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ABSTRACT
One of the most fundamental tasks in data science is to assist a user
with unknown preferences in finding high-utility tuples within a
large database. To accurately elicit the unknown user preferences, a
widely-adopted way is by asking the user to compare pairs of tuples.
In this paper, we study the problem of identifying one or more high-
utility tuples by adaptively receiving user input on a minimum
number of pairwise comparisons. We devise a single-pass streaming
algorithm, which processes each tuple in the stream at most once,
while ensuring that the memory size and the number of requested
comparisons are in the worst case logarithmic in 𝑛, where 𝑛 is the
number of all tuples. An important variant of the problem, which
can help to reduce human error in comparisons, is to allow users
to declare ties when confronted with pairs of tuples of nearly equal
utility. We show that the theoretical guarantees of our method can
be maintained for this important problem variant. In addition, we
show how to enhance existing pruning techniques in the literature
by leveraging powerful tools from mathematical programming.
Finally, we systematically evaluate all proposed algorithms over
both synthetic and real-life datasets, examine their scalability, and
demonstrate their superior performance over existing methods.
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• Information systems→ Users and interactive retrieval; •
Theory of computation→ Database theory; Active learning.
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1 INTRODUCTION
One of the most fundamental tasks in data science is to assist a user
with unknown preferences in finding high-utility tuples within a
large database. Such a task can be used, for example, for finding
relevant papers in scientific literature, or recommending favorite
movies to a user. However, utility of tuples is highly personalized.
“One person’s trash is another person’s treasure,” as the saying goes.
Thus, a prerequisite to accomplishing this task is to efficiently and
accurately elicit user preferences.

It has long been known, both from studies in psychology [30]
as well as from personal experience, that humans are better at per-
forming relative comparisons than absolute assessments. For instance,
it is typically easy for a user to select a favorite movie between
two given movies, while it is difficult to score the exact utility of a
given movie. This fact has been used in many applications, such as
classification [12], ranking [21], and clustering [8].

In this paper we leverage the observation that humans are better
at comparing rather than scoring information items, and use rela-
tive comparisons to facilitate preference learning and help users
find relevant tuples in an interactive fashion, i.e., by adaptively
asking users to compare pairs of tuples. To cope with the issue
of information overload, it is usually not necessary to identify all
relevant tuples for a user. Instead, if there exists a small set of
high-utility tuples in the database, a sensible goal is to identify at
least one high-utility tuple by making a minimum number of com-
parisons. In particular, assuming that a user acts as an oracle, the
number of requested comparisons, which measures the efficiency
of preference learning, is known as query complexity.

More specifically, in this paper we focus on the following setting.
We consider a database 𝐷 consisting of 𝑛 tuples, each represented
as a point in R𝑑 . User preference is modeled by an unknown linear
function on the numerical attributes of the data tuples. Namely, we
assume that a user is associated with an unknown utility vector u ∈
R𝑑 , and the utility of a tuple x ∈ R𝑑 for that user is defined to be

util(x) = u𝑇 x.

A tuple x is considered to be of high-utility if its utility is close
to that of the best tuple, or more precisely, if compared to the best
tuple its utility loss is bounded by an 𝜖 fraction of the best utility,

util(x∗) − util(x) ≤ 𝜖 util(x∗),
where x∗ = argmaxx∈𝐷 util(x) is the best tuple in 𝐷 . We call the
user-defined parameter 𝜖 the “regret” ratio, a terminology used
earlier in database literature [24]. We demonstrate this setting with
a concrete example below.
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Table 1: Comparison with existing algorithms. We assume worst-case input with respect to the user preference and the
distribution of the 𝑛 tuples in the database 𝐷 ⊆ R𝑑 , but for the streaming case we assume that tuples arrive in random order. An
algorithm is strongly truthful if it does not use synthesized tuples that do not exist in the database 𝐷 in any comparison.

Algorithm Worst-case query complexity Average-case query complexity Strongly truthful Streaming
Nanongkai et al. [24] O(𝑑 log(𝑑/𝜖)) - ✗ ✗

Jamieson and Nowak [16] O(𝑛) O(𝑑 log𝑛) ✓ ✓

Xie et al. [33] O(𝑛) O(𝑛1/𝑑 ) ✓ ✗

Algorithms 1 and 2 in this paper O(𝑑 log2(𝑑/𝜖) log𝑛) - ✓ ✓

Example 1. Every tuple being a point in R3 represents a computer
with three attributes: price, CPU speed, and hard disk capacity. It is
reasonable to assume that the utility of a computer grows linearly in,
for example, the hard disk capacity. Thus, a user may put a different
weight on each attribute, as one entry in the utility vector u ∈ R3,
which measures its relative importance.

For the setting described above with a linear utility function, it
is obvious that at most 𝑛 − 1 comparisons suffice to find the best
tuple, by sequentially comparing the best tuple so far with a next
tuple. Surprisingly, despite the importance of this problem in many
applications, improvement over the naïve sequential strategy, in
the worst case, has remained elusive. A positive result has only
been obtained in a very restricted case of two attributes, i.e., a
tuple is a point in R2 [33]. Other existing improvements rely on
strong assumptions [16, 33], for example, when every tuple is almost
equally probable to be the best. To the best of our knowledge, we
are the first to offer an improvement on the query complexity that
is logarithmic in 𝑛, in the worst case. We refer the reader to Table 1
for a detailed comparison with existing work.

There exist heuristics in the literature that are shown to perform
empirically better than the naïve sequential strategy, in terms of
the number of requested comparisons. For example, a popular idea
is to compare a carefully-chosen pair in each round of interaction
with the user [27, 32]. However, these methods are computationally
expensive, and require multiple passes over the whole set of tuples.
To illustrate this point, finding a “good” pair with respect to a given
measure of interest can easily take O(𝑛2) time, as one has to go
over

(𝑛
2
)
candidate pairs. Furthermore, while such heuristics may

work well in practice, they may require Ω(𝑛) pairwise comparisons,
in the worst case.

We also address the problem of finding a high-utility tuple re-
liably, where we do not force a user to make a clear-cut decision
when confronted with two tuples that have nearly equal utility
for the user. In this way we can avoid error-prone decisions by a
user. Instead, we allow the user to simply declare a tie between the
two tuples. To our knowledge, this is the first paper that considers
a scenario of finding a high-utility tuple with ties and provides
theoretical guarantees to such a scenario.

Our contributions in this paper are summarized as follows: (𝑖) We
devise a single-pass streaming algorithm that processes each tuple
only once, and finds a high-utility tuple by making adaptive pair-
wise comparisons; (𝑖𝑖) The proposed algorithm requires a memory
size and has query complexity that are both logarithmic in 𝑛, in the
worst case, where 𝑛 is the number of all tuples; (𝑖𝑖𝑖) We show how
to maintain the theoretical guarantee of our method, even if ties

are allowed when comparing tuples with nearly equal utility; (𝑖𝑣)
We offer significant improvement to existing pruning techniques in
the literature, by leveraging powerful tools from mathematical pro-
gramming; (𝑣) We systematically evaluate all proposed algorithms
over synthetic and real-life datasets, and demonstrate their superior
performance compared to existing methods.

The rest of the paper is organized as follows. We formally define
the problem in Section 2.We discuss related work in Section 3. Then,
we describe the proposed algorithm in Section 4, and its extension
in Section 5 when ties are allowed in a comparison. Enhancement
to existing techniques follows in Section 6. Empirical evaluation is
conducted in Section 7, and we conclude in Section 8.

2 PROBLEM DEFINITION
In this section, we formally define the interactive regret minimization
(IRM) problem.

The goal of the IRM problem is to find a good tuple among all
given tuples 𝐷 ⊆ R𝑑 in a database. The goodness, or utility, of a
tuple x is determined by an unknown utility vector u ∈ R𝑑 via
the dot-product operation util(x) = u𝑇 x. However, we assume that
we do not have the means to directly compute util(x), for a given
tuple x. Instead, we assume that we have access to an oracle that
can make comparisons between pairs of tuples: given two tuples
x and y the oracle will return the tuple with the higher utility.
These assumptions are meant to model users who cannot quantify
the utility of a given tuple on an absolute scale, but can perform
pairwise comparisons of tuples.

In practice, it is usually acceptable to find a sufficiently good tuple
x′ in𝐷 , instead of the top one x∗. The notion of “sufficiently good” is
measured by the ratio in utility loss util(x∗ )−util(x′ )

util(x∗ ) , which is called
“regret.” This notion leads to the definition of the IRM problem.

Problem 1 (Interactive Regret Minimization (IRM)). Given
a set of 𝑛 tuples in a database 𝐷 ⊆ R𝑑 , an unknown utility vector
u ∈ R𝑑 , and a parameter 𝜖 ∈ [0, 1], find an 𝜖-regret tuple x′, such that

util(x∗) − util(x′) ≤ 𝜖 util(x∗),

where util(x) = u𝑇 x and x∗ = argmaxx∈𝐷 util(x). In addition we
aim at performing the minimum number of pairwise comparisons.

Problem 1 is referred to as “interactive” due to the fact that a
tuple needs to be found via interactive queries to the oracle.

The parameter 𝜖 measures the regret. When 𝜖 = 0, the IRM prob-
lem requires to find the top tuple x∗ with no regret. We refer to
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this special case as interactive top tuple (ITT) problem. For exam-
ple, when tuples are in 1-dimension, ITT reduces to finding the
maximum (or minimum) among a list of distinct numbers.

Clearly, the definition for the IRM problem is meaningful only
when util(x∗) ≥ 0, which is an assumption made in this paper.
Another important aspect of the IRM problem is whether or not the
oracle will return a tie in any pairwise comparison. In this paper,
we study both scenarios. In the first scenario, we assume that the
oracle never returns a tie, which implies that no two tuples in 𝐷
have the same utility. We state our assumptions for the first (and,
in this paper, default) scenario below. We discuss how to relax this
assumption for the second scenario in Section 5.

Assumption 1. No two tuples in 𝐷 have the same utility. Moreover,
the best tuple x∗ has non-negative utility, i.e., util(x∗) ≥ 0.

Without loss of generality, we further assume that ∥u∥2 = 1 and
∥x∥2 ≤ 1, for all x ∈ 𝐷 , which can be easily achieved by scaling. As
a consequence of our assumptions, we have 𝑐 = util(x∗) ≤ 1. The
proposed method in this paper essentially finds an 𝜖/𝑐-regret tuple,
which is feasible for the IRM problem when 𝑐 = 1. Our solution
still makes sense, i.e., a relatively small regret 𝜖/𝑐 , if 𝑐 is not too
small or a non-trivial lower bound of 𝑐 can be estimated in advance.
On the other hand, if 𝑐 is very small, there exists no tuple in 𝐷
that can deliver satisfactory utility in the first place, which means
that searching for the top tuple itself is also less rewarding. For
simplicity of discussion, we assume that 𝑐 = 1 throughout the paper.

For all problems we study in this paper, we focus on efficient
algorithms under the following computational model.

Definition 1 (One-pass data stream model). An algorithm is a
one-pass streaming algorithm if its input is presented as a (random-
order) sequence of tuples and is examined by the algorithm in a single
pass. Moreover, the algorithm has access to limited memory, generally
logarithmic in the input size.

This model is particularly useful in the face of large datasets. It is
strictly more challenging than the traditional offline model, where
one is allowed to store all tuples and examine them with random
access or over multiple passes. A random-order data stream is a
natural assumption in many applications, and it is required for our
theoretical analysis. In particular, this assumption will always be
met in an offline model, where one can easily simulate a random
stream of tuples. Extending our results to streams with an arbitrary
order of tuples is a major open problem.

One last remark about the IRM problem is the intrinsic dimension
of the database 𝐷 . Tuples in 𝐷 are explicitly represented by 𝑑 vari-
ables, one for each dimension, and 𝑑 is called the ambient dimension.
The intrinsic dimension of 𝐷 is the number of variables that are
needed in a minimal representation of 𝐷 . More formally, we say
that 𝐷 has an intrinsic dimension of 𝑑′ if there exist 𝑑′ orthonormal
vectors b1, . . . , b𝑑 ′ ∈ R𝑑 such that 𝑑′ is minimal and every tuple
x ∈ 𝐷 can be written as a linear combination of them. It is com-
mon that the intrinsic dimension of realistic data is much smaller
than its ambient dimension. For example, images with thousands
of pixels can be compressed into a low-dimensional representation
with little loss. The proposed method in this paper is able to adapt
to the intrinsic dimension of 𝐷 without constructing its minimal
representation explicitly.

In the rest of this section, we review existing hardness results
for the ITT and IRM problems.

Lower bounds. By an information-theoretical argument, one can
show that Ω(log𝑛) comparisons are necessary for the ITT prob-
lem [20]. By letting 𝑑 = 𝑛 and 𝐷 = {e𝑖 } for 𝑖 ∈ [𝑑], where e𝑖 is a
vector in the standard basis, Ω(𝑑) comparisons are necessary to
solve the ITT problem, as a comparison between any two dimen-
sions reveals no information about the rest dimensions.

Therefore, one can expect a general lower bound for the IRM
problem to somewhat depend on both 𝑑 and log𝑛. Thanks to the
tolerance of 𝜖 regret in utility, a refined lower bound Ω(𝑑 log(1/𝜖))
for the IRM problem is given by Nanongkai et al. [24, Theorem 9].

3 RELATEDWORK
Interactive regret minimization. A database system provides
various operators that return a representative subset of tuples (i.e.,
points in R𝑑 ) to a user. Traditional top-𝑘 operators [7] return the
top-𝑘 tuples according to an explicitly specified scoring function. In
the absence of a user utility vector u for a linear scoring function, the
skyline operators [5] return a tuple if it has the potential to be the
top tuple for at least one possible utility vector. In the worst case, a
skyline operator can return the entire dataset. Nanongkai et al. [25]
introduce a novel 𝑘-regret operator that achieves a balance between
the previous two problem settings, by returning 𝑘 tuples such that
the maximum regret over all possible utility vectors is minimized.

Nanongkai et al. [24] further minimize regret in an interactive
fashion by making pairwise comparisons. They prove an upper
bound on the number of requested comparisons by using synthe-
sized tuples for some comparisons. In fact, their method learns
approximately the underlying utility vector. However, synthesized
tuples are often not suitable for practical use.

Jamieson and Nowak [16] deal with a more general task of find-
ing a full ranking of 𝑛 tuples. By assuming that every possible
ranking is equally probable, they show that O(𝑑 log𝑛) comparisons
suffice to identify the full ranking in expectation. Nevertheless, in
the worst case, one cannot make such an assumption, and their algo-
rithm may require Ω(𝑛2) comparisons for identifying a full ranking
or Ω(𝑛) comparisons for identifying the top tuple. Another similar
problem assumes a distribution over the utility vector u without
access to the embedding of the underlying metric space [19]. The
problem of combinatorial nearest neighbor search is also related,
where one is to find the top tuple as the nearest neighbor of a given
tuple u without access to the embedding [13].

Xie et al. [33] observe that the ITT problem is equivalent to a
special linear program, whose pivot step for the simplex method can
be simulated by making a number of comparisons. Thus, an imme-
diate guarantee can be obtained by leveraging the fact that O(𝑛1/𝑑 )
pivot steps are needed in expectation for the simplex method [4].
Here the expectation is taken over some distribution over 𝐷 . Also
in the special case when 𝑑 = 2, they develop an optimal binary
search algorithm [33]. Zheng and Chen [35] suggest letting a user
sort a set of displayed tuples in each round of interaction, but their
approaches are similar to Xie et al. [33], and do not use a sorted list
the way we do.

There are other attempts to the ITT problem that adaptively
select a greedy pair of tuples with respect to some measure of
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interest. Qian et al. [27] iteratively select a hyperplane (i.e., pair)
whose normal vector is the most orthogonal to the current estimate
of u. Wang et al. [32] maintain disjoint regions of u over R𝑑 , one
for each tuple, where a tuple is the best if u is located within its
region. Then, they iteratively select a hyperplane that separates
the remaining regions as evenly as possible. However, these greedy
strategies are highly computationally expensive, and do not have
any theoretical guarantee.

Compared to aforementioned existing work, our proposed al-
gorithm makes minimal assumptions, is scalable, and enjoys the
strongest worst-case guarantee. It is worth mentioning that existing
research often assumes that increasing any tuple attribute always
improves utility, by requiring 𝐷 ⊆ R𝑑+ and u ∈ R𝑑+ [24, 32, 33, 35].
We do not make such an assumption in this paper.
Active learning. The IRM problem can be viewed as a special
highly-imbalanced linear classification problem. Consider a binary
classification instance, where the top tuple is the only one with a
positive label and the rest are all negative. Such labeling is always
realizable by a (non-homogeneous) linear hyperplane, e.g., 𝐻 =

{x ∈ R𝑑 : u𝑇 x = u𝑇 x∗ − 𝜂} for any sufficiently small 𝜂 ≥ 0. Note
that non-homogeneous 𝐻 can be replaced by a homogeneous one
(i.e., without the offset term 𝜂) by lifting the tuples into R𝑑+1.

Active learning aims to improve sample complexity that is re-
quired for learning a classifier by adaptive labeling. Active learning
with a traditional labeling oracle has been extensively studied. The
above imbalanced problem instance happens to be a difficult case
for active learning with a labeling oracle [11]. We refer the reader
to Hanneke et al. [14] for a detailed treatment.

Active learning with additional access to pairwise comparisons
has been studied by Kane et al. [17, 18]. That is, one can use both
labeling and comparison oracles. Importantly, Kane et al. [18] in-
troduce a notion of “inference dimension,” with which they design
an algorithm to effectively infer unknown labels. However, due
to technical conditions, the inference technique is only useful for
classification in low dimension (𝑑 ≤ 2) or special instances. As
one of our main contributions, we are the first to show that the
inference technique can be adapted for the IRM problem.
Ranking with existing pairwise comparisons. A different prob-
lem setting, is to rank collection of tuples by aggregating a set of
(possibly incomplete and conflicting) pairwise comparisons, instead
of adaptively selecting which pair of tuples to compare. This prob-
lem has been extensively studied in the literature within different
abstractions. From a combinatorial perspective, it is known as the
feedback arc-set problem on tournaments, where the objective is
to find a ranking by removing a minimum number of inconsistent
comparisons [1]. There also exist statistical approaches to find a
consistent ranking, or the top-𝑘 tuples, by estimating underlying
preference scores [9, 23, 26]. In machine learning, the problem is
known as “learning to rank” with pairwise preferences [21], where
the aim is to find practical ways to fit and evaluate a ranking.

4 FINDING A TUPLE: ORACLE WITH NO TIES
In this section, we present our single-pass streaming algorithm for
the IRM problem. Our approach, presented in Algorithms 1 and 2,
uses the concept of filters to prune sub-optimal tuples without the
need of further comparisons. Algorithm 1 is a general framework

Algorithm 1: A general framework
Input: tuples 𝐷 and parameters 𝑝 , 𝜃

1 𝐹 ← NewFilter, S ← (), 𝑃 ← ∅
2 for tuple x ∈ 𝐷 over a random-order stream do
3 if 𝐹 ′ .𝑝𝑟𝑢𝑛𝑒 (x) for any 𝐹 ′ ∈ S then continue
4 if |𝑃 | < 𝑝 then 𝑃 ← 𝑃 ∪ {x}; continue
5 𝐹 .𝑎𝑑𝑑 (x)
6 𝑃 ′ ← {y ∈ 𝑃 : 𝐹 .𝑝𝑟𝑢𝑛𝑒 (y) is true}
7 if |𝑃 ′ | ≥ 𝜃 |𝑃 | then
8 Append 𝐹 to sequence S
9 𝐹 ← NewFilter, 𝑃 ← 𝑃 \ 𝑃 ′

10 Append 𝐹 to sequence S and let 𝑋 = {𝐹 .𝑏𝑒𝑠𝑡 () : 𝐹 ∈ S}
11 Let x̂ be the best tuple in 𝑋 ∪ 𝑃 by pairwise comparisons
12 return x̂

Algorithm 2: Functions that define a filter for the IRM
problem with no ties
Input: parameter 𝜖

1 Class NewFilter: 𝑆 ← ∅
2 Function prune(x):
3 return true, if 𝑆 ⇒ x (see Eq. (3)), otherwise false
4 Function add(x):
5 𝑆 ← 𝑆 ∪ {x} and sort 𝑆 by pairwise comparisons
6 Function best(): return the best tuple x1 in 𝑆

for managing filters, while Algorithm 2 specifies a specific filter
we propose. As we will see in Section 7 the framework can also be
used for other filters.

The filter we propose relies on a remarkable inference technique
introduced by Kane et al. [17, 18]. Note that the technique was
originally developed for active learning in a classification task,
and its usage is restricted to low dimension (𝑑 ≤ 2) or special
instances under technical conditions. We adapt this technique to
devise a provably effective filter for the IRM problem. In addition,
we strengthen their technique with a high-probability guarantee
and a generalized symmetrization argument.

The core idea is to construct a filter from a small random sample
of tuples. It can be shown that the filter is able to identify a large
fraction of sub-optimal tuples in 𝐷 without further comparisons.
Fixing a specific type of filter with the above property, Algorithm 1
iteratively constructs a new filter in a boosting fashion to handle the
remaining tuples. Finally, one can show that, with high probability,
at most O(log𝑛) such filters will be needed.

We proceed to elaborate on the mechanism of a filter. The idea is
to maintain a random sample 𝑆 of 𝑠 tuples, and sort them in order of
their utility. The total order of the tuples in 𝑆 can be constructed by
pairwise comparisons, e.g., by insertion sort combined with binary
search. Suppose that 𝑆 = {x1, . . . , x𝑠 }, where x1 has the best utility.
Notice that u𝑇 (x𝑗+1−x𝑗 ) ≤ 0 for any 𝑗 . Thus, a sufficient condition
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Figure 1: An illustrative example for a filter in Algorithm 2.
The unknown utility vector u is drawn in orange. Every tu-
ple is shown as a point within a unit circle, where the red
point represents the top tuple, and green points are feasible
𝜖-regret tuples for the IRM problem. Suppose a filter collects
a random sample 𝑆 of blue points. A sorted sample 𝑆 can be
used to prune any point that falls into or is sufficiently close
to (within a distance of 𝜖) the blue cone.

for an arbitrary tuple x to be worse than x1 is

x = x1 +
𝑠−1∑︁
𝑗=1

𝛼 𝑗 (x𝑗+1 − x𝑗 ) such that 𝛼 𝑗 ≥ 0 for all 𝑗 . (1)

This condition asks to verify whether x lies within a cone with
apex x1, along direction u. The parameters 𝛼 𝑗 can be efficiently
computed by a standard Linear Program (LP) solver. If Condition (1)
can be satisfied for x, then x can be pruned for further consideration.

Actually, it is possible to act more aggressively and prune tuples
slightly better than x1, as long as it is assured that not all feasible tu-
ples will be pruned. Specifically, we can remove any x that deviates
from the aforementioned cone within a distance of 𝜖 , that is,

min
𝛼

x − x1 − 𝑠−1∑︁
𝑗=1

𝛼 𝑗 (x𝑗+1 − x𝑗 )

2
≤ 𝜖 s.t. 𝛼 𝑗 ≥ 0 for all 𝑗 . (2)

To test whether a given tuple x satisfies the above condition, one
needs to search for parameters 𝛼 𝑗 over [0,∞) for all 𝑗 . The search
can be implemented as an instance of constrained least squares,
which can be efficiently solved via a quadratic program (QP).

Given a sorted sample 𝑆 where x1 is the top tuple, we write
𝑆 ⇒ x (3)

if a tuple x can be approximately represented by vectors in 𝑆 in a
form of Eq. (2).

An example that illustrates the mechanism of a filter is displayed
in Fig. 1, on which we elaborate below.

Example 2. In Fig. 1, a random sample 𝑆 = {x1, x2, x3} of three
blue points is collected and sorted, where x1 has the highest utility.
This means that util(x𝑗+1) − util(x𝑗 ) = u𝑇 (x𝑗+1 − x𝑗 ) < 0, for any
𝑗 ∈ {1, 2}. Compared to the point x1, a new point x in the form of
x = x1 +

∑
𝑗∈{1,2} 𝛼 𝑗 (x𝑗+1 − x𝑗 ) with 𝛼 𝑗 ≥ 0 can only have a lower

utility than util(x1), since

util(x) = u𝑇
[
x1 +

∑︁
𝑗∈{1,2}

𝛼 𝑗 (x𝑗+1 − x𝑗 )
]
≤ util(x1).

Thus, such a point x can be safely pruned. Geometrically, all such
prunable points x form a cone with apex x1, as highlighted in the blue
region in Fig. 1. According to 𝐸𝑞. (2), any point that is sufficiently
close to (within a distance of 𝜖) the blue cone can also be pruned.

Upon a random-order stream of tuples, Algorithms 1 and 2 collect
a pool 𝑃 of 𝑝 initial tuples as a testbed for filter performance. Then,
subsequent tuples are gradually added into the first sample set 𝑆1,
until a filter based on 𝑆1 can prune at least a 𝜃 = 5/8 fraction of
𝑃 . Then, 𝑆1 is ready, and is used to prune tuples in the pool 𝑃 and
future tuples over the stream. Future tuples that survive the filter
formed by 𝑆1 will be gradually added into the pool 𝑃 and a second
sample set 𝑆2, and the process is repeated iteratively. Finally, the
algorithm returns the best tuple among all samples. The following
theorem states our main result about Algorithms 1 and 2.

Theorem 1. Assume 𝜖 > 0 and let𝑛 = |𝐷 | be the size of data. Let 𝑐 =
util(x∗) ∈ [0, 1] be the utility of the best tuple x∗. Under Assumption 1,
with a pool size 𝑝 = ⌈64 ln 2𝑛⌉ and 𝜃 = 5/8, Algorithms 1 and 2 return
an 𝜖/𝑐-regret tuple for the IRM problem.

Let 𝑡 = 16𝑑 ln(2𝑑/𝜖), where 𝑑 is the intrinsic dimension of𝐷 . Then,
with probability at least 1 − 1/𝑛, at most

O(log(𝑛) 4𝑡 log(4𝑡)) + 𝑝
comparisons are made.

The memory size, i.e., the number of tuples that will be kept by
the algorithm during the execution, is O(log(𝑛) 4𝑡), which is also
logarithmic in 𝑛.

In fact, Algorithms 1 and 2 are an anytime algorithm, in the sense
that the data stream can be stopped anytime, while the algorithm
is still able to return a feasible solution among all tuples that have
arrived so far.

Theorem 2. Under Assumption 1, the data stream may terminate
at any moment during the execution of Algorithms 1 and 2, and an
𝜖/𝑐-regret tuple will be returned for the IRM problem among all tuples
that have arrived so far.

Proofs of Theorems 1 and 2 are deferred to Appendix A.

5 FINDING A TUPLE: ORACLE WITH TIES
In this section, we first introduce a natural notion of uncomparable
pairs to avoid error-prone comparisons, and then we show how
this new setting affects our algorithms.

It is clearly more difficult for a user to distinguish a pair of tuples
with nearly equal utility. Thus, it is reasonable to not force the user
to make a choice in the face of a close pair, and allow the user to
simply declare the comparison a tie instead. We make this intuition
formal below.

Definition 2 (u-similar pairs). Two tuples x, y ∈ 𝐷 are u-similar if

|util(x) − util(y) | ≤ 𝜏,

for some fixed value 𝜏 . We write x ∼ y if they are uncomparable.

Assumption 2. A query about a u-similar pair to the oracle will
be answered with a tie. Besides, as before, we assume that the best
tuple x∗ has non-negative utility, util(x∗) ≥ 0.
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Algorithm 3: Functions that define a filter for the IRM
problem with ties
Input: parameter 𝜖

1 Class NewFilter: 𝑅 ← ∅, 𝑆 ← ∅;
2 Function prune(x):
3 return true, if 𝑆

sim⇒ x (see Eq. (5)), otherwise false
4 Function add(x):
5 𝑆 ← 𝑆 ∪ {x}, and sort x within 𝑅

6 if no tie happens then
7 𝑅 ← 𝑅 ∪ {x} and create 𝐺x ← {x}
8 else
9 Encounter a tie with y ∈ 𝑅 such that x ∼ y

10 𝐺y ← 𝐺y ∪ {x}
11 Function best(): return the best tuple in 𝑅

Typically, the value 𝜏 is fixed by nature, unknown to us, and
cannot be controlled. Note that when 𝜏 is sufficiently small, we re-
cover the previous case in Section 4 where every pair is comparable
under Assumption 1. By allowing the user to not make a clear-cut
comparison for a u-similar pair, one can no longer be guaranteed
total sorting. Indeed, it could be that every pair in 𝐷 is u-similar.

In Algorithm 3, we provide a filter to handle ties under Assump-
tion 2. We maintain a totally sorted subset 𝑅 of representative tu-
ples in a sample set 𝑆 . For each representative y ∈ 𝑅, we create a
group 𝐺y. Upon the arrival of a new tuple x, we sort x into 𝑅 if
no tie is encountered. Otherwise, we encounter a tie with a tuple
y ∈ 𝑅 such that x ∼ y, and we add x into a group 𝐺y. In the end,
the best tuple in 𝑅 will be returned.

To see whether a filter in Algorithm 3 can prune a given tuple x,
we test the following condition. Let 𝑅 = x1, . . . be the sorted list of
representive tuples, where x1 is the top tuple. Let G = 𝐺1, . . . be
the corresponding groups. A tuple x can be pruned if there exists
x′ such that ∥x − x′∥2 ≤ 𝜖 , where

x′ =
∑︁

y∈𝐺1∪𝐺2

𝜈y y +
∑︁
𝑗=1

∑︁
z∈𝐺 𝑗

∑︁
w∈𝐺 𝑗+2

𝛼w,z (w − z) (4)

such that
∑︁

y∈𝐺1∪𝐺2

𝜈y = 1 and all 𝜈, 𝛼 ≥ 0.

The idea is similar to Eq. (2), except that the top tuple x1 in Eq. (2) is
replaced by an aggregated tuple by convex combination, and every
pair difference x𝑗+1−x𝑗 is replaced by pair differences between two
groups. We avoid using pair differences between two consecutive
groups, as tuples in group 𝐺 𝑗 may not have higher utility than
tuples in 𝐺 𝑗+1. If the above condition is met, then we write

G sim⇒ x and, if G is constructed using 𝑆 , 𝑆
sim⇒ x. (5)

The number of comparisons that is needed by Algorithm 3 de-
pends on the actual input, specifically, 𝜉 , the largest size of any
pairwise u-similar subset of 𝐷 . Note that the guarantee below re-
covers that of Theorem 1 up to a constant factor, if assuming As-
sumption 1 where 𝜉 = 1. However, in the worst case, 𝜉 = O(𝑛) and
the guarantee becomes vacuous.

Theorem 3. Assume 𝜖 > 0 and let𝑛 = |𝐷 | be the size of data. Let 𝑐 =
util(x∗) ∈ [0, 1] be the utility of the best tuple x∗. Under Assumption 2,
with a pool size 𝑝 = ⌈256 ln 2𝑛⌉ and 𝜃 = 3/16, Algorithms 1 and 3
return an (𝜖/𝑐 + 2𝜏)-regret tuple for the IRM problem.

Let 𝑡 = 16𝑑 ln(2𝑑/𝜖), where 𝑑 is the intrinsic dimension of 𝐷 , and
𝜉 be the largest size of a pairwise u-similar subset of 𝐷 . Then, with
probability at least 1 − 1/𝑛, at most

O(log(𝑛) 16𝑡𝜉 log(16𝑡𝜉)) + 𝑝
comparisons are made.

Proofs of Theorem 3 are deferred to Appendix B.

6 IMPROVING BASELINE FILTERS
In this section, we improve existing filters by Xie et al. [33], by using
linear and quadratic programs. We will use these baselines in the
experiments. Previously, their filters rely on explicit computation
of convex hulls, which is feasible only in very low dimension [3].
Technical details are deferred to Appendix C.

Existing filters iteratively compare a pair of random tuples, all
of which are kept in𝐴 = {𝑎𝑖 }, where 𝑎𝑖 = (y, z) such that util(y) <
util(z), and use them to prune potential tuples.

Filter by constrained utility space. Given a tuple x, we try to find
a vector u that, for all (y, z) ∈ 𝐴,

u𝑇 (z − y) ≥ 1, u𝑇 (x − z) ≥ 1, u𝑇 ((1 − 𝜖)x − z) ≥ 1. (6)
We claim that a given tuple x can be safely pruned if there is no

vector u satisfying LP (Eq. (6)).

Proposition 4. Consider a tuple x with util(x) > util(z) and
util(x) − util(z) > 𝜖util(x) for every (y, z) ∈ 𝐴. Then there is a
solution to LP (Eq. (6)).

Filter by conical hull of pairs. Given a tuple x, we propose to
solve the following quadratic program (QP),

min
𝜈,𝛽

x − ∑︁
𝑎𝑖=(y,z) ∈𝐴

(𝜈𝑖1 y + 𝜈𝑖2 z) −
∑︁

𝑎𝑖=(y,z) ∈𝐴
𝛽𝑖 (y − z)

 (7)

such that
∑︁

𝑎𝑖=(y,z) ∈𝐴
𝜈𝑖1 + 𝜈𝑖2 = 1 and 𝜈𝑖1, 𝜈𝑖2, 𝛽𝑖 ≥ 0 for all 𝑖 .

If the optimal value of the QP is at most 𝜖 , we prune x.

Proposition 5. Let u𝑇 x∗ = 𝑐 . A tuple x ∈ 𝐷 can be pruned if the
objective value of the quadratic program (Eq. (7)) is at most 𝜖/𝑐 .

If we set 𝜖 = 0, then we can use LP solver (similar to Eq. (1))
instead of QP solver. This results in a weaker but computationally
more efficient filter.

7 EXPERIMENTAL EVALUATION
In this section, we evaluate key aspects of our method and the pro-
posed filters. Less important experiments and additional details are
deferred to Appendix D. In particular, we investigate the following
questions. (𝑖) How accurate is the theoretical bound in Lemma 8?
More specifically, we want to quantify the sample size required by
Algorithm 2 to prune at least half of the tuples, and understand its
dependance on the data size 𝑛, dimension 𝑑 , and regret parameter
𝜖 . (𝑖𝑖) Effect of parameters of Algorithm 1. (Appendix D.1) (𝑖𝑖𝑖) How
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Table 2: Real-life datasets statistics

Dataset 𝑛 = |𝐷 | 𝑑

player [31] 17 386 20
youtube [34] 29 406 50
game [6] 60 496 100
house [22] 303 032 78
car [2] 1 002 350 21

scalable are the proposed filters? (𝑖𝑣) How do the proposed filters
perform over real-life datasets? (𝑣) How do ties in comparisons
affect the performance of the proposed filters? Our implementation
is available at a Github repository.1

Next, let us introduce the adopted datasets and baselines.
Datasets. A summary of the real-life datasets we use for our evalu-
ation can be found in Table 2. To have more flexible control over
the data parameters, we additionally generate the following two
types of synthesized data. sphere: Points sampled from the unit
𝑑-sphere S𝑑−1 uniformly at random. clusters: Normally distributed
clustered data, where each cluster is centered at a random point on
unit 𝑑-sphere S𝑑−1. To simulate an oracle, we generate a random
utility vector u on the unit 𝑑-sphere for every run. More details
about datasets can be found in Appendix D.
Baselines. A summary of all algorithms is given in Table 3. We
mainly compare with (enhanced) pruning techniques (Pair-QP,
Pair-LP and HS-LP) by Xie et al. [33], halfspace-based pruning
(HS), and a random baseline (Rand). Discussion of other baselines
is deferred to Appendix D. We instantiate every filter (except for
the HS and Rand) in the framework provided in Algorithm 1, that
is, we iteratively create a new filter that can prune about half of the
remaining tuples. This is a reasonable strategy, and will be justified
in detail in Section 7.2. For pair-based filters, a new pair is made
after two consecutive calls of the add function. The pool size 𝑝 and
threshold 𝜃 in Algorithm 1 are set to be 100 and 0.5, respectively.
Since the proposed algorithm List-QP only guarantees a regret of
𝜖/util(𝑥∗), where 𝑥∗ is the best tuple in the dataset, we pre-compute
the value of util(𝑥∗) ∈ [0, 1], and adjust the regret parameter of
List-QP to be 𝜖util(𝑥∗).

7.1 Sample size in practice
Lemma 8 proves a theoretical bound on the size of a random sample
required by Algorithm 2 to prune at least half of a given set 𝐷
of tuples in expectation. This bound is 2𝑡 where 𝑡 = 16𝑑 ln(2𝑑/𝜖).
Importantly, the bound does not depend on the data size |𝐷 |, which
we verify later in Section 7.2.

In Figs. 5a and 5b (in Appendix), we compute and present the
exact required size for synthesized data, and illustrate how the size
changes with respect to the dimension 𝑑 and regret parameter 𝜖 . As
can be seen, the bound provided in Lemma 8 captures a reasonably
accurate dependence on 𝑑 and 𝜖 , up to a constant factor.

7.2 Scalability
The running time required for each filter to prune a given tuple
depends heavily on its memory size, i.e., the number of tuples it
1https://github.com/Guangyi-Zhang/interactive-favourite-tuples

Table 3: Summary of our methods and the baselines.

Name Brief description
List-[QP|LP] Our method: prune a tuple if it is close to a coni-

cal hull formed by a sorted list of random tuples
(Algorithm 2), equipped with a QP or LP solver.

Pair-[QP|LP] Prune a tuple if it is close to a conical hull formed
by a set of compared random pairs, equipped with
QP (Eq. (7)) or LP solver.

HS-LP Prune a tuple if LP (Eq. (6)) is infeasible, i.e., the
tuple is dominated by a set of compared random
pairs over the entire constrained utility space.

HS Prune a tuple x if x𝑇 (z−y) < 0 for any compared
pair z, y such that util(y) < util(z), that is, tuple
x falls outside the constrained utility space for u.

Rand Return the best tuple among a subset of 50 ran-
dom tuples.
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Figure 2: Scalability of filters for synthetic data

keeps. In Fig. 2a, we compute and show the required memory size
for a filter to prune half of a given set 𝐷 of tuples, and how the
size changes with respect to the data size 𝑛 = |𝐷 |. Impressively,
most competing filters that adopt a randomized approach only
require constant memory size, regardless of the data size𝑛. This also
confirms the effectiveness of randomized algorithms in pruning.

Based on the above observation, it is usually not feasible to main-
tain a single filter to process a large dataset 𝐷 . If a filter requires 𝑠
tuples in memory to prune half of 𝐷 , then at least 𝑠 log( |𝐷 |) tuples
are expected to process the whole dataset 𝐷 . However, the running
time for both LP and QP solvers is superlinear in the memory size
of a filter [10], which means that running a filter with 𝑠 log( |𝐷 |)
tuples is considerably slower than running log( |𝐷 |) filters, each
with 𝑠 tuples. The latter approach enables also parallel computing
for faster processing.

https://github.com/Guangyi-Zhang/interactive-favourite-tuples
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Figure 3: Solving the IRM problem on the real-life datasets
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Figure 4: The effect of ties and parameter 𝜏

Therefore, we instantiate each competing filter (except for HS
and Rand) in the framework provided in Algorithm 1, and measure
the running time it takes to solve the IRM problem. In the rest of
this section, we investigate the effect of the data dimension 𝑑 and
regret parameter 𝜖 on the running time.

Effect of data dimension 𝑑 . In Fig. 2b, we fix a regret parameter
𝜖 = 0.01, and examine how the running time of a filter varies with
respect to the data dimension 𝑑 on synthesized data.

The first observation from Fig. 2b is that LP-based filters are
more efficient than their QP counterparts. Particularly, Pair-QP is
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too slow to be used, and we have to settle for its LP counterpart
Pair-LP in subsequent experiments.

Let us limit the comparison to those LP-based filters. Pair-LP
and HS-LP are more computationally expensive than List-LP. For
Pair-LP, the reason is obvious: as discussed at the end of Appen-
dix C.2, Pair-LP makes relatively more comparisons and every com-
pared pair of tuples adds two more parameters to the LP. For HS-LP,
the number of parameters in its LP depends linearly on both the
dimension 𝑑 and number of compared pairs, while List-LP only
depends on the latter. Thus, HS-LP is less scalable by design.

Effect of regret parameter 𝜖. The effect of the regret parameter 𝜖
can be found in Fig. 3 for all real-life datasets. Generally, a larger
value of 𝜖 decreases the running time, as each filter can be benefited
by more aggressive pruning.

The running time of List-QP deteriorates dramatically for a small
value of 𝜖 , and the number of comparisons needed also rises con-
siderably. The reason is that, most numerical methods for solving
a mathematical program have a user-defined precision parameter.
Small precision gives a more accurate solution, and at the same
time causes a longer running time. When 𝜖 gets close to the default
precision, or to the actual precision after the maximum number of
iterations is exceeded, List-QP fails to prune tuples. Thus, List-QP
is advised to be used for a relatively large regret value 𝜖 .

In regard to the memory size, as we can see in Fig. 3, List-QP and
List-LP consistently use a much smaller memory size than Pair-LP
and HS-LP. This also demonstrates the advantage of using a sorted
list over a set of compared pairs.

7.3 The case of oracles with no ties
The performance of competing filters can be found in Fig. 3 for all
real-life datasets. The average and standard error of three random
runs are reported. We instantiate each competing filter (except for
HS and Rand) in the framework provided in Algorithm 1 to solve
the IRM problem. Meanwhile, we vary the regret parameter 𝜖 to
analyze its effect. We also experimented with a smaller 𝜖 value such
as 0.005, the observations are similar except that the List-QP filter
is significantly slower for reasons we mentioned in Section 7.2.

Except HS and Rand, every reasonable filter succeeds in return-
ing a low-regret tuple. We limit our discussion to only these reason-
able filters. In terms of the number of comparisons needed, List-QP
outperforms the rest on most datasets provided that the regret value
𝜖 is not too small. We rate List-LP as the runner-up, and it becomes
the top one when the regret value 𝜖 is small. Besides, List-LP is the
fastest to run. The number of comparisons needed by HS-LP and
Pair-LP is similar, and they sometimes perform better than others,
for example, over the youtube dataset.

Let us make a remark about the regret value 𝜖 . Being able to
exploit a large value of 𝜖 in pruning is the key to improving perfor-
mance. Notice that both Pair-LP and List-LP cannot benefit from a
large regret value 𝜖 by design. Though HS-LP is designed with 𝜖
in mind, it is more conservative as its pruning power depends on
𝜖u𝑇 x instead of 𝜖u𝑇 x∗, where x is the tuple to prune.

In summary, we can conclude that the List-QP filter is recom-
mended for a not too small regret parameter 𝜖 (i.e., 𝜖 ≥ 0.1), and
the List-LP filter is recommended otherwise. In practice, since both
List-QP and List-LP follow an almost identical procedure, one could

always start with List-QP, and switch to List-LP if the pruning takes
too long time.

7.4 Effect of ties
According to Assumption 2, the oracle returns a tie if the difference
in utility between two given tuples is within a parameter 𝜏 . For
filters like Pair-LP and HS-LP, the most natural strategy to handle a
tie for a pair of tuples is to simply discard one of them. It is expected
that ties worsen the performance of a filter, as they fail to provide
additional information required by the method for pruning.

In Fig. 4, we vary the value of parameter 𝜏 to see how it affects
the performance of the proposed filters. It is not surprising that as
the value of 𝜏 increases, the number of ties encountered and the
number of comparisons made by all algorithms both increase.

Notably, the running time of List-QP and List-LP grows signif-
icantly as 𝜏 increases. This is because one parameter is needed
in their solvers for every pair of tuples between two consecutive
groups 𝐺𝑖 ,𝐺 𝑗 , and the total number of parameters can increase
significantly if the size of both groups increases. This behavior
also reflects the fact that a partially sorted list is less effective for
pruning. However, how to handle a large 𝜏 remains a major open
problem. Hence, we conclude that the proposed algorithms work
well provided that the parameter 𝜏 is not too large.

Summary. After the systematical evaluation, we conclude with
the following results. (𝑖) LP-based filters are more efficient than
their QP counterparts, but less effective in pruning. (𝑖𝑖) List-LP is
the most scalable filter. The runner-up is List-QP, provided that the
data dimension is not too large (𝑑 < 128) and the regret parameter 𝜖
is not too small (𝜖 ≥ 0.1). (𝑖𝑖𝑖) To minimize the number of requested
comparisons, List-QP is recommended for a not too small 𝜖 (𝜖 ≥ 0.1).
When 𝜖 is small, we recommend List-LP. (𝑖𝑣) Good performance
can be retained if the oracle is sufficiently discerning (𝜏 ≤ 0.01).
Otherwise, a better way to handle ties will be needed.

8 CONCLUSION
We devise a single-pass streaming algorithm for finding a high-
utility tuple by making adaptive pairwise comparisons. We also
show how to maintain the guarantee when ties are allowed in a
comparison between two tuples with nearly equal utility. Our work
suggests several future directions to be explored. Those include
finding a high-utility tuple in the presence of noise, incorporating
more general functions for modeling tuple utility, devising methods
with provable quarantees for arbitrary-order data streams, and
devising more efficient algorithms to handle ties.
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A PROOFS FOR SECTION 4
Kane et al. [17] proved a powerful local lemma, which states that
among a sufficiently large set of vectors from the unit 𝑑-ball B𝑑 ,
there must exist some vector that can be approximately represented
as a special non-negative linear combination of others.

Lemma 6 ([17], Claim 15). Given x1, . . . , x𝑡 ∈ B𝑑 , for any 𝜖 > 0, if
𝑡 ≥ 16𝑑 ln(2𝑑/𝜖), then there exists 𝑎 ∈ [𝑡] such that

x𝑎 = x1 +
𝑎−2∑︁
𝑗=1

𝛼 𝑗 (x𝑗+1 − x𝑗 ) + e, (8)

where ∥e∥2 ≤ 𝜖 and 𝛼 𝑗 ∈ {0, 1, 2}.
Let 𝑆 = {x1, . . . , x𝑡 }. Lemma 6 can be easily extended to hold

for the intrinsic dimension of 𝑆 , by first applying Lemma 6 to the
minimal representation y1, . . . , y𝑡 ∈ B𝑑 ′ of 𝑆 .

In Lemma 6, we have 𝑆 − x𝑎 ⇒ x𝑎 , where 𝑆 − x is a shorthand
for 𝑆 \ {x}. Note that this is exactly the condition we use in Step 3
in Algorithm 2 for pruning. Denote by filter(𝑆) the set of all such
pruned tuples, i.e.,

filter(𝑆) = {x ∈ R𝑑 : 𝑆 ⇒ x}. (9)
Given any set 𝑆 of size 4𝑡 , at least 3/4 fraction of 𝑆 can be pruned

by other tuples in 𝑆 , by repeatedly applying Lemma 6.
Lemma7. Given a sorted set 𝑆 of size at least 4𝑡 , where 𝑡 = 16𝑑 ln(2𝑑/𝜖),
we have

|{x ∈ 𝑆 : 𝑆 − x⇒ x}| ≥ 3
4 |𝑆 |.

Proof. since |𝑆 | ≥ 4𝑡 , we can apply Lemma 6 repeatedly to 𝑆
until only 𝑡 entries remain. □

As a consequence of Lemma 7, the same fraction of current tuples
𝑋 can be pruned by a random sample set 𝑆 of a sufficient size in
expectation.
Lemma 8. Given a set of tuples 𝑋 , and a random sample set 𝑆 ⊆ 𝑋
of size 4𝑡 where 𝑡 = ⌈16𝑑 ln(2𝑑/𝜖)⌉, we have

E [|filter(𝑆) ∩ 𝑋 |] ≥ 3
4 |𝑋 |,

where the expectation is taken over 𝑆 .

Proof. The proof is by a symmetrization argument introduced
by Kane et al. [18]. Let y be the last tuple added into 𝑆 . Write
𝑇 = 𝑆 − y. Given 𝑇 , the distribution of y is a uniform distribution
from 𝑋 \𝑇 . Let x be a random sample from 𝑋 . Since 𝑇 ⊆ filter(𝑇 ),
we have

Pr [𝑇 ⇒ x | 𝑇 ] ≥ Pr [𝑇 ⇒ y | 𝑇 ] .
Then,

E𝑆

[ |filter(𝑆) ∩ 𝑋 |
|𝑋 |

]
= E𝑆 [Pr [𝑆 ⇒ x | 𝑆]]
= E𝑆 [Pr [𝑇 + y⇒ x | 𝑆]]
≥ E𝑆 [Pr [𝑇 ⇒ x | 𝑆]]
= E𝑇 [Pr [𝑇 ⇒ x | 𝑇 ]]
≥ E𝑇 [Pr [𝑇 ⇒ y | 𝑇 ]]
= E𝑆 [1 [𝑆 − y⇒ y | 𝑆]] .

In order to bound the right-hand side, notice that when con-
ditioned on 𝑆 , every permutation of 𝑆 is equally probable over a

random-order stream, which implies that every tuple in 𝑆 is equally
probable to be the last tuple y. Hence, we have Pr [𝑆 − y⇒ y | 𝑆] ≥
3/4 by Lemma 7, proving immediately the claim. □

Another important issue to handle is to ensure that our prun-
ing strategy will not discard all feasible tuples. This is prevented
by keeping track of the best tuple in any sample set so far, and
guaranteed by Theorem 2.

Proof of Theorem 2. Denote by 𝐷 all tuples that have arrived
so far. Suppose x∗ is the best tuple among 𝐷 . Tuple x∗ is either
collected into our sample sets, or pruned by some sample set 𝑆 .
In the former case, our statement is trivially true. In the latter
case, suppose 𝑆 = {x1, . . .}, where x1 is the best tuple in 𝑆 . If x1 is
feasible, then x̂ is feasible as well, as it is at least as good as x1. If x1
is infeasible, i.e., util(x∗) − util(x1) > 𝜖 , then x∗ cannot be pruned
by 𝑆 by design, a contradiction. This completes the proof. □

Before proving Theorem 1, we briefly summarize the hypergeo-
metric tail inequality below [28].

Lemma 9 (Hypergeometric tail inequality [28]). Draw 𝑛 random
balls without replacement from a universe of 𝑁 red and blue balls,
and let 𝑖 be a random variable of the number of red balls that are
drawn. Then, for any 𝑡 > 0, we have

Pr[𝑖 ≥ E[𝑖] + 𝑡𝑛] ≤ 𝑒−2𝑡
2𝑛,

and
Pr[𝑖 ≤ E[𝑖] − 𝑡𝑛] ≤ 𝑒−2𝑡

2𝑛 .

Proof of Theorem 1. The feasibility of the returned tuple x̂ is
due to Theorem 2. In the rest of the proof, we upper bound the
size of every sample and the number of samples we keep in the
sequence S.

For any sample 𝑆 with at least 4𝑡 samples and any subset 𝑋 ⊆ 𝐷 ,
let 𝑋 ′ = filter(𝑆) ∩ 𝑋 and by Lemma 8 we have E[|𝑋 ′ |] ≥ 3

4 |𝑋 |. In
particular, let 𝑋 = 𝑃 and we have E[|𝑃 ′ |] ≥ 3

4 |𝑃 | and |𝑃 | = 𝑝 . Then,

Pr
[
|𝑃 ′ | < 5

8 |𝑃 |
]
= Pr

[
|𝑃 ′ | < 3

4 |𝑃 | −
1
8𝑝

]
≤ Pr

[
|𝑃 ′ | < E[|𝑃 ′ | − 1

8𝑝]
]
≤ 𝑒−2𝑝/8

2
,

where the last step invokes Lemma 9. Since there can be at most 𝑛
samples, the probability that any sample fails to pass the pool test
is upper bounded by 𝑛𝑒−2𝑝/82 .

We continue to upper bound the number of sample sets. At most
⌈log(𝑛)⌉ sample sets suffice if every sample can prune at least half
of the remaining tuples. Fix an arbitrary sample 𝑆 , and let 𝑋 to be
the set of remaining tuples. The pool 𝑃 is a random sample from 𝑋
of size 𝑝 . Thus, E[|𝑃 ′ |]/𝑝 = |𝑋 ′ |/|𝑋 |. Consequently, if |𝑋 ′ | < |𝑋 |/2,
then E[|𝑃 ′ |] < 𝑝/2 and

Pr
[
|𝑃 ′ | ≥ 5

8 |𝑃 |
]
≤ Pr

[
|𝑃 ′ | ≥ E[|𝑃 ′ |] + 1

8𝑝
]
≤ 𝑒−2𝑝/8

2
.

Similar to the above, the probability that any bad sample passes the
test is upper bounded by 𝑛𝑒−2𝑝/82 .

Combining the two cases above, the total failure probability
is 2𝑛𝑒−2𝑝/82 ≤ 1/𝑛 Hence, with probability at least 1 − 1/𝑛, it is
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sufficient to use ⌈log(𝑛)⌉ sample sets, each with a size 4𝑡 . Keeping
one sample set requires 4𝑡 ⌈log(4𝑡)⌉ comparisons. Finally, finding
the best tuple among all filters and the pool requires additional
𝑝 + ⌈log(𝑛)⌉ comparisons. □

B PROOFS FOR SECTION 5
The proof is similar to that of Theorem 1, except that we need a
new proof for the key Lemma 8, since in the presence of ties, we
may not be able to totally sort a sample 𝑆 . Instead, we show that
a partially sorted set 𝑆 of a sufficient size can also be effective in
pruning.

From now on, we treat the sample 𝑆 as a sequence instead of a
set, as a different arrival order of 𝑆 may result in a different filter
by Algorithm 3.
Lemma 10. Let 𝑆 ⊆ 𝑋 be a sequence of length 16𝑡𝜉 . Let G be the
groups constructed by Algorithm 3. Under Assumption 2, we have

|{x ∈ 𝑆 : G − x sim⇒ x}| ≥ 3
4 |𝑆 |,

where 𝑡 = 16𝑑 ln(2𝑑/𝜖), 𝜉 is the largest size of a pairwise u-similar
subset of 𝑋 , and G − x are the groups with x removed from its group.

Proof. Note that by the definition of 𝜉 , for any particular tuple
x ∈ 𝑆 , there are at most 2(𝜉 − 1) tuples that are u-similar with tuple
x. Thus, G must contain at least 8𝑡 groups, and we split all groups
in G into two parts, those with an odd index and those with an
even index.

In each part, we can extract a totally sorted list 𝐿 of size at least 𝑡 ,
by picking exactly one tuple from each group. We remove one tuple
w ∈ 𝐿 from 𝑆 such that 𝐿 −w⇒ w, whose existence is guaranteed
by Lemma 6. Eq. (4) guarantees that G − x sim⇒ x.

We repeatedly do so until less than 𝑡 groups remain in each part,
which means that the number of remaining tuples is at most 2𝑡𝜉
in each part. As a result, we are able to remove at least 16𝑡𝜉 − 4𝑡𝜉
tuples, concluding the claim. □

Although the above lemma appears similar to Lemma 7, a crucial
difference is that the set of prunable tuples in 𝑆 now depends on
the arrival order of 𝑆 , which causes non-trivial technical challenges
in the analysis. A critical observation that enables our analysis is
the following result.
Lemma 11. Fix a sequence 𝑆 of size 16𝑡𝜉 , there exist at least 1

4 |𝑆 |
tuples z in 𝑆 that satisfy

𝑆 − z sim⇒ z.

Proof. Let G be the groups constructed by Algorithm 3. Write

𝑆 ′ = {x ∈ 𝑆 : G − x sim⇒ x}.
By Lemma 10, we know that |𝑆 ′ | ≥ 3

4 |𝑆 |. For an arbitrary tuple
z ∈ 𝑆 ′, suppose z is assigned to a group 𝐺 ∈ G. We call a tuple z
good if |𝐺 | = 1 or z is not a representative in 𝑅 in Algorithm 3. Let
G′ be the groups constructed by Algorithm 3 using 𝑆 − z. If z is
good, then G′ = G − z. Therefore, for a good tuple z we always
have

𝑆 − z sim⇒ z.
By definition, it is easy to see that there are at most |𝑆 |/2 tuples in
𝑆 that are not good, proving the lemma. □

Denote by filter-sim(𝑆) the set of tuples that can be pruned by
𝑆 , that is,

filter-sim(𝑆) = {x ∈ R𝑑 : 𝑆
sim⇒ x}. (10)

We now prove a similar lemma to Lemma 8 by a generalized sym-
metrization argument over sequences.

Lemma 12. Given a set of tuples 𝑋 , and a random sequence 𝑆 of at
least 16𝑡𝜉 tuples from 𝑋 , we have

E [|filter-sim(𝑆) ∩ 𝑋 |] ≥ 1
4 |𝑋 |,

where 𝑡 = 16𝑑 ln(2𝑑/𝜖), and 𝜉 is the largest size of a pairwise u-
similar subset of 𝑋 . Moreover, the expectation is taken over 𝑆 .

Proof. Let y be the last tuple added into 𝑆 . Write 𝑇 = 𝑆 − y.
Given 𝑇 , the distribution of y is a uniform distribution from 𝑋 \𝑇 .
Let x be a random sample from 𝑋 . Since𝑇 ⊆ filter-sim(𝑇 ), we have

Pr[𝑇 sim⇒ x | 𝑇 ] ≥ Pr[𝑇 sim⇒ y | 𝑇 ] .
Then,

E𝑆

[ |filter-sim(𝑆) ∩ 𝑋 |
|𝑋 |

]
= E𝑆 [Pr[𝑆

sim⇒ x | 𝑆]]

= E𝑆 [Pr[𝑇 + y
sim⇒ x | 𝑆]]

≥ E𝑆 [Pr[𝑇
sim⇒ x | 𝑆]]

= E𝑇 [Pr[𝑇
sim⇒ x | 𝑇 ]]

≥ E𝑇 [Pr[𝑇
sim⇒ y | 𝑇 ]]

= E𝑆 [1[𝑆 − y
sim⇒ y | 𝑆]] .

Fix 𝑆 , let z ∈ 𝑆 be a uniformly random tuple in 𝑆 , and we have

E𝑆 [1[𝑆 − y
sim⇒ y | 𝑆]] = E𝑆 [Pr[𝑆 − z

sim⇒ z | 𝑆]]
≥ 1/4,

where the last step is by Lemma 11, and the first step is due to double
counting, as every sequence 𝑆 appears |𝑆 | times in the right-hand
side, completing the proof. □

Proof. The proof is similar to Theorem 1 on a high level. We
only elaborate on their differences.

We first prove the guarantee on the regret. If the optimal tuple
x∗ is in the pool once the algorithm is done, then the regret is at
most 𝜏 . If x∗ is not in the pool, then the proof of Theorem 2 shows
that there is x in one of the sample, say 𝑆 , that yields a regret of 𝜖/𝑐 .
The top representative of that sample yields 𝜖/𝑐 + 𝜏 regret. Finally,
the final top tuple yields 𝜖/𝑐 + 2𝜏 regret.

Next, we upper bound the size of every sample and the number
of samples similarly to the proof of Theorem 1. We require every
sample to prune at least 1/8 fraction of the remaining tuples instead
of 1/2, which leads to a demand for

⌈
log8/7 (𝑛)

⌉
samples. The total

failure probability is bounded by 2𝑛𝑒−2𝑝/162 ≤ 1/𝑛. Consequently,
with probability at least 1 − 1/𝑛, we will use at most

⌈
log8/7 (𝑛)

⌉
sample sets, each with a size 16𝑡𝜉 , at most.
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Building one filter requires at most O(16𝑡𝜉 log(16𝑡𝜉)) compar-
isons, because sorting an new tuple x within 𝑅 by binary search
costs at most O(log(16𝑡𝜉)) comparisons. Finally, finding the best tu-
ple among all filters and the pool requires additional 𝑝 +

⌈
log8/7 (𝑛)

⌉
comparisons. □

C IMPROVING BASELINE FILTERS
In this section, we improve existing filters by Xie et al. [33], by
using linear and quadratic programs. Previously, their filters rely on
explicit computation of convex hulls, which is feasible only in very
low dimension. For example, the convex hull size, and consequently
the running time of these existing techniques, have an exponential
dependence on 𝑑 [3].

C.1 Improving constrained utility space filter
One of the most natural strategies is to iteratively compare a pair
of random tuples. The feasible space for the utility vector u is
constrained by the list of pairs 𝐴 = {𝑎𝑖 } that have been compared,
where 𝑎𝑖 = (y, z) such that util(y) < util(z). Note that every pair
of tuples y, z ∈ 𝐷 forms a halfspace in R𝑑 , i.e., 𝐻 = {u ∈ R𝑑 :
u𝑇 (y − z) < 0}. Specifically, the unknown u ∈ S𝑑−1 is contained
in the intersection𝑈 of a set of halfspaces, one by each pair.

Xie et al. [33, Lemma 5.3] propose to prune a tuple x if for every
possible u ∈ 𝑈 there exists a tuple w in some pair of 𝐴 such that
util(w) ≥ util(x). They first compute all extreme points of𝑈 , and
then check if the condition holds for every extreme point. How-
ever, this approach is highly inefficient, as potentially there is an
exponential number of extreme points.

Instead, we propose to test the pruning condition by asking to
find a vector u that satisfies

u𝑇 (z − y) ≥ 1, u𝑇 (x − z) ≥ 1, u𝑇 ((1 − 𝜖)x − z) ≥ 1. (6)
If there is no such vector u we prune x. This test can be done

with a linear program (LP). Note that the test is stronger than that
by Xie et al. [33] as it has been extended to handle 𝜖-regret.

We claim that a given tuple x can be safely pruned if there is no
vector u satisfying LP (Eq. (6)).

Proposition 4. Consider a tuple x with util(x) > util(z) and
util(x) − util(z) > 𝜖util(x) for every (y, z) ∈ 𝐴. Then there is a
solution to LP (Eq. (6)).

Proof. Let u be the utility vector. The assumptions imply
u𝑇 x − u𝑇 z > 0 and u𝑇 ((1 − 𝜖)x − z) > 0. (11)

Next, note that, by definition, for every (y, z) ∈ 𝐴,
u𝑇 (z − y) > 0. (12)

The inequalities in Eqs. (11)–(12) are all proper. Consequently,
we can scale u so that the left-hand sides in Eqs. (11)–(12) are at
least 1, that is, there exists a solution to LP (Eq. (6)). □

Notice that the second set of constraints in LP (Eq. (6)) (i.e.,
u𝑇 (x − z) ≥ 1) is redundant provided util(x) ≥ 0. Actually, even if
util(x) < 0, the test only lets in x that is slightly worse than the best
tuple in 𝐴, which is unlikely since util(x) < 0. Thus, in practice we
recommend to omit the second set of constraints to speed up the
test.

A filter for maintaining the constrained utility space is concep-
tually different from the filter proposed in Section 4. A small utility
space of u is the key for such a filter to be effective, while a filter
in Section 4 maintains no explicit knowledge about u and mainly
relies on the geometry of the tuples.

C.2 Improving conical hull of pairs filter
Another pruning strategy proposed by Xie et al. [33, Lemma 5.6]
is the following. Consider again a list of compared pairs 𝐴 = {𝑎𝑖 },
where 𝑎𝑖 = (y, z) such that util(y) < util(z), and consider a cone
formed by all pairs in 𝐴. A tuple x can now be pruned if there is
another tuple w kept by the algorithm, such that

x = w +
∑︁

𝑎𝑖=(y,z) ∈𝐴
𝛽𝑖 (y − z) such that 𝛽𝑖 ≥ 0 for all 𝑖 .

Instead of actually constructing all facets of the conical hull, as
done by Xie et al. [33], we propose to solve the following quadratic
program (QP),

min
𝜈,𝛽

x − ∑︁
𝑎𝑖=(y,z) ∈𝐴

(𝜈𝑖1 y + 𝜈𝑖2 z) −
∑︁

𝑎𝑖=(y,z) ∈𝐴
𝛽𝑖 (y − z)


such that

∑︁
𝑎𝑖=(y,z) ∈𝐴

𝜈𝑖1 + 𝜈𝑖2 = 1 and 𝜈𝑖1, 𝜈𝑖2, 𝛽𝑖 ≥ 0 for all 𝑖 .

(7)
If the optimal value of the QP is at most 𝜖 , we prune x.

Proposition 5. Let u𝑇 x∗ = 𝑐 . A tuple x ∈ 𝐷 can be pruned if the
objective value of the quadratic program (Eq. (7)) is at most 𝜖/𝑐 .

Proof. We only discuss the case 𝜖 = 0. When 𝜖 > 0, for any
pruned tuple, there exists a tuple in some pair of 𝐴 that is at most
a distance of 𝜖 away from it, and thus 𝐴 maintains at least one
𝜖/𝑐-regret tuple.

The first sum in QP (Eq. (7)) can be seen as an aggregated tuple
by convex combination, whose utility is no better than the top tuple
in 𝐴. The second term only further decreases the utility of the first
term. Thus, if a tuple x can be written as a sum of the first and
second terms, its utility is no better than the top tuple in 𝐴, and
can be pruned. □

Similar to Eq. (1), a weaker but computationally more efficient
filter can be used, by replacing the QP with an LP solver. That is,
we prune tuple x if there is a solution to

x =
∑︁

𝑎𝑖=(y,z) ∈𝐴
𝜈𝑖 z +

∑︁
𝑎𝑖=(y,z) ∈𝐴

𝛽𝑖 (y − z) (13)

such that
∑︁

𝑎𝑖=(y,z) ∈𝐴
𝜈𝑖 = 1, and 𝜈𝑖1, 𝜈𝑖2, 𝛽𝑖 ≥ 0 for all 𝑖 .

As a final remark about the above QP, we compare its pruning
power with that of the proposed filter (Eq. (2)) in Section 4. Obvi-
ously, its pruning power increases as the number of compared pairs
in 𝐴 increases. For a fixed integer 𝑠 , a number of 𝑠 comparisons
result in 𝑠 pairs for the above QP, while in Section 4, 𝑠 comparisons
can produce a sorted list of 𝑠/log(𝑠) tuples and

(𝑠/log(𝑠 )
2

)
pairs.

Hence, the above QP is less “comparison-efficient” than the one in
Section 4. Also, for a fixed number of compared pairs, the number
of parameters is larger in QP (Eq. (7)) than in the proposed filter,
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Figure 5: Sample size required to prune half of tuples, as a
function of the data dimension (a), and as a function of the
regret parameter (b)
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Figure 6: Effect of parameters on algorithm List-QP

which means that QP is more inefficient to solve. These drawbacks
are verified in our empirical study in the next section.

D ADDITIONAL EXPERIMENTS
Datasets. A summary of the real-life datasets we use for our eval-
uation can be found in Table 2. The datasets contain a number of
tuples up to 1M and a dimension up to 100. Previous studies are
mostly restricted to a smaller data size and a dimension size less
than 10, and a skyline operator is used to further reduce the data
size in advance [27, 32, 33]. Note that running a skyline operator
itself is already a time-consuming operation, especially for high-
dimension data [5], and becomes even more difficult to apply with

limited memory size in the streaming setting. Besides, a fundamen-
tal assumption made by a skyline operator, namely, pre-defined
preference of all attributes, does not hold in our setting. According
to this assumption, it is required to know beforehand whether an
attribute is better with a larger or smaller value. This corresponds
to knowing beforehand whether utility entry u𝑖 is positive or nega-
tive for the i-th attribute. As we mentioned in Section 2, we do not
make such an assumption about u, and allow an arbitrary direction.
This is reasonable, as preference towards some attributes may be
diverse among different people. One example is the floor level in
the housing market, where some may prefer a lower level, while
others prefer higher. Hence, we do not pre-process the data with a
skyline operator.

Details on the data generation process and the actual synthesized
data can be found in our public Github repository.
Baselines. We do not consider methods that synthesize fake tu-
ples in pairwise comparisons, such as Nanongkai et al. [24]. Over
a random-order stream, the algorithm by Jamieson and Nowak
[16] is the same as the baseline HS-LP when adapted to find the
top tuple instead of a full ranking. The UH-Simplex method [33]
that simulates the simplex method by pairwise comparisons is not
included, as it is mainly of theoretical interest, designed for offline
computation, and has been shown to have inferior empirical perfor-
mance compared to other baselines. We do not consider baselines
that iteratively compare a greedy pair (among all

(𝑛
2
)
pairs) with

respect to some measure of interest, such as Qian et al. [27], Wang
et al. [32], because they are designed for offline computation and it
is computationally prohibited to decide even the first greedy pair
for the adopted datasets.
Misc.We adopt the OSQP solver [29] and the HIGHS LP solver [15].
The maximum number of iterations for the solvers is set to 4000,
which is the default value in the OSQP solver. All experiments
were carried out on a server equipped with 24 processors of AMD
Opteron(tm) Processor 6172 (2.1 GHz), 62GBRAM, running Linux 2.6.-
32-754.35.1.el6.x86_64. Themethods are implemented in Python 3.8.5.

D.1 Effect of parameters
Recall that in Algorithm 1, a pool 𝑃 of 𝑝 tuples is used to test the
performance of a new filter. A new filter will be ready when it
can prune at least a 𝜃 fraction of tuples in 𝑃 . In Fig. 6, we run
Algorithm 1 with a List-QP filter on a dataset of 10k tuples. We fix
one parameter (𝑝 = 100 or 𝜃 = 0.5) and vary the other.

Parameter 𝜃 roughly specifies the expected fraction of tuples a
filter should be able to prune. A larger 𝜃 implies a need for fewer
filters but a larger sample size for each filter. It is beneficial to use
a large 𝜃 which leads a smaller number of comparisons overall.
Nevertheless, as we will see shortly, such a large filter can be time-
consuming to run, especially when the dimension 𝑑 is large.

A larger value of 𝑝 improves the reliability of the testbed 𝑃 , which
helps reducing the number of comparisons. However, a larger 𝑝
also results in longer time to run filters over the testbed 𝑃 .
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