2203.02034v2 [cs.LG] 4 Jun 2023

arXiv

Data-Efficient and Interpretable Tabular Anomaly Detection

Chun-Hao Chang

Jinsung Yoon

Sercan Arik

chkchang21@gmail.com jinsungyoon@google.com soarik@google.com

Meta Google Cloud Al Google Cloud Al

USA USA USA
Madeleine Udell Tomas Pfister
udell@stanford.edu tpfister@google.com
Stanford University Google Cloud AI

USA USA
ABSTRACT in healthcare. When the real-world tabular AD applications are

Anomaly detection (AD) plays an important role in numerous appli-
cations. In this paper, we focus on two understudied aspects of AD
that are critical for integration into real-world applications. First,
most AD methods cannot incorporate labeled data that are often
available in practice in small quantities and can be crucial to achieve
high accuracy. Second, most AD methods are not interpretable, a
bottleneck that prevents stakeholders from understanding the rea-
son behind the anomalies. In this paper, we propose a novel AD
framework, DIAD, that adapts a white-box model class, Generalized
Additive Models, to detect anomalies using a partial identification
objective which naturally handles noisy or heterogeneous features.
DIAD can incorporate a small amount of labeled data to further
boost AD performances in semi-supervised settings. We demon-
strate the superiority of DIAD compared to previous work in both
unsupervised and semi-supervised settings on multiple datasets.
We also present explainability capabilities of DIAD, on its rationale
behind predicting certain samples as anomalies.
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« Computing methodologies — Semi-supervised learning
settings; Anomaly detection.
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1 INTRODUCTION

Anomaly detection (AD) has numerous real-world applications,
especially for tabular data, including detection of fraudulent trans-
actions, intrusions related to cybersecurity, and adverse outcomes
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considered, there are various challenges constituting a fundamen-
tal bottleneck for penetration of fully-automated machine learning
solutions:

e Noisy and irrelevant features: Tabular data often contain noisy
or irrelevant features caused by measurement noise, outlier fea-
tures and inconsistent units. Even a change in a small subset of
features may trigger anomaly identification.

e Heterogeneous features: Unlike image or text, tabular data fea-
tures can have values with significantly different types (numeri-
cal, boolean, categorical, and ordinal), ranges and distributions.
Small labeled data: In many applications, often a small portion
of the labeled data is available. AD accuracy can be significantly
boosted with the information from these labeled samples as they
may contain crucial information on representative anomalies and
help ignore irrelevant ones.
Interpretability: Without interpretable outputs, humans cannot
understand the rationale behind anomaly predictions, that would
enable more trust and actions to improve the model performance.
Verification of model accuracy is particularly challenging for high
dimensional tabular data, as they are not easy to visualize for
humans. An interpretable AD model should be able to identify
important features used to predict anomalies. Conventional local
explainability methods like SHAP [20] and LIME [25] are pro-
posed for supervised learning and may not be straightforward to
generalize to unsupervised or semi-supervised AD.

Conventional AD methods fail to address the above — their per-
formance often deteriorates with noisy features (Sec. 6), they cannot
incorporate labeled data, and cannot provide interpretability.

In this paper, we aim to address these challenges by propos-
ing a novel framework, Data-efficient Interpretable AD (DIAD).
DIAD’s model architecture is inspired by Generalized Additive
Models (GAMs) and GA?M (see Sec. 3), that have been shown to
obtain high accuracy and interpretability for tabular data [4, 6, 16],
and have been used in applications like finding outlier patterns
and auditing fairness [33]. We propose to employ intuitive notions
of Partial Identification (PID) as an AD objective and learn them
with a differentiable GA?M (NodeGA2M, Chang et al. [5]). Our
design is based on the principle that PID scales to high-dimensional
features and handles heterogeneous features well, while the dif-
ferentiable GAM allows fine-tuning with labeled data and retain
interpretability. In addition, PID requires clear-cut thresholds like
trees which are provided by NodeGA?M. While combining PID
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Figure 1: Overview of the proposed DIAD framework. During training, first an unsupervised AD model is fitted employing
interpretable GA?’M models and PID loss with unlabeled data. Then, the trained unsupervised model is fined-tuned with a small
amount of labeled data using a differentiable AUC loss. At inference, both the anomaly score and explanations are provided,
based on the visualizations of top contributing features. The example sample in the figure is shown to have an anomaly score,

explained by the cell size feature having high value.

with NodeGA?M, we introduce multiple methodological innova-
tions, including estimating and normalizing a sparsity metric as
the anomaly scores, integrating a regularization for an inductive
bias appropriate for AD, and using deep representation learning
via fine-tuning with a differentiable AUC loss. The latter is crucial
to take advantage of a small amount of labeled samples well and
constitutes a more ‘data-efficient’ method compared to other AD
approaches — e.g. DIAD improves from 87.1% to 89.4% AUC with 5
labeled anomalies compared to unsupervised AD. Overall, our inno-
vations lead to strong empirical results — DIAD outperforms other
alternatives significantly, both in unsupervised and semi-supervised
settings. DIAD’s outperformance is especially prominent on large-
scale datasets containing heterogeneous features with complex
relationships between them. In addition to accuracy gains, DIAD
also provides a rationale on why an example is classified as anoma-
lous using the GA?M graphs, and insights on the impact of labeled
data on the decision boundary, a novel explainability capability that
provides both local and global understanding on the AD tasks.

2 RELATED WORK

Overview of AD methods. Table 1 summarizes representative
AD works and compares to DIAD. AD methods for training with
only normal data have been widely studied [21]. Isolation Forest
(IF) [17] grows decision trees randomly — the shallower the tree
depth for a sample is, the more anomalous it is predicted. However,
it shows performance degradation when feature dimensionality
increases. Robust Random Cut Forest (RRCF, [11]) further improves
IF by choosing features to split based on the range, but is sensitive
to scale. PIDForest [9] zooms on the features with large variances,
for more robustness to noisy or irrelevant features.

There are also AD methods based on generative approaches, that
learn to reconstruct input features, and use the error of reconstruc-
tions or density to identify anomalies. Bergmann et al. [2] employs
auto-encoders for image data. DAGMM [39] first learns an auto-
encoder and then uses a Gaussian Mixture Model to estimate the

density in the low-dimensional latent space. Since these are based
on reconstructing input features, they may not be directly adapted
to high-dimensional tabular data with noisy and heterogeneous
features.

Recently, methods with pseudo-tasks have been proposed as
well. A major one is to predict geometric transformations [1, 8] and
using prediction errors to detect anomalies. Qiu et al. [24] shows
improvements with a set of diverse transformations. CutPaste [14]
learns to classify images with replaced patches, combined with
density estimation in the latent space. Lastly, several recent works
focus on contrastive learning. Tack et al. [32] learns to distinguish
synthetic images from the original. Sohn et al. [31] first learns a
distribution-augmented contrastive representation and then uses a
one-class classifier to identify anomalies. Self-Contrastive Anomaly
Detection (SCAD) [29] aims to distinguish in-window vs. out-of-
window features by a sliding window and utilizes the error to
identify anomalies.

Explainable AD. A few AD works focus on explainability as
overviewed in Pang and Aggarwal [21]. Liu et al. [18], Vinh et al.
[34] explains anomalies using off-the-shelf detectors that might
come with limitations as they are not fully designed for the AD
task. Liznerski et al. [19] proposes identifying anomalies with a one-
class classifier (OCC) with an architecture such that each output
unit corresponds to a receptive field in the input image. Kauffmann
et al. [12] also uses an OCC network but instead utilizes a saliency
method for visualizations. These approaches can show the parts
of images that lead to anomalies, however, their applicability is
limited to image data, and they can not provide meaningful global
explanations as GAMs.

Semi-supervised AD. Several works have been proposed for
semi-supervised AD. Das et al. [7], similar to ours, proposes a two-
stage approach that first learns an IF on unlabeled data, and then
updates the leaf weights of IF using labeled data. This approach can
not update the tree structure learned in the first stage, which we
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Table 1: Comparison of AD approaches.

‘ Unlabeled data ‘ Noisy features ‘ Heterogenous features ‘ Labeled data ‘ Interpretability

PIDForest
DAGMM
GOAD
Deep SAD
SCAD
DevNet
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show to be crucial for high performance (Sec. 6.4). Deep SAD [27] ex-
tends deep OCC DSVDD [26] to semi-supervised setting. However,
this approach is not interpretable and underperforms unsupervised
OCC-SVM on tabular data in their paper while DIAD outperforms
it. DevNet [22] formulates AD as a regression problem and achieves
better sample complexity with limited labeled data. Yoon et al. [37]
trains embeddings in self-supervised way [13] with consistency
loss [30] and achieves state-of-the-art semi-supervised learning ac-
curacy on tabular data. Our method instead relies on unsupervised
AD objective and later fine-tune on labeled AD ones that could
work better in the AD settings where labels are often sparse. We
quantitatively compared with them in Sec. 6.2.

3 PRELIMINARIES: GA’M AND NODEGA’M

We first overview the NodeGA?M model that we adopt in our
framework, DIAD.

GA?’M. GAMs and GA%Ms are designed to be interpretable with
their functional forms only focusing on the 1st or 2nd order feature
interactions and foregoing any 3rd-order or higher interactions.
Specifically, given an input x € RP, label y, a link function g (e.g. g
islog(p/1 — p) in binary classification), the constant / bias term fp,
the main effects for j (th) feature fj, and 2-way feature interactions
fjj'» the GA%M models are expressed as:

D D
GA’M: g(y) = fo + Zj:l fiGxp) + Zj:l Z;»; fii (jox).

)
Unlike other high capacity models like DNNs that utilize all
feature interactions, GA?M are restricted to only lower-order, 2-way
interactions. This allows visualizations of f; or fj;» independently
as a 1-D line plot and 2-D heatmap (called shape plots), providing
a convenient way to gain insights behind the rationale of the model.
On many real-world datasets, they can yield competitive accuracy,
while providing simple explanations for humans to understand the
model’s decisions. Note these visualizations are always faithful to

the model since there is no approximation involved.

NodeGA*M. NodeGA%M [5] is a differentiable extension of GA2M
which uses the neural trees to learn feature functions f; and fjj.
Specifically, NodeGAZM consists of L layers where each layer has
m differentiable oblivious decision trees (ODT) whose outputs are
combined with weighted superposition, yielding the model’s final
output. An ODT functions as a decision tree with all nodes at the
same depth sharing the same input features and thresholds, en-
abling parallel computation and better scaling. Specifically, an ODT

of depth C compares chosen C input features to C thresholds, and
returns one of the 2€ possible options. F¢ chooses what features to

split, thresholds b€, and leaf weights W € RZC, and its tree outputs
I(F!(x) - b')

h(x) are given as:
o =w- (|36 T |e | o

where I is an indicator (step) function, ® is the outer product and
- is the inner product. To make ODT differentiable and in GA?M
form, Chang et al. [5] replaces the non-differentiable operations F¢
and I with differentiable relaxations via softmax and sigmoid-like
functions. Each tree is allowed to interact with at most two features
so there are no third- or higher-order interactions in the model. We
provide more details in Appendix. B.

I(F€ (x) - b©)
I(b€ - F€(x))

4 PARTIAL IDENTIFICATION AND SPARSITY
AS THE ANOMALY SCORE

We consider the Partial Identification (PID) [9] as an AD objective
given its benefits in minimizing the adversarial impact of noisy
and heterogeneous features (e.g. mixture of multiple discrete and
continuous types), particularly for tree-based models. By way of
motivation, consider the data for all patients admitted to ICU - we
might treat patients with blood pressure (BP) of 300 as anomalous,
since very few people have more than 300 and the BP of 300 would
be in such “sparse" feature space.

To formalize this intuition, we first introduce the concept of
‘volume’. We consider the maximum and minimum value of each
feature value and define the volume of a tree leaf as the product
of the proportion of the splits within the minimum and maximum
value. For example, assuming the maximum value of BP is 400
and minimum value is 0, the tree split of ‘BP > 300’ has a volume
0.25. We define the sparsity s; of a tree leaf [ as the ratio between
the volume of the leaf V; and the ratio of data in the leaf D; as
s; = V;/D;. Correspondingly, we propose treating higher sparsity as
more anomalous — let’s assume only less than 0.1% patients having
values more than 300 and the volume of ‘BP > 300’ being 0.25,
then the anomalous level of such patient is the sparsity 0.25/0.1%.
To learn effectively splitting of regions with high vs. low sparsity
i.e. high v.s. low anomalousness, PIDForest [9] employs random
forest with each tree maximizing the variance of sparsity across
tree leafs to splits the space into a high (anomalous) and a low
(normal) sparsity regions. Note that the expected sparsity weighted
by the number of data samples in each leaf by definition is 1. Given
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each tree leaf [, the ratio of data in the leaf is Dy, sparsity s;:

Blsl = Y [Dys] =ZI[D,I?] -Yml=1 )

1
Therefore, maximizing the variance becomes equivalent to maxi-
mizing the second moment, as the first moment is 1:

max Var[s] = max Zl D1312 = max Zl VZZ/DI. (4)

5 DIAD FRAMEWORK

In DIAD framework, we propose optimizing the tree structures
of NodeGA®M by gradients to maximize the PID objective — the
variance of sparsity — meanwhile setting the leaf weights W in
Eq. 2 as the sparsity of each leaf, so the final output is the sum of
all sparsity values (anomalous levels) across trees. We overview the
DIAD in Alg. 1. Details of DIAD framework are described below.

Estimating PID. The PID objective is based on estimating the
ratio of volume V; and the ratio of data D; for each leaf I. However,
exact calculation of the volume is not trivial in an efficient way for
an oblivious decision tree as it requires complex rules extractions.
Instead, we sample random points, uniformly in the input space,
and count the number of the points that end up at each tree leaf as
the empirical mean. More points in a leaf would indicate a larger
volume. To avoid the zero count in the denominator, we employ
Laplacian smoothing, adding a constant § to each count.! Similarly,
we estimate D; by counting the data ratio in each batch. We add ¢
to both V; and Dy.

Normalizing sparsity. The sparsity and thus the trees’ outputs
can have very large values up to 100s and can create challenges
to gradient optimizations for the downstream layers of trees, and
thus inferior performance in semi-supervised setting (Sec. 6.4). To
address this, similar to batch normalization, we propose linearly
scaling the estimated sparsity to be in [-1, 1] to normalize the tree
outputs. We note that the linear scaling still preserves the ranking
of the examples as the final score is a sum operation across all
sparsity. Specifically, for each leaf [, the sparsity s is:

§§=Vi/Dy, s = 2§l/(mlax§l - nllin§l) -1 (5)
Temperature annealing. We observe that the soft relaxation
approach for tree splits in NodeGA2M, EntMoid (which replace I in
Eq. 2) does not perform well with the PID objective. We attribute
this to Entmoid (similar to Sigmoid) being too smooth, yielding the
resulting value similar across splits. Thus, we propose to make the
split gradually from soft to hard operation during optimization:

Entmoid(x/T) — I (6)

as optimization goes by linearly decresing T — 0

Updating leafs’ weight. When updating the leaf weights W in
Eq. 2 in each step to be sparsity, to stabilize its noisy estimation
due to mini-batch and random sampling, we apply damping to the
updates. Specifically, given the step i, sparsity sli for each leaf [, and
the update rate y (we use y = 0.1):

i_ (i-1) i
w; = (1 —y)wl +ysp. 7)
!t is empirically observed to be important to set a large &, around 50-100, to encourage
the models ignoring the tree leaves with fewer counts.

Chang, et al.

Algorithm 1 DIAD training

Input: Mini-batch X, tree model M, smoothing §, w,; is an entry
of the leaf weights matrix W (Eq. 2) for each tree t and leaf ]

X = MinMaxTransform(X, min=—1, max=1)

Xy ~ U[-1,1] {Data uniformly from [-1, 1]}

E = M(X), Eﬁ = M(Xy) {Count how many data in each leaf ]
of tree t for X, Xy. See Alg. 2.}

Ett=Etl 46, E{]l = Efjl + & {Smooth the counts}

I
Vi = z,ftE'l’ {Volume ratio}
E!! .

Dy = m {Data ratio}

Vi
My = 55 {Second moments}
Ly = = Xt 1 My {Maximize the second moments}
$t1 = Vi1/Dy1 {Sparsity}

s = ((mxsjs#w —1) {Scale to [-1, 1] (Eq. 5)}
wy = (1 = y)wy + ys; {Update tree weights — Eq. 7}
Optimize Lys by Adam optimizer

(Inference) Anomaly Score S = }}; s; {sum of sparsity of all trees}.

Regularization. To encourage diverse trees, we introduce a
novel regularization approach: per-tree dropout noise on the esti-
mated momentum. We further restrict each tree to only split on p%
of features randomly to promote diverse trees (see Appendix. C for
details).

Incorporating labeled data. At the second stage of fine-tuning
using labeled data, we optimize the differentiable AUC loss [7, 36]
which has been shown effective in imbalanced data setting. Note
that we optimize both the tree structures and leaf weights of the
DIAD. Specifically, given a randomly-sampled mini-batch of labeled
positive/negative samples Xp/Xn, and the model M, the objective
is:

Len = 1/IXplIXN| max(M (xn) = M(xp), 0). (8)

Xp eXp,xneXN

We show the benefit of this AUC loss compared to Binary Cross
Entropy (BCE) in Sec. 6.4.

Training data sampling. Similar to Pang et al. [22], we up-
sample the positive samples such that they have similar count with
the negative samples, at each batch. We show the benefit of this
over uniform sampling (see Sec. 6.4).

Theoretical result. DIAD prioritizes training on informative
features rather than noise:

Proposition 1. Given uniform noise x, and non-uniform features x,
DIAD prioritizes cutting x4 over x, because the variance of sparsity
of x4 is larger than xp, as sample size goes to infinity.

Here, we show that the variance of sparsity of uniform features
would go to 0 under large sample sizes. Without loss of generality,
we assume that the decision tree has a single cutin / € (0,1) in
a uniform feature x, € [0, 1], and we denote the sparsity of the
left segment as s; and the right as sy. The sparsity s; is defined as
%11 where the V; = [ is the volume, and the Dj is the data ratio i.e.
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Figure 2: The Spearman correlation of methods’ performance
rankings. DIAD is correlated with SCAD as they both perform
better in larger datasets. PIDForest underperforms on larger
datasets, and its correlation with DIAD is low, despite having
similar objectives.

D; = C—nl where c; is the counts of samples in segment 1 between
0 and [, and n is the total samples. Since x5, is a uniform feature,
the counts c; become a Binomial distribution with n samples and
probability I:

c1 ~ Bern(n,1),c2 ~ Bern(n, 1 —1).

Asn — oo, D; — [ because E[D;] = Bled _ jand Var[Dq] =

n
VL,ECI] ICl) RN 0. Therefore, as number of examples grow,
n n

the sparsity s; = Dll, - % = 1. Similarly, s — 1. For any uniform
noise, since both sparsity si, s2 converges to 1 as n — oo no matter
where the cut [ is, the variance of sparsity converges to 0. Thus, the
objective of DIAD which maximizes the variance of sparsity would
prefer splitting other non-uniform features since there is no gain
in variance of sparsity when splitting on the uniform noise. This
explains why DIAD is resilent to noisy settings in Table 9.

6 EXPERIMENTS

We evaluate DIAD on various datasets, in both unsupervised and
semi-supervised settings. Detailed settings and additional results
are provided in the Appendix.

6.1 Unsupervised Anomaly Detection

We compare methods on 20 tabular datasets, including 14 datasets
from Gopalan et al. [9] and 6 larger datasets from Pang et al. [22].2
We run and average results with 8 different random seeds.

Baselines. We compare DIAD with SCAD [29], a recently-proposed

deep learning based AD method, and other competitive methods
including PIDForest [9], COPOD [15], PCA, k-nearest neighbors
(kNN), RRCF [11], LOF [3] and OC-SVM [28]. To summarize per-
formance across multiple datasets, we consider the averaged AUC
(the higher, the better), as well as the average rank (the lower, the
better) to avoid a few datasets dominating the results.

2We did not use all 30 datasets in ODDS used in SCAD [29] because some are small or
overlap with datasets from [9].
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Table 2 shows that DIAD’s performance is better than others on
most datasets. We also showed DIAD outperformed another deep-
learning baseline: NeuTral AD [24] in Appendix J. To analyze the
similarity of performances, Fig. 2 shows the Spearman correlation
between rankings. Compared to the PIDForest which has similar
objectives, DIAD often underperforms on smaller datasets such as
on Musk and Thyroid, but outperforms on larger datasets such as
on Backdoor, Celeba, Census and Donors. DIAD is correlated with
SCAD as they both perform better on larger datasets, attributed
to better utilizing deep representation learning. PIDForest under-
performs on larger datasets, and its correlation with DIAD is low
despite having similar objectives.

Next, we show the robustness of AD methods with additional
noisy features. We follow the experimental settings from Gopalan
et al. [9] to include 50 additional noisy features which are randomly
sampled from [—1, 1] on Thyroid and Mammography datasets, and
their noisy versions. Table. 3 shows that the performance of DIAD is
more robust with additional noisy features (76.1—71.1, 85.0—83.1),
while others show significant performance degradation. On Thyroid
(noise), SCAD decreases from 75.9—49.5, KNN from 75.1—49.5, and
COPOD from 77.6—60.5.

6.2 Semi-supervised Anomaly Detection

Next, we focus on the semi-supervised setting and show DIAD can
take advantage of small amount of labeled data in a superior way.

We divide the data into 64%-16%-20% train-val-test splits and
within the training set, we consider that only a small part of data
is labeled. We assume the existence of labels for a small subset of
the training set (5, 15, 30, 60 or 120 positives and the corresponding
negatives to have the same anomaly ratio).

The validation set is used for model selection and we report the
averaged performances evaluated on 10 disjoint data splits. We
compare to 3 baselines: (1) DIAD w/o PT: optimized with labeled
data without the first AD pre-training stage, (2) CST: VIME with
consistency loss [38] which regularizes the model to make similar
predictions between unlabeled data under dropout noise injection,
(3) DevNet [22]: a state-of-the-art semi-supervised AD approach.
Further details are provided in Appendix. C.2.

Fig. 3 shows the AUC across 8 of 15 datasets (the rest can be found
in Appendix. G). The proposed version of DIAD (blue) outperforms
DIAD without the first stage pre-training (orange) consistently on
14 of 15 datasets (except Census), which demonstrates that learning
the PID objective with unlabeled data improves the performance.
Second, neither the VIME with consistency loss (green) or DevNet
(red) always improves the performance compared to the supervised
setting. Table 4 shows the average AUC of all methods in semi-
supervised AD. Overall, DIAD outperforms all baselines and shows
improvements over the unlabeled setting. In Appendix. D, we show
similar results in average ranks metric rather than AUC.

6.3 Qualitative analyses on DIAD explanations

Explaining anomalous prediction. DIAD provides value to
the users by providing insights on why a sample is predicted as
anomalous. We demonstrate this by focusing on Mammography
dataset and showing the explanations obtained by DIAD for anoma-
lous samples. The task is to detect breast cancer from radiological
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Table 2: Unsupervised AD performance (% of AUC) on 18 datasets for DIAD and 9 baselines. Metrics with standard error
overlapped with the best number are bolded. Methods without randomness don’t have standard error. We show the number of

samples (N) and the number of features (P), ordered by N.

‘ DIAD PIDForest IF COPOD PCA SCAD GIF kNN RRCF LOF OC-SVM| N P
Vowels |783:00 74.0x10 74.9+25 49.6 60.6 90.8:+21 79.0 15 97.5 80.8:05 5.7 77.8 1K 12
Siesmic |72.2:04 73.0x03 70.7 02 72.7 68.2 653:16 53.3:4a 74.0 69.7:10 44.7 60.1 3K 15
Musk [90.8:09 100.0:00 100.0:00 94.6 100.0 933:07 93.2:25 37.3 99.8:01 58.4 57.3 3K 166
Satimage {99.7 00  98.2:03 99.3 01 97.4 97.7 98.0x13 98.9 x06s 93.6 99.2:02 46.0 42.1 6K 36
Thyroid |76.1:25 88.2:0s 81.4+09 77.6 67.3 759:22 57.6 +60 75.1 74.0:05 26.3 54.7 7K 6
AT 783+06 81406 78.6 +06 78.0 79.2 793:07 564 +65 634 69.9:04 43.7 67.0 7K 10
NYC 573+09  57.2x06 55.3+10 56.4 51.1 64.5:09 49.0 +32 69.7 54.4:05 32.9 50.0 10K 10
Mammo. | 85.0+03  84.8+04 85.7 £ 05 90.5 88.6 69.8+27 82.5:03 839 83.2:02 28.0 87.2 11K 6
CPU 91.9:02  93.2:01 91.6+02 93.9 85.8 87.5+03 781 %09 724 78.6:05 44.0 79.4 18K 10
M. T. 81.2+02 81.6x03 82.7 +0s 80.9 83.4 81.8+04 73.9:+120 759 74.7:04 499 79.6 23K 10
Campaign|71.0z0s  78.6x0s 704 19 78.3 734 72.0:05 64.1+39 72.0 65.5:03 46.3 66.7 41K 62
smtp 86.8+05 91.9zx02 90.5+07 91.2 823 82.2+20 76.7+s55 89.5 88.9:23 9.5 84.1 95K 3
Backdoor [91.1x25 74.2:26 74.8 +41 78.9 88.7 91.8:06 66.9 +s4 66.8 75.4:07 28.6 86.1 95K 196
Celeba |77.2:+19 67.1:4s 70.3 £0s 75.1 78.6 754:26 61.6 60 56.7 61.7+03 56.3 68.5 203K 39
Fraud [95.7:02 94.7x03 94.8 +01 94.7 95.2 95.5:02 804 +0s 934 87.5:04 525 94.8 285K 29
Census [65.6+21 53.4+s1 61.9+19 67.4 66.1 58.4+09 588 +25 64.6 55.7:01 45.0 53.4 299K 500
http 99.3:+01  99.2:02 100.0=x00 99.2 99.6 99.3:01 91.1+70 23.1 98.4:02 64.7 99.4 567K 3
Donors |87.7+62 61.1:13 78.3 07 81.5 82.9 65.5:1s 80.3 +152 61.2 64.1:00 40.2 70.2 619K 10
Average 82.5 80.7 81.2 81.0 80.5 80.3 71.2 70.6 76.8 40.2 71.0 - -
Rank 3.6 4.4 4.0 4.2 4.2 4.7 6.3 6.6 6.7 9.8 6.8 - -

Table 3: Unsupervised AD performance (% of AUC) with additional 50 noisy features for DIAD and 9 baselines. We find both
DIAD and OC-SVM deteriorate around 2-3% while other methods deteriorate 7-17% on average.

‘ DIAD PIDForest GIF IF COPOD PCA SCAD kNN RRCF LOF OC-SVM
Thyroid 76.1x25 88.2x0s 57.6+60 81.4+09 77.6 67.3 75.9=x22 75.1 74.0:05 26.3 54.7
Thyroid (noise) 71112 76.0x20 49.4+:12 644115 60.5 61.4 49.5:16 49.5 53.6+11 50.8 494
Mammography 85.0+03 84.8+04 82.5x03 85.7+0s5 90.5 88.6 69.8+27 839 83.2:02 28.0 87.2
Mammography (noise) [83.1x04  82.0222  72.7 254 714220 72.4 76.8 69.4:24 817 79.1:07 37.2 87.2
Average | ‘ 3.5 7.5 9.1 15.6 17.6 8.9 134 139 122 -16.8 2.7

Table 4: Performance in semi-supervised AD setting. We show
the average % of AUC across 15 datasets with varying number
of anomalies.

No. Anomalies| 0 5 15 30 60 120

DIAD 87.1 89.4 90.0 90.4 89.4 91.0
DIAD w/o PT - 86.2 87.6 88.3 87.2 88.8
CST - 853 865 87.1 86.6 88.8
DevNet - 83.0 84.8 85.4 83.9 85.4

scans, specifically the presence of clusters of microcalcifications
that appear bright on a mammogram. The 11k images are seg-
mented and preprocessed using standard computer vision pipelines
and 6 image-related features are extracted, including the area of
the cell, constrast, and noise. Fig. 4 shows the data samples that
are predicted to be the most anomalous and its rationale behind

DIAD on top 4 factors contributing more to the anomaly score.
The unusually-high ‘Contrast’ (Fig. 4(a)) is a major factor in the
way image differs from other samples. The unusually high noise
(Fig. 4(b)) and ‘Large area’ (Fig. 4(c)) are other ones. In addition,
Fig. 4(d) shows 2-way interactions and the insights by it on why
the sample is anomalous. The sample has ‘middle area’ and ‘mid-
dle gray level’, which constitute a rare combination in the dataset.
Overall, these visualizations shed light into which features are the
most important ones for a sample being considered as anomalous,
and how the value of the features affect the anomaly likelihood.
We show another example of DIAD explanations on the "Celeba"
dataset. Celeba consists of 200K pictures of celebrities and annotated
with 40 attributes including "Bald", "Hair", "Mastache", "Attractive"
etc. We train the DIAD on these 40 sets of attributes and treat
the "Bald" attribute as outliers since it accounts for only 3% of all
celebrities. Here we show the most anomalous example deemed
by the DIAD in Fig. 5. The top 4 contributing factors are shown in
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Figure 3: Semi-supervised AD performance on 8 tabular datasets (out of 15) with varying number of anomalies. Our method
‘DIAD’ (blue) outperforms other semi-supervised baselines. Summarized results can be found in Table. 4. Remaining plots with

7 tabular datasets are provided in Appendix. G.
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Figure 4: Explanations of the most anomalous samples on the Mammography dataset. We show the top 4 contributing features
ordered by the sparsity (Sp) value (anomalous levels) of our model, with 3 features (a-c) and 1 two-way interaction (d). (a-c)
x-axis is the feature value, and y-axis is the model’s predicted sparsity (higher sparsity represents more likelihood of being
anomalous). Model’s predicted sparsity is shown as the blue line. The red backgrounds indicate the data density and the green
line indicates the value of the most anomalous sample with Sp (y-value) as its sparsity. The model finds it anomalous as it has
high Contrast, Noise and Area, different from values that a majority of other samples have. (d) x-axis is the Area and y-axis is
the Gray Level with color indicating the sparsity (blue/red indicates anomalous/normal). The green dot is the value of the data

that has 0.05 sparsity (dark blue).

(a-d), showing Gray Hair, Mustache, Receding Hairline, and Rosy
Cheeks are very anomalous in the data. We also show the top 4
interactions in (e-h), indicating the combination of Rosy Cheeks
with Mustache, Goatee, Necktie and Side Burns are even more
anomalous deemed by DIAD. We also show the least anomalous
(normal) example deemed by DIAD in the Celeba dataset in Fig. 6.
The lack of "Receding Hairline", "Rosy Cheeks", "Pale Skin", and
"Gray Hair" are pretty common and thus DIAD outputs a negative
normalized sparsity value. Given Celeba mostly consists of young to

middle-aged celebrities, attributes resembling elderly are correctly
deemed as anomalous and vice versa.

Qualitative analyses on the impact of fine-tuning with
labeled data. Fig. 7 visualizes how predictions change before and
after fine-tuning with labeled samples on Donors dataset. Donors
dataset consists of 620k educational proposals for K12 level with 10
features. The anomalies are defined as the top 5% ranked proposals
as outstanding. We show visualizations before and after fine-tuning.
Figs. 7 a & b show that both ‘Great Chat’ and ‘Great Messages
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Figure 5: DIAD decision making visualizations of the most anomalous image of the CelebA dataset. The top 4 contributing
mains are shown in (a-d) where the green dots are the image’s attributes and the blue line is the model’s prediction. This
celebrity has gray hair, Mustache, receding hairline, and rosy cheeks which make DIAD predict him as very anomalous in the
dataset. The top 4 2-way interactions are shown in (e-h) where the combination of the Rosy Cheeks with Mustache (e), Goatee
(f), Necktie (g), and Side Burns (h) make him even more anomalous.
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Figure 6: DIAD decision making visualizations of the least anomalous celebrity in the CelebA dataset, showing its least 4

anomalous features. The lack of "receding hariline", "rosy cheeks", "pale skin", and "gray hair" make DIAD deem him as the
most normal subject indicated by the negative sparsity.

b) Great Messages
(a) Great Chat () cssag (c) Fully Funded d) Referred Count
Proportion
0.008 . 0.4
—— after 0:0050 —— after 0.002
0.006 —— before 0.0025 { —— before 031
= = 4 = 0.000 =
a 0.004 a 0.0000 a a —— after
g 0002 5 -0.0025 1 3 o002 5 021 —— before
o < —0.0050 - o ' o
0.000 : 0.1
-0.0075 1 —0.004
-0.002
—0.01004 0,006 ~}— before 0.0 g o g X ]
0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 7: AD decision visualizations on the Donors dataset before (orange) and after (blue) fine-tuning with the labeled samples.
Here the darker/lighter red in the background indicates high/low data density and thus less/more anomalous. In (a, b) we show
the two features that after fine-tuning (blue) the magnitude increases which shows the labels agree with the notion of data

sparsity learned before fine-tuning (orange). In (c, d) the label information disagrees with the notion of sparsity; thus, the
magnitude changes or decreases after the fine-tuning.

Proportion’ increase in magnitude after fine-tuning, indicating that with the labels. Conversely, Figs. 7 ¢ & d show the opposite trend
the sparsity (as a signal of anomaly likelihood) of these is consistent after fine-tuning. The sparsity definition treats the values with
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Figure 8: AD decision making visualizations on the Thyroid dataset before (orange) and after (blue) fine-tuning on the labeled
samples. Here the darker/lighter red in the background indicates high/low data density and thus less/more anomalous. In (a)
T3, the labeled information agrees with the anomaly specified in PID, so after fine-tuning the magnitude increases. In (b, c,
d) the label information disagrees with the anomalous levels specified in PID especially when the value are small; thus, the
magnitude changes or decreases after the fine-tuning.

less density as more anomalous — in this case Fully Funded’=0 is
treated as more anomalous. In fact, ‘Fully Funded’ is a well-known
indicator of outstanding proposals, so after fine-tuning, the model
learns that Fully Funded’=1 in fact contributes to a higher anomaly
score. This underlines the importance of incorporating labeled data
to improve AD accuracy.

We further show another case study of DIAD explanations on
"Thyroid" datasets before and after fine-tuning that also indicates
the discrepancy between unsupervised AD objective and labeled
anomalies. Thyroid datasets contains 7200 samples with 6 features
and 500 of labels are labeled as "hyperfunctioning". In Fig. 8, we
visualize 4 attributes: (a) T3, (b) T4U, (c) TBG, and (d) TT4. And
the dark red in the backgrounds indicates the high data density by
bucketizing the x-axis into 64 bins and counts the number of exam-
ples for each bin. First, in T3 feature, before fine-tuning (orange)
the model predicts a higher anomaly for values above 0 since they
have little density and have mostly white region. After fine-tuning
on labeled data (blue), the model further strengthens its belief that
values bigger than 0 are anomalous. However, in T4U, TBG and TT4
features (b-d), before fine-tuning (orange) the model conversely
indicates higher values are anomalous due to its larger volume and
smaller density (white). But after fine-tuning (blue) on the labels
the model moves to an opposite direction that the smaller feature
value is more anomalous. This shows that the used unsupervised
anomaly objective, PID, is in conflict with the human-defined anom-
alies in these features. Thanks to this insight, we may decide not
to optimize the PID on these features or manually edit the GAM
graph predictions [35], a unique capability other AD methods lack.

6.4 Ablation and sensitivity analysis

To analyze the major constituents of DIAD, we perform ablation
analyses, presented in Table 5. We show that fine-tuning with AUC
outperforms BCE. Sparsity normalization plays an important role in
fine-tuning, since sparsity could have values up to 10* which nega-
tively affect fine-tuning. Upsampling the positive samples also con-
tributesto performance improvements. Finally, to compare with Das
et al. [7] which updates the leaf weights of a trained IF [17] to incor-
porate labeled data, we propose a variant that only fine-tunes the
leaf weights using labeled data in the second stage without chang-
ing the tree structure learned in the first stage, which substantially

Table 5: Ablation study for semi-supervised AD.

No. Anomalies | 5 15 30 60 120
DIAD 89.4 90.0 90.4 89.4 91.0

Only AUC 88.9 89.4 90.0 89.1 90.7

Only BCE 88.8 89.3 89.4 88.3 89.2
Unnormalized sparsity |84.1 85.6 85.7 84.2 85.6
No upsampling 88.6 89.1 89.4 88.5 90.1
Only finetune leaf weights | 84.8 85.7 86.6 85.7 88.3

decreases the performance. Using differentiable trees that update
both leaf structures and weights is also shown to be important.

In practice we might not have a large validation dataset, as in
Sec. 6.2, thus, it would be valuable to show strong performance
with a small validation dataset. In Supp. E, we reduce the validation
dataset size to only 4% of the labeled data and find DIAD still
consistently outperforms others. Additional results can be found in
Appendix. E. We also perform sensitivity analysis in Appendix. F
that varies hyperparameters in the unsupervised AD benchmarks.
Our method is quite stable with less than 2% differences across a
variety of hyperparameters on many different datasets.

7 DISCUSSIONS AND CONCLUSIONS

As unsupervised AD methods rely on approximate objectives to dis-
cover anomalies such as reconstruction loss, predicting geometric
transformations, or contrastive learning, the objectives inevitably
would not align with labels on some datasets, as inferred from the
performance ranking fluctuations across datasets and confirmed
in Sec. 6.3 before and after fine-tuning. This motivates for incor-
porating labeled data to boost performance, and interpretability
to find out whether the model could be trusted and whether the
approximate objective aligns with human-defined labels.

Our framework consists of multiple novel contributions that are
key for highly accurate and interpretable AD: we introduce a novel
way to estimate and normalize sparsity, modify the architecture by
temperature annealing, propose a novel regularization for improved
generalization, and introduce semi-supervised AD via supervised
fine-tuning of the unsupervised learnt representations. These play
a crucial role in pushing the state-of-the-art in both unsupervised
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and semi-supervised AD benchmarks. Furthermore, by limiting
to learning only up to second order feature interactions, DIAD
provides unique interpretability capabilities that provide both local
and global explanations crucial in high-stakes applications such as
finance or healthcare. In future, we plan to conduct explainability
evaluations with user studies, and develope methods that could
provide more sparse explanations in the case of high-dimensional
settings.
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A PSEUDO CODE FOR SOFT DIFFERENTIABLE OBLIVIOUS TREES - ALG. 2

Here, we show the pseudo code of differentiable trees.

Algorithm 2 Soft decision tree training

Input: Mini-batch X € RB*D| Temperature Ty, T2 (T1, To — 0)
Symbols: Tree Depth C, Entmoid o
Trainable Parameters: Feature selection logits G, G* € RP, split Thresholds b € R, split slope S € RC,

G= [Gl, G2, G, ...]T e RDxC {Alternating G, G% so only 2 chosen features per tree}
G = X - EntMax(F/T;, dim=0) € RBXC {Weighted sum to soft-select features with temperature T;}
forc=1to Cdo

H¢ = 0(%) {Soft binary split of the feature value with temperature T}

end for
_ H! (HS)
e‘( 1-aY|® " ®|1-HO)

E = sum(e, dim=0) € R2 {Sum across batch to get total counts per leaf}
Return: E count

€ RBX2 [Soft counts between [0, 1] per leaf]
p

B DETAILS OF MAKING TREE OPERATIONS DIFFERENTIABLE

Both F¢(x) and I would prevent differentiability. To address this, F¢(x) is replaced with a weighted sum of features with temperature
annealing that makes it gradually sharper:

D
F(x) = ijl xjentmaxy (G°/T);, T —0, ©)

where G¢ € RP is a trainable vector per layer ¢ per tree, and entmaxg [23] is the entmax normalization, as the sparse version of softmax
whose output sum equals to 1. As T — 0, the output of entmax gradually becomes one-hot and F¢(x) picks only one feature. Similarly, the
step function I is replaced with entmoid, which is a sparse sigmoid with outputs between 0 and 1. Differentiability of all operations (entmax,
entmoid, outer/inner products), render ODT differentiable to optimize parameters W, b¢ and G° [5].

C HYPERPARAMETERS

Here we list the hyperparameters we use for both unsupervised and semi-supervised experiments.

C.1 Unsupervised AD

Since it’s hard to tune hyperparameters in unsupervised setting, for fair comparisons, we use all baselines with default hyperparameters.
Here we list the default hyperparameter for DIAD in Table 6. Here we explain each specific hyperparameter:

e Batch size: the sample size of mini-batch.

o LR: learning rate.

e y: the hyperparameter used to update the sparsity in each leaf (Eq. 7).

o Steps: the total number of training steps. We find 2000 works well across our datasets.

o LR warmup steps: we do the learning rate warmup [10] that linearly increases the learning rate from 0 to 1e-3 in the first 1000 steps.

e Smoothing J: the smoothing count for our volume and data ratio estimation.

e Per tree dropout: the dropout noise we use for the update of each tree.

o Arch: we adopt the GAMALt architecture form the NodeGAM [5].

e No. layer: the number of layers of trees.

o No. trees: the number of trees per layer.

o Additional tree dimension: the dimension of the tree’s output. If more than 0, it appends an additional dimension in the output of each

tree.

Tree depth: the depth of tree.

e Dim Attention: since we use the GAMALt architecture, this determines the size of the attention embedding. We find tuning more than
32 will lead to insufficient memory in our GPU, and in general 8-16 works well.

e Column subsample (p): this controls how many proportion of features a tree can operate on.

o Temp annealing steps (K), Min Temp: these control how fast the temperature linearly decays from 1 to the minimum temperature (0.1)
in K steps. After K training steps, the entmax or entmoid become max or step functions in the model.
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Table 6: Default hyperparameter used in the unsupervised AD benchmarks.

Batch Size LR Y Steps LR warmup Smoothing Per tree Arch

steps Dropout

2048 0.001 0.1 2000 1000 50 0.75 GAMALt

No. No. Addi.  Tree . . Column TemP .
. Dim Attention annealing Min Temp
layers  trees tree dim depth Subsample (p)
steps (K)
3 300 1 4 12 0.4 1000 0.1

C.2 Semi-supervised AD

We adopt 2-stage training. In the 1st stage, we optimize the AD objective and select a best model by the validation set performance under the
random search. Then in the 2nd stage, we search the following hyperparameters with No. anomalies=120 to choose the best hyperparamter,
and later run through the rest of 5, 15, 30, and 60 anomalies to report the performances.
e Learning Rate: [5e-3, 2e-3, le-3, 5e-4]
e Loss: [AUC’, 'BCE’].
Then, for each baseline we use the same architecture but tune the hyperparameters:
o CST: the overall loss is calcualted as follows (Eq. 7, 8, 9 in [38]):

Lfinal = Ls + BLu
The supervised loss L is:

Ly = BE(x,y)~pPyy [IBcE(Y, f(x))]
The consistency loss L, is:

Lu = Bebse,mpom~gim () [ (fo ()=o)
where the g, (x, m) is to use dropout mask m to remove features and impute it with the marginal feature distribution, and the masks
are sampled K times. Since the accuracy is quite stable across different 8, and when K > 20 (Fig. 10, [38]), we select f = 1 and K = 20,
and search the dropout rate p,, from [0.05, 0.1, 0.2, 0.35, 0.5, 0.7] and the learning rate [2e-3, 1e-3].

DevNet: they first randomly sample 5000 Gaussian samples with 0 mean and 1 standard deviation and calculate the mean ug and
standard deviation og:

1 1
uR = 7 Zi:l ri where r;j ~ N(0,1),
oR = standard deviation of {ry,r..., r5000}-
Then they calculate the loss (Eq. 6, 7 in [22]):
L =(1-y)|dev(x)| + ymax(0,a — dev(x)) where dev(x) = (;S(x)——uR.
OR

The ¢ is the deep neural network and the a is set to 5. In short, they try to increase the output of anomalies (y = 1) to be bigger than a
and let the output of normal data (y = 0) to be close to 0. We tune learning rates from [2e-3, 1le-3, 5e-4] for DevNet.

The remaining results from Appendix D to J could be found in https://1drv.ms/b/s! ArHmmFHCSXTIhax1cKqJVPuOmLBRtg?e=QGFa]S.
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D THE AVERAGE RANK PERFORMANCE OF SEMI-SUPERVISED AD RESULTS

The average AUC for semi-supervised AD results (Table 4) might not represent the entire picture, so we provide the average ranks as well in
Table 7. Our method still consistently outperforms other methods.

Table 7: Average ranks of AUC across 15 datasets in the Semi-supervised AD result.

No. Anomalies | 5 15 30 60 120

DIAD 1.3 1.3 1.3 13 1.2
DIAD w/oPT |23 26 26 25 29
CST 32 31 31 30 27
DevNet 31 30 31 32 32

E SEMI-SUPERVISED AD RESULTS WITH SMALLER VALIDATION SET

When we have a small set of labeled data, how should we split it between the train and validation datasets when optimizing semi-supervised
methods? In Sec. 6.2 we use 64%-16%-20% for train-val-test splits, and 16% of validation set could be too large for some real-world settings.
Does our method still outperform others under a smaller validation set?

To answer this, we experiment with a much smaller validation set with only 50% and 25% of original validation set (i.e. 8% and 4% of
total datasets). In Table 8, we show the average AD performance across 15 datasets with varying size of validation data. With decreasing
validation size all methods decrease the performance slightly, our method still consistently outperforms others.

Table 8: Summary of Semi-supervised AD performances with varying size of validation set (4%, 8% and 16% of total datasets).
We show the average % of AUC across 15 datasets with varying number of anomalies. Our method DIAD still outperforms
others consistently.

‘ 25% val data (4% of total data) ‘ 50% val data (8% of total data) ‘ 100% val data (16% of total data)
No.Anomalies | 5 15 30 60 120 | 5 15 30 60 120 | 5 15 30 60 120

DIAD w/o PT 854 87.1 869 864 879 | 8.7 869 880 869 875 | 862 876 883 87.2 8838
DIAD 89.0 89.3 89.7 89.1 90.4 | 89.2 89.7 90.0 89.2 90.6 | 89.4 90.0 90.4 894 91.0
CST 839 849 8.7 856 882 | 84.2 857 8.8 862 879 | 853 865 871 86.6 8838
DevNet 82.0 834 844 820 846 | 83.0 850 8.5 836 855 | 83.0 848 84 839 854
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F SENSITIVITY ANALYSIS

We perform sensitivity analyses from our default hyperparameter in the unsupervised AD benchmarks. We exclude Census, NYC taxi,
SMTP, and HT TP datasets since some hyperparameters can not be run, resulting in total 14 datasets each with 4 different random seeds. In
Fig. 9, besides showing the average of all datasets (blue), we also group datasets by their sample sizes into 3 groups: (1) N > 10° (Orange, 3
datasets), (2) 10> > N > 10 (green, 5 datasets), and (4) N < 10* (red, 6 datasets). Overall, DIAD shows quite stable performance between
82-84 except when (c) No. trees= 50 and (h) smoothing < 10. We also find that 3 hyperparameters: (a) batch size, (b) No. Layers, and (d) Tree
depth that the large group (orange) has an opposite trend than the small group (red). Large datasets yield better results with smaller batch
sizes, larger layers, and shallower tree depths.

(a) Batch Size (b) No. Layers (c) No. Trees d) Tree depth
90 90 90 90
88 88 88 884
—~ —_— —~ — —~ -
X 86 X 86 X 86 X 86+
S —_— S 4 >_< S e 8 s
< 5 < g5 / < gy < sz—j
gﬁ //— All datzsets gﬂ p g.(} ‘;‘0
N> 10
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0.2 0.4 0.6 0.8 1.0 0?0 0:2 0:4 016 0:8 (I) l(I)O 260 360 460 560 2%0 560 7_%0 10’00 12v50 15’00

Figure 9: Sensitivity analysis. Y-axis shows the average AUC across 14 datasets, and X-axis shows the varying hyperparameters.
The dashed line is the default hyperparameter. We show 4 groups: (1) All datasets (Blue), (2) N > 10° (Orange), (3) 10> > N > 10*
(green), and (4) N < 10* (red).
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G SEMI-SUPERVISED AD FIGURES

We experiment with 15 datasets and measure the performanceunder a different number of anomalies. We split the dataset into 64-16-20
train-val-test splits and run 10 times to report the mean and standard error. We show the performance in Fig. 10.
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Figure 10: Semi-supervised AD performance on 8 tabular datasets (out of 15) with varying number of anomalies. Our method
‘DIAD’ (blue) outperforms other semi-supervised baselines. Table. 4 summarizes the comparisons.

H MORE VISUAL EXPLANATIONS

We show another example of DIAD explanations on the "Backdoor" dataset. It consists of 95K samples and 196 features that record the
backdoor network attacks with the attacks as anomalies against the ‘normal’ class, which is extracted from the UNSW-NB 15 data set. In
Fig. 11, we show two most anomalous examples deemd by DIAD. The Fig. 11(a-c) shows the top 3 contributing factors for one example and
the "protocol=HMP" solely determines its high abnormity since the rest of the two features have only little sparsity. A user can thus decide if
he wants to trust such explanation and finds out if such protocol is indeed anomalous. The Fig. 11(d-f) shows the top 3 contributing factors
for the other example and both the "protocol=ICMP" and "state=ECO" contributes to its high sparsity (1.5, and 1.2 respectively). And other
features are relatively quite normal.
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Figure 11: DIAD decision making visualizations of 2 most anomalous examples in the Backdoor dataset. (a-c) shows the top 3
contributing factors of one example and the "protocol=HMP" is solely responsible for its abnormity prediction. (d-f) shows

another example that both "protocol=ICMP" and "State=ECO" are both contributing to large abnormity value.

I MORE NOISE INJECTION EXPERIMENTS

We show more experimental results to see how methods perform under noise injection in Table 9, following the procedures described in
Sec. 6 and Table 3. In additional to Thyroid and Mammograph, we further compare with Siesmic, Campaign, and Fraud. We find that overall
DIAD and OC-SVM only deterioriates around 1-2% while others can deterioriate up to 3-11% on average, showing DIAD’s superiority of

noise resistance.

Table 9: Unsupervised AD performance (% of AUC) with additional 50 noisy features for DIAD and 9 baselines. We find both
DIAD and OC-SVM deteriorate on average 1-2% while other methods deteriorate 3-11% on average. We ignore the average of

LOF since most of the ROC are below 50%.

prap NeUTralAD piporest GIF IF COPOD PCA SCAD kNN RRCF LOF OC-SVM
(KDDRev)

Thyroid 76.1+25 70.9 09 88.2+08 57.6+60 81.4x09 77.6 67.3 759422 75.1 74.0:05 26.3 54.7
Mammography|85.0 03 32.1+13 84.8+04 82.5:03 85.7+05  90.5 88.6 69.8+27 83.9 83.2:02 28.0 87.2
Siesmic 72.2 £04 45.9 4130 73.0£03  53.3 44 70.7 02 72.7 68.2 653:16 74.0 69.7:10 44.7 58.9
Campaign |71.0=z0s 74.8 +07 78.6+x0s 64.1=+39 70.4+19  78.3 73.4 72.0:05 72.0 65.5:03 46.3 66.7
Fraud 95.7 x02 96.3+03 94.7+05  80.4 05 94.8+01 94.7 95.2 95.5:02 93.4 87.5:04 52.5 94.8
Average ‘ 80.0 64.0 83.9 9.5 8.0 9.5 4.3 7.5 9.4 11.3 - 1.9

J COMPARISON WITH DEEP-LEARNING BASELINE NEUTRAL AD

We compare DIAD with NeuTral AD on 5 selected representative datasets (Thyroid, Mammography, Siesmic, Campaign, and Fraud datasets)
using the same setup as our noise injection experiment in Supp. L. Since for each dataset Neural AD has a different hyperparameter, we ran
with all 4 hyperparameters used in the Neural AD paper for 4 tabular datasets (Thyroid, Arrhy, KDDRev, KDD).

As can be seen in the below table, we find different hyperparameters of NeuTral AD achieve different AD accuracies but on average are

consistently inferior to

DIAD.
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In addition, we find the setup of NeuTral AD is different from DIAD - they assume the training data is completely clean, and they assume
they have some labeled data to tune hyperparameters, while we assume that no labeled data is accessed and no hyperparameter tuning
based on labels is allowed. It might be the root cause of its inferior performance.

DIAD NeuTral AD
(Thyroid)  (Arrhy) (KDDRev) (KDD)

Thyroid 76.1+25 765+11 71.8+37 709+0.9 70.7=+2.2
Mammography 85.0 £ 0.3 42.6 +14 37.5+3.7 32.1+13 28.0+5.3
Siesmic 72.2+04 557+2.7 60.1+06 459+3.0 46.1+1.3
Campaign  71.0+0.8 703 +4.0 63.9+09 74.8+0.7 744+04
Fraud 95.7+0.2 827%x54 91.3+08 963+0.3 96.8+0.1

Avg 80.0 65.6 64.9 64.0 63.2
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