0.0595 0.0693 0.1534 0.1780 0.0433 0.0544

CFM

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 0.0220 0.0170 0.0420 0.0375 0.0739 0.0720 0.0180 0.0165

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 0.0615 0.0740 0.0420 0.0613 0.1111 0.1997 0.0482 0.0891

𝑁𝐷𝐶𝐺@𝐾 0.0487 0.0480 0.0392 0.0583 0.1078 0.1391 0.0349 0.0492

CPA-LGC

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 0.0449 0.0273 0.1012 0.0788 0.2177 0.1739 0.0360 0.0276
𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 0.0901 0.1053 0.1211 0.1725 0.1863 0.2745 0.0859 0.1286
𝑁𝐷𝐶𝐺@𝐾 0.0830 0.0880 0.1392 0.1532 0.2823 0.2892 0.0713 0.0859

Gain

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 +104.09 % +60.59 % +49.93 % +64.17 % +136.37 % +141.20 % +100.00 % +67.27 %

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 +46.50 % +42.30 % +74.50 % +72.50 % +67.69 % +37.46 % +78.22 % +44.33 %

𝑁𝐷𝐶𝐺@𝐾 +70.43 % +83.33 % +29.85 % +32.76 % +88.96 % +107.91 % +64.67 % +57.90%

Table 3: Performance comparison among CPA-LGC and benchmark GNN-based recommendation methods for the four bench-
mark datasets. Here, the best (𝑋 ) and second-best performers (𝑌 ) are highlighted in bold and underline, respectively. The gain
against the second performer is calculated by 𝑋−𝑌

𝑌
× 100 (%).

Method Metric

TA YM RB YP

𝐾 = 5 𝐾 = 10 𝐾 = 5 𝐾 = 10 𝐾 = 5 𝐾 = 10 𝐾 = 5 𝐾 = 10

GC-MC

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 0.0060 0.0055 0.0603 0.0508 0.1543 0.1234 0.0208 0.0175

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 0.0157 0.0284 0.0745 0.1246 0.1762 0.2547 0.0533 0.0895

𝑁𝐷𝐶𝐺@𝐾 0.0112 0.0159 0.0820 0.0978 0.2232 0.2354 0.0409 0.0530

SpectralCF

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 0.0015 0.0016 0.0594 0.0472 0.1655 0.1306 0.0086 0.0081

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 0.0054 0.0111 0.0798 0.1202 0.1646 0.2424 0.0190 0.0351

𝑁𝐷𝐶𝐺@𝐾 0.0037 0.0058 0.0842 0.0963 0.2255 0.2339 0.0148 0.0204

NGCF

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 0.0181 0.0119 0.0814 0.0609 0.1730 0.1380 0.0232 0.0188

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 0.0475 0.0646 0.1010 0.1156 0.1777 0.2648 0.0600 0.0985

𝑁𝐷𝐶𝐺@𝐾 0.0393 0.0454 0.1139 0.1277 0.2372 0.2534 0.0471 0.0600

DGCF

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 0.0265 0.0168 0.0809 0.0618 0.1635 0.1300 0.0223 0.0188

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 0.0729 0.0911 0.1020 0.1506 0.1596 0.2411 0.0494 0.0827

𝑁𝐷𝐶𝐺@𝐾 0.0603 0.0670 0.1150 0.1275 0.2202 0.2296 0.0410 0.0519

LightGCN

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 0.0267 0.0177 0.0771 0.0616 0.1732 0.1382 0.0235 0.0192

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 0.0730 0.0929 0.0959 0.1533 0.1778 0.2622 0.0602 0.0987

𝑁𝐷𝐶𝐺@𝐾 0.0607 0.0671 0.1108 0.1278 0.2384 0.2512 0.0475 0.0603

LightGCN
MC

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 0.0283 0.0211 0.0795 0.0656 0.1802 0.1423 0.0267 0.0205

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 0.0799 0.0953 0.0977 0.1566 0.1799 0.2651 0.0633 0.1005

𝑁𝐷𝐶𝐺@𝐾 0.0632 0.0699 0.1122 0.1301 0.2423 0.2566 0.0520 0.0625

CPA-LGC

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 0.0449 0.0273 0.1012 0.0788 0.2177 0.1739 0.0360 0.0276
𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 0.0901 0.1053 0.1211 0.1725 0.1863 0.2745 0.0859 0.1286
𝑁𝐷𝐶𝐺@𝐾 0.0830 0.0880 0.1392 0.1532 0.2823 0.2892 0.0713 0.0859

Gain

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 +58.66% +29.38% +25.09% +20.12% +20.81% +22.21% +34.83% +34.63%

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 +12.77% +10.49% +18.73% +10.15% +3.04% +1.55% +35.70% +28.22%

𝑁𝐷𝐶𝐺@𝐾 +31.33% +25.89% +21.04% +17.76% +16.51% +12.70% +37.12% +37.44%

inability to explicitly reflect the complex high-order connec-

tivity in the embedding learning process, which could lead

to suboptimal representations [40].

RQ2: Comparison with six GNN-based recommendation com-
petitors.We validate the superiority of CPA-LGC over six GNN-

based recommendation competitors. Specifically, since there is no

prior work exploring GNN-based MC recommendation, we use

single ratings (i.e., overall ratings) for the existing five GNN-based

recommendation methods (GC-MC, SpectiralCF, NGCF, DGCF,

and LightGCN), and we further implement a variant of LightGCN

(LightGCN
MC

), which is designed for leveraging the MC ratings.

Table 3 shows the results of all GNN-based recommendation com-

petitors and CPA-LGC. Our findings are as follows:

(i) Most importantly, our CPA-LGC also significantly and con-
sistently outperforms other competing GNN-based methods

on the four datasets, regardless of the metrics. Specifically,
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Figure 5: The effect of three hyperparameters on the accura-
cies of CPA-LGC.

on TA, YM, RB, and YP, CPA-LGC outperforms the best com-

petitors by up to 58.66%, 25.09%, 20.81%, and 34.83% in terms

of the Precision@5, respectively;

(ii) Among the five competitors using single ratings, LightGCN

mostly performs best (with the only exception on YM in case

of 𝐾 = 5) as it tends to exhibit state-of-the-art performance

in wide fields of recommendation [7, 15, 16, 32, 44];

(iii) A substantial improvement of LightGCN
MC

over LightGCN

is observed on all the datasets, which implies that naïvely

incorporating MC rating information into graph convolution

models is even beneficial in achieving potential gains;

(iv) The accuracies of LightGCN
MC

are far below those of CPA-
LGC. This means that capturing the collaborative signal on

a bipartite graph constructed by each of MC ratings in a

separate manner does not make full use of MC ratings as

long as graph convolution is concerned;

(v) Comparing to the results in Table 2, the six GNN-based ap-

proaches can still be effective against the five non-GNNmeth-

ods, while mostly showing robust results over all datasets.

This again validates our claim that it is beneficial to take ad-

vantage of GNNs for accurate top-𝐾 MC recommendations.

The above empirical results demonstrate the effectiveness of our

MC expansion graph as well as our CPA-LGC that accommodates

two new embeddings (i.e., UCP embeddings and IC embeddings)

for precisely grasping the criteria preference of each user.

RQ3: Hyperparameter sensitivity analysis. In Figure 5, we

investigate the impact of three key hyperparameters, including 𝐿,

𝑑 , and 𝛼 in CPA-LGC, on the recommendation accuracy.

(Effect of 𝐿) The number of GNN layers, 𝐿, decides the degree

of exploitation of high-order connectivity among user nodes and

criterion-item nodes. From Figure 5a, except for YM,we observe that

the recommendation accuracy in terms of the NDCG@10 steadily

increases until 𝐿 reaches 3 and then gradually decreases. This im-

plies that multi-layer LGC is indeed effective in most cases but

stacking too many layers may intensify over-smoothing, thereby

leading to performance degradation. On the other hand, for the YM

dataset, the performance tends to monotonically decrease with 𝐿,

which means that, due to the over-smoothing effect, it is recom-

mended to use only direct neighbors in graph convolution.

(Effect of 𝑑) As shown in Figure 5b, the effect of the dimension-

ality 𝑑 of embeddings on the recommendation accuracy is generally

observed to be positive for all the datasets. However, increasing

𝑑 leads to high computation and overfitting problems [8]. The

Table 4: Performance comparison among CPA-LGC and its
three variants in terms of the NDCG@10. Here, the best and
second performers are highlighted in bold and underline,
respectively.

TA YM RB YP

CPA-LGC 0.088 0.153 0.289 0.068

CPA-LGC-MC 0.064 0.128 0.251 0.060

CPA-LGC-c 0.067 0.134 0.253 0.058

CPA-LGC-f 0.070 0.131 0.259 0.072

NDCG@10 slightly deteriorates when 𝑑 > 256, manifesting the

importance of choosing an appropriate 𝑑 to improve the recommen-

dation accuracy while maintaining the computational efficiency.

(Effect of 𝛼) The parameter 𝛼 controls the relative importance

of overall ratings compared to MC ratings. From Figure 5c, it is ob-

served that the highest NDCG@10 is achieved at 𝛼 = 1.5 regardless

of datasets, but further increasing 𝛼 deteriorates the recommenda-

tion accuracy. This implies that overemphasizing overall ratings in

LGC may dilute the information acquired from user–item interac-

tions on other criteria and harm the model’s performance.

RQ4: Ablation study. To analyze the contribution of each com-

ponent in CPA-LGC, we conduct an ablation study in comparison

with three variants depending on which sources are taken into

account for designing the CPA-LGC architecture. The performance

comparison among the four methods is presented in Table 4 w.r.t.
the NDCG@10 using four datasets.

• CPA-LGC: corresponds to the original CPA-LGC method

without removing any components;

• CPA-LGC-MC: uses user embeddings e(𝑙 )𝑢 and item embed-

dings e(𝑙 )
𝑖0

for criterion 0 in the LGC operation based on the

graph construction only with overall ratings;

• CPA-LGC-c: removes UCP embeddings p(𝑙 )𝑢 and IC embed-

dings p(𝑙 )
𝑖𝑐

in CPA-LGC;
• CPA-LGC-f: removes the layer-wise over-smoothing allevia-

tion operation 𝑓 (·).
Our observations are as follows:

(i) The original CPA-LGC method always exhibits substantial

gains over other variants, which demonstrates that each

component plays a crucial role in the success of the proposed

method;

(ii) The performance gap between CPA-LGC and CPA-LGC-MC
tends to be much higher than CPA-LGC and other variants

except for YP. This finding indicates that our MC expansion

graph is most influential in achieving high recommendation

accuracies by precisely capturing the collaborative signal in

high-order connectivities between user nodes and criterion-

item nodes;

(iii) In comparison with CPA-LGC-f, using 𝑓 (·) at each layer is

shown to yield a positive contribution on the three datasets

(TA, YM, and RB) but not on YP. Recall that 𝛾 in Table 1

is the ratio of the number of MC ratings to the number of

overall ratings, which signifies the tendency of how much

the degree of each node is increased by constructing the MC

expansion graph. Since YP has the smallest 𝛾 (i.e., 𝛾 = 3.1
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(a) (b)

Figure 6: Distribution of the Euclidean distances between
node representations at each GNN layer on TA for when LGC
is performed (a) without 𝑓 (·) and (b) with 𝑓 (·). In (b), we only
show the distribution of the distances in the range of [0, 2]
due to space limitations.

from Table 1) out of all the datasets, over-smoothing may

not be severe on YP and thus using 𝑓 (·) is not beneficial in
this case.

RQ5: In-depth analysis of the smoothness. To validate that

over-smoothing can be mitigated by layer-wisely employing the

PairNorm operation 𝑓 (·) in LGC, we analyze the distribution of the

Euclidean distances between all node representations at each GNN

layer. Figures 6a and 6b visualize the distributions of such distances

when LGC is performed without and with 𝑓 (·) in the MC expansion

graph, respectively, for the TA dataset. One can see that using 𝑓 (·)
at each layer increases the average of the pairwise squared distances

between node representations, thereby alleviating potential over-

smoothing in the MC expansion graph.

5 RELATEDWORK
In this section, we review some representative methods in two

broader fields of research, including 1) MC recommender systems

and 2) GNN-based recommender systems.

MC recommender systems. Efforts have consistently been made

to incorporate MC rating information in order to improve the ac-

curacy of recommendations. As an early attempt, a support vector

regression-based approach [17] was presented to determine the rel-

ative importance of the individual criteria ratings. MSVD [25] was

developed by applying a multilinear singular value decomposition

technique to capture implicit relations among users, items, and crite-

ria. UBM [51] was proposed by using a utility function in such a way

that the user expectations are learned by learning-to-rank methods.

CFM [9] was designed by collectively using matrix factorization

for MC rating matrices. DTTD [6] was developed by incorporating

cross-domain knowledge along with side information. Moreover,

due to the proliferation of deep learning, there has been a steady

push to design DNN-based recommender systems. For example, Ex-

tendedSAE [37] was proposed to capture the relationship between

each user’s MC and overall ratings using the stacked auto-encoder.

LatentMC [22] was designed with variational auto-encoders to map

user reviews into latent vectors, which constitute latent MC ratings.

DMCF [31] was developed for predicting MC ratings with a DNN

while the predicted ratings are aggregated by another DNN. AEMC

[36] was proposed by deep autoencoders, which exploits the non-

trivial, nonlinear, and hidden relations between users with regard to

preferences for criteria. However, the aforementioned methods may

1) be unable to explicitly learn the high-order proximity between

users and items [9, 17, 22, 25, 31, 36, 37], 2) lack scalability [37],

or 3) rely on side information such as user reviews [6, 22]. Such

limitations of the methods result in unsatisfactory recommendation

performance and a lack of robustness to the varying availability of

information.

GNN-based recommender systems. GNN-based recommenda-

tion has been actively studied accordingly to boost the performance

of recommendations. As the first attempt to apply GCN to a rec-

ommendation system, GC-MC [1] was proposed by taking into ac-

count matrix completion for recommender systems from the point

of view of link prediction on graphs. PinSage [47] was developed

by combining the random walk with graph convolution to perform

a web-scale recommendation task. SpectralCF [50] was developed

by performing the eigendecomposition on the adjacency matrix of

a user–item bipartite graph, so as to discover possible connections

between user–item pairs. DGCF [42] was introduced by separating

user intent factors and generating disentangled representations. As

one of the follow-up studies, by capturing the high-order collabora-

tive signal existing in user-item interactions, NGCF [40] achieved

superb performance compared to previous GNN-based approaches.

However, extensive ablation studies in LightGCN [13] convinced

that non-linear activation and feature transformation in NGCF are

not effective in performing better recommendations; LightGCN

has been shown to exhibit state-of-the-art performance in most

general recommender systems by removing the two components

from the GCN layers in NGCF. Yet, existing GNN-based approaches

are limited to single rating recommendation scenarios and do not

take into account the MC interactions between users and items.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we explored an open yet important problem of how to

design MC recommender systems with the aid of GNNs. To tackle

this challenge, we introduced CPA-LGC, a novel lightweight MC

recommendation method that is capable of precisely capturing the

criteria preference of users as well as the collaborative signal in

MC ratings via LGC. Through extensive experiments on four MC

recommendation datasets, we comprehensively demonstrated (a)

the superiority of CPA-LGC over eleven benchmark methods, (b)

the impact of tuning key hyperparameters in CPA-LGC, (c) the
effectiveness of component in CPA-LGC, (d) the degree of over-
smoothing alleviation using the PairNorm operation, and (e) the

computational efficiency with a linear scaling in |E |. Potential av-
enues of our future research include the design of a new GNN

architecture that can learn edge weights as trainable parameters

along with node representations to automatically learn each user’s

preference.
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Algorithm 1 CPA-LGC

Input: MC ratings R0 × R1 × ... × R𝐶 , set of users I, set of items

U, maximum epoch 𝑒𝑝 , number of layers 𝐿

Output: Updated e(0)𝑢 , e(0)
𝑖𝑐

, and p(0)𝑢 for 𝑢 ∈ I and 𝑖𝑐 ∈ N𝑢
/* MC expansion graph construction */

1: Construct G based on R0 × R1 × ... × R𝐶
/*CPA-LGC*/

2: Initialize e(0)𝑢 , p(0)𝑢 for 𝑢 ∈ I, e(0)
𝑖𝑐

for 𝑖𝑐 ∈ N𝑢 , and p(0)𝑐 for

𝑐 ∈ {0, 1, 2, · · · ,𝐶}
3: for 𝑒𝑝𝑜𝑐ℎ ← 1 to 𝑒𝑝 do
4: for 𝑙 ← 1 to 𝐿 do
5: Obtain ¤e(𝑙−1)𝑢 , ¤e(𝑙−1)

𝑖𝑐
, ¤p(𝑙−1)𝑢 , and ¤p(𝑙−1)𝑐 via Eq. (1)

6: Obtain e(𝑙 )𝑢 ,e(𝑙 )
𝑖𝑐

,p(𝑙 )𝑢 , and p(𝑙 )𝑐 via Eqs. (2) and (3)

7: end for
8: Obtain e∗𝑢 , e∗𝑖𝑐 ,p

∗
𝑢 , and p∗𝑐 via Eq. (4)

9: Calculate 𝑦𝑢,𝑖𝑐 via Eq. (5)

10: Update e(0)𝑢 , e(0)
𝑖𝑐

, and p(0)𝑢 via Eq. (6)

11: end for
12: return Updated e(0)𝑢 , e(0)

𝑖𝑐
, and p(0)𝑢 for 𝑢 ∈ I and 𝑖𝑐 ∈ N𝑢

(a) TA (b) YM

(c) RB (d) YP

Figure 7: Number of ratings for each criterion in the four
datasets.

A DETAILS OF CPA-LGC
A.1 Proof of Theorem 3.1

Theorem. The computational complexity of CPA-LGC is at most
linear in |E |.

Proof. The feed-forward process of CPA-LGC is composed of

two different 𝐿-layer LGCs including the PairNorm operation for

each layer, which is used for generating not only user/criterion-

item embeddings but also user UCP and IC embeddings. Since the

graph convolution in CPA-LGC is equivalent to LGC in a weighted

graph, the computational complexity of the feed-forward process

of 𝐿-layer LGC is O(𝐿𝑑 |E |) (refer to [43] for more details). The

𝐿-layer PairNorm operation has a complexity of O(𝐿 |V|𝑑) [48].

Hence, the computational complexity of CPA-LGC is finally given

by O(𝐿𝑑 ( |V| + |E|) = O(𝐿𝑑 |E |), indicating a linear complexity in

|E |, which completes the proof of this theorem. □

A.2 Matrix Form of CPA-LGC
We provide the matrix form of the LGC operation in CPA-LGC to fa-

cilitate implementation. Let A ∈ R |V |× |V | be the adjacency matrix

of the MC expansion graph, which is a weighted bipartite graph

whose entry indicates edge weights. Then, we can calculate the nor-

malized adjacency matrix as Ã = D−
1

2AD−
1

2 , where D ∈ R |V |× |V |
is the diagonal matrix whose each entry D𝑖𝑖 denotes the summa-

tion of nonzero entries in the 𝑖-th row vector of A. Let denote the
two embedding matrices at each GNN layer as E(𝑙 ) ∈ R |V |×𝑑 and

P(𝑙 ) ∈ R |V |×𝑑 . More precisely, E(𝑙 )
0· · · |U |−1: and E(𝑙 )|U | ··· |V |: are the

user embeddings and the criterion-item embeddings, respectively;

and P(𝑙 )
0· · · |U |: and P(𝑙 )|U | ··· |V |: are the UCP embeddings and the IC

embeddings for each criterion-item node, respectively. Then, Eq.

(2) and Eq. (3) can be reformulated as follows:

¤E(𝑙 ) = 𝑓
(
ÃE(𝑙−1)

)
¤P(𝑙 ) = 𝑓

(
ÃP(𝑙−1)

)
,

(9)

where 𝑓 (·) is the layer-wise over-smoothing alleviation. Likewise,

the layer-wise combination in Eq. (4) can also be formulated as a

matrix form:

¤E∗ = 𝑓
(
1

𝐿

𝐿∑︁
𝑙=1

¤E(𝑙 )
)

¤P∗ = 𝑓
(
1

𝐿

𝐿∑︁
𝑙=1

¤P(𝑙 )
)
.

(10)

Finally, the prediction can be calculated based on the summation of

the two matrices in Eq. (10) (i.e., ¤E∗ + ¤P∗), where a prediction 𝑦𝑢,𝑖0
is calculated by the dot-product of the 𝑢-th row vector and the 𝑖-th

row vector of ¤E∗ + ¤P∗.

A.3 Pseudocode of CPA-LGC
We summarize the training process of CPA-LGC in Algorithm 1.

B DETAILS OF EXPERIMENTAL SETTINGS
B.1 Dataset description
We describe the details of the datasets used in our experiments. The

number of ratings for each criterion shown in Figure 7.

TripAdvisor (TA): The TA dataset, released by [38], comprises

hotel rating information, including an overall rating as well as

ratings for seven comprehensive criteria: business, check-in quality,
cleanliness, location, rooms, service, and value. The ratings are on a

scale of 1 to 5 for all criteria.

Yahoo!Movie (YM): The TM dataset, first introduced by [18], com-

prises movie rating information, including an overall rating as well

as ratings for four specific criteria: story, acting, direction, and visu-
als. The ratings are on a scale of 1 to 5 for all criteria.

RateBeer (RB): The RB dataset, released by [29, 30], comprises beer

rating information, including an overall rating as well as ratings

for four specific criteria: appearance, aroma, taste, and palate. The
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Figure 9: Performance comparison of CPA-LGC according
to the different number of criteria used in TA. Here, using 1
criterion means that only overall ratings are used as a single
rating.

Figure 10: The schematic overview of LightGCNMC.

Table 5: The average pairwise Euclidean distance of node
representations at each layer on TA when CPA-LGC is per-
formed with and without the over-smoothing alleviation
operation 𝑓 (·).

Layer 0 1 2 3 4 5

CPA-LGC w/o 𝑓 ( ·) 0.092 0.043 0.031 0.027 0.019 0.014

CPA-LGC w/ 𝑓 ( ·) 2.061 1.414 2.546 1.447 2.420 1.369

ratings range from 1 to 5 (appearance and palate), 1 to 10 (aroma
and taste), and 1 to 20 (overall).

Yelp-2022 (YP): The YP dataset is the most recent version of the

Yelp dataset (https://www.yelp.com/dataset). It contains informa-

tion on MC interactions, including the number of votes for three

criteria cool, funny, and useful, in addition to an overall rating on a

scale of 1 to 5.

For the graph construction of each dataset, edges were included

in the corresponding graph if the ratings surpass the median value

of the rating range, with the exception of Yelp-2022. For Yelp-2022,

edges were included if there is at least one vote present for each

criterion.

B.2 Details of LightGCNMC
Figure 10 describes the schematic overview of LightGCN

MC
. Specif-

ically, given a bipartite graph G𝑐 and its node embedding matrix E𝑐
for criterion 𝑐 ∈ {0, 1, · · · ,𝐶}, LightGCN

MC
separately performs

LightGCN on 𝐶 + 1 different graphs, denoted as G0,G1, · · · ,G𝐶 ,
and E0, E1, · · · , E𝐶 . Then, the output representations of user/item
nodes for each criterion are aggregated by concatenation for the

final prediction.

B.3 Quantitative Analysis of Over-smoothing
Table 5 shows the average pairwise Euclidean distance of node

representations at each GNN layer on the TA dataset when CPA-
LGC is performed with and without the over-smoothing alleviation

operation 𝑓 (·). It is seen that the average pairwise distance in the

case of using 𝑓 (·) is consistently larger than its counterpart (i.e.,
the case of not using 𝑓 (·)) over all layers.

B.4 Computational Efficiency of CPA-LGC
Figure 8 shows the execution time for one epoch training on CPA-
LGC. It is observed that the execution time is almost linear with

the number of edges, |E |, in the MC expansion graph. Thus, our

empirical result validates the theoretical analysis in Theorem 3.1.

B.5 Effect of the Number of Criteria
To investigate the effect of the number of criteria on the perfor-

mance, we perform an additional ablation study by varying the

number of criteria. We use the TA dataset for the experiment. As

shown in Figure 9, the recommendation accuracy tends to mono-

tonically increase with the number of criteria. The experimental

result demonstrates that MC ratings indeed contain the informative

collaborative signal as long as GNNs are concerned, thus resulting

in accurate recommendations.


	Abstract
	1 Introduction
	2 Problem Definition
	3 Proposed Method: CPA-LGC
	3.1 Graph Construction
	3.2 Criteria Preference-Aware Architecture
	3.3 Optimization
	3.4 Model Analysis

	4 Experimental Evaluation
	4.1 Experimental Settings
	4.2 Results and Analysis

	5 Related Work
	6 Conclusions and future work
	References
	A Details of CPA-LGC
	A.1 Proof of Theorem 3.1
	A.2 Matrix Form of CPA-LGC
	A.3 Pseudocode of CPA-LGC

	B Details of experimental settings
	B.1 Dataset description
	B.2 Details of LightGCNMC
	B.3 Quantitative Analysis of Over-smoothing
	B.4 Computational Efficiency of CPA-LGC
	B.5 Effect of the Number of Criteria


