
Generative Flow Network for Listwise Recommendation
Shuchang Liu

Kuaishou Technology

Beijing, China

liushuchang@kuaishou.com

Qingpeng Cai

Kuaishou Technology

Beijing, China

caiqingpeng@kuaishou.com

Zhankui He

University of California, San Diego

California, USA

zhh004@eng.ucsd.edu

Bowen Sun

Peking University

Beijing, China

bwzdbml@gmail.com

Julian McAuley

University of California, San Diego

California, USA

jmcauley@cs.ucsd.edu

Dong Zheng

Kuaishou Technology

Beijing, China

zhengdong@kuaishou.com

Peng Jiang
†

Kuaishou Technology

Beijing, China

jiangpeng@kuaishou.com

Kun Gai

Unaffliated

Beijing, China

gai.kun@qq.com

ABSTRACT
Personalized recommender systems fulfill the daily demands of

customers and boost online businesses. The goal is to learn a policy

that can generate a list of items that matches the user’s demand

or interest. While most existing methods learn a pointwise scoring

model that predicts the ranking score of each individual item, re-

cent research shows that the listwise approach can further improve

the recommendation quality by modeling the intra-list correla-

tions of items that are exposed together. This has motivated the

recent list reranking and generative recommendation approaches

that optimize the overall utility of the entire list. However, it is

challenging to explore the combinatorial space of list actions and

existing methods that use cross-entropy loss may suffer from low

diversity issues. In this work, we aim to learn a policy that can

generate sufficiently diverse item lists for users while maintaining

high recommendation quality. The proposed solution, GFN4Rec, is

a generative method that takes the insight of the flow network to

ensure the alignment between list generation probability and its

reward. The key advantages of our solution are the log scale reward

matching loss that intrinsically improves the generation diversity

and the autoregressive item selection model that captures the item

mutual influences while capturing future reward of the list. As

validation of our method’s effectiveness and its superior diversity

during active exploration, we conduct experiments on simulated

online environments as well as an offline evaluation framework for

two real-world datasets.

† Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599364

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Sequential decision making; • Theory of
computation→ Online learning algorithms.

KEYWORDS
recommender systems, generative model, online learning

ACM Reference Format:
Shuchang Liu, Qingpeng Cai, Zhankui He, Bowen Sun, Julian McAuley,

Dong Zheng, Peng Jiang
†
, and Kun Gai. 2023. Generative Flow Network

for Listwise Recommendation. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’23), August
6–10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3580305.3599364

1 INTRODUCTION
Recommender systems present a list of items upon each user’s re-

quest to fulfill their personalized demand and interest. And the qual-

ity of the recommended list directly impacts the user’s experience

and his/her satisfaction with the overall system. Abundant litera-

ture has studied various supervised learning approaches [8, 11, 22]

that increase the model expressiveness to better capture the pat-

terns in the complex user-recommender interactions. While most

existing methods adopt a pointwise or pairwise learning-to-rank

paradigm that results in a model that separately scores each indi-

vidual item for ranking, evidence [5] has shown that optimizing

a listwise utility appears to be a superior option since it tends to

make better use of the item’s mutual influences in the list. As an

intuitive example, adding an item with high click probability may

not always produce better list-wise performance, since other items

in the list might be too similar causing competition. In contrast,

adding an item with low click probability may not always produce

worse list performance, since it may emphasize or complement

the neighboring items and make them more attractive. Based on

this motivation, the list-wise ranking approaches [2, 5] and slate

recommendation methods [12, 14] have been proposed.

The key challenge of solving the list-wise recommendation prob-

lem is how to effectively and efficiently search the combinatorially

ar
X

iv
:2

30
6.

02
23

9v
4

 [
cs

.I
R

]
 9

 J
un

 2
02

3

https://doi.org/10.1145/3580305.3599364
https://doi.org/10.1145/3580305.3599364

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Shuchang Liu et al.

large action space. Existing work could generally be categorized as

either learning a list-wise evaluator [9] or learning a list-wise gener-

ator [14]. The first approach uses the evaluator to approximate the

list-wise utility function to guide the generation of lists. However,

this paradigm heavily depends on the accuracy of the evaluator

which makes it less promising in recommendation tasks. The latter

approach belongs to the generative methods that can model the

intra-list patterns and the list utility together in the generative

process. Its stochastic generation process could greatly improve the

diversity but with a severe trade-off on the recommendation quality

(we show evidence in section 4.1). As another challenge of the list-

wise recommendation problem, an item list typically aggregates the

probability of exposing high-quality items during recommendation

and is less likely to explore lists with slightly lower utility. This is

especially true for standard training with cross-entropy loss, as we

will illustrate in section 3.4.

To solve the aforementioned challenges, we reformulate the goal

into providing sufficiently diverse and high-quality recommenda-

tion lists. Intuitively, sufficient recommendation diversity would

expand the policy’s knowledge of the action space and improves its

efficiency in finding better recommendation. On the other hand, we

would also want to make sure that the diverse recommendations

have a high quality so that the search of item list could becomemore

reasonable and improves the exploration effectiveness on the action

space. Thus, in this work, we propose a generative approach based

on a new flow-matching learning paradigm [4, 25, 26] which is capa-

ble of generating diverse and accurate recommendations. The key

insights behind the proposed framework consist of a flow-matching

loss that directly aligns the list generation probability with the list’s

utility in log scale, and an autoregressive item selection model that

iteratively appends an item into the output list. Specifically, the au-

toregressive item selection process is associated with a generation

tree, each possible list corresponds to a root-to-leaf trajectory, and

the generative model controls the probability flow on the tree graph.

By matching the list-wise probability flow with the utility, the re-

sulting methods tend to align the log-likelihood of an item with log

scale rewards (rather than aligning with the original reward as in

cross-entropy), which gives a higher chance of exposure for items

with slight lower rewards. One challenge during the optimization

of our method is that the large action space may induce extremely

skewed probability distribution towards zero, so bias factors are

introduced to control the scale of the probability aggregation and

stabilize the learning of the generative model.

We summarize our contributions as follows:

• We propose the GFN4Rec framework for the listwise rec-

ommendation problem and discuss its relationships with

existing generative and reinforcement learning approaches.

• We build simulated online environments based on two real-

world datasets and validate the superiority of GFN4Rec over

strong list-wise recommendation methods when training

and exploring online, and prove its ability to provide diverse

recommendations with high quality.

• We conduct offline training and evaluation on the datasets

as well to validate the consistent performance of GFN4Rec

and the feasibility of the online environment.

2 BACKGROUND
2.1 Problem Formulation
We define a set of userU and a set of item I. Each recommendation

request from a user 𝑢 ∈ U consists of a set of profile features (e.g.

user ID, gender), the most recent history of interactions, and a can-

didate set C. Note that a multi-stage recommendation process will

have C ⊂ I and C = I only holds for a one-stage recommendation

task. Specifically, we denote the recommendation in the first case

(C ⊂ I) as a re-ranking scenario where an initial ranker exists, and

denote that in the second case (C = I) as a ranking scenario.

Goal: Then, the goal is to learn a policy 𝜋 (C, 𝑢;𝜃) that selects
an item list O ∈ C𝐾 for the given user request and maximizes the

listwise reward R(𝑢,𝑂).
We assume a multi-behavior scenario where the user may pro-

vide different types of feedback (e.g. click, like, comment) for each

item exposure. Formally, we define the set of user behavior as B,
and 𝑦𝑢,𝑖,𝑏 as the user 𝑢’s response of item 𝑖 with respect to behavior

𝑏 ∈ B. Then, for a given list O = {𝑎1, . . . , 𝑎𝐾 }, each item 𝑎𝑖 obtains

a multi-behavior response 𝑌𝑢,𝑎𝑖 = [𝑦𝑢,𝑎𝑖 ,𝑏1 , . . . , 𝑦𝑢,𝑎𝑖 ,𝑏 |B|], and the

list-wise user response is:

𝑌𝑢,O =


𝑦𝑢,𝑎1,𝑏1 . . . 𝑦𝑢,𝑎𝐾 ,𝑏1

.

.

.
. . .

.

.

.

𝑦𝑢,𝑎1,𝑏 |B| . . . 𝑦𝑢,𝑎𝐾 ,𝑏 |B|

 (1)

For simplicity, we define the listwise reward as the average of item-

wise reward R(𝑢,𝑂) = 1

𝐾

∑
𝑖∈O R(𝑢, 𝑖), where the item reward is

calculated as the weighted sum of different positive user responses

R(𝑢, 𝑖) = ∑
𝑏 𝑤𝑏𝑦𝑢,𝑖,𝑏 . Note that this reward metric is linearly sep-

arable by items and linearly separable by behaviors, which can

accommodate efficient pointwise/pairwise training. However, it

does not reflect the mutual influences of items so independently

improving the item-wise reward𝑤𝑏𝑦𝑢,𝑖,𝑏 of a single item on a single

behavior does not necessarily improves the list-wise metric, since

the rewards of other items in the list may drop as consequences. We

remind readers that there are more advanced reward function de-

signs that aim to improve the overall reward [6, 37] and we consider

them as complementary to our solution.

Online vs Offline: Additionally, we assume the existence of the

online learning loop (data→ policy→ data) where the observed

new interactions between 𝜋 and the user environment continuously

expand the training data during the optimization of 𝜋 . This indicates

that the policy’s exploration ability also determines the knowledge

it will learn in the future, which in turn affects the recommendation

performance. Note that this is different from the standard rein-

forcement learning setting in recommendation [1, 12, 20, 36] and

conventional session-based recommendation [34] where the rec-

ommender needs to consecutively interact with a user for several

rounds (one recommendation list in each round) and optimize the

multi-round cumulative reward. In our setting, the aforementioned

learning goal is a single-list reward optimization goal, and we want

to achieve it in a dynamic online environment.

2.2 Related Work
Top-K Recommendation and List-wise Recommendation:
Standard pointwise and pairwise learning-to-rank methods [8, 11,

Generative Flow Network for Listwise Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

15, 16, 29, 31] aims to learn an item-wise scoring function for a

given user request, so they can adopt efficient supervise learning

(by formulating the problem as classification task) and their ex-

pressiveness mainly comes from the sophisticated design of user

request encoder (e.g. DNN [8], Transformer [15]). During inference,

items are ranked based on the learned pointwise scoring function,

and the top K items are selected as the recommendation. Yet, this

learning paradigm does not align with real-world recommendation

services which present to the user a list of items at a time. In such

cases, the way how items are organized also influences how users

respond to each item. For example, some users might prefer more

diverse recommendations while other users might want to compete

for similar items in the same list [17]. Then, the list-wise recom-

mendation problem is defined to emphasize the mutual influences

between items in the exposed list [2, 5, 7, 28, 35]. The general idea

is to infer and learn from the difference between the inclusion and

exclusion of a certain item in the exposed list with respect to the

list-wise metric (e.g. NDCG) or the whole list evaluation (for more

sophisticated rewards). Some work also shows that in a multi-stage

recommendation system, the reranking model can better model

the item correlations since the candidate set size is significantly

reduced enabling a more powerful neural model [9, 22, 28].

Generative List Recommendation: In recent years, there has

been a discussion on the generative perspective of the pointwise

recommendation [19, 33] listwise recommendation [14, 21] or slate

recommendation [12]. To handle the enormous combinatorial out-

put space of lists, the generative approach models the distribution

of recommended lists directly and generates a list as a whole with

the use of deep generative models. For example, ListCVAE [14]

uses Conditional Variational Autoencoders (CVAE) to capture the

item positional biases and item interdependencies in list distribu-

tion. Although promising, subsequent research [21] has shown

that ListCVAE struggles with accuracy-diversity trade-offs. Such

an analysis shows that balancing the exploitation and exploration

in existing generative list recommendation models remains chal-

lenging. Our method also belongs to the generative approach, but

it uses a brand new flow matching paradigm [4] that directly maps

the list generation probability with its utility. This learning scheme

has the potential to generate high-quality recommendations with

sufficient significantly improved diversity, which helps the online

exploration and searching for a better recommendation.

2.3 Preliminary on GFlowNet
The idea of GFlowNet [4] aroused first in the problem of stochastic

object generation from a sequence of actions. For example, con-

structing and designing a molecular graph for new medicine. And

themain insight behind GFlowNet is considering the iterative object

generation sequence 𝜏 = {O0 → O1 → · · · → O𝑇 } as a trajectory
in a probabilistic flow network, and the learned generative model

aims to assign each trajectory a sampling probability proportional

to the corresponding reward of the completed object:

𝑃 (𝜏) ∝ 𝑅(O𝑇) (2)

similar to the energy-based generative model [18]. In order to avoid

an expensive MCMC process, the proposed method borrows the

idea of temporal difference [32] in reinforcement learning and for-

mulates a flow matching objective ∀O𝑡+1 ∈ 𝜏 as in Eq.(3). It ensures

that the sum of incoming flow matches the sum of outgoing flow.

The reward has R = 0 for intermediate nodes and R > 0 only

on leaf nodes, and the transition function 𝑇 states a deterministic

object transformation based on the given action.∑︁
O𝑡 ,𝑎𝑡 :

𝑇 (O𝑡 ,𝑎𝑡)=O𝑡+1

F (O𝑡 , 𝑎𝑡) = F (O𝑡+1) = R(O𝑡+1)+
∑︁
𝑎𝑡+1
F (O𝑡+1, 𝑎𝑡+1)

(3)

The author further derived two variants of this objective that

are easy to optimize [23], namely, the Detailed Balance (DB) loss

and the Trajectory Balance (TB) loss:

LDB (O𝑡 ,O𝑡+1) =
(
log

F (O𝑡)𝑃 (O𝑡+1 |O𝑡 ;𝜃)
F (O𝑡+1)𝑃𝐵 (O𝑡 |O𝑡+1;𝜃)

)
2

LTB (𝜏) =
(
log

𝑍𝜃
∏𝑇
𝑡=1 𝑃 (O𝑡 |O𝑡−1;𝜃)

R(O𝑇)∏𝑇
𝑡=1 𝑃𝐵 (O𝑡−1 |O𝑡 ;𝜃)

)
2

(4)

which involves the learning of a flow estimator F (O), a forward
probability function 𝑃 (O𝑡 |O𝑡−1) that serves as the step-wise sto-
chastic policy that builds up the object, and a backward probability

function 𝑃𝐵 (O𝑡−1 |O𝑡) that helps infer the flow from a certain par-

ent. The TB loss minimizes the difference between the trajectory

flow and the observed reward, and it reaches the minimum when

the forward inference and the backward inference are identical. The

DB loss optimizes the flow matching objective for each generation

step O𝑡 → O𝑡+1, and for the leaf node with no child node, the

denominator is replaced by the reward R(O𝑇)
In our setting of list recommendation, we found two critical

components of GFlowNet that are most helpful in improving rec-

ommendation performances: a) The log-scale reward that increases

the chance of exploring diverse item lists during online learning;

And b) the auto-regressive generation that optimizes a future re-

wardwhile capturing themutual influences of items.Wewill further

explain this in the next section.

3 PROPOSED METHOD
In this section, we illustrate our proposed framework GFN4Rec.

Compared to GFlowNet’s original design, our solution framework

adopts several key changes to accommodate the list recommenda-

tion problem stated in section 2.1: a) The generation of a recom-

mendation list forms a tree graph rather than a directed acyclic

graph, which means that the backward probability is always one; b)

The models are conditioned on user request 𝑢 so that collaborative

learning can be used to alleviate the limited samples per request;

c) The action space (i.e. item list) is usually much larger than that

in [4] indicating a harder exploration problem, so we add bias terms

for the global normalization, the reward scaling, and the forward

probability shift to stabilize the training.

3.1 Item Selection Model and Generation Tree
We follow an autoregressive generation process that selects one

item at a time. During inference, a user request 𝑢 comes in and

it contains the user information (profile features X𝑢 and recent

history H𝑢), and the initial output list is empty, i.e. O0 = ∅. At
each step 𝑡 > 0, an item 𝑎𝑡 ∈ C/O𝑡−1 is selected based on the

probabilistic model 𝑎𝑡 ∼ 𝑃𝜃 (𝑖 |𝑢,O𝑡−1), noted as the item selection

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Shuchang Liu et al.

User
Environment
(Evaluator)

GFN4Rec List Generation

User Request
Encoder

Figure 1: Example of list generation with 𝐾 = 5 and three
types of user responses.

model, parameterized by 𝜃 . Then the selected item is pushed at

the end of the output list, i.e. O𝑡 = O𝑡−1 ⊕ {𝑎𝑡 } is an ordered list.

At the final step 𝑡 = 𝐾 , we will have a full recommendation list

O𝐾 = {𝑎1, . . . , 𝑎𝐾 } which is then exposed to the user environment

in answer to the request. Figure 1 shows an example of this process

with𝐾 = 5 and the item selection model in each step is presented in

Figure 3. During online exploration, the item is randomly sampled

based on the softmax score, and for greedy strategies, we select

the item with the top score. Note that our problem focuses on the

list-wise recommendation, and there is no intermediate response

signal for an item selection step until the final list is generated.

The generation tree: We assume a recommendation list of a

fixed size 𝐾 (also known as the slate recommendation). Since we

iteratively add items into the list in order, the generation graph of

all possible lists forms a 𝐾-depth tree structure, where the nodes

are (intermediate or final) output lists and each edge represents

a selected item. Figure 2 shows an example of such a generation

tree. In a tree graph, each node O𝑡 has only one possible parent

node O𝑡−1 except for the source node that has no parent. And the

number of children for a given node O𝑡 is linear to |C| − 𝑡 except
the leaf nodes that have no child. All leaves have depth 𝐾 , and the

total number of leaves (i.e. list-wise search space) is equivalent to

the number of size-𝐾 placement:

(| C |
𝐾

)
×𝐾 ! = 𝑂 (|C|𝐾). By sampling

according to the autoregressive item selection model 𝑃 (𝑎𝑡 |𝑢,O𝑡−1),
the generator ends up with a trajectory with the observed output

list O = O𝐾 = {𝑎1, . . . , 𝑎𝐾 }, and the output list (in leaf node) has a

one-to-one correspondence to its generation trajectory. Thus, we

can obtain the generation probability of the output list as its unique

trajectory’s sampling probability conditioned on 𝑢:

𝑃 (O|𝑢) =
𝐾∏
𝑡=1

𝑃 (O𝑡 |𝑢,O𝑡−1) =
𝐾∏
𝑡=1

𝑃𝜃 (𝑎𝑡 |𝑢,O𝑡−1)

where the choice of item 𝑎𝑡 determines the output list in the next

step, i.e. 𝑃 (O𝑡 |𝑢,O𝑡−1) = 𝑃𝜃 (𝑎𝑡 |𝑢,O𝑡−1). Using the example in

Figure 2, the recommendation {𝑖2, 𝑖1} has a trajectory probability

𝑃 (𝑖2 |𝑢,∅)𝑃 (𝑖1 |𝑢, {𝑖2}) = 0.5 × 0.7 = 0.35.

3.2 Learning Objectives on Network Flow
Different from the standard reward maximization goal in most

learning-to-rank paradigms, we want to learn a generative model

that not only finds the best reward but also favors other high-reward

recommendation lists for better exploration. Thus, following Eq.(2),

Figure 2: Example of generation tree with K=2, |C| = 3.

we aim to learn a trajectory distribution that is proportional to the

list-wise rewards for a certain user 𝑢:

𝑃 (O|𝑢) ∝ R(𝑢,O) (5)

As we will discuss in section 3.4, this would enforce the model

to match the log scale rewards for items that are less likely to be

trapped in local sub-optima and boosts the exploration of lists with

slightly lower rewards. One challenge of the optimization under this

learning goal is the limited observation per user request (or only

one interaction per request in the most extreme case). Fortunately,

we can solve this through collaborative training across users.

Matching the flow and the reward: Intuitively, users have

different behavioral patterns which induce different reward distribu-

tions. In order to match these differences, we assign a personalized

initial flow estimator F (𝑢,O0) = F (𝑢,∅) to the source node (the

starting step with an empty list), representing the prior of the re-

ward. Then the generation tree will split this initial flow according

to the step-wise item selection model and the flow of a leaf node

with O is F (𝑢,O) = F (𝑢,∅)𝑃 (O|𝑢). Combining with Eq.(5), the

user-wise flow distribution will have:

𝑏𝑧F (𝑢,O) = R(𝑢,O) (6)

where 𝑏𝑧 is a hyperparameter that represents the fixed global nor-

malizing bias for the forward passes compared to observed rewards.

Learning the trajectory probability: Based on previous no-

tions, for an observed training sample (𝑢,O,R(𝑢,O)), we can derive
from Eq.(4) the trajectory balance (TB) objective:

LTB =

(
log𝑏𝑧 + log

F𝜙 (𝑢,∅)
∏𝐾
𝑡−1 𝑃𝜃 (𝑎𝑡 |𝑢,O𝑡−1)

R(𝑢,O𝐾) + 𝑏𝑟

)
2

(7)

where𝑏𝑟 is a hyperparameter that represents the global reward bias,

and it is introduced to control the smoothness of the loss landscape

and avoids division by zero rewards. The learnable parameters

include 𝜙 of the initial flow estimator F and 𝜃 of the item selection

model (representing the forward probability function). Note that

the backward probability is a constant 𝑃 (O𝑡−1 |𝑢,O𝑡) = 1 since

each node has only one parent in a tree graph.

From trajectory-wise to step-wise: the TB loss optimizes the

overall trajectory as a whole but induces a large variance in the

squared error term. One alternative is to use a more detailed objec-

tive (derived from the DB loss of Eq.(4)) on each item generation

Generative Flow Network for Listwise Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

step O𝑡−1 → O𝑡 :

LDB =


(
logF𝜙 (𝑢,O𝐾) − log(R(𝑢,O𝐾) + 𝑏𝑟)

)
2

for leaf node(
log𝑏𝑧
𝐾
+ log F𝜙 (𝑢,O

𝑡−1)𝑃𝜃 (𝑎𝑡 |𝑢,O𝑡−1)
F𝜙 (𝑢,O𝑡)𝑃 (O𝑡−1 |𝑢,O𝑡)

)
2

𝑡 ∈ {1, . . . , 𝐾}
(8)

It consists of a reward-matching term for the leaf node and a flow-

matching term for each of the intermediate nodes. Here, F𝜙 (·)
represents the flow estimator for any given node (leaf or intermedi-

ate), and the reward smooth bias 𝑏𝑟 and normalizing bias 𝑏𝑧 have

the same meaning as in LTB. Again, the single-parent property of

nodes in a tree graph gives 𝑃 (O𝑡−1 |𝑢,O𝑡) = 1 and we can simplify

the second case of LDB to:

LDB =

(
log𝑏𝑧

𝐾
+ log

F𝜙 (𝑢,O𝑡−1)𝑃𝜃 (𝑎𝑡 |𝑢,O𝑡−1)
F𝜙 (𝑢,O𝑡)

)
2

, 𝑡 ∈ {1, . . . , 𝐾}

(9)

Note that this learning objective is separable by item which is

better suited for parallel training, but it does not directly optimize

the trajectory probability, which may be less effective for limited

observations or insufficient reward accuracy.

Forward probability shifting for better stability During

training, we observe that the scale of 𝑃 (𝑎𝑡 |𝑢,O𝑡−1) is usually around
1

| I | which is quite different from the scale of the reward and the

learned scale of the flow estimator. This could induce a very large

negative value with high variance after taking the log, which could

dominate the gradient calculation at the beginning and makes the

training process very unstable. As a result, we also include a hyper-

parameter 𝑏 𝑓 that shifts the forward probability to a value range

similar to other components. In other words, the original log term

log 𝑃𝜃 (𝑎𝑡 |𝑢,O𝑡−1) is shifted to log(𝑃 (𝑎𝑡 |𝑢,O𝑡−1) + 𝑏 𝑓). As an in-

tuitive example, we can set 𝑏 𝑓 = 1.0 to make log(𝑃 (·) + 𝑏 𝑓) ≥ 0.

3.3 Transformer-based User Request Encoder
In our recommendation setting, a user request consists of the user’s

profileX𝑢 that maintains the static features of the user as well as the

L most recent interaction history H𝑢 = [(𝑎1, 𝑌𝑎1), . . . , (𝑎𝐿, 𝑌𝑎𝐿)]
that captures the dynamic changes in the user’s interest. The user

request encoder will take X𝑢 andH𝑢 as input and outputs a user

state embedding 𝒔𝑢 for later list generation phase. It consists of

a transformer-based history encoder and a DNN-based feature

extraction module. We present its details in Appendix A.1. And

we remind the readers that this request encoder is not specifically

designed for our GFN4Rec method and it could accommodate many

existing models that require a user encoding module [15] including

the baselines in our experiments as described in section 4.

3.4 Relation to Existing Methods
Reward vs. Log-scale Reward: In standard learning-to-rank solu-

tions and many list-wise methods that assumes conditional inde-

pendence of item probabilities, a classification paradigm is adopted,

such as binary or multi-class cross-entropy loss [15, 28, 30]. It re-

sults in an alignment between the item-wise log probability 𝑃 (𝑖 |𝑢)
and the item-wise reward, i.e. log 𝑃 (𝑖 |𝑢) → R(𝑢, 𝑖). Assuming inde-

pendent item selection, then this would induce exponential proba-

bility aggregation for an item list: 𝑃 (O𝐾 |𝑢) = ∏
𝑎𝑡 ∈O𝐾 𝑃 (𝑎𝑡 |𝑢) →∏

𝑎𝑡 ∈O𝐾 𝑒
𝑅 (𝑢,𝑎𝑡)

, which is sensitive to itemswith high scores. Thus,

Item
Kernel

Item
Kernel

......

Item
Kernel

Item
Kernel

......no item no item

Concatention

...... Item
Kernel

User
Request
Encoder

softmax

Figure 3: Flow estimator 𝜙 and item selection model 𝜃 in
GFN4Rec. We presents details of the user request encoder
and item kernel in Appendix A.1. ⊙ represents dot product.

the generator may quickly distinguish items with top-ranking

scores and quickly converge to a local optimum. In contrast, one of

the key insights from the GFlowNet is the log scale rewardmatching

paradigm, which aims to directly align the log probability with log-

scaled reward, i.e. log 𝑃 (O|𝑢) → logR. Adopting the definition of

list-wise reward in section 2.1, this log-scale alignment means that

the list generation probability will be linear to the linear combina-

tion of item-wise reward: 𝑃 (O𝐾 |𝑢) → R(𝑢,O) = ∑
𝑎𝑡 ∈O R(𝑢, 𝑎𝑡).

In such a case, items with high scores are less distinguishable than

those with lower scores, and items with slightly lower point-wise

scores now have a good chance of being selected.

Evaluator vs. Generator: As we have discussed in section

2.2, list-wise recommendation approaches can be generally cat-

egorized as evaluator-based methods, generator-based methods,

and evaluator-generator paradigms. Our GFN4Rec framework is

defined as a list generator where the list generation probability is

proportional to its reward label. Notably, this property also means

that GFN4Rec can be regarded as an evaluator-based method as

well since the trajectory probability 𝑃 (O|𝑢) estimated upon gen-

eration is also an indicator of the list’s quality (represented by the

list-wise reward). This is different from generative methods like

CVAE [14] that use the reward label as input upon generation. In

general, GFN4Rec as well as any generation model that matches

the list generation probability with the reward is simultaneously a

generator and an evaluator. Compared to the generator-evaluator

learning paradigm [9] that uses a list evaluator to indirectly guide

the recommendation policy, GFN4Rec is a more direct approach that

is easier to optimize and stabilize. Additionally, the autoregressive

generation process of GFN4Rec does not restrict the model design

and can accommodate many existing advanced solutions [3, 31],

but the main difference lies in the flow matching loss for the entire

list rather than learning from a decomposed item-wise signal.

4 EXPERIMENTS
To validate the effectiveness of the proposed method, we conduct

both offline and online experiments on two real-world datasets.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Shuchang Liu et al.

Dataset |U| |I| #record |B| Range of R
ML1M 6400 3706 1,000,208 3 [0,3]

KR1K 1000 69,219 2,597,865 7 [-1,6]

Table 1: Dataset Summary. The records are used for offline
training of policies and online user environment, but not
used for online training of policies.

Datasets:we include two real-world datasetsML1M andKR1K.
ML1M is the one million version of the MovieLens dataset

1
dataset

that consists of users’ rating (original range in {1, . . . , 5}) history
for movies, but the rating signals are transformed into clicks (rating

≥ 3), likes (rating ≥ 4), and stars (rating ≥ 5). The KR1K is the

1K-user version of the KuaiRand [10] dataset that consists of users’

interaction histories for short videos, the user feedback include

clicks, views, likes, comments, forwards, follows, and hates, and

all behavior types are 0/1 signals
2
. For both datasets, we filter the

records into 20-core data and cut the user history into segments

of size 𝐾 = 6, and regard each segment as an observed recom-

mendation list. For simplicity, we set the item-wise reward weight

𝑤𝑏 = 1 except that the hate signal in KR1K has 𝑤
hate

= −1. As a
result, the range of item-wise reward R(𝑢, 𝑖) ∈ [0, 3] in ML1M and

R(𝑢, 𝑖) ∈ [−1, 6] in KR1K. Statistics of the resulting datasets are

summarized in Table 1.

Models and Baselines: We compare the GFN4Rec model with

both ranking and reranking models. We summarize the included

models as the following:

• CF [15]: a pointwise model that scores the user-item inter-

action based on the dot product between the user encoding

and the item encoding.

• ListCVAE [14]: a generative model that captures the list

distribution based on conditional VAE, and the reward is

formulated as the input condition when providing a recom-

mendation.

• PRM [28]: a re-ranking model that uses the CF model as

the initial ranker and uses a transformer-based re-ranker to

encode the intermediate candidate set.

• GFN4Rec: our proposed GFN4Rec model with trajectory bal-
ance loss. Comparison between trajectory balance and de-

tailed balance will be further discussed in section 4.3.

As mentioned in section 2.1, the ranking models provide a one-

stage recommendation with C = I, and the re-ranking model is

associated with a pretrained initial ranker that filters the item pool

into a smaller candidate set 𝐶 ⊂ I for the re-ranker. To better

control the variables in the model comparison, we use the same

user request encoder across all models. We present more model

details in Appendix A.1.

Simulated User Environment: in order to simulate the com-

plex multi-type user behavior in the observed data, we build a

stochastic user response model E : U × C𝐾 → B𝐾 that predict

the probability of a user 𝑢 positively engage with item 𝑖 by behav-

ior 𝑏. The base neural model 𝑔(𝑢,O) outputs the initial behavior

1
https://grouplens.org/datasets/movielens/1m/

2
https://kuairand.com/

Algorithm 1 GFN4Rec

Apply current policy in running episodes:

1: procedure Online Inference
2: Initialize replay buffer A.

3: while True, in each running episode do
4: Observe user request 𝑢.

5: Initial O0 ← ∅
6: for 𝑡 ∈ {1, . . . , 𝐾} do
7: Sample item 𝑎𝑡 ∼ 𝑃𝜃 (𝑖 |𝑢,O𝑡−1) with current policy.

8: O𝑡 = O𝑡−1 ⊕ {𝑎𝑡 }
9: end for
10: Obtain user responses𝑌O from online environment and

calculate R(𝑢,O).
11: (𝑢,O,R(𝑢,O), 𝑌𝑢,O) → A
12: end while
13: end procedure

Simultaneous training on the buffer:

14: procedure Training
15: Initialize all trainable parameters in the policy (e.g. 𝜃 and 𝜙

in GFN4Rec)

16: Wait until A has stored minimum amount of data points.

17: while Not Converged, in each iteration do
18: Obtain mini-batch sample (𝑢,O, 𝑅(𝑢,O), 𝑌𝑢,O) ∼ A.

19: Calculate 𝑃𝜃 (𝑎𝑡 |𝑢,O𝑡−1) and F𝜙 (O𝑡) for each genera-

tion step 𝑡 .

20: Update the policy through one step of gradient descent

on LTB or LDB.

21: end while
22: end procedure

likelihood, and it consist of a Transformer-based user history en-

coder similar to the user request encoder, and a state-to-behavior

predictor that infers the user response probability for the given

recommendation O. We train this base model using binary cross

entropy on the ground truth label𝑦𝑢,𝑖,𝑏 and obtain AUC in [0.7, 0.9]
for both datasets across different behaviors. When the pretrained

user response model takes effect in the online environment, we

also include an item-influence module that suppresses the initial

ranking score by each item’s similarity to other items in the list,

to simulate the user’s demand for recommendation diversity. We

use a significance factor 𝜌 > 0 to ensure the existence of item influ-

ence and set 𝜌 = 0.2 for ML1M while 𝜌 = 0.1 for KR1K. The final

user response 𝑦𝑢,𝑖,𝑏 is uniformly sampled based on the modified

behavior likelihood to simulate the uncertainty of user feedback in

the recommendation. For the data sampling strategy of all online

learning methods (e.g. In GFN4Rec, Algorithm 1, line 18), half of

the mini-batch samples are newly added instances from the online

inference procedure, and the other half comes from the uniform

sampling over the entire buffer to avoid catastrophic forgetting [27].

4.1 Online Learning
The main purpose of the online learning experiment is to 1) verify

the GFN4Rec’s ability to find better recommendation policies that

produce higher rewards; 2) validate the more diverse behaviors

Generative Flow Network for Listwise Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Method

ML1M KR1K

Avg. R Max R Coverage ILD Avg. R Max R Coverage ILD

CF 2.073 2.939 13.963 0.529 2.253 4.039 100.969 0.543

ListCVAE 0.940 2.209 262.420 0.796 2.075 4.042 446.100 0.565
PRM 2.156 2.967 18.647 0.559 2.174 3.811 27.520 0.538

GFN4Rec(Explore) 2.047 2.938 87.660 0.617 2.212 3.984 415.515 0.591
GFN4Rec 2.172 2.972 15.693 0.565 2.414 4.054 21.267 0.520

Table 2: Model performances of online learning model. Best values are in bold. Strongest baseline in underline.

Method

ML1M KR1K

Avg. R Max R R-NDCG R-MRR Coverage ILD Avg. R Max R R-NDCG R-MRR Coverage ILD

CF 1.675 2.694 0.563 0.0713 12.217 0.729 1.941 3.860 0.390 0.0824 17.275 0.611

ListCVAE - - - - - - 1.896 3.802 0.381 0.0803 343.067 0.657
RerankCF 1.901 2.918 0.632 0.0806 129.823 0.627 1.931 3.990 0.395 0.0823 153.186 0.586

PRM 1.914 2.914 0.636 0.0812 128.626 0.623 1.909 3.966 0.386 0.0808 284.000 0.595

GFN4Rec 1.996 2.908 0.665 0.0848 21.788 0.605 1.962 3.870 0.393 0.0834 32.16 0.630

Table 3: Online simulator performances for offline model. Best values are in bold. Strongest baseline in underline. R-NDCG
and R-MRR correspond to the R-NDCG(online) and R-MRR(online) metrics.

Method

ML1M KR1K

R-NDCG(online) R-MRR(online) R-NDCG(test) R-MRR(test) R-NDCG(online) R-MRR(online) R-NDCG(test) R-MRR(test)

CF 0.563 0.0713 0.533 0.0824 0.390 0.0824 0.356 0.0420
ListCVAE - - - - 0.381 0.0803 0.361 0.0419

RerankCF 0.632 0.0806 0.570 0.0835 0.395 0.0823 0.339 0.0415

PRM 0.636 0.0812 0.578 0.0861 0.386 0.0808 0.352 0.0415

GFN4Rec 0.665 0.0848 0.561 0.0826 0.393 0.0834 0.362 0.0421
Table 4: Online and offline ranking metrics of offline model. Best values are in bold. Strongest baseline in underline.

of GFN4Rec during online sampling while keeping high-quality

recommendations.

4.1.1 Training framework: we summarize the training procedures

of GFN4Rec in algorithm 1. Lines 18-20 correspond to the main op-

timization step and lines 5-9 are the online sampling steps. During

test time, if we aim to find the best output, the action sampling

(in line 7) will be turned off and we will adopt greedy selection

according to the scores provided by the item selection model. To

better illustrate the exploration behavior of our GFN4Rec method,

we observe both the test performance under the aforementioned

greedy selection and that using sampling (with line 7 turned on),

we denote the latter as GFN4Rec(Explore). When training other

baselines, the overall online learning framework is similar to al-

gorithm 1 and differs mainly in the loss minimization step (lines

18-20) and the list generation step (lines 5-9). For example, the

CF baseline learns a pointwise model 𝑃 (𝑖 |𝑢) which uses the dot

product between user request encoding and candidate item kernel

encoding as the ranking scores and simply selects the top-𝐾 as the

recommendation, and its objective function is the reward-based

binary cross-entropy:

LBCE = −R(𝑢, 𝑖) log 𝑃 (𝑖 |𝑢) + (1 − R(𝑢, 𝑖)) log(1 − 𝑃 (𝑖 |𝑢)) (10)

where the label in the original BCE loss is replaced by the continu-

ous multi-behavior reward. During training, we fix all experiments

with a mini-batch size of 128 and start training after 100 steps of

running episodes. For reranking models, we include additional on-

line training steps for the initial ranker before the training of the

reranker, its learning objective also uses the aforementioned R-BCE

loss.

4.1.2 Evaluation Protocol: For each user request and the recom-

mended list, the online user environment returns the user feedback

and we calculate the corresponding listwise reward R(𝑢,O) (de-
fined in section 2.1). We report both theAverage Reward as well as

theMax reward across user requests in a mini-batch. For diversity

metrics, we include the item Coverage metric that describes the

number of distinct items exposed in a mini-batch, and intra-list

diversity (ILD) that estimates the embedding-based dissimilarity

between items in each recommended list:

ILD(O) = 1

𝐾 (𝐾 − 1)
∑︁
𝑎𝑖 ∈O

∑︁
𝑎 𝑗 ∈O/{𝑎𝑖 }

(1 − similarity(𝑎𝑖 , 𝑎 𝑗)) (11)

As mentioned in [21], the item coverage reflects the cross-list diver-

sity which will help us understand how GFN4Rec generates diverse

lists. For each model, we use grid search to find the hyperparame-

ters that yield the best results. Specifically, we check learning rate

in {0.001, 0.0001, 0.00001}, L2 regularization in {0.0001, 0.00001, 0}.

For ListCVAE, we search the 𝛽 coefficient of the KLD loss in {1.0,

0.1, 0.01, 0.001}. For PRM, we control its PV loss coefficient in {1.0,

0.1, 0.01}. For all GFN4Rec variants we search 𝑏𝑟 in {0.1, 0.3, 1.0, 1.5},

𝑏 𝑓 in {0.1, 0.5, 1.0, 1.5, 2.0}, and 𝑏𝑧 in {0.1, 0.5, 1.0, 1.5}. We notice

that most models converge around episode step 5000 in both ML1M

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Shuchang Liu et al.

and KR1K, and the average result of the last 100 steps is regarded

as test samples for evaluation.

4.1.3 Empirical Results: After searching the model parameters, we

run each model’s best setting for 5 rounds with different random

seeds and report the average test results in Table 2. In both online

environments, GFN4Rec achieves the best performance in terms of

the reward metrics, and it significantly outperforms the strongest

baseline in KR1K by 10% in the average reward. The reranking PRM

achieves the same level of reward in ML1M, but it takes advantage

of an extra ranking phase. This means that the GFN4Rec model

can find a better recommendation policy than other baselines. The

online-sampling counterpart GFN4Rec(Explore) also achieves a rel-

atively high reward (the same level as CF) in both environments, but

what makes it superior is the significantly improved item coverage

and ILD. Specifically, in both ML1M and KR1K, GFN4Rec(Explore)

improves the item coverage by 4× compared to CF and PRM. ListC-

VAE could achieve the same level of diversity but suffers from

severe accuracy trade-offs, especially in ML1M. On the contrary,

GFN4Rec(Explore) achieves almost the same level of diversity as

ListCVAE, with a significantly better accuracy performance in terms

of rewards. All this evidence proves that GFN4Rec is able to find

high-quality recommendations (in terms avg. R and max R) with
better diversity as an online learning framework.

4.2 Offline Learning
We include the offline experiments as verification of 1) the consis-

tent performance of GFN4Rec in both offline and online evaluation;

and 2) the feasibility of the online simulator (discussed in section

4.3.3).

4.2.1 Training Framework: For offline training, the policy no longer

samples the lists online nor collects training samples into the buffer,

so GFN4Rec(Explore) is no longer applicable. Instead, it only uses

the offline log data (as those in Table 1 that takes the same format

(𝑢,O,R(𝑢,O), 𝑌𝑢,O). Except for this difference in the data iterator,

the remaining optimization steps are identical to the training pro-

cedure of algorithm 1. To engage in offline test, we split the last 𝑁

interactions of each user’s history as test samples while the remain-

ing as training samples, and we set 𝑁 = 1 for ML1M and 𝑁 = 4 for

KR1K. We train each model with a mini-batch size of 128 and stop

the training upon convergence (around 10000 steps in ML1M and

5000 steps in KR1K). We exclude ListCVAE in the comparison of

ML1M for its unstable and incomparable performance.

4.2.2 Evaluation Protocol: During the evaluation, for the data

points in the test set, we modify the standard offline metrics into the

reward-based NDCG (R-NDCG) and the reward-weighted mean re-

ciprocal rank (R-MRR) as illustrated in Eq.(12). where the Rank(𝑢, 𝑖)
is a position-wise rank of items on the same position in the batch

data since each position in the recommendation list now corre-

sponds to an item selection step. The R-NDCG metric generalizes

the standard NDCG metric where the item-wise reward R(𝑢, 𝑖)
becomes the relevance label, and the IDCG is agnostic to the model

being evaluated. The R-MRR metric generalizes the standard MRR

metric but replaces the item label with the item-wise reward. For

both metrics, a larger value means that the learned policy performs

better on the offline data.

R-NDCG =
1

𝐾

∑︁
𝑘∈{1,...,𝐾 }

R-NDCG(𝑘)

R-NDCG(𝑘) =
∑
𝑢,𝑎𝑘
R(𝑢, 𝑎𝑘)21−Rank(𝑢,𝑎𝑘)

IDCG

R-MRR =
1

𝐾

∑︁
𝑘∈{1,...,𝐾 }

R-MRR(𝑘)

R-MRR(𝑘) =
∑︁
𝑢,𝑎𝑘

R(𝑢, 𝑎𝑘)
Rank(𝑢, 𝑎𝑘)

(12)

Additionally, we can still deploy the models to the online envi-

ronment even though they are trained offline, only that there is

no buffer to maintain and no online sampling for exploration. We

adopt the same online evaluation protocol in section 4.1 and in-

clude both the accuracy metrics (average reward and maximum
reward) and the diversity metrics (item Coverage and ILD). Note
that we can calculate R-NDCG and R-MRR for both the offline data

and the online observed interactions, so we denote the first case

as R-NDCG(test) and R-MRR(test), and denote the second case as

R-NDCG(online) and R-MRR(online).

4.2.3 Empirical Results: We adopt the same grid search for com-

mon hyperparameters as in online learning, and report the best

parameter with 5-seed averaged results in Table 3 and Table 4.

Specifically, in Table 4, GFN4Rec achieves better results than CF in

ML1M and achieves the best results in KR1K in terms of the test

set ranking metric R-NDCG(test) and R-MRR(test). These offline

metrics are almost consistent with the online metrics, but with

one exception when comparing the reranking baseline PRM, where

GFN4Rec is slighted better on R-NDCG(online) and R-MRR(online)

and PRM is slightly better on R-NDCG(test) and R-MRR(test) in

ML1M. This might be related to the smaller action space of ML1M,

which may improve the chance of the reranking mechanism to

finding better intermediate candidates for later reranking. In gen-

eral, GFN4Rec is effective in finding better rewards than one-stage

models when engaging in offline training, and its performance is

consistent in both offline and online metrics. Additionally, in Table

3, online ranking metrics (R-NDCG(online) and R-MRR(online)) are

consistent with other online accuracy metrics (closest to Avg. R) in
terms of model comparison. Combining with the aforementioned

consistency between online and offline ranking metrics, this further

verifies the feasibility of the evaluation under the online simulator

(further explained in section 4.3.3).

4.3 Ablation Study
4.3.1 Trajectory Balance vs. Detailed Balance. Aswe have discussed
in section 3.2, trajectory balance LTB (denote as GFN_TB) directly
optimizes the item selection probability of different positions to-

gether, while the detailed balance LDB (denote as GFN_DB) sepa-
rates the learning of each position and only the last step is directly

guided by the accurate reward label. Thus, DB loss adopts step-wise

learning which would result in lower variance in the squared error

term, compared with TB loss. This indicates that DB is potentially

more suitable for larger action space (item candidate set). As shown

Generative Flow Network for Listwise Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Method

KR1K

GFN_DB GFN_TB

Avg. R 2.034 1.962

Max R 3.905 3.870

Coverage 2.034 1.962

ILD 0.582 0.630
R-NDCG(online) 0.400 0.393

R-MRR(online) 0.0859 0.0834

R-NDCG(test) 0.363 0.362

R-MRR(test) 0.0423 0.0421

Table 5: TB vs. DB with offline model training.

Figure 4: Learning curves of greedy GFN4Rec and
GFN4Rec(Explore) in KR1K.

in Table 5, GFN_DB achieves better performance than GFN_TB in

the practical KR1K dataset. We suggest using DB loss in practice

as it is more suitable for large action spaces and more stable in

training.

4.3.2 Greedy vs. Exploration. As supported by section 4.1, the

GFN4Rec model can achieve high recommendation quality with bet-

ter diversity than the exploration counterpart. We further illustrate

this in Figure 4, where the reward metrics of GFN4Rec(Explore)

grow much slower than that of the greedy GFN4Rec (for both DB

and TB variants). In contrast, the item coverage and ILD metrics

drop much slower in GFN4Rec(Explore). Additionally, we observe

that the max reward, though it generally improves over time, ap-

pears to be very unstable. GFN4Rec(Explore) exhibits very stable

behavior, which indicates that there might exist a large number of

slates with high quality while extreme actions could misguide the

learning process.

4.3.3 Feasibility of Online Simulator: While offline metrics like

NDCG and MRR are widely verified in practice, the feasibility of

an online simulator for the recommendation has been an impor-

tant research topic in recent years [13]. We need a realistic online

simulator that follows real-world user behavioral patterns in order

to verify the effectiveness of recommendation policies. In section

4.2, we use both the online simulator and offline test set for model

evaluation and observe that the two sets of metrics are generally

consistent across different models. This indicates that our design

of the user environment is sufficiently realistic to model the user

behaviors and feasible in validating the recommendation models.

Still, we remind readers that in theory, there is a feasible region of

the pretrained user environment that is close to the offline data,

but it does not exclude the chance of mode collapse if we do not

regulate the pretraining process [24].

4.3.4 Offline vs. Online. As many online learning methods pointed

out [36], the offline log data does not provide the ground truth

user feedback for the counterfactual question “What if the policy

recommends a different list and how would the user behave”. This

limitation restricts the exploration of better data samples and is the

main motivation of the aforementioned research on user simulation.

In our experiments, we observe evidence of the sub-optimal reward

performances in models that are trained offline compared with their

online training counterparts. For example, the best model in KR1K

is GFN4Rec which achieves 2.414 in average reward, but it only

reaches 1.962 on the same online simulator when it is trained offline.

This phenomenon is consistent across all variants of GFN4Rec,

indicating the effectiveness of engaging exploration in the online

environment and the limitation of offline training.

4.3.5 Inconsistent Diversity of Reranking Model: We observe that

the reranking baseline PRM achieves significantly higher item cov-

erage when trained with offline data but not so in online learning.

We believe this is related to the diversity of the initial ranker. To

validate this, we include the RerankCF baseline which consists of

a CF-based initial ranker and a deterministic top-K selection as

the re-ranker, and present its results in Table 3. We observe that

the diversity of RerankCF also achieves significantly higher item

coverage than CF and GFN4Rec. This indicates that the existence

of the initial ranker could potentially improve the diversity but at a

cost of lower accuracy (in online reward and offline metrics).

5 CONCLUSION
In this work, we propose a list-wise recommendation method that

uses a generative flow network to represent the probabilistic list

generation process. The resulting method GFN4Rec can generate

high-quality recommendations with better diversity, which is well

suited for the online learning environment that requires the guid-

ance of exploration. One key insight of the proposed method is

a generative approach that directly matches the generation prob-

ability rather than the log probability with the list-wise reward.

Another feature of GFN4Rec is the iterative item generation model

that captures the item’s mutual information and optimizes a future

list reward. This notion may also suit other scenarios where inter-

mediate rewards are not observed until the final object is generated

(e.g. multi-stage recommendation). However, we remind readers

that GFN4Rec requires more hyperparameters (reward smoothing,

normalizing coefficient, and forward probability offset) which may

take empirical efforts to find a feasible optimization setting than

standard supervised learning. Additionally, GFN4Rec controls the

balance between recommendation quality and diversity during on-

line exploration, and the effectiveness of the exploration depends

on the validity of this trade-off. In general, it is still an open problem

whether there exists a way to optimize the exploration strategy.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Shuchang Liu et al.

REFERENCES
[1] M Mehdi Afsar, Trafford Crump, and Behrouz Far. 2022. Reinforcement learning

based recommender systems: A survey. Comput. Surveys 55, 7 (2022), 1–38.
[2] Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018. Learning a deep

listwise context model for ranking refinement. In The 41st international ACM
SIGIR conference on research & development in information retrieval. 135–144.

[3] Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig Boutilier, Ed Chi, Elad Eban,

Xiyang Luo, Alan Mackey, and Ofer Meshi. 2019. Seq2slate: Re-ranking and slate

optimization with rnns. ICLR (2019).

[4] Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua

Bengio. 2021. Flow network based generative models for non-iterative diverse

candidate generation. Advances in Neural Information Processing Systems 34
(2021), 27381–27394.

[5] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An

overview. Learning 11, 23-581 (2010), 81.

[6] Qingpeng Cai, Zhenghai Xue, Chi Zhang, Wanqi Xue, Shuchang Liu, Ruohan

Zhan, Xueliang Wang, Tianyou Zuo, Wentao Xie, Dong Zheng, Peng Jiang, and

Kun Gai. 2023. Two-Stage Constrained Actor-Critic for Short Video Recom-

mendation. In Proceedings of the ACM Web Conference 2023 (Austin, TX, USA)
(WWW ’23). Association for Computing Machinery, New York, NY, USA, 865–875.

https://doi.org/10.1145/3543507.3583259

[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning

to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129–136.

[8] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.

2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[9] Yufei Feng, Binbin Hu, Yu Gong, Fei Sun, Qingwen Liu, and Wenwu Ou. 2021.

GRN: Generative Rerank Network for Context-wise Recommendation. arXiv
preprint arXiv:2104.00860 (2021).

[10] Chongming Gao, Shijun Li, Yuan Zhang, Jiawei Chen, Biao Li, Wenqiang Lei,

Peng Jiang, and Xiangnan He. 2022. KuaiRand: An Unbiased Sequential Rec-

ommendation Dataset with Randomly Exposed Videos. In Proceedings of the
31st ACM International Conference on Information and Knowledge Management
(Atlanta, GA, USA) (CIKM ’22). 5 pages. https://doi.org/10.1145/3511808.3557624

[11] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.

DeepFM: A Factorization-Machine Based Neural Network for CTR Prediction.

In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(Melbourne, Australia) (IJCAI’17). AAAI Press, 1725–1731.

[12] Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu,

Heng-Tze Cheng, Tushar Chandra, and Craig Boutilier. 2019. SlateQ: A Tractable

Decomposition for Reinforcement Learning with Recommendation Sets. In Pro-
ceedings of the Twenty-eighth International Joint Conference on Artificial Intelli-
gence (IJCAI-19). Macau, China, 2592–2599. See arXiv:1905.12767 for a related

and expanded paper (with additional material and authors)..

[13] Eugene Ie, Chih wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing

Wang, Rui Wu, and Craig Boutilier. 2019. RecSim: A Configurable Simulation

Platform for Recommender Systems. (2019). arXiv:1909.04847 [cs.LG]

[14] Ray Jiang, Sven Gowal, Yuqiu Qian, Timothy Mann, and Danilo J. Rezende.

2019. Beyond Greedy Ranking: Slate Optimization via List-CVAE. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=

r1xX42R5Fm

[15] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-

mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[16] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009), 30–37.
[17] Matevž Kunaver and Tomaž Požrl. 2017. Diversity in recommender systems–A

survey. Knowledge-based systems 123 (2017), 154–162.
[18] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. 2006. A

tutorial on energy-based learning. Predicting structured data 1, 0 (2006).
[19] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.

Variational autoencoders for collaborative filtering. In Proceedings of the 2018
world wide web conference. 689–698.

[20] Shuchang Liu, Qingpeng Cai, Bowen Sun, Yuhao Wang, Ji Jiang, Dong Zheng,

Kun Gai, Peng Jiang, Xiangyu Zhao, and Yongfeng Zhang. 2023. Exploration and

Regularization of the Latent Action Space in Recommendation. In Proceedings of
the Web Conference 2023. 833–844.

[21] Shuchang Liu, Fei Sun, Yingqiang Ge, Changhua Pei, and Yongfeng Zhang. 2021.

Variation control and evaluation for generative slate recommendations. In Pro-
ceedings of the Web Conference 2021. 436–448.

[22] Weiwen Liu, Yunjia Xi, Jiarui Qin, Fei Sun, Bo Chen, Weinan Zhang, Rui Zhang,

and Ruiming Tang. 2022. Neural Re-ranking in Multi-stage Recommender Sys-

tems: A Review. arXiv preprint arXiv:2202.06602 (2022).
[23] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio.

2022. Trajectory balance: Improved credit assignment in GFlowNets. In Ad-
vances in Neural Information Processing Systems, Alice H. Oh, Alekh Agarwal,

Danielle Belgrave, and Kyunghyun Cho (Eds.). https://openreview.net/forum?

id=5btWTw1vcw1

[24] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. 2017. Unrolled

Generative Adversarial Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=BydrOIcle

[25] Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. 2023. Better

training of gflownets with local credit and incomplete trajectories. arXiv preprint
arXiv:2302.01687 (2023).

[26] Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio.

2022. Generative Augmented Flow Networks. arXiv preprint arXiv:2210.03308
(2022).

[27] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan

Wermter. 2019. Continual lifelong learning with neural networks: A review.

Neural networks 113 (2019), 54–71.
[28] Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian

Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, et al. 2019. Personalized re-ranking

for recommendation. In Proceedings of the 13th ACM conference on recommender
systems. 3–11.

[29] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International conference
on data mining. IEEE, 995–1000.

[30] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (Montreal,

Quebec, Canada) (UAI ’09). AUAI Press, Arlington, Virginia, USA, 452–461.
[31] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.

2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-

resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[32] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[33] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng

Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative

and discriminative information retrieval models. In Proceedings of the 40th In-
ternational ACM SIGIR conference on Research and Development in Information
Retrieval. 515–524.

[34] Shoujin Wang, Longbing Cao, Yan Wang, Quan Z Sheng, Mehmet A Orgun,

and Defu Lian. 2021. A survey on session-based recommender systems. ACM
Computing Surveys (CSUR) 54, 7 (2021), 1–38.

[35] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise

approach to learning to rank: theory and algorithm. In Proceedings of the 25th
international conference on Machine learning. 1192–1199.

[36] Ruobing Xie, Yalong Wang, Rui Wang, Yuanfu Lu, Yuanhang Zou, Feng Xia, and

Leyu Lin. 2022. Long short-term temporal meta-learning in online recommenda-

tion. In Proceedings of the Fifteenth ACM International Conference on Web Search
and Data Mining. 1168–1176.

[37] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.

2019. Reinforcement learning to optimize long-term user engagement in recom-

mender systems. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2810–2818.

A MORE EXPERIMENTAL DETAIL
All of our experiments are conducted on a single (Tesla T4) GPU

machine with code in PyTorch. The source code can be found in

our GFN4Rec repository https://github.com/CharlieMat/GFN4Rec.

A.1 Model Specification
Figure 5 shows the detail of the user request encoder mentioned in

section 3.3. The item and user encoding kernel first aggregates the

raw feature embeddings and then apply a linear transformation to

give encoding 𝑒𝑎𝑖 for item 𝑎𝑖 and 𝑒𝑢 for user request 𝑢. The user

response kernel directly aggregates the response embedding of

different feedback types without transformation as shown in Figure

5. Then the most recent 𝐿 history interactions (𝑎𝑡 , 𝑦𝑢,𝑎𝑡) form a

sequence and we use a transformer to generate the history encod-

ing. Finally, the history encoding and the encoded user profile are

mapped to the state encoding 𝑠𝑢 . Note that the item kernels are also

used in the forward probability estimation in GFN4Rec as shown

https://doi.org/10.1145/3543507.3583259
https://doi.org/10.1145/3511808.3557624
https://arxiv.org/abs/1909.04847
https://openreview.net/forum?id=r1xX42R5Fm
https://openreview.net/forum?id=r1xX42R5Fm
https://openreview.net/forum?id=5btWTw1vcw1
https://openreview.net/forum?id=5btWTw1vcw1
https://openreview.net/forum?id=BydrOIcle

Generative Flow Network for Listwise Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

ID

a) Item Kernel

item features

......

......

ID user features

......

LayerNorm

......

User Embedding Extraction

Linear mapping

Dropout + LayerNorm

b) User Kernel

Transformer

Item
Kernel

......

......

User
Kernel

DNN

d) User Request Encoder

......

LayerNorm

......

User Embedding Extraction

Linear mapping

Dropout + LayerNorm

Behavior Embedding

c) Behavior Kernel

Behavior
Kernel

Item
Kernel

Behavior
Kernel

Figure 5: User request encoder module that maps a user request (X𝑢 ,H𝑢) to a user state vector 𝑠𝑢 . 𝑒𝑎𝑖 and 𝑒𝑢 represents the item
encoding and the user encoding respectively, 𝑒𝑝𝑖 represents the learnable positional embedding for items in the history. We set
history length 𝐿 = 50 in our experiments and use zero encoding for padding item. ⊕ represents summation.

𝑏 𝑓 0.1 0.3 0.5 0.7 0.9

Avg R 2.379 2.359 2.268 2.371 2.367

Max R 4.083 4.066 4.050 4.058 4.042

Coverage 18.976 22.161 49.588 16.894 16.800

ILD 0.554 0.525 0.532 0.565 0.531

Table 6: Search of 𝑏 𝑓 for GFN4REC with 𝑏𝑟 = 0.5, 𝑏𝑧 = 1.0. The
best performance is not statistically significant.

𝑏𝑟 0.1 0.3 0.5 0.7 0.9

Avg R 2.414 2.401 2.374 2.384 2.377

Max R 4.054 4.053 4.040 4.042 4.048

Coverage 21.267 19.082 18.839 18.212 18.760

ILD 0.520 0.522 0.540 0.523 0.522

Table 7: Search of 𝑏𝑟 for GFN4REC with 𝑏 𝑓 = 1.0, 𝑏𝑧 = 1.0.

in Figure 3. In order to keep the model comparison reasonable, we

keep the profile and history encoder the same across all models.

A.2 Sensitivity Analysis:
During the search of hyper-parameters, in almost all experiments,

we found 𝑏_𝑧 = 1.0 consistently gives good results so it is fixed

when searching 𝑏_𝑓 and 𝑏_𝑟 . We then adopted an iterative line

search strategy for {𝑏 𝑓 , 𝑏𝑟 }: First, we fix 𝑏𝑟 and search for the best

𝑏 𝑓 ; then fix 𝑏 𝑓 with the current best setting and search for 𝑏𝑟 ; we

repeat these steps for two rounds and it converges. As an example,

Table 6 and Table 7 presents this process of GFN4REC on KR1K.

The resulting best setting for reward metrics is 𝑏𝑟 = 0.1, 𝑏 𝑓 = 1.0

for GFN4REC. ML1M also converges in two rounds but with a

slightly different best point 𝑏𝑟 = 0.3, 𝑏 𝑓 = 0.5 for GFN4REC. In our

observation, we found that GFN4REC is not so sensitive to b_f near

the observed best setting in KR1K, but we kept skeptical of whether

this is a universal pattern across different datasets.

A.3 Computational Complexity
For a list size K, GFN4Rec will run the forward function K times,

and each time it samples an item according to the item probability.

In comparison, the whole list generation method like ListCVAE

only runs the forward function 1 time but still needs to do item

sampling from a candidate set for K times. The CF-based meth-

ods in our implementation do not engage exploration so have no

sampling process, which induces the lowest computational cost.

In our experiments, we use GPUs to process the computation, so

the differences in the running time caused by forward function

complexity differences become smaller. For example, ListCVAE has

a total inference+training time of around 4800 seconds for 5000

steps while GFN4Rec uses around 5500 seconds on KR1K. CF uses

3341 seconds which is the fastest since there is no sampling process.

In general, the overall inference efficiency of GFN4Rec is identical

to all existing auto-regressive solutions, and it is mainly controlled

by the list size 𝐾 ignoring the differences in model complexity.

	Abstract
	1 Introduction
	2 Background
	2.1 Problem Formulation
	2.2 Related Work
	2.3 Preliminary on GFlowNet

	3 Proposed Method
	3.1 Item Selection Model and Generation Tree
	3.2 Learning Objectives on Network Flow
	3.3 Transformer-based User Request Encoder
	3.4 Relation to Existing Methods

	4 Experiments
	4.1 Online Learning
	4.2 Offline Learning
	4.3 Ablation Study

	5 Conclusion
	References
	A More Experimental Detail
	A.1 Model Specification
	A.2 Sensitivity Analysis:
	A.3 Computational Complexity

