
Densest Diverse Subgraphs:
How to Plan a Successful Cocktail Party with Diversity

Atsushi Miyauchi

atsushi.miyauchi@centai.eu

CENTAI Institute

Turin, Italy

Tianyi Chen

ctony@bu.edu

Boston University

Boston, MA, USA

Konstantinos Sotiropoulos

ksotirop@bu.edu

Boston University

Boston, MA, USA

Charalampos E. Tsourakakis

ctsourak@bu.edu

Boston University

Boston, MA, USA

ABSTRACT
Dense subgraph discovery methods are routinely used in a variety

of applications including the identification of a team of skilled

individuals for collaboration from a social network. However, when

the network’s node set is associated with a sensitive attribute such

as race, gender, religion, or political opinion, the lack of diversity

can lead to lawsuits.

In this work, we focus on the problem of finding a densest di-

verse subgraph in a graph whose nodes have different attribute

values/types that we refer to as colors. We propose two novel formu-

lations motivated by different realistic scenarios. Our first formula-

tion, called the densest diverse subgraph problem (DDSP), guarantees

that no color represents more than some fraction of the nodes in

the output subgraph, which generalizes the state-of-the-art due to

Anagnostopoulos et al. (CIKM 2020). By varying the fraction we

can range the diversity constraint and interpolate from a diverse

dense subgraph where all colors have to be equally represented to

an unconstrained dense subgraph. We design a scalable Ω(1/
√
𝑛)-

approximation algorithm, where 𝑛 is the number of nodes. Our

second formulation is motivated by the setting where any specified

color should not be overlooked. We propose the densest at-least-
®𝑘-subgraph problem (Dal

®𝑘S), a novel generalization of the classic

Dal𝑘S, where instead of a single value 𝑘 , we have a vector 𝒌 of

cardinality demands with one coordinate per color class. We design

a 1/3-approximation algorithm using linear programming together

with an acceleration technique. Computational experiments using

synthetic and real-world datasets demonstrate that our proposed

algorithms are effective in extracting dense diverse clusters.

CCS CONCEPTS
• Theory of computation→ Graph algorithms analysis; Ap-
proximation algorithms analysis.

KEYWORDS
social network analysis, densest subgraph problem, diversity, fair-

ness, approximation algorithms

1 INTRODUCTION
Dense subgraph discovery (DSD) is a fundamental graph-mining

primitive, routinely used to mine social, financial, and biological

networks among others [22]. Applications include team forma-

tion [19, 40], detecting correlated genes [47], community and spam

link farm detection in the Web graph [18, 21], finding experts in

crowdsourcing systems [26], spotting money laundering in finan-

cial networks [15, 33, 44], assessing the statistical significance of

motifs [14], and modeling real-world networks [11]. See the tuto-

rial [22] for an extensive list of related applications.

Among various DSD formulations, the densest subgraph problem

(DSP) stands out for various reasons [32]. For a given undirected

graph 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | nodes and 𝑚 = |𝐸 | edges, DSP
is solvable in polynomial time using maximum flow [23, 38] or

linear programming (LP) [12] and can be approximated within a

factor of 2 using a greedy algorithm [12, 30], and more recently

solved near-optimally by an iterative greedy algorithm over the

input [9, 13]. Furthermore, DSP is solvable on massive graphs using

distributed and streaming implementations [7] and admits useful

variants, e.g., [27, 31, 46, 48].

In numerous real-world settings, we have extra information

about the nodes. For example, in a graph database we may know

each individual’s gender and race. On the Twitter follow network,

there exist methods to infer from tweets whether a node is pos-

itive, neutral, or negative towards a controversial topic [17]. On

brain networks neurons can play different functional roles [1, 34].

Consider also the problem of organizing a cocktail party [43] with

diversity constraints as follows:

A number of computer scientists aim to organize

a cocktail party to celebrate Turing’s legacy. They

believe that the success of the event will be higher

if they invite computer scientists who have col-

laborated in the past but also who span different

research areas. Whom should they invite?

We will refer to the set of different attribute values/types of

nodes as colors. The aforementioned settings motivate the problem

of finding a densest diverse subgraph, namely a subset of nodes

that induce many edges, but also are diverse in terms of colors.

We will be referring to the concept of diversity as fairness when
the attribute concerns sensitive information such as gender, race,

or religion. Applying a DSD method does not guarantee that the

extracted densest subgraph will be diverse. Actually on a variety of

real data, we observe that this is the typical case, i.e., the densest

subgraph often exhibits strong homophily. Suppose the output of

such a method is used to select a group of individuals in a social

ar
X

iv
:2

30
6.

02
33

8v
1

 [
cs

.S
I]

 4
 J

un
 2

02
3

https://orcid.org/0000-0002-6033-6433

Miyauchi et al.

network. In that case, it will not be representative of the different

races/religions/opinions that may co-exist in the network. This

can be especially harmful in the context of selecting teams using

dense subgraphs [40], recommending material to social media users

that is not balanced in terms of opinions and hence increasing

polarization [35] or even leading to lawsuits [24]. In such cases,

it becomes of paramount importance to have algorithms that can

extract a cluster with diversity guarantees.

With the exception of a recent paper by Anagnostopoulos et

al. [4], very little attention has been given to dense diverse sub-

graph extraction, despite the extensive research on the DSP and its

applications [32]. Although Anagnostopoulos et al. [4] have made

progress, there are still many unanswered questions. For example,

the methods they propose exclusively focus on scenarios involving

two colors and strive to achieve the complete fairness in the output.

Furthermore, their spectral approach offers theoretical guarantees,

but these guarantees are contingent upon restrictive conditions

for the spectrum of the input graph that are computationally bur-

densome to verify. Additionally, they offer heuristics for scenarios

involving more than two colors, but without any assurances regard-

ing their quality.

1.1 Our Contributions
We introduce two novel formulations for finding a densest diverse

subgraph. The first one is called the densest diverse subgraph problem
(DDSP), and the second one is called the densest at-least-®𝑘-subgraph
problem (Dal

®𝑘S). Informally, the first problem aims to offer diversity

guarantees that concern the relative sizes of the color classes, while

the second guarantees in terms of absolute counts.

Let 𝐶 be the set of colors. Our first formulation guarantees the

diversity of the output in the sense that it is not dominated by any

single color. To this end, the formulation introduces a parameter

𝛼 ∈ [1/|𝐶 |, 1] that determines the maximum portion of any color

in the output solution. It should be noted that our formulation is

a substantial generalization of the fair densest subgraph problem
introduced by Anagnostopoulos et al. [4], enabling us to deal with

non-binary attributes and to freely adjust the degree of diversity. In-

terestingly, from a theory perspective, our formulation contains two

important variants of DSP, the densest at-least-𝑘-subgraph problem

(Dal𝑘S) and the densest at-most-𝑘-subgraph problem (Dam𝑘S), as

special cases, cf. Sections 2 and 3.1 for details.

On the other hand, our second formulation guarantees the diver-

sity of the output in the sense that it does not overlook any specified

color. In particular, consider a graph where |𝐶 | is a very small con-

stant and the minority colors appear only in a handful of nodes.

Instead of imposing relative constraints on the sizes through ratios,

we impose absolute constraints on the cardinalities of the nodes

from each color. Specifically, the formulation requires the output to

contain at least a given number of representatives from each color.

The formulation is a novel generalization of Dal𝑘S, where instead

of just demanding 𝑘 nodes in the output, we have a vector 𝒌 of

demands from each color, i.e., they are lower bounds on how many

nodes we have to include from each possible color.

As both formulations are NP-hard, we design polynomial-time

approximation algorithms: For the first problem, we provide an

approximation algorithm for the case where 𝑉 is already diverse

(i.e., 𝑉 is a feasible solution for the problem). Our algorithm has an

approximation ratio of 𝛾 ·max

{
1

⌈1/𝛼 ⌉ ,
1

𝛼𝑛

}
, where 𝛾 is the best ap-

proximation ratio known for Dal𝑘S (currently equal to 1/2 [28]). By
simple calculation, we observe that the above approximation ratio

leads to an approximation ratio of Ω(1/
√
𝑛), irrespective of any pa-

rameter other than the number of nodes. Moreover, we can also see

that the approximation ratio is lower bounded by 1/|𝐶 |, meaning

that the algorithm attains a constant-factor approximation for the

case of |𝐶 | = 𝑂 (1) and is a generalization of the 1/2-approximation

algorithm for the fair densest subgraph problem by Anagnostopou-

los et al. [4]. Our algorithm is based on an approximation algorithm

for Dal𝑘S with a carefully selected value of 𝑘 , together with a simple

postprocessing. The primary factor determining the time complex-

ity of our algorithm is the time complexity of the approximation

algorithm used for Dal𝑘S.

For the second problem, we devise a 1/3-approximation algo-

rithm, which runs in polynomial time for constant |𝐶 |. In the de-

sign and analysis of our algorithm, we generalize the existing 1/2-
approximation algorithm for Dal𝑘S and its approximation ratio

analysis. As shown later, we can get a 1/4-approximate solution di-

rectly using the 1/2-approximation algorithm for Dal𝑘S. Our effort

improves the approximation ratio from 1/4 to 1/3, by sacrificing

some degree of scalability. We also present an acceleration tech-

nique for the proposed algorithm with the aid of the well-known

greedy peeling algorithm [12]. The running time of our original

algorithm is 𝑂 ((𝑛/|𝐶 |) |𝐶 |𝑇LP), where 𝑇LP is the time required to

solve an LP used in the algorithm, while the accelerated version

runs in𝑂 (|𝐶 | (𝑛/|𝐶 |) |𝐶 |−1𝑇LP). In the case where |𝐶 | is a small con-

stant, the reduction of the running time due to the acceleration is

drastic.

We evaluate our algorithms on real-life attributed datasets, in-

cluding social networks with gender and profession attributes. We

compare against Anagnostopoulos et al. [4], but we also develop

a novel baseline that uses node embeddings [10, 37, 39] combined

with advances in scalable fair clustering of points [6]. The algo-

rithms we propose have the capability to extract dense and diverse

subgraphs. We demonstrate that real-world networks contain dense

subgraphs that exhibit significant homophily, emphasizing the im-

portance of employing our tools in scenarios where diversity or

fairness is essential.

2 RELATEDWORK
DSP and its variations. Given an undirected graph 𝐺 = (𝑉 , 𝐸),
we define for any non-empty subset of nodes 𝑆 ⊆ 𝑉 the (degree)

density𝑑 (𝑆) = |𝐸 (𝑆) |/|𝑆 |, where 𝐸 (𝑆) = {{𝑢, 𝑣} ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑆}. The
DSP aims to maximize the degree density over all possible subsets.

Notice that the degree density is just half of the average degree of

an induced subgraph. The DSP is polynomial-time solvable using

𝑂 (log𝑛) max-flow computations [23, 38], 𝑂 (1) number of flows

using parametric maximum flow [20], or LP [12]. There also exists

a linear-time 1/2-approximation algorithm that greedily removes

a node of the smallest degree, and reports the maximum degree

density seen among these subsets [12, 29]. This kind of algorithm

is often called the greedy peeling algorithm. Recently, Boob et

al. [9] proposed Greedy++, an iterative peeling algorithm that

generalizes the above and converges to a near-optimal solution

Densest Diverse Subgraphs:
How to Plan a Successful Cocktail Party with Diversity

extremely fast without the use of flows. Very recently, Chekuri

et al. [13] analyzed the performance of Greedy++, and showed

that its algorithmic idea could be generalized to general fractional

supermodular maximization.

DSP has a lot of problem variants [32]. Unlike the original DSP,

its size-restricted variants are known to be NP-hard. Indeed, the

densest 𝑘-subgraph problem (D𝑘S) that asks for the densest sub-

graph with exactly 𝑘 nodes, is not only NP-hard, but also hard

to approximate, with the best-known approximation ratio being

Ω(1/𝑛1/4+𝜖) for any 𝜖 > 0 [8]. This approximability result is far

off from the best-known hardness result that assumes the Expo-

nential Time Hypothesis (ETH). If ETH holds, then D𝑘S cannot

be approximated within a ratio of 𝑛1/(log log𝑛)
𝑐
for some 𝑐 > 0.

Another size-restricted variant, Dam𝑘S, aims to maximize the de-

gree density over all subsets of nodes 𝑆 such that |𝑆 | ≤ 𝑘 [5]. It is

known that 𝛼-approximation to Dam𝑘S leads to 𝛼/4-approximation

to D𝑘S [28].

Closest to this work lies Dal𝑘S, which imposes the cardinality

constraint |𝑆 | ≥ 𝑘 [5]. The problem is also known to beNP-hard [28].

Andersen and Chellapilla [5] designed a 1/3-approximation algo-

rithm that runs in linear time, using greedy peeling. Khuller and

Saha [28] designed two different approximation algorithms, that

both achieve 1/2-approximation using either a small number of

flows, or by solving an LP [28].

Fair densest subgraph problem. Despite the large amount of

research on DSD, the problem of finding a densest diverse subgraph

has not received attention with the single exception of Anagnos-

topoulos et al. [4] who introduced the fair densest subgraph problem

for two colors. Assuming the graph is fair to begin with, i.e., the two

colors are equally represented in 𝑉 , they demand equal representa-

tion of each category in the output. For this case, they proposed a

greedy 1/2-approximation algorithm and a spectral approach. The

spectral approach comes with guarantees only in limited cases (e.g.,

all degrees being almost equal), which are not typical on real data

that tend to have a skewed degree distribution. This algorithm can

be extended to the case of |𝐶 | > 2, but without quality guaran-

tees. Finally, the authors studied the hardness of the problem and

showed that their formulation is at least as hard as Dam𝑘S: Any

𝛼-approximation to their formulation leads to 𝛼-approximation to

Dam𝑘S.

Fairness and algorithms. While DSD with diversity is not yet

well studied, fair clustering of clouds of points has received much

attention from the data mining community. Chierichetti et al. [16]

initiated the problem of finding balanced clusters in a cloud of

points, namely clusters where two groups are equally represented.

They proposed a method called fairlet decomposition, that decom-

poses a dataset into minimal sets that satisfy fair representation,

called fairlets. Afterwards, typical machine learning algorithms,

like 𝑘-median, can be used to obtain fair clusters. Backurs et al. [6]

provided a scalable algorithm for the fairlet decomposition. Later

work has extended the problem of finding fair clusters to the case

of correlation clustering [3] and hierarchical clustering [2].

3 PROBLEM STATEMENTS
In this section, we formally introduce our optimization problems.

Let 𝐺 = (𝑉 , 𝐸) be an undirected graph with 𝑛 = |𝑉 | nodes and

𝑚 = |𝐸 | edges. Let 𝐶 be a set of colors. Without loss of generality

|𝐶 | ≤ 𝑛. Let ℓ : 𝑉 → 𝐶 be the coloring function that assigns a

color to each node. Given the above as input, we aim to find a

densest diverse subgraph. We mathematically formalize the notion

of diversity in two ways found in Sections 3.1 and 3.2, respectively.

3.1 Densest Diverse Subgraph Problem (DDSP)
Our first notion aims to ensure that no single color dominates the

rest. Specifically, for 𝑆 ⊆ 𝑉 , we denote by 𝑐max (𝑆) the maximum

number of nodes in 𝑆 that receive the same color, i.e., 𝑐max (𝑆) =
max𝑐∈𝐶 |{𝑣 ∈ 𝑆 | ℓ (𝑣) = 𝑐}|. We also denote by 𝛼 (𝑆) the maximum

fraction of monochromatic nodes in 𝑆 , i.e., 𝛼 (𝑆) = 𝑐max (𝑆)/|𝑆 |. Our
problem can be formulated as follows:

Problem 1 (DDSP). Given an undirected graph𝐺 = (𝑉 , 𝐸), ℓ : 𝑉 →
𝐶 , and 𝛼 ∈ [1/|𝐶 |, 1], find a subset of nodes 𝑆 ⊆ 𝑉 that maximizes
the degree density 𝑑 (𝑆) subject to the constraint 𝛼 (𝑆) ≤ 𝛼 .

This problem is a major generalization of the fair densest sub-

graph problem introduced by Anagnostopoulos et al. [4], which

is obtained for the special values |𝐶 | = 2 and 𝛼 = 1/2. As the
fair densest subgraph problem is NP-hard [4], Problem 1 is also

NP-hard. Clearly when 𝛼 = 1 we are oblivious to diversity and ob-

tain (polynomial-time solvable) DSP. More interestingly, Problem 1

contains two totally different optimization problems, Dal𝑘S and

Dam𝑘S, as special cases:

Proposition 1. There exist polynomial-time reductions fromDal𝑘S
and Dam𝑘S to Problem 1.

Proof. The reductions are obtained by appropriately setting

the number of colors and the parameter 𝛼 . For Dal𝑘S, it suffices

to construct the instance of Problem 1 by coloring the nodes with

𝑛 distinct colors and setting 𝛼 to be 1/𝑘 . For Dam𝑘S, it suffices to

construct the instance of Problem 1 by coloring the nodes with the

single color and adding 𝑘 isolated nodes (i.e., dummy nodes) with

another color, and setting 𝛼 = 1/2. □

3.2 Densest At-Least-®𝑘-Subgraph (Dal®𝑘S)
Our second formulation diversifies the output by ensuring that it

does not overlook any specified color. To this end, the formulation

requires the output to contain at least a given number of represen-

tatives from each color. For 𝑆 ⊆ 𝑉 and 𝑐 ∈ 𝐶 , let 𝑆𝑐 = {𝑣 ∈ 𝑆 |
ℓ (𝑣) = 𝑐}. Our problem formulation is as follows:

Problem 2 (Dal
®𝑘S). Given an undirected graph𝐺 = (𝑉 , 𝐸), ℓ : 𝑉 →

𝐶 , and 𝒌 = (𝑘𝑐)𝑐∈𝐶 ∈ Z |𝐶 |≥0 , find a subset of nodes 𝑆 ⊆ 𝑉 that maxi-
mizes the degree density 𝑑 (𝑆) subject to |𝑆𝑐 | ≥ 𝑘𝑐 for any 𝑐 ∈ 𝐶 .

Obviously the above problem is a generalization of Dal𝑘S. Thus,

the problem is NP-hard. If 𝒌 = 0, the problem is reduced to the

original DSP; therefore, throughout the paper, we assume that

𝑘𝑐 ≥ 1 for some 𝑐 ∈ 𝐶 . As mentioned in the introduction, we can

easily get a 1/4-approximation algorithm for the problem:

Proposition 2. For Problem 2, there exists a polynomial-time
1/4-approximation algorithm.

Proof. Let 𝐺 = (𝑉 , 𝐸), ℓ : 𝑉 → 𝐶 , 𝒌 = (𝑘𝑐)𝑐∈𝐶 ∈ Z |𝐶 |≥0 be an

instance of Problem 2, and OPT the optimal value of the instance.

Miyauchi et al.

Procedure 1: Diversify(𝑆)
1 while 𝛼 (𝑆) > 𝛼 do
2 Find 𝑣min ∈ 𝑉 \ 𝑆 that satisfies

ℓ (𝑣min) ∈ argmin𝑐∈𝐶 |𝑆𝑐 |;
/* In practice consider also the objective

value. */

3 𝑆 ← 𝑆 ∪ {𝑣min};
4 return 𝑆 ;

To get a feasible solution for Problem 2, we have to take at least

𝑘𝑐 nodes for every color 𝑐 ∈ 𝐶; therefore, Dal𝑘S with 𝑘 = ∥𝒌∥1 =∑
𝑐∈𝐶 𝑘𝑐 on 𝐺 is a relaxation of Problem 2 on 𝐺 . Let 𝑆 ⊆ 𝑉 be an

𝛼-approximate solution for Dal𝑘S with 𝑘 = ∥𝒌∥1. As Dal𝑘S with

𝑘 = ∥𝒌∥1 is a relaxation of Problem 2, we have 𝑑 (𝑆) ≥ 𝛼 · OPT.
Note that 𝑆 is not necessarily feasible for Problem 2, but we can

make it feasible by adding at most 𝑘𝑐 nodes for every color 𝑐 ∈ 𝐶 ,
resulting in adding at most ∥𝒌∥1 ≤ |𝑆 | nodes in total. Letting

𝑆 ′ ⊆ 𝑉 be the resulting subset, we have 𝑑 (𝑆 ′) = |𝐸 (𝑆
′) |

|𝑆 ′ | ≥
|𝐸 (𝑆) |
|𝑆 ′ | ≥

1

2
·𝑑 (𝑆) ≥ 𝛼

2
·OPT, meaning that 𝑆 ′ is an 𝛼/2-approximate solution

for Problem 2. As mentioned above, there is a polynomial-time

1/2-approximation algorithm for Dal𝑘S [28]. Therefore, we can set

𝛼 = 1/2 and have a polynomial-time 1/4-approximation algorithm

for Problem 2. □

4 ALGORITHM FOR PROBLEM 1
In this section, we design a polynomial-timeΩ(1/

√
𝑛)-approximation

algorithm for Problem 1. A subset of nodes 𝑆 ⊆ 𝑉 is said to be di-

verse if 𝛼 (𝑆) ≤ 𝛼 holds. In what follows, we assume that 𝑉 is

diverse, i.e., 𝛼 (𝑉) ≤ 𝛼 .

4.1 The Proposed Algorithm
Our algorithm first computes a constant-factor approximate solu-

tion (say𝛾-approximate solution) to Dal𝑘S on𝐺 with 𝑘 = ⌈1/𝛼⌉. For
example, we can use a 1/2-approximation algorithm using LP [28]

or a 1/3-approximation algorithm using greedy peeling [5]. Then,

the algorithm makes the solution feasible by adding an arbitrary

node with a color of the lowest participation iteratively (Proce-

dure 1). For reference, the entire procedure of our algorithm is

summarized in Algorithm 2.

The time complexity of Algorithm 2 is dominated by the algo-

rithm we use for Dal𝑘S. Even if we consider the objective value

in Procedure 1, it still depends on the choice of the approximation

algorithm for Dal𝑘S. If we employ a 1/2-approximation algorithm

using LP, the time complexity of Algorithm 2 is dominated by that

required for solving the LP. If we use a 1/3-approximation algo-

rithm using greedy peeling, Algorithm 2 can be implemented to

run in 𝑂 (𝑚 + 𝑛 log𝑛) time, by handling the nodes outside 𝑆 using

a Fibonacci heap for each color with key values being degrees to 𝑆 .

4.2 Analysis
We analyze the approximation ratio of Algorithm 2. We have the

following key lemma:

Algorithm 2: Ω(1/
√
𝑛)-approximation algorithm

Input : 𝐺 = (𝑉 , 𝐸), ℓ : 𝑉 → 𝐶 , 𝛼 ∈ [1/|𝐶 |, 1]
Output : 𝑆 ⊆ 𝑉

1 𝑆 ← 𝛾-approximate solution to Dal𝑘S on 𝐺 with 𝑘 = ⌈1/𝛼⌉;
/* See [28] and [5] for the algorithms achieving

𝛾 = 1/2 and 𝛾 = 1/3, respectively. */

2 return Diversify(𝑆);

Lemma 1. Assume that 𝛼 (𝑉) ≤ 𝛼 holds. Then, for any 𝑆 ⊆ 𝑉 with
|𝑆 | ≥ ⌈1/𝛼⌉, it holds that |Diversify(𝑆) | ≤ min{⌈1/𝛼⌉, 𝛼𝑛} · |𝑆 |.

Proof. We first prove that 𝑐max (𝑆) = 𝑐max (Diversify(𝑆)) holds.
As 𝑆 ⊆ Diversify(𝑆), we have 𝑐max (𝑆) ≤ 𝑐max (Diversify(𝑆)). There-
fore, it suffices to show 𝑐max (𝑆) ≥ 𝑐max (Diversify(𝑆)). For 𝑆 ⊆ 𝑉
and 𝑐 ∈ 𝐶 , we denote by 𝑓 (𝑆, 𝑐) the fraction of the nodes in 𝑆 that re-
ceive the color 𝑐 , i.e., 𝑓 (𝑆, 𝑐) = |𝑆𝑐 |/|𝑆 |. Let us focus on an arbitrary

iteration of Procedure 1 and let 𝑆 ′ ⊆ 𝑉 be the subset kept at the

beginning of the iteration. Then there exists 𝑐 ∈ 𝐶 that satisfies the

condition 𝑓 (𝑆 ′, 𝑐) < 𝛼 . Suppose, for contradiction, that there exist
no such colors. Then, for any color 𝑐 ∈ 𝐶 , we have 𝑓 (𝑆 ′, 𝑐) ≥ 𝛼 .
Moreover, as 𝑆 ′ is not yet feasible, we see that there exists 𝑐′ ∈ 𝐶
that satisfies 𝑓 (𝑆 ′, 𝑐′) > 𝛼 . Therefore, we have

1 =
∑︁
𝑐∈𝐶

𝑓 (𝑆 ′, 𝑐) = 𝑓 (𝑆 ′, 𝑐′) +
∑︁

𝑐∈𝐶\{𝑐′ }
𝑓 (𝑆 ′, 𝑐)

> 𝛼 + (|𝐶 | − 1)𝛼 = |𝐶 |𝛼 ≥ 1,

a contradiction. From the above, recalling the greedy rule of Proce-

dure 1, we see that Procedure 1 only adds the nodes with the colors

𝑐 ∈ 𝐶 that satisfy 𝑓 (𝑆 ′, 𝑐) < 𝛼 . To increase 𝑐max in this iteration,

Procedure 1 needs to add a node with a color 𝑐 ∈ 𝐶 that satisfies

𝑓 (𝑆 ′, 𝑐) > 𝛼 , but it does not happen. As we fixed an iteration arbi-

trarily, 𝑐max does not increase throughout Procedure 1. Therefore,

we have 𝑐max (𝑆) ≥ 𝑐max (Diversify(𝑆)).
Assume that in some iteration, which produces 𝑆 ′′ ⊆ 𝑉 , of

Procedure 1, |𝑆 ′′ | = ⌈|𝑆 |/𝛼⌉ holds. Then we have

𝛼 (𝑆 ′′) = 𝑐max (𝑆 ′′)
|𝑆 ′′ | =

𝑐max (𝑆)
⌈|𝑆 |/𝛼⌉ ≤ 𝛼 ·

𝑐max (𝑆)
|𝑆 | ≤ 𝛼,

where the second equality follows from 𝑐max (𝑆) = 𝑐max (Diversify(𝑆)).
This means that the algorithm terminates at or before this iteration.

Therefore, we have |Diversify(𝑆) | ≤ ⌈|𝑆 |/𝛼⌉.
Similarly, assume that in some iteration, which produces 𝑆 ′′ ⊆ 𝑉 ,

of Procedure 1, |𝑆 ′′ | = 𝑐max (𝑆) |𝑆 | holds. Then we have

𝛼 (𝑆 ′′) = 𝑐max (𝑆 ′′)
|𝑆 ′′ | =

𝑐max (𝑆)
𝑐max (𝑆) |𝑆 |

=
1

|𝑆 | ≤
1

⌈1/𝛼⌉ ≤ 𝛼,

where the first inequality follows from the assumption of the lemma.

This means that the algorithm terminates at or before this iteration.

Therefore, we have |Diversify(𝑆) | ≤ 𝑐max (𝑆) |𝑆 |.
From the above, we see that

|Diversify(𝑆) | ≤ min{⌈|𝑆 |/𝛼⌉, 𝑐max (𝑆) |𝑆 |}
≤ min{⌈1/𝛼⌉, 𝑐max (𝑉)} · |𝑆 |
≤ min{⌈1/𝛼⌉, 𝛼𝑛} · |𝑆 |,

which completes the proof. □

Using the above lemma, we can prove the following:

Densest Diverse Subgraphs:
How to Plan a Successful Cocktail Party with Diversity

Theorem 3. Algorithm 2 is a
(
𝛾 ·max

{
1

⌈1/𝛼 ⌉ ,
1

𝛼𝑛

})
-approximation

algorithm for Problem 1 when 𝛼 (𝑉) ≤ 𝛼 holds. Here 𝛾 is the approxi-
mation ratio of the algorithm for Dal𝑘S used in Algorithm 2.

Proof. LetOPT be the optimal value of Problem 1. Let 𝑆 ⊆ 𝑉 be

a constant-factor approximate solution (say𝛾-approximate solution)

for Dal𝑘S on 𝐺 with 𝑘 = ⌈1/𝛼⌉. Note that Dal𝑘S with 𝑘 = ⌈1/𝛼⌉ is
a relaxation of Problem 1, because even if we pick the nodes, all

of which have different colors, we need at least 𝑘 = ⌈1/𝛼⌉ nodes
to satisfy the diversity constraint. Thus, we have 𝑑 (𝑆) = |𝐸 (𝑆) ||𝑆 | ≥
𝛾 ·OPT. The output of the algorithm isDiversify(𝑆) whose objective
value can be evaluated as follows:

𝑑 (Diversify(𝑆)) = |𝐸 (Diversify(𝑆)) ||Diversify(𝑆) |

≥ |𝐸 (𝑆) |
min{⌈1/𝛼⌉, 𝛼𝑛} · |𝑆 |

≥ 𝛾 ·max

{
1

⌈1/𝛼⌉ ,
1

𝛼𝑛

}
· OPT,

where the first inequality follows from Lemma 1. □

It should be emphasized that the approximation ratio of Algo-

rithm 2 is lower bounded by 1/|𝐶 |, meaning that the algorithm is a

constant-factor approximation algorithm for the case of |𝐶 | = 𝑂 (1).
In fact, we see that

1

⌈1/𝛼 ⌉ ≥
1

⌈ |𝐶 | ⌉ =
1

|𝐶 | . Therefore, Algorithm 2

can be seen as a generalization of the 1/2-approximation algorithm

for the fair densest subgraph problem by Anagnostopoulos et al. [4].

Moreover, the above analysis leads to an approximation ratio

that is independent of any parameter other than 𝑛:

Corollary 1. Algorithm 2 is an Ω(1/
√
𝑛)-approximation algo-

rithm for Problem 1 when 𝛼 (𝑉) ≤ 𝛼 holds.

Proof. We can lower bound the approximation ratio given in

Theorem 3 as follows:

𝛾 ·max

{
1

⌈1/𝛼⌉ ,
1

𝛼𝑛

}
≥ 𝛾 ·

√︂
1

⌈1/𝛼⌉ ·
1

𝛼𝑛
= Ω

(
1

√
𝑛

)
.

□

5 ALGORITHM FOR PROBLEM 2
In this section, we design a polynomial-time 1/3-approximation

algorithm for Problem 2 with |𝐶 | = 𝑂 (1). Using a sophisticated LP,

we can improve the approximation ratio of 1/4 given in Proposi-

tion 2. Recall that 𝒌 = (𝑘𝑐)𝑐∈𝐶 ∈ Z |𝐶 |≥0 is the input lower-bound

vector.

Procedure 3: Make_it_feasible(𝑆)
1 for each 𝑐 ∈ 𝐶 do
2 if |𝑆𝑐 | < 𝑘𝑐 then
3 Take arbitrary 𝑣 ∈ 𝑉𝑐 \ 𝑆𝑐 ;

/* In practice consider also the objective

value. */

4 𝑆 ← 𝑆 ∪ {𝑣};

5 return 𝑆 ;

Algorithm 4: 1/3-approximation algorithm for Problem 2

Input : 𝐺 = (𝑉 , 𝐸), ℓ : 𝑉 → 𝐶 , 𝒌 = (𝑘𝑐)𝑐∈𝐶 ∈ Z |𝐶 |≥0
Output : 𝑆 ⊆ 𝑉

1 for each 𝒑 such that 𝒌 ≤ 𝒑 ≤ (|𝑉𝑐 |)𝑐∈𝐶 do
2 Solve LP(𝒑) to obtain an optimal solution (𝒙∗,𝒚∗);
3 Construct Candidates(𝒑) B {Make_it_feasible(𝑆 (𝑟)) |

𝑟 ∈ {𝑦∗𝑣 | 𝑣 ∈ 𝑉 } ∪ {0}};
4 Take Best(𝒑) ∈ argmax{𝑑 (𝑆) | 𝑆 ∈ Candidates(𝒑)};
5 return argmax{𝑑 (𝑆) | 𝑆 ∈ {Best(𝒑) | 𝒌 ≤ 𝒑 ≤ (|𝑉𝑐 |)𝑐∈𝐶 }};

5.1 The Proposed Algorithm
Let𝒑 = (𝑝𝑐)𝑐∈𝐶 ∈ Z |𝐶 |≥0 be a vector that satisfies𝒑 ≥ 𝒌 . We consider

the following LP:

LP(𝒑) : maximize

∑︁
𝑒∈𝐸

𝑥𝑒

subject to 𝑥𝑒 ≤ 𝑦𝑢 , 𝑥𝑒 ≤ 𝑦𝑣 ∀𝑒 = {𝑢, 𝑣} ∈ 𝐸,∑︁
𝑣∈𝑉𝑐

𝑦𝑣 =
𝑝𝑐

∥𝒑∥1
∀𝑐 ∈ 𝐶,

𝑦𝑣 ≤
1

∥𝒑∥1
∀𝑣 ∈ 𝑉 ,

𝑥𝑒 , 𝑦𝑣 ≥ 0 ∀𝑒 ∈ 𝐸, ∀𝑣 ∈ 𝑉 .
Note that this is a major generalization of the LP used in the 1/2-
approximation algorithm for Dal𝑘S [28]. The LP for Dal𝑘S is pa-

rameterized by a single value, while our LP is parameterized by

multiple values (i.e., a vector 𝒑). This modification is essential to

address the generalization caused by Dal
®𝑘S.

Let (𝒙∗,𝒚∗) be an optimal solution to LP(𝒑) for 𝒑. For (𝒙∗,𝒚∗)
and 𝑟 ≥ 0, we define 𝑆 (𝑟) = {𝑣 ∈ 𝑉 | 𝑦∗𝑣 ≥ 𝑟 }. Now we are ready

to present our algorithm. For each 𝒑 ∈ Z |𝐶 |≥0 such that 𝒌 ≤ 𝒑 ≤
(|𝑉𝑐 |)𝑐∈𝐶 , the algorithm conducts the following procedure: It first

solves LP(𝒑) to obtain an optimal solution (𝒙∗,𝒚∗). Then using the

solution, the algorithm enumerates all possible 𝑆 (𝑟)’s by setting

𝑟 ∈ {𝑦∗𝑣 | 𝑣 ∈ 𝑉 } ∪ {0} each, makes them feasible by adding nodes

with appropriate colors using Procedure 3, and takes the best subset

among them, as a candidate for 𝒑. After the above iterations, the
algorithm finally outputs the best subset among all candidates for

𝒑 with 𝒌 ≤ 𝒑 ≤ (|𝑉𝑐 |)𝑐∈𝐶 . The entire procedure is summarized in

Algorithm 4.

5.2 Analysis
We first give a lower bound on the optimal value of LP(𝒑).

Miyauchi et al.

Lemma 2. For any 𝑆 ⊆ 𝑉 such that |𝑆𝑐 | = 𝑝𝑐 for every 𝑐 ∈ 𝐶 , there
exists a feasible solution of LP(𝒑) whose objective function value is
greater than or equal to 𝑑 (𝑆).

Proof. Construct a solution (𝒙,𝒚) of LP(𝒑) as follows:

𝑥𝑒 =

{
1/∥𝒑∥1 if 𝑒 ∈ 𝐸 (𝑆),
0 otherwise,

𝑦𝑣 =

{
1/∥𝒑∥1 if 𝑣 ∈ 𝑆,
0 otherwise.

Then we can see that (𝒙,𝒚) is feasible for LP(𝒑). In fact,∑𝑣∈𝑉𝑐 𝑦𝑣 =∑
𝑣∈𝑆𝑐 𝑦𝑣 =

𝑝𝑐
∥𝒑 ∥1 . The objective function value of (𝒙,𝒚) is

∑
𝑒∈𝐸 𝑥𝑒 =∑

𝑒∈𝐸 (𝑆) 𝑥𝑒 =
|𝐸 (𝑆) |
∥𝒑 ∥1 = 𝑑 (𝑆) . Thus, we have the lemma. □

For 𝑆 ⊆ 𝑉 , let 𝐶sat (𝑆) = {𝑐 ∈ 𝐶 | |𝑆𝑐 | ≥ 𝑘𝑐 }, i.e., the set of

colors for which the constraint is satisfied by 𝑆 . We can prove the

following key lemma (see Appendix A for the proof):

Lemma 3. Let 𝑆∗ ⊆ 𝑉 be an optimal solution to Problem 2. For each
𝑐 ∈ 𝐶 , let 𝑝∗𝑐 = |𝑆∗𝑐 |. Let (𝒙∗,𝒚∗) be an optimal solution to LP(𝒑∗)
and 𝜆 its objective value. Then there exists 𝑆 ∈ {𝑆 (𝑟) | 𝑟 ∈ {𝑦∗𝑣 | 𝑣 ∈
𝑉 } ∪ {0}} that satisfies (exactly) one of the following:

(1) 𝑑 (𝑆) ≥ 𝜆/3 and 𝐶sat (𝑆) = 𝐶 ;
(2)

|𝐸 (𝑆) |∑
𝑐∈𝐶sat (𝑆) |𝑆𝑐 | +

∑
𝑐∈𝐶\𝐶sat (𝑆) 𝑘𝑐

≥ 𝜆/3 and 𝐶sat (𝑆) ≠ ∅ ≠

𝐶 \𝐶sat (𝑆);
(3) |𝐸 (𝑆) | ≥ |𝐸 (𝑆∗) |/3 and 𝐶sat (𝑆) = ∅.

Based on the above lemma, we prove the following:

Theorem 4. Algorithm 4 is a 1/3-approximation algorithm for
Problem 2 and runs in 𝑂 ((𝑛/|𝐶 |) |𝐶 |𝑇LP) time, where 𝑇LP is the time
complexity required to solve the LP.

Proof. As the time complexity analysis is straightforward, we

show the approximation ratio of 1/3. Let 𝑆∗ ⊆ 𝑉 be an optimal

solution to Problem 2 and for each 𝑐 ∈ 𝐶 , let 𝑝∗𝑐 = |𝑆∗𝑐 |. Look-
ing at Lemma 3, we see that when the algorithm solves LP(𝒑∗),
one of the possible 𝑆 (𝑟)’s itself is just the subset of nodes 𝑆 ⊆ 𝑉
whose existence is guaranteed in Lemma 3. Then it is easy to

see that Make_it_feasible(𝑆) is a 1/3-approximate solution. There-

fore, Best(𝒑∗) is also a 1/3-approximate solution. Noticing that

the algorithm outputs the best of Best(𝒑)’s for all possible 𝒑 with

𝒌 ≤ 𝒑 ≤ (|𝑉𝑐 |)𝑐∈𝐶 (containing 𝒑∗
), we are done. □

Herewemention a simple acceleration technique for Algorithm 4.

As shown in Lemma 2, LP(𝒑∗) with 𝑝∗𝑐 = |𝑆∗𝑐 | has the optimal value

greater than or equal to 𝑑 (𝑆∗). Therefore, if we solve LP(𝒑) for
some 𝒑 and its optimal value is less than the density of the current

best feasible solution, the LP must not be LP(𝒑∗) and thus we can

skip the procedure to be applied to its optimal solution (i.e., Lines 3

and 4). In the next section, we present an additional acceleration

technique that can reduce the number of LPs to solve.

5.3 Acceleration via Greedy Peeling
Our acceleration technique for Algorithm 4 is based on greedy

peeling. Algorithm 5 is a straightforward application of greedy

peeling to Problem 2, where for 𝑆 ⊆ 𝑉 and 𝑣 ∈ 𝑆 , deg𝑆 (𝑣) denotes
the degree of 𝑣 in 𝐺 [𝑆] = (𝑆, 𝐸 (𝑆)).

This algorithm achieves an approximation ratio of 1/2 in a very

specific case as follows:

Algorithm 5: Greedy peeling algorithm for Problem 2

Input : 𝐺 = (𝑉 , 𝐸), ℓ : 𝑉 → 𝐶 , 𝒌 = (𝑘𝑐)𝑐∈𝐶 ∈ Z |𝐶 |≥0
Output : 𝑆 ⊆ 𝑉

1 𝑆 (𝑛) ← 𝑉 , 𝑖 ← 𝑛;

2 while |𝑆 (𝑖)𝑐 | > 𝑘𝑐 for every 𝑐 ∈ 𝐶 with 𝑘𝑐 ≥ 1 do
3 𝑣min ← argmin𝑣∈𝑆 (𝑖) deg𝑆 (𝑖) (𝑣);
4 𝑆 (𝑖−1) ← 𝑆 (𝑖) \ {𝑣min}, 𝑖 ← 𝑖 − 1;
5 return argmax{𝑑 (𝑆) | 𝑆 ∈ {𝑆 (𝑛) , . . . , 𝑆 (𝑖) }};

Algorithm 6: Accelerated 1/3-approximation algorithm

for Problem 2

Input : 𝐺 = (𝑉 , 𝐸), ℓ : 𝑉 → 𝐶 , 𝒌 = (𝑘𝑐)𝑐∈𝐶 ∈ Z |𝐶 |≥0
Output : 𝑆 ⊆ 𝑉

1 Run Algorithm 5 and obtain its output 𝑆
peel

;

2 Run Algorithm 4 after replacing “𝒌 ≤ 𝒑 ≤ (|𝑉𝑐 |)𝑐∈𝐶 ” by
“𝒌 ≤ 𝒑 ≤ (|𝑉𝑐 |)𝑐∈𝐶 with 𝑝𝑐 = 𝑘𝑐 for some 𝑐 ∈ 𝐶 with

𝑘𝑐 ≥ 1” in Lines 1 and 5, and obtain its output 𝑆LP;

3 return argmax{𝑑 (𝑆) | 𝑆 ∈ {𝑆
peel

, 𝑆LP}};

Lemma 4. Assume that there exists an optimal solution 𝑆∗ ⊆ 𝑉
that satisfies |𝑆∗𝑐 | > 𝑘𝑐 for every 𝑐 ∈ 𝐶 with 𝑘𝑐 ≥ 1. Then Algorithm 5
outputs a 1/2-approximate solution for Problem 2.

Proof. It is easy to see that for any 𝑣 ∈ 𝑆∗, 𝑆∗ \ {𝑣} is a feasible
solution for Problem 2. Therefore, we have that for any 𝑣 ∈ 𝑆∗,

𝑑 (𝑆∗) ≥ 𝑑 (𝑆∗ \ {𝑣}) .
Transforming the above inequality, we have that for any 𝑣 ∈ 𝑆∗,

deg𝑆∗ (𝑣) ≥ 𝑑 (𝑆∗) . (1)

Let 𝑣∗ be the node that is contained in 𝑆∗ and removed first by

the algorithm. Note that the existence of such a node is guaranteed

due to the assumption of the lemma and the design of the algorithm.

Let 𝑆 ′ ⊆ 𝑉 be the subset of nodes kept just before the removal of 𝑣∗.
Obviously 𝑆∗ ⊆ 𝑆 ′ and thus 𝑆 ′ is a feasible solution of Problem 2.

We can evaluate the density of 𝑆 ′ as follows:

𝑑 (𝑆 ′) =
1

2

∑
𝑣∈𝑆 ′ deg𝑆 ′ (𝑣)
|𝑆 ′ | ≥ 1

2

deg𝑆∗ (𝑣∗) ≥
1

2

𝑑 (𝑆∗),

where the first inequality follows from the greedy choice of 𝑣∗

and the relation 𝑆 ′ ⊇ 𝑆∗, and the second inequality follows from

inequality (1). Noticing that 𝑆 ′ is one of the output candidates of
the algorithm, we have the lemma. □

Finally, our accelerated algorithm is described in Algorithm 6.

Theorem 5. Algorithm 6 is a 1/3-approximation algorithm for
Problem 2 and runs in 𝑂 (|𝐶 | (𝑛/|𝐶 |) |𝐶 |−1𝑇LP) time, where 𝑇LP is the
time complexity required to solve the LP.

Proof. The time complexity analysis is again trivial. Hence,

in what follows, we guarantee the approximation ratio. If there

exists an optimal solution 𝑆∗ ⊆ 𝑉 that satisfies |𝑆∗𝑐 | > 𝑘𝑐 for every
𝑐 ∈ 𝐶 with 𝑘𝑐 ≥ 1, then the output 𝑆

peel
of Algorithm 5 is a 1/2-

approximate solution; thus, we are done. Otherwise there exists an

Densest Diverse Subgraphs:
How to Plan a Successful Cocktail Party with Diversity

Table 1: Dataset statistics summary.

Dataset |𝐶 | 𝑛 𝑚 𝛼 (𝑉)
Amazon Product 2 3.3K ±4.7𝐾 24.7K ±47.3𝐾 0.68 ±0.12
Facebook100 2 or 4 10.7K ±8.4𝐾 399K ±315𝐾 0.48 ±0.09

GitHub Developers 2 37,700 289,003 0.74

LastFM Asia 18 7,624 27,806 0.20

Deezer Europe 2 28,281 92,752 0.56

DBLP 6 25,176 151,670 0.32

optimal solution 𝑆∗ ⊆ 𝑉 that satisfies |𝑆∗𝑐 | = 𝑘𝑐 for some 𝑐 ∈ 𝐶 with

𝑘𝑐 ≥ 1. The modified version of Algorithm 4 used in Algorithm 6

skips some 𝒑’s with 𝒌 ≤ 𝒑 ≤ (|𝑉𝑐 |)𝑐∈𝐶 but still tests 𝒑∗ with
𝑝∗𝑐 = |𝑆∗𝑐 | for any 𝑐 ∈ 𝐶 . Therefore, the analysis similar to that for

Algorithm 4 still works and we see that 𝑆LP is a 1/3-approximate

solution. Therefore, we have the theorem. □

6 EXPERIMENTAL EVALUATION
In this section, we evaluate our proposed algorithms using a variety

of synthetic and real-world networks.

6.1 Experimental Setup
Datasets.We use two collections of datasets and four single-graph

datasets, with attributes for the nodes in the graphs. Table 1 summa-

rizes the statistics of the following datasets, where for the first two

datasets, we put the average values with the standard deviations.

• Amazon Product Metadata - 299 graphs [36]. This consists of
a collection of 299 graphs, each with 2 colors, as curated by

Anagnostopoulos et al. [4]. Classes are product categories,

while edges indicate that products were co-purchased.

• Facebook100 - 100 graphs [45]. This contains 100 anonymized

networks of the Facebook social network from universities

across the United States. Nodes have demographic attributes,

like profession (faculty/student), gender (male/female), the

year they joined the university, etc. For our purpose, we also

create 2
2 = 4 categories that combine profession and gender.

The largest graph in terms of𝑚 has 1,382,325 edges.

• GitHub Developers [41]. Nodes are developers in GitHub who

have starred at least 10 repositories, and edges are mutual

follower relationships between them. The attribute is whether

the user is a web or a machine learning developer.

• LastFM Asia Social Network [42]. Nodes are LastFM users from

Asian countries and edges are mutual follower relationships

between them. The attribute is the location of a user.

• Deezer Europe Social Network [42]. Nodes are Deezer users

from European countries and edges are mutual follower re-

lationships between them. The attribute is the gender of a

user.

• DBLP Co-Authorship. We also create a dataset from the DBLP

database. We create a graph from authors of papers published

in major conferences in 6 areas (Theory, Data Management,

Data Mining, Learning, Networking, and Image & Video Pro-

cessing) between 2003 and 2022. Nodes are authors with at-

tributes being the area (s)he has most publications. Edges

indicate that the two authors have collaborated at least once.

See Appendix B.1 for details.

Baselines. For Problem 1, we employ the following baselines, in-

cluding a novel baseline we devise using node embeddings [39]:

• DSP . The (unconstrained) densest subgraph. Specifically, we
use Greedy++ by Boob et al. [9] for 5 iterations, which in

practice finds an optimal solution to DSP in very few iterations.

For 𝑆 ⊆ 𝑉 , we define the normalized density as its density

divided by the optimal value to DSP.

• PS and FPS. The spectral algorithms by Anagnostopoulos et

al. [4] that split the entries of the largest eigenvector of the

adjacency matrix (PS) and “fairified” adjacency matrix (FPS),
based on their color, and sort them in a similar spirit with

spectral clustering.

• Embedding+Fair Clustering. We design a novel baseline that

first embeds the graph using the node embedding method

NetMF [39] and then clusters the nodes using the fair 𝑘-means

implementation of Backurs et al. [6] for various values of 𝑘 .

We compute the density of each fair cluster for each value of

𝑘 , and output the maximum among all.

For Problem 2, we run the following two baselines:

• IP.We implement an exact algorithm using integer program-

ming and test its scalability. See Appendix B.2 for details.

• Prop2.We also implement the 1/4-approximation algorithm

introduced in Proposition 2. To solve Dal𝑘S, we use the 1/2-
approximation algorithm based on LP with a greedy peeling

acceleration [28].

Machine specs and code. The experiments are performed on a

single machine, with Intel i7-10850H CPU @ 2.70GHz and 32GB of

mainmemory.We use C++ for all experiments. Linear programming

and integer programming are implemented with SciPy and solved

with HiGHS [25]. The code and datasets are available online.
1

6.2 Evaluation of Algorithm 2 (for Problem 1)
Preliminary experiments. Although we have created a reliable

algorithmic toolbox for dense diverse clusters, we must assess their

practical effectiveness. Specifically, when examining the densest

subgraph or the top-𝑘 densest subgraphs with sensitive attributes,

do we observe diversity in the subgraphs? The answer is generally

no, as observed in the vast majority of cases. This trend can result in

unfair solutions, particularly in the context of sensitive attributes.

In Figure 1 we present the statistics of the entire graph and the

top-4 densest subgraphs of the Amazon Product and Facebook100

datasets from Table 1, using standard box plots. As can be seen,

the densest subgraphs tend to be not diverse. Especially for the

Amazon Product dataset (leftmost figure), the densest subgraph

most of the times is nearly monochromatic. This phenomenon

is not restricted to the densest subgraph but also found for the

top-4 densest subgraphs, implying that strong homophily is a key

factor behind dense clusters. We observe a similar trend for the

Facebook100 dataset (the latter three figures). Even if we restrict

our attention to the specific attribute we consider, profession or

gender, we see that again they are not represented equally in the

densest subgraph. These findings motivate the study of Problem 1,

1
https://github.com/tsourakakis-lab/densest-diverse-subgraphs

Miyauchi et al.

Gr
ap
h

At
tri
bu
te

1
st
DS

2
nd

DS

3
rd

DS

4
th
DS

0.5

0.6

0.7

0.8

0.9

1.0

α
(S

)

Gr
ap
h

1
st
DS

2
nd

DS

3
rd

DS

4
th
DS

0.4

0.6

0.8

1.0

α
(S

)

Gr
ap
h

Pr
of
es
sio
n

1
st
DS

2
nd

DS

3
rd

DS

4
th
DS

0.5

0.6

0.7

0.8

0.9

1.0

α
(S

)

Gr
ap
h

Ge
nd
er

1
st
DS

2
nd

DS

3
rd

DS

4
th
DS

0.5

0.6

0.7

0.8

0.9

1.0

α
(S

)

Figure 1: The diversity of the entire graph and the top-4 densest subgraphs of the first two datasets in Table 1. The first figure is
for the Amazon Product dataset (|𝐶 | = 2), while the latter three figures are for the Facebook100 dataset (left: Profession and
Gender (|𝐶 | = 4), middle: Profession (|𝐶 | = 2), right: Gender (|𝐶 | = 2)). Note that 𝛼 (𝑆) = 1/|𝐶 | means the complete diversity of 𝑆 .

0.5 0.6 0.7 0.8 0.9
Color Participation Upper Bound (α)

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

D
en
si
ty

Amazon Products

DSP

FPS

PS

Alg. 2

0.25 0.30 0.35 0.40 0.45 0.50
Color Participation Upper Bound (α)

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

D
en
si
ty

Facebook100

Figure 2: Performance of algorithms for the Amazon Prod-
ucts and Facebook100 datasets.

where we can control the extent to which a specific color dominates

the subgraph returned by an algorithm.

Solution quality of algorithms.We compare Algorithm 2 with

the baseline algorithms with respect to the density and diversity of

the returned subgraphs, using the six datasets of Table 1. We run

Algorithm 2 by varying the value of 𝛼 . Note that when 𝛼 (𝑉) > 𝛼 ,
Algorithm 2 may fail to find a feasible solution. In that case, we

resort to iteratively peeling a node with the minimum degree from

𝑆 with the most dominant color, until we obtain a feasible solution,

or conclude that none exists. PS and FPS by Anagnostopoulos et.

al. [4] return by definition completely-balanced subgraphs, thus

corresponding to the solutions of Problem 1 for a value of 𝛼 = 1/|𝐶 |.
Our results are depicted in Figure 2 for the two collections of

datasets, Amazon Product and Facebook100. As these two datasets

consist of a number of graphs, we present the average values with

the standard deviations. We see that Algorithm 2 outperforms the

baselines. Let us first focus on the case of 𝛼 = 1/|𝐶 |. Algorithm 2

returns a better solution than that of PS and FPS for the Amazon

Product dataset, while PS and FPS are comparable to Algorithm 2

for the Facebook100 dataset. We observe similar trends for the

single graph datasets, as seen in Figure 3. More precisely, when

𝛼 = 1/|𝐶 |, Algorithm 2 performs better than PS and FPS in 3 out of

4 cases. Moreover, we see that by varying the parameter 𝛼 , we can

adjust the trade-off between getting a subgraph as dense as possible

(when we let 𝛼 approach the diversity of the densest subgraph in

the graph), or sacrifice density with the aim of getting more diverse

subgraphs (completely balanced when we set 𝛼 = 1/|𝐶 |).
(Poor) performance of Embedding+Fair Clustering. Here we
use a random sample of 35 graphs from the Facebook100 dataset due

to the cost of producing embeddings for each graph, as we did not

notice significant changes after including more datasets in terms of

results. We also use only gender as our attribute (as fair clustering

methods allow only two colors), while we range 𝑘 in 𝑘-means from

2 to 32 and report the best result. In Figure 4, we see the results

of this baseline in terms of the diversity of the clusters we get, as

well their density. We see that simply performing 𝑘-means on the

embedded graph results in clusters that are highly unbalanced. On

the other hand, fair 𝑘-means allows us to get fair clusters by design

(Figure 4 (left)), but the corresponding subgraph is not as dense

as the output by Algorithm 2 (Figure 4 (right)). Notice that for the

attribute we consider in this case, the ratio of the two colors in the

graph is only slightly different from that of the densest subgraph

(see the rightmost of Figure 1). Hence, Algorithm 2 finds subgraphs

almost as dense as the densest.

Running time of algorithms. In Figure 5 (left) we report the run-

time of algorithms on the Amazon Product dataset. We employed

this dataset because the sizes of the graphs (in terms of 𝑛 and𝑚)

vary substantially so that we can easily see how the running time

of algorithms grows. We see that all of them scale (almost) linearly

with the number of edges; in particular, the result for Algorithm 2

is consistent with the theoretical analysis in Section 4.1. Note that

for Algorithm 2, we report the runtime for the most difficult case,

when 𝛼 = 0.5; hence the subgraphs need to be completely balanced.

As we relax the diversity constraint, the runtime drops significantly

as evident on the synthetic graphs, as shown in Figure 5 (right).

The synthetic graph we employed resembles the stochastic block

model paradigm. We constructed a graph with 5 clusters of 40,000

nodes each, with higher intra-connectivity within clusters, than

inter-connectivity across clusters. Most importantly, one of the

clusters has a much higher density than the rest. Hence, the dens-

est subgraph consists of 40,000 nodes. Initially, we assign nodes

to one of five colors uniformly at random. Hence, the (original)

densest subgraph is already diverse. Therefore, Algorithm 2 does

not need to invoke Procedure 1. Thus, relaxing the diversity con-

straint has no impact in this case (blue dotted line). On the other

hand, if we assign a unique color to each cluster, then the densest

subgraph becomes monochromatic and in order to have a diverse

representation we need to involve the whole graph to our solution,

resulting in a longer runtime that gets decreased as we relax the

diversity constraint (solid orange line). Finally we remark that on

the Facebook100 dataset Algorithm 2 runs in 3s for 𝛼 = 0.5 and 11s

for 𝛼 = 0.25 even on the aforementioned largest graph with more

than one million edges.

Densest Diverse Subgraphs:
How to Plan a Successful Cocktail Party with Diversity

1
2

0.55 0.6 0.7 0.76

Color Participation Upper Bound (a)

27

28

29

30

D
en
si
ty

Musae Git Dataset

DSP

Algorithm 2

Paired Sweep

Fair Paired Sweep

1
18

0.07 0.1 0.13 0.18

Color Participation Upper Bound (a)

8

9

10

11

12

13

14

15

D
en
si
ty

LastFM Dataset

DSP

Algorithm 2

Paired Sweep

Fair Paired Sweep

1
2

0.55 0.60.60.6

Color Participation Upper Bound (a)

8.3

8.4

8.5

8.6

8.7

D
en
si
ty

Deezer Europe Dataset

DSP

Algorithm 2

Paired Sweep

Fair Paired Sweep

1
6

0.2 0.25 0.3 0.35 0.420.42

Color Participation Upper Bound (a)

14

16

18

20

22

24

26

28

D
en
si
ty

DBLP Dataset

DSP

Algorithm 2

Paired Sweep

Fair Paired Sweep

Figure 3: Performance of algorithms for the single-graph datasets.

In
pu
t G
ra
ph

Ne
tM
F
+

K-
m
ea
ns

Ne
tM
F
+

Fa
ir
K-
m
ea
ns

Al
g.
2

0.50

0.55

0.60

0.65

α
va
lu
e

Ne
tM

F +

K-m
ean

s
Ne
tM

F +

Fai
r K

-m
ean

s Alg
. 2

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

D
en
si
ty

Figure 4: Diversity and normalized density of subgraphs ob-
tained using Embedding+Fair Clustering (together with its
unfair variant), and Algorithm 2.

0 100000 200000
Number of Edges

0.0

0.2

0.4

0.6

T
im

e
(s
ec
)

DSD (flowless)

Alg. 2 (α = 0.5)

Fair PS

0.2 0.4 0.6 0.8 1.0

Color Participation Upper Bound (α)

10

11

12

13

14

T
im

e
 (

s
e
c
)

Diverse DS

Monochromatic DS

Figure 5: Left: Runtime as a function of the number of edges
for all algorithms. Right: Runtime of Algorithm 2 as a func-
tion of the diversity parameter 𝛼 .

6.3 Evaluation of Algorithm 6 (for Problem 2)
We empirically study the accuracy and efficiency of Algorithm 6

to understand its practical performance. We apply our algorithm

and the baseline Prop2 on a part of the Amazon Product dataset,

consisting of the graphs with at most 1,000 nodes and 5,000 edges.

For each color 𝑐 ∈ 𝐶 , we set the lower bound as 𝑘𝑐 = |𝑉𝑐 |/2. We also

calculate the optimal solutions using IP and report the empirical

approximation ratios of Algorithm 6 and Prop2.
The results are shown in Figure 6. In Figure 6 (left) we observe

that in most graphs the solutions returned by Algorithm 6 are

optimal or near-optimal, with empirical approximation ratios con-

sistently higher than 0.95. This means that our proposed algorithm

is of high accuracy in practice, despite the theoretical approxima-

tion guarantee being 1/3. The baseline Prop2 returns solutions with
empirical approximation ratios greater than 0.8 but the performance

is worse than that of ours. In Figure 6 (right) we show the running

times of all algorithms applied. As expected, Prop2 is the fastest as

Figure 6: Empirical approximation ratios and running times
of Algorithm 6 and baselines on the Amazon Product dataset
with at most 1,000 nodes and 5,000 edges.

it solves only one LP. Algorithm 6 can scale to graphs in two colors

with thousands of nodes, and it is faster than IP in general. Although

from the figure the scalability of Algorithm 6 looks not much better

than that of IP, we wish to remark that there are 7 graphs for which

Algorithm 6 runs more than 10 times faster than IP. In the extreme

example, where 𝑛 = 30 and 𝑚 = 381, Algorithm 6 runs in 0.58s,

while IP consumes 242.2s, meaning that Algorithm 6 runs more

than 400 times faster than IP. We further discuss the scalability of

Algorithm 6 particularly with respect to |𝐶 | in Appendix B.3.

7 CONCLUSIONS
In this work, we have focused on the problem of finding a densest

diverse subgraph. We proposed novel formulations and approxima-

tion algorithms for two different notions of diversity. We performed

various experiments on synthetic and real-world datasets, verifying

that the densest subgraphs tend to be driven by homophily and

that our tools provide the state-of-the-art methods.

Our work makes significant progress towards DSD with diver-

sity and opens up several interesting problems. Can we improve

the Ω(1/
√
𝑛)-approximation for Problem 1 (in the case of 𝑉 being

diverse)? Can we design a better algorithm for Problem 2, in terms

of both the approximation ratio and the runtime? Investigating the

hardness of approximation is also an interesting direction.

REFERENCES
[1] Christoph Adami, Jifeng Qian, Matthew Rupp, and Arend Hintze. 2011. Infor-

mation content of colored motifs in complex networks. Artif. Life 17, 4 (2011),
375–390.

[2] Sara Ahmadian, Alessandro Epasto, Marina Knittel, Ravi Kumar, Mohammad

Mahdian, Benjamin Moseley, Philip Pham, Sergei Vassilvitskii, and Yuyan Wang.

2020. Fair hierarchical clustering. In NeurIPS ’20. 21050–21060.
[3] Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. 2020.

Fair correlation clustering. In AISTATS ’20. 4195–4205.
[4] Aris Anagnostopoulos, Luca Becchetti, Adriano Fazzone, Cristina Menghini, and

Chris Schwiegelshohn. 2020. Spectral relaxations and fair densest subgraphs. In

Miyauchi et al.

CIKM ’20. 35–44.
[5] Reid Andersen and Kumar Chellapilla. 2009. Finding dense subgraphs with size

bounds. InWAW ’09. 25–37.
[6] Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali Vakilian, and

Tal Wagner. 2019. Scalable fair clustering. In ICML ’19. 405–413.
[7] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest subgraph

in streaming and MapReduce. In VLDB ’12. 454–465.
[8] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan

Vijayaraghavan. 2010. Detecting high log-densities: An𝑂 (𝑛1/4) approximation

for densest 𝑘-subgraph. In STOC ’10. 201–210.
[9] Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos E.

Tsourakakis, Di Wang, and Junxing Wang. 2020. Flowless: Extracting dens-

est subgraphs without flow computations. In TheWebConf ’20. 573–583.
[10] Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Char-

alampos E. Tsourakakis. 2020. Node embeddings and exact low-rank representa-

tions of complex networks. In NeurIPS ’20. 13185–13198.
[11] Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Char-

alampos E. Tsourakakis. 2021. On the power of edge independent graph models.

In NeurIPS ’21. 24418–24429.
[12] Moses Charikar. 2000. Greedy approximation algorithms for finding dense

components in a graph. In APPROX ’00. 84–95.
[13] Chandra Chekuri, Kent Quanrud, and Manuel R. Torres. 2022. Densest subgraph:

Supermodularity, iterative peeling, and flow. In SODA ’22. 1531–1555.
[14] Tianyi Chen, Brian Matejek, Michael Mitzenmacher, and Charalampos E.

Tsourakakis. 2022. Algorithmic tools for understanding the motif structure

of networks. In ECML PKDD ’22. 3–19.
[15] Tianyi Chen and Charalampos Tsourakakis. 2022. AntiBenford subgraphs: Un-

supervised anomaly detection in financial networks. In KDD ’22. 2762–2770.
[16] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. 2017.

Fair clustering through fairlets. In NIPS ’17. 5029–5037.
[17] Abir De, Isabel Valera, Niloy Ganguly, Sourangshu Bhattacharya, and Manuel

Gomez-Rodriguez. 2016. Learning and forecasting opinion dynamics in social

networks. In NIPS ’16. 397–405.
[18] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2007. Extraction and

classification of dense communities in the web. In WWW ’07. 461–470.
[19] Amita Gajewar and Atish Das Sarma. 2012. Multi-skill collaborative teams based

on densest subgraphs. In SDM ’12. 165–176.
[20] Giorgio Gallo, Michael D. Grigoriadis, and Robert E. Tarjan. 1989. A fast para-

metric maximum flow algorithm and applications. SIAM J. Comput. 18, 1 (1989),
30–55.

[21] David Gibson, Ravi Kumar, and Andrew Tomkins. 2005. Discovering large dense

subgraphs in massive graphs. In VLDB ’05. 721–732.
[22] Aristides Gionis and Charalampos E. Tsourakakis. 2015. Dense subgraph discov-

ery: KDD 2015 Tutorial. In KDD ’15. 2313–2314.
[23] Andrew V. Goldberg. 1984. Finding a maximum density subgraph. University of

California Berkeley.

[24] Julie Graber. 2020. Companies Hit With Lawsuits for Lack of Diversity at the

Top. https://www.linkedin.com/pulse/companies-hit-lawsuits-lack-diversity-

top-julie-graber/.

[25] Qi Huangfu and Julian Hall. 2015. Parallelizing the dual revised simplex method.

Math. Program. Comput. 10 (2015), 119–142.
[26] Yasushi Kawase, Yuko Kuroki, and Atsushi Miyauchi. 2019. Graph mining meets

crowdsourcing: Extracting experts for answer aggregation. In IJCAI ’19. 1272–
1279.

[27] Yasushi Kawase and Atsushi Miyauchi. 2018. The densest subgraph problem

with a convex/concave size function. Algorithmica 80, 12 (2018), 3461–3480.

[28] Samir Khuller and Barna Saha. 2009. On finding dense subgraphs. In ICALP ’09.
597–608.

[29] Guy Kortsarz and Zeev Nutov. 2005. Approximating𝑘-node connected subgraphs

via critical graphs. SIAM J. Comput. 35, 1 (2005), 247–257.
[30] Guy Kortsarz and David Peleg. 1994. Generating sparse 2-spanners. J. Algorithms

17, 2 (1994), 222–236.

[31] Yuko Kuroki, Atsushi Miyauchi, Junya Honda, and Masashi Sugiyama. 2020.

Online dense subgraph discovery via blurred-graph feedback. In ICML ’20. 5522–
5532.

[32] Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi.

2023. A survey on the densest subgraph problem and its variants. arXiv preprint
arXiv:2303.14467 (2023).

[33] Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He

Huang, and Xueqi Cheng. 2020. FlowScope: Spotting money laundering based

on graphs. In AAAI ’20. 4731–4738.
[34] Brian Matejek, Donglai Wei, Tianyi Chen, Charalampos E. Tsourakakis, Michael

Mitzenmacher, and Hanspeter Pfister. 2022. Edge-colored directed subgraph

enumeration on the connectome. Sci. Rep. 12, 1 (2022), 11349.
[35] Cameron Musco, Christopher Musco, and Charalampos E. Tsourakakis. 2018.

Minimizing polarization and disagreement in social networks. In TheWebConf ’18.
369–378.

[36] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations

using distantly-labeled reviews and fine-grained aspects. In EMNLP-IJCNLP ’19.
188–197.

[37] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In KDD ’14. 701–710.
[38] Jean-Claude Picard and Maurice Queyranne. 1982. A network flow solution to

some nonlinear 0-1 programming problems, with applications to graph theory.

Networks 12, 2 (1982), 141–159.
[39] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.

Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE,

and node2vec. InWSDM ’18. 459–467.
[40] Syama Sundar Rangapuram, Thomas Bühler, and Matthias Hein. 2013. Towards

realistic team formation in social networks based on densest subgraphs. In

WWW ’13. 1077–1088.
[41] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed

node embedding. J. Complex Netw. 9, 2 (2021), 1–22.
[42] Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic functions on graphs:

Birds of a feather, from statistical descriptors to parametric models. In CIKM ’20.
1325–1334.

[43] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and

how to plan a successful cocktail party. In KDD ’10. 939–948.
[44] Michele Starnini, Charalampos E. Tsourakakis, Maryam Zamanipour, André

Panisson, Walter Allasia, Marco Fornasiero, Laura Li Puma, Valeria Ricci, Silvia

Ronchiadin, Angela Ugrinoska, Marco Varetto, and Dario Moncalvo. 2021. Smurf-

based anti-money laundering in time-evolving transaction networks. In ECML
PKDD ’21.

[45] Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. 2012. Social structure of

Facebook networks. Physica A 391, 16 (2012), 4165–4180.

[46] Charalampos E. Tsourakakis. 2015. The k-clique densest subgraph problem. In

WWW ’15. 1122–1132.
[47] Charalampos E. Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco

Gullo, and Maria Tsiarli. 2013. Denser than the densest subgraph: Extracting

optimal quasi-cliques with quality guarantees. In KDD ’13. 104–112.
[48] Nate Veldt, Austin R. Benson, and Jon Kleinberg. 2021. The generalized mean

densest subgraph problem. In KDD ’21. 1604–1614.

https://www.linkedin.com/pulse/companies-hit-lawsuits-lack-diversity-top-julie-graber/
https://www.linkedin.com/pulse/companies-hit-lawsuits-lack-diversity-top-julie-graber/

Densest Diverse Subgraphs:
How to Plan a Successful Cocktail Party with Diversity

A PROOF OF LEMMA 3
First we consider the case where 𝑦𝑐 ≥ 1 for every 𝑐 ∈ 𝐶 . Let 𝑎
be the maximum number that satisfies 𝐶sat (𝑆 (𝑎)) = 𝐶 . Let 𝑏 be

the infimum of the numbers 𝑏 that satisfy 𝐶sat (𝑆 (𝑏)) = ∅. Let
𝑦∗
max

= max𝑣∈𝑉 𝑦∗𝑣 . Note that 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑦∗max
hold.

To prove the lemma, it suffices to show that (at least) one of the

following cases occurs:

Case (i) There exists some 𝑟 ′ ≤ 𝑎 such that 𝑑 (𝑆 (𝑟 ′)) ≥ 𝜆
3
;

Case (ii) There exists some 𝑎 < 𝑟 ′ ≤ 𝑏 such that

|𝐸 (𝑆 (𝑟 ′)) |∑
𝑐∈𝐶sat (𝑆 (𝑟 ′)) |𝑆 (𝑟 ′)𝑐 | +

∑
𝑐∈𝐶\𝐶sat (𝑆 (𝑟 ′)) 𝑘𝑐

≥ 𝜆/3;

Case (iii) There exists some 𝑟 ′ > 𝑏 such that |𝐸 (𝑆 (𝑟 ′)) | ≥
|𝐸 (𝑆∗) |

3
.

To show that, suppose that none of the above cases occurs. We

define indicator functions 𝑍𝑣 (𝑟) : [0, 𝑦∗max
] → {0, 1} for 𝑣 ∈ 𝑉 and

𝑍𝑒 (𝑟) : [0, 𝑦∗max
] → {0, 1} for 𝑒 = {𝑢, 𝑣} ∈ 𝐸 as follows:

𝑍𝑣 (𝑟) =
{
1 if 𝑟 ≤ 𝑦∗𝑣 ,
0 otherwise,

𝑍𝑒 (𝑟) =
{
1 if 𝑟 ≤ min{𝑦∗𝑢 , 𝑦∗𝑣 },
0 otherwise.

Since Case (i) does not hold, for any 𝑟 ′ ≤ 𝑎, we have 𝑑 (𝑆 (𝑟 ′)) =
|𝐸 (𝑆 (𝑟 ′)) |
|𝑆 (𝑟 ′) | < 𝜆

3
. Thus, we have∫ 𝑎

0

|𝐸 (𝑆 (𝑟)) | d𝑟 < 𝜆

3

∫ 𝑎

0

|𝑆 (𝑟) | d𝑟

=
𝜆

3

∫ 𝑎

0

∑︁
𝑣∈𝑉

𝑍𝑣 (𝑟) d𝑟 =
𝜆

3

∑︁
𝑣∈𝑉

∫ 𝑎

0

𝑍𝑣 (𝑟) d𝑟 .

Since Case (ii) does not occur, for any 𝑎 < 𝑟 ′ ≤ 𝑏, we have

|𝐸 (𝑆 (𝑟 ′)) | < 𝜆
3

(∑
𝑐∈𝐶sat (𝑆 (𝑟 ′)) |𝑆 (𝑟

′)𝑐 | +
∑
𝑐∈𝐶\𝐶sat (𝑆 (𝑟 ′)) 𝑘𝑐

)
. Hence,

we have∫ 𝑏

𝑎

|𝐸 (𝑆 (𝑟)) | d𝑟 < 𝜆

3

∫ 𝑏

𝑎

©­«
∑︁

𝑐∈𝐶sat (𝑆 (𝑟))
|𝑆 (𝑟)𝑐 | +

∑︁
𝑐∈𝐶\𝐶sat (𝑆 (𝑟))

𝑘𝑐
ª®¬ d𝑟 .

Now we see that∫ 𝑏

𝑎

∑︁
𝑐∈𝐶sat (𝑆 (𝑟))

|𝑆 (𝑟)𝑐 | d𝑟 ≤
∫ 𝑏

𝑎

∑︁
𝑐∈𝐶
|𝑆 (𝑟)𝑐 | d𝑟

=

∫ 𝑏

𝑎

∑︁
𝑐∈𝐶

∑︁
𝑣∈𝑉𝑐

𝑍𝑣 (𝑟) d𝑟 =
∑︁
𝑐∈𝐶

∑︁
𝑣∈𝑉𝑐

∫ 𝑏

𝑎

𝑍𝑣 (𝑟) d𝑟

=
∑︁
𝑣∈𝑉

∫ 𝑏

𝑎

𝑍𝑣 (𝑟) d𝑟

and∫ 𝑏

𝑎

∑︁
𝑐∈𝐶\𝐶sat (𝑆 (𝑟))

𝑘𝑐 d𝑟 ≤
∫ 𝑏

𝑎

∑︁
𝑐∈𝐶

𝑝∗𝑐 d𝑟 ≤ ∥𝒑∗∥1 · 𝑦∗max
≤ 1.

Therefore, we have∫ 𝑏

𝑎

|𝐸 (𝑆 (𝑟)) | d𝑟 < 𝜆

3

(∑︁
𝑣∈𝑉

∫ 𝑏

𝑎

𝑍𝑣 (𝑟) d𝑟 + 1
)
.

Since Case (iii) does not hold, for any 𝑟 ′ > 𝑏, we have |𝐸 (𝑆 (𝑟 ′)) | <
|𝐸 (𝑆∗) |

3
. Thus, we have∫ 𝑦∗

max

𝑏

|𝐸 (𝑆 (𝑟)) | d𝑟 < |𝐸 (𝑆
∗) |

3

∫ 𝑦∗
max

𝑏

d𝑟

≤ |𝐸 (𝑆
∗) |

3

𝑦∗
max
≤ 1

3

|𝐸 (𝑆∗) |
∥𝒑∗∥1

≤ 𝜆

3

,

where the last inequality follows from Lemma 2. Thus, we have∫ 𝑦∗
max

0

|𝐸 (𝑆 (𝑟)) | d𝑟

=

∫ 𝑎

0

|𝐸 (𝑆 (𝑟)) | d𝑟 +
∫ 𝑏

𝑎

|𝐸 (𝑆 (𝑟)) | d𝑟 +
∫ 𝑦∗

max

𝑏

|𝐸 (𝑆 (𝑟)) | d𝑟

<
𝜆

3

(∑︁
𝑣∈𝑉

∫ 𝑎

0

𝑍𝑣 (𝑟) d𝑟 +
(∑︁
𝑣∈𝑉

∫ 𝑏

𝑎

𝑍𝑣 (𝑟) d𝑟 + 1
)
+ 1

)
≤ 𝜆

3

(∑︁
𝑣∈𝑉

𝑦∗𝑣 + 2
)
=
𝜆

3

©­«
∑︁
𝑐∈𝐶

∑︁
𝑣∈𝑉𝑐

𝑦∗𝑣 + 2
ª®¬ = 𝜆.

On the other hand, by a simple calculation, we have∫ 𝑦∗
max

0

|𝐸 (𝑆 (𝑟)) | d𝑟 =
∫ 𝑦∗

max

0

∑︁
𝑒∈𝐸

𝑍𝑒 (𝑟) d𝑟

=
∑︁
𝑒∈𝐸

∫ 𝑦∗
max

0

𝑍𝑒 (𝑟) d𝑟 =
∑︁
𝑒∈𝐸

min{𝑦∗𝑢 , 𝑦∗𝑣 } ≥
∑︁
𝑒∈𝐸

𝑥∗𝑒 = 𝜆,

which contradicts to the above inequality.

Next we consider the case where𝑦𝑐 = 0 for some 𝑐 ∈ 𝐶 . Defining
𝑎, 𝑏, and 𝑦∗

max
in the same way, we have 0 ≤ 𝑎 ≤ 𝑦∗

max
< 𝑏 = ∞. It

suffices to show that (at least) one of the following cases occurs:

Case (i) There exists some 𝑟 ′ ≤ 𝑎 such that 𝑑 (𝑆 (𝑟 ′)) ≥ 𝜆
3
;

Case (ii) There exists some 𝑎 < 𝑟 ′ ≤ 𝑦∗
max

such that

|𝐸 (𝑆 (𝑟 ′)) |∑
𝑐∈𝐶sat (𝑆 (𝑟 ′)) |𝑆 (𝑟 ′)𝑐 | +

∑
𝑐∈𝐶\𝐶sat (𝑆 (𝑟 ′)) 𝑘𝑐

≥ 𝜆/3.

The proof is similar to the above and thus omitted. □

B SUPPLEMENTARY MATERIAL FOR
EXPERIMENTS

B.1 DBLP Co-Authorship Dataset
We create this dataset from all authors that have published at least

3 papers in the following conferences between 2003 and 2022:

• Theory: COLT, FOCS, ICALP, SODA, STOC

• Data Management: CIDR, ICDE, PODS, SIGMOD, VLDB

• Data Mining: CIKM, ICDM, KDD, WSDM, WWW

• Learning: AAAI, ICLR, ICML, NeurIPS

• Networking: ICC, IMC, INFOCOM, MOBICOM, SIGCOMM

• Image & Video Processing: CVPR, ECCV, ICCV

B.2 IP for Problem 2
Let us introduce a 0–1 variable 𝑥𝑒 for each 𝑒 ∈ 𝐸 and 0–1 variable𝑦𝑣
for each 𝑣 ∈ 𝑉 . Then for each 𝑘guess ∈ {∥𝒌∥1, . . . , 𝑛}, we construct

Miyauchi et al.

the following (mixed) integer linear programming problem:

maximize

∑︁
𝑒∈𝐸

𝑥𝑒/𝑘guess

subject to

∑︁
𝑣∈𝑉

𝑦𝑣 = 𝑘guess,∑︁
𝑣∈𝑉𝑐

𝑦𝑣 ≥ 𝑘𝑐 ∀𝑐 ∈ 𝐶,

𝑥𝑒 ≤ 𝑦𝑢 , 𝑥𝑒 ≤ 𝑦𝑣 ∀𝑒 = {𝑢, 𝑣} ∈ 𝐸,
0 ≤ 𝑥𝑒 ≤ 1 ∀𝑒 ∈ 𝐸,
𝑦𝑣 ∈ {0, 1} ∀𝑣 ∈ 𝑉 .

It is easy to see that this problem is equivalent to Problem 2 with

size constraint |𝑆 | = 𝑘guess. Note that the 0–1 constraints for 𝑥𝑒 ’s
are relaxed because they are redundant.

The baseline IP computes an optimal solution to Problem 2

as follows: Solve the above integer programming problem for all

𝑘guess ∈ {∥𝒌∥1, . . . , 𝑛} and return a solution with the maximum

density value.

B.3 Scalability of Algorithm 6 on Synthetic Data
We run Algorithm 6 on a set of Erdős-Rényi graphs with size 𝑛

ranged in {18, 54, 90, 126}, edge probability 𝑝 = 5/𝑛, and the number

of colors |𝐶 | ranged in {2, 3, 6}. Nodes are evenly split into colors,

and the lower bound is set as 𝑘𝑐 =

⌊
𝑛

2 |𝐶 |

⌋
for each 𝑐 ∈ 𝐶 . Random

graphs are sampled ten times for each setting, and the averaged

running times are reported in Figure 7. When we have only two

colors, Algorithm 6 can scale up to a thousand nodes as shown in

the main text. However, the algorithm becomes rather inefficient as

the graph size goes beyond that or the number of colors increases.

Figure 7: Running time of Algorithm 6.

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Related work
	3 Problem statements
	3.1 Densest Diverse Subgraph Problem (DDSP)
	3.2 Densest At-Least–Subgraph (DalS)

	4 Algorithm for Problem 1
	4.1 The Proposed Algorithm
	4.2 Analysis

	5 Algorithm for Problem 2
	5.1 The Proposed Algorithm
	5.2 Analysis
	5.3 Acceleration via Greedy Peeling

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Evaluation of Algorithm 2 (for Problem 1)
	6.3 Evaluation of Algorithm 6 (for Problem 2)

	7 Conclusions
	References
	A Proof of Lemma 3
	B Supplementary Material for Experiments
	B.1 DBLP Co-Authorship Dataset
	B.2 IP for Problem 2
	B.3 Scalability of Algorithm 6 on Synthetic Data

