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ABSTRACT
We study the task of spatio-temporal extrapolation that generates
data at target locations from surrounding contexts in a graph. This
task is crucial as sensors that collect data are sparsely deployed, re-
sulting in a lack of fine-grained information due to high deployment
and maintenance costs. Existing methods either use learning-based
models like Neural Networks or statistical approaches like Gauss-
ian Processes for this task. However, the former lacks uncertainty
estimates and the latter fails to capture complex spatial and tem-
poral correlations effectively. To address these issues, we propose
Spatio-Temporal Graph Neural Processes (STGNP), a neural latent
variable model which commands these capabilities simultaneously.
Specifically, we first learn deterministic spatio-temporal representa-
tions by stacking layers of causal convolutions and cross-set graph
neural networks. Then, we learn latent variables for target locations
through vertical latent state transitions along layers and obtain ex-
trapolations. Importantly during the transitions, we propose Graph
Bayesian Aggregation (GBA), a Bayesian graph aggregator that
aggregates contexts considering uncertainties in context data and
graph structure. Extensive experiments show that STGNP has desir-
able properties such as uncertainty estimates and strong learning
capabilities, and achieves state-of-the-art results by a clear margin.
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Figure 1: (a) Context sensors 1-5 are utilized to generate data
of a target location, considering exogenous covariates and
the graph structure. (b) Extrapolations of our STGNP.

1 INTRODUCTION
Spatio-temporal graph data, such as air quality readings [24, 51],
traffic flow data [23, 31, 46], and climate data [25] reported by de-
ployed sensors, are ubiquitous in the physical world. Analyzing
such data fosters a variety of applications for smart cities, enhanc-
ing people’s lives and helping decision-making [15]. Ideally, the
data should be fine-grained to realize its benefits but it is often
impractical to deploy and maintain sufficient sensors in an area of
interest because of the high expenditure [36, 43]. For example, a
professional station to measure air quality can cost around $200,000
to build and $30,000 per year to maintain [50]. As a result, many
applications have to rely on sparse data, leading to suboptimal so-
lutions. Thus, finding ways to approximate the data in areas with
no sensors has become a pressing issue.

In this paper, we study the problem of spatio-temporal extrapola-
tion, which involves estimating a function that predicts the spatio-
temporal data at target locations of interest areas based on the
surrounding context nodes and related exogenous covariates, oper-
ated in a graph structure, as shown in Figure 1(a). As an example,
we use air quality extrapolation [50] illustrated in Figure 1(b). We
utilize the air quality index from context sensors to extrapolate the
indexes at the target locations, taking into account covariates such
as weather conditions that can also impact air quality.
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To achieve our goal, one pivotal property that needs to be consid-
ered is spatio-temporal correlations, i.e., the spatial dependencies
within the graph and the temporal dependencies along the time
axis. To capture these correlations, Neural Networks (NNs), espe-
cially Spatio-Temporal Graph Neural Networks (STGNNs), nowa-
days have become a favorite due to their tempting learning compe-
tence [12, 46]. However, NNs have two main limitations: (i) They
lack the sought-after ability to estimate uncertainties. Sensors often
produce signals with different levels of ambiguity, such as noisy or
missing observations due to unpredictable factors such as network
disruptions. Explicitly capturing these uncertainties has proved to
be a boon for making reliable decisions [42, 44]. However, most
NNs are deterministic and unable to account for these uncertainties.
(ii) Their ability to generalize to new data is limited. NNs require a
large amount of training data to parameterize a function. Never-
theless, their reliance on parameters hinders their adaptability in
unpredictable real-world environments, as the model needs to be
retrained whenever the environment changes. Additionally, their
sensitivity to hyperparameters demands a hyperparameter search
to attain optimal performance.

The limitations of NNs have led researchers to draw inspiration
from probability models, with Gaussian Processes (GPs) being one
potential approach [35]. GPs define a stochastic process in which
the spatio-temporal relations are modeled by various kernels [32].
Their Bayesian principle and non-parametric nature enable them
to handle uncertainty and generalize well to a wide range of func-
tions [29]. However, GPs suffer from limited expressivity of kernels,
which can be disadvantageous. To address these issues, Neural
Processes (NPs) [9] have emerged as a promising approach. NPs
learn to construct stochastic processes by parameterizing neural
networks in which an aggregator is introduced to integrate con-
texts. By combining the strengths of both NNs and GPs, NPs offer
a compelling framework for spatio-temporal extrapolation.

Unfortunately, NPs cannot be applied directly to spatio-temporal
graph data due to the following factors: (i) They struggle to learn
temporal dependencies effectively. Existing NPs [33, 38] utilize latent
state transitions to capture temporal relations recurrently. How-
ever, transitions tend to only focus on learned latent variables,
disregarding the contextual information at later recurrent steps.
This phenomenon, known as transition collapse, can impede learn-
ing over long sequences [38]. (ii) They are incapable of modeling
spatial relationships in a graph. Existing NPs’ aggregation opera-
tions [11, 16, 41] lack the ability to model complex spatial relations
defined in a graph. In addition, their deterministic nature makes
them suboptimal for aggregating data with varying levels of ambi-
guity, such as missing values and noise in Figure 1(a).

To tackle these challenges, we propose Spatio-Temporal Graph
Neural Processes (STGNP) for spatio-temporal extrapolation over
graphs. STGNP has two stages: the first stage leverages a deter-
ministic network to learn spatio-temporal representations of nodes.
Instead of relying on a recurrent structure, the temporal dynamics
are modeled by stacking convolution layers in a bottom-up way [1],
while the spatial relations are captured by cross-set graph neu-
ral networks. In the second stage, we employ state transitions to
aggregate latent variables of target nodes following a top-down
manner. Here, the transition assumes horizontal time independence
and incorporates long-range temporal evolution from the upper

layers. As the number of transitions only relates to the number of
stacked layers, much smaller than the sequential length, our model
naturally exhibits resistance to transition collapse.

For the aggregator in each transition, we claim that different con-
text nodes have different levels of importance. Motivated by [41],
we propose Graph Bayesian Aggregation (GBA) that directly ag-
gregates distributions over latent variables regulated by the graph.
Intuitively, a context node contributes less to the latent distribution
if it is far from the target location or exhibits a high degree of am-
biguity recognized by the module. This design explicitly considers
graph structure into NP’s aggregator and enhances the model’s
capability to capture node uncertainties.

In summary, our main contributions are summarized as follows:

• We propose Spatio-Temporal Graph Neural Processes. To the
best of our knowledge, this is the first work that generalizes
NPs to spatio-temporal graph modeling. STGNP captures un-
certainties explicitly and can generalize to different functions
robustly, which is a major advantage over NNs approaches. Ad-
ditionally, STGNP is able to learn temporal relations and graph
data effectively, which sets it apart from classical NPs models.

• We introduce Graph Bayesian Aggregation, a Bayesian method
for aggregating context nodes, which allows the aggregator to
model graph structure and uncertainties for context nodes.

• We conduct comprehensive experiments to evaluate the perfor-
mance and properties of STGNP. Our results demonstrate that
STGNP outperforms state-of-the-art baselines by a significant
margin and exhibits compelling properties, such as uncertainty
estimates, high generalizability, and robustness to noisy data.

2 PRELIMINARIES
We first define concepts and notations of spatial-temporal data on
graphs. Then, we introduce the basic concepts of neural processes.

2.1 Definitions and Notations
Definition 1 (Graph). We represent nodes as a graph G = (V, E),

whereV is the vertex set and E is the edge set defining the weights
between nodes. The 𝐾-hop neighborhood of a node 𝑣 ∈ V denoted
byN𝑘 (𝑣) is the set of nodes that are reachable from 𝑣 with 𝐾 steps.
Based on E and 𝐾 , an 𝐾-hop adjacency matrix 𝐴𝐾 is derived to
measure the non-Euclidean distances between connected neighbors.

Definition 2 (Spatio-Temporal Data). Observed signals are re-
trieved from each node in the graph.We use𝑌𝑖 = (𝑦𝑖,1, .., 𝑦𝑖,𝑡 , .., 𝑦𝑖,𝑇 ) ∈
R𝑇×𝑑𝑦 to denote data of node 𝑖 that is measured over a time win-
dow 𝑇 , where 𝑑𝑦 is the number of features. 𝑌 = (𝑌1, .., 𝑌𝑛, .., 𝑌𝑁 ) ∈
R𝑁×𝑇×𝑑𝑦 is denoted as a signal tensor of all nodes over the window
𝑇 , where 𝑁 is the total number of observable nodes in the graph.

Definition 3 (Exogenous Covariates). Exogenous covariates bene-
fit the learning process as they usually have notable correlations
with node data. These covariates are readily available from different
sources. For instance, weather conditions can affect air pollutant
data and they are collected from weather stations. We denote these
factors as a tensor 𝑋 ∈ R𝑁×𝑇×𝑑𝑥 and consider them explicitly.
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2.2 Neural Processes
Neural Processes [9] construct stochastic processes that map 𝑥 ∈
R𝑑𝑥 in an input domain to 𝑦 ∈ R𝑑𝑦 in an output space, conditioned
on a context set C = {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 of observed input-output pairs.
NPs follow the same principle as Gaussian Processes except the
stochastic process is learned implicitly by neural networks. Specifi-
cally, NPs define a conditional latent variable framework, where the
distribution of a latent variable 𝑧 is described by a learned condi-
tional prior 𝑝 (𝑧 |C) from the context set. Then, with inputs of target
variables 𝑋D = {𝑥𝑚}𝑀

𝑚=1 in a target set D, a likelihood module
𝑝 (𝑌D |𝑋D , 𝑧) is trained to predict the corresponding output vari-
ables 𝑌D . The following posterior predictive likelihood formulates
the generative process of NPs:

𝑝 (𝑌D |𝑋D , C) =
∫

𝑝 (𝑌D |𝑋D , 𝑧)𝑝 (𝑧 |C)𝑑𝑧. (1)

In practice, NPs assume the target variables are independent, de-
composing the likelihood such that 𝑝 (𝑌D |𝑋D , 𝑧) is factorized as∏𝑀
𝑚=1 𝑝 (𝑦𝑚 |𝑥𝑚, 𝑧), where𝑀 = |D|. NPs organize a meta-learning

framework where each pair of {C,D} constructs its own stochastic
process, making it less parametric dependent whit strong generaliz-
ability. Note that conditions C in the prior should be aggregated by
a permutation-invariant function (e.g., mean, attention) to define
a stochastic process, according to Kolmogorov Extension Theo-
rem [30]. As the marginalization of the latent variable 𝑧 is normally
intractable, the model is usually trained either by Monte-Carlo
(MC) sampling to estimate Equation 1 directly [8] or by variational
approximation of maximizing the evidence lower bound (ELBO) [9]:

log𝑝 (𝑌D |𝑋D , C) ≥ E𝑞 (𝑧 | C∪D)

[
𝑚∑︁
𝑚=1

log
𝑝 (𝑦𝑚 |𝑥𝑚, 𝑧)𝑝 (𝑧 |C)

𝑞(𝑧 |C ∪ D)

]
,

(2)

where 𝑞(𝑧 |C ∪D) and 𝑝 (𝑦𝑚 |𝑥𝑚, 𝑧) are the approximated posterior
and the likelihood learned by neural networks. As the true condi-
tional prior 𝑝 (𝑧 |C) in the numerator is also intractable, the same
module 𝑞(·) is employed to approximate 𝑝 (𝑧 |C) ≈ 𝑞(𝑧 |C).

3 METHODOLOGY
In this section, we propose STGNP, a neural latent variable model
to enhance spatio-temporal extrapolation. As its graphical model
illustrates in Figure 2, the key pipeline is to learn deterministic
representations (STRL) and stochastic latent variables (GBA) in
two stages. We first introduce the problem of spatio-temporal ex-
trapolation. Then, we describe the deterministic stage for learning
spatio-temporal representations and derive Graph Bayesian Ag-
gregation to aggregate contexts in the stochastic stage. Finally, we
introduce the generative process and the optimization procedure.
Note that as target nodes are independent, we only discuss a single
target node𝑚 in the following sections for brevity.

3.1 Problem Statement
We formulate spatio-temporal extrapolation in the NPs framework
and first define the context set C containing nodes with exogenous
covariates and observed data {(𝑋𝑛, 𝑌𝑛)}𝑁𝑛=1 ∈ R𝑁×𝑇×(𝑑𝑥+𝑑𝑦 ) . Our
goal is to learn a posterior predictive distribution 𝑝 (𝑌D |𝑋D , C, 𝐴)
to generate 𝑌D ∈ R𝑀×𝑇×𝑑𝑦 over the same time period in the
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Figure 2: Graphical model with three layers for illustration.
𝑉 𝑙𝑚, 𝑍

𝑙
𝑚 , 𝐻 𝑙𝑛 ∈ R𝑇×𝑑𝑙 are deterministic representations, latent

variables of a target node𝑚 and representations of a context
node. 𝑒 ∈ R𝑑0 is the learnable target token. The shadow circle,
STRL, GBA denote an observed variable, a spatio-temporal
representation learning, and Graph Bayesian Aggregation.

target set 𝐷 where𝑀 is the total number of target nodes, given the
covariates 𝑋D , the context set C, and the adjacency matrix 𝐴. In
this paper, we use subscript𝑚 and 𝑛 to index target and context
nodes respectively, and adopt the terms location, node, and sensor
interchangeably.

3.2 Spatio-Temporal Representation Learning
The deterministic stage has three building blocks to capture spatial
and temporal correlations: learnable target token, dilated causal
convolution, and cross-set graph convolution. We introduce them
individually and then illustrate the overall learning framework.

Learnable Target Token. Our network takes sensor data and co-
variates as inputs; however, the data𝑌𝑚 of a target node is unknown.
Existing methods typically preprocess it by either filling it with
zeros [2, 45] or employing linear interpolation to estimate its val-
ues [14]. However, using zero to represent target variables can be
confusing, as it may be interpreted as the semantic zero within
the dataset. Moreover, interpolation incurs large errors, which also
hampersmodel performance. Inspired byMasked AutoEncoder [13],
we leverage a shared learnable token 𝑒 ∈ R𝑑0 as embeddings for
target nodes, while using an embedding layer with the parameter
𝑊 ∈ R𝑑𝑦×𝑑0 to get embeddings for context nodes. The token is opti-
mized by the network to identify a position in the feature space that
represents the target node, which avoids inferior preprocessing.

Cross-Set Graph Convolution Layer. Graph convolution is a sem-
inal operation to learn spatial relations in a graph structure. Ex-
isting GCNs methods typically treat dependencies over all nodes
equally [14, 45]. However, in our task, relations across the target and
context sets take priority due to their direct influence on the target
nodes. Based on this insight, we argue that disregarding internal
relations within the two sets does not adversely affect performance
and propose cross-set graph convolution (CSGCN), in which only
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Figure 3: The pipeline of the spatio-temporal representation
learning network, where we first capture temporal depen-
dencies using the DCConv and then learn spatial relations
by CSGCN. Embed denotes an embedding layer.

dependencies across the set C and D are captured. Specifically,
given the representation of the target node𝑉 𝑙−1

𝑚 ∈ R𝑇×𝑑𝑙−1 at layer
𝑙 − 1, we update it by its neighbors 𝐻 𝑙−1

𝑛 in the context set up to
𝐾-hop, with each neighbor weighted by the adjacency weight𝐴𝑘𝑚,𝑛 :

𝑉 𝑙𝑚 =

𝐾∑︁
𝑘=0

𝑉 𝑙−1
𝑚 + ∑

𝑛∈N𝑐
𝑘
(𝑚) 𝐴

𝑘
𝑚,𝑛𝐻

𝑙−1
𝑛

1 + ∑
𝑛∈N𝑐

𝑘
(𝑚) 𝐴

𝑘
𝑚,𝑛

𝑊 𝑙
𝑘
, (3)

where𝑊 𝑙
𝑘
∈ R𝑑𝑙−1×𝑑𝑙 are learnable parameters and N𝑐

𝑘
(𝑚) is 𝑘-

hop neighbors of the target node 𝑚 indexed from 𝐴𝑘 . Note that
when 𝑙 = 0, 𝑉 0

𝑚 is the broadcast target token and 𝐻0
𝑛 is the con-

text embeddings. Compared to traditional GCNs, CSGCN offers
improved efficiency, reducing the computational complexity from
O((𝑁 +𝑀)2) to O(𝑁 ×𝑀). Despite this efficiency gain, it maintains
strong learning capabilities as demonstrated in the experiments.

Dilated Causal Convolution Layer. We employ dilated causal con-
volutions (DCConv) [48] to capture temporal dependencies. Un-
like the recurrent structure, it learns temporal relations over long
sequences by stacking causal layers. This approach proves advan-
tageous as the number of layers is considerably smaller than the
length of the sequence, mitigating the issue of transition collapse
in the later stage. Specifically, at time 𝑡 , a 1D causal convolution
learns a temporal representation ℎ𝑙

𝑖,𝑡
∈ R𝑑𝑙 for node 𝑖:

ℎ𝑙𝑖,𝑡 = 𝐻
𝑙−1
𝑖 ★K𝑙 (𝑡) =

𝑘−1∑︁
𝑠=0

K𝑙 (𝑠) ⊙ 𝐻 𝑙−1
𝑖 (𝑡 − 𝜂 × 𝑠), (4)

where 𝐻 𝑙−1
𝑖

∈ R𝑇×𝑑𝑙−1 is a node representation at the previous
layer, ★K𝑙 means a DCConv with the kernel size 𝑐 × 𝑑𝑙−1 × 𝑑𝑙 , and
⊙ is the Hadamard product. The dilation factor 𝜂 is initialized to 1
with an exponentially increasing rate of 2 [40] and zero-padding is
used to ensure the inputs and outputs have the same time length 𝑇 .

Learning Framework. As shown in Figure 3, each layer of the
network first applies a CSGCN to model spatial relations, followed
by a DCConv to capture temporal dependencies for node represen-
tations. Additionally, the features of covariates, learned through a

1 × 1 convolution, are incorporated into the node representations.
Note that we do not explicitly involve covariates in CSGCNs and
DCConvs, as they may exhibit different spatio-temporal dependen-
cies or even lack relations in certain scenarios [39]. By stacking
layers with skip connections, the representations of the target node
are obtained in which each layer maintains temporal dependencies
at various scales, with upper layers capturing long-range relations
and lower layers comprising fine-grained information. Thus, the
stochastic stage is able to access different scales through its hierar-
chical dependency.

3.3 Graph Bayesian Aggregation
The core component for the stochastic stage is our proposed Graph
Bayesian Aggregation, which aggregates information from context
nodes and derives latent variables 𝑍 𝑙𝑚 ∈ R𝑇×𝑑𝑙 describing stochas-
tic processes over target nodes. Figure 4 illustrates the aggregation
process. Based on Bayes’ theorem [3], we assume a prior 𝑝 (𝑍 𝑙𝑚)
over the target node. Then for each context node 𝑛, a latent observa-
tion model 𝑝 (𝑅𝑙𝑛 |𝑍 𝑙𝑚, 𝐴𝑚,𝑛) is derived in which its mean conditions
on a linear transformation of 𝑍𝑚 and 𝐴𝑚,𝑛 . Thus once observe 𝑅𝑙𝑛 ,
the latent variable 𝑍 𝑙 is updated through its posterior:

𝑝 (𝑍 𝑙𝑚 |{(𝑅𝑙𝑛, 𝐴𝑚,𝑛)}𝑁𝑛=1) =
∏
𝑛∈N𝑐

1 (𝑚) 𝑝 (𝑅𝑙𝑛 |𝑍 𝑙𝑚, 𝐴𝑚,𝑛)𝑝 (𝑍 𝑙𝑚)∏
𝑛∈N𝑐

1 (𝑚) 𝑝 (𝑅𝑙𝑛)
,

(5)
where we suppose the latent observations are independent and only
consider the 1-hop neighbor to simplify the computation. The prior
𝑝 (𝑍 𝑙𝑚) follows a factorized Gaussian:

𝑝 (𝑍 𝑙𝑚) = N(𝑍 𝑙𝑚 |𝜇
𝑍 𝑙
𝑚
, diag(𝜎2

𝑍 𝑙
𝑚

)),

(𝜇
𝑍 𝑙
𝑚
, 𝜎
𝑍 𝑙
𝑚
) = Enc𝑙𝑍 (𝑍

𝑙+1
𝑚 ,𝑉 𝑙𝑚),

(6)

where 𝜇
𝑍 𝑙
𝑚
and 𝜎2

𝑍 𝑙
𝑚

are mean and variance learned by Enc𝑙
𝑍
(·) that

will be discussed in the following section. For the latent observation
model, we also impose a factorized Gaussian. Note that instead of
learning its mean, we learn the observation 𝑅𝑙𝑛 directly together

...
𝒞

Z!"#$

𝐻!" 𝐻#" 𝐻$"
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Figure 4: Graph Bayesian Aggregation. Enc𝑙
𝑍
(·) and Enc𝑙

𝑅
(·)

are neural networks that learn mean and variance for the
prior and latent observation distribution.
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with its variance𝜎2
𝑅𝑙𝑛

, which guarantees valid Gaussian conditioning
during inference [41]:

𝑝 (𝑅𝑙𝑛 |𝑍 𝑙𝑚, 𝐴𝑚,𝑛) = N(𝑅𝑙𝑛 |𝐴𝑚,𝑛𝑍 𝑙𝑚, diag(𝜎2
𝑅𝑙𝑛

)),

(𝑅𝑙𝑛, 𝜎𝑅𝑙𝑛 ) = Enc𝑙𝑅 (𝐻
𝑙
𝑛),

(7)

where 𝑅𝑛 and 𝜎2
𝑅𝑛

are parameterized by Enc𝑙
𝑅
(·). The Gaussian

assumption avoids an intractable computation of the marginal like-
lihood of the posterior’s denominator. In fact, we can calculate
it easily by Gaussian conditioning in a closed-form solution. (see
proof in Appendix B):

𝜎2
𝑍 𝑙
𝑚

=

[(
𝜎
𝑍 𝑙
𝑚

)−2
+

∑︁
𝑛∈N𝑐

1 (𝑚)

(
𝜎
𝑅𝑙𝑛

/𝐴𝑚,𝑛
)−2

]−1
, (8)

𝜇
𝑍 𝑙
𝑚

= 𝜎2
𝑍 𝑙
𝑚

(
𝜇
𝑍 𝑙
𝑚
/𝜎2
𝑍 𝑙
𝑚

+
∑︁

𝑛∈N𝑐
1 (𝑚) 𝐴𝑚,𝑛𝑅𝑛/𝜎

2
𝑅𝑙𝑛

)
, (9)

where 𝜎2
𝑍 𝑙
𝑚

and 𝜇
𝑍 𝑙
𝑚
are updated parameters and the operations are

conducted in an element-wise manner. With factorization, the con-
ditioning is efficient to compute, avoiding costly matrix inversion.
In addition, all the calculations are differentiable so that GBA can
be optimized in an end-to-end way by stochastic gradient descent.

There are significant implications behind the aggregation. First,
it incorporates the graph structure into the model by applying
a linear transformation through the adjacency matrix, which is
equivalent to GCNs when neglecting uncertainty terms. This sug-
gests that GBA has similar learning abilities to GCNs. Second, the
aggregation takes the uncertainties of nodes into consideration,
which is a compelling property against previous methods. From
the equations, the contribution of a context node is determined
by its learned observation 𝑅𝑙𝑛 , the variance 𝜎𝑅𝑙𝑛 , and the distance
weight 𝐴𝑚,𝑛 . Specifically, Equation 8 gives a reasonable assump-
tion that a context node located at a greater distance would provide
less confident information. Additionally, Equation 9 implicates a
node’s contribution diminishes when its associated variance 𝜎

𝑅𝑙𝑛
is

large, signifying higher ambiguity. This theoretically guarantees
the model’s robustness when dealing with noisy data.

3.4 Generative Process
The target latent variable 𝑍 𝑙𝑚 depends on its representation𝑉 𝑙𝑚 and
those of the context nodes 𝐻 𝑙 . The longer-range temporal depen-
dencies are transited by conditioning𝑍 𝑙𝑚 on𝑍 𝑙+1

𝑚 , forming a vertical
time hierarchy. In practice, given 𝑉 𝑙𝑚 and a sample from 𝑝 (𝑍 𝑙+1

𝑚 ),
the network Enc𝑙

𝑍
(𝑍 𝑙+1
𝑚 ,𝑉 𝑙𝑚) first learns a prior 𝑝 (𝑍 𝑙𝑚) over the

target node in Equation 6. Then, the deterministic representations
of context nodes are adopted to learn their latent observations by
Enc𝑙

𝑅
(𝐻 𝑙𝑛) in Equation 7. Next, parameters of 𝑝 (𝑍 𝑙𝑚) are updated

according to Equation 8 and 9. After the bottom layer 𝑙 = 1, a
likelihood model concatenates samples 𝑍𝑚 = (𝑍 1

𝑚, ...𝑍
𝐿
𝑚) from all

layers and the target node’s exogenous covariates 𝑋𝑚 to predict its
extrapolations 𝑌𝑚 . Formally, the generative process of STGNP is
summarized as:

𝑝 (𝑌𝑚, 𝑍𝑚 |𝑋𝑚, C, 𝐴) = 𝑝 (𝑌𝑚 |𝑋𝑚, 𝑍𝑚)
𝐿∏
𝑙=1

𝑝 (𝑍 𝑙𝑚 |𝑍 𝑙+1
𝑚 ,𝑉 𝑙𝑚, 𝐻

𝑙 , 𝐴),

(10)

where the first term is a likelihood; the second term denotes a
conditional prior aggregated through the GBA. Note that at the top
layer 𝐿, 𝑍𝐿+1

𝑚 = 0 and the likelihood is assumed to be a factorized
Gaussian distribution.

3.5 Inference and Optimization
Typically, closed-form solutions for non-linear transitions and like-
lihood do not exist; thus we train the model through variational
approximation. The approximated posterior 𝑞(𝑍𝑚 |C ∪ D, 𝐴) has
the same structure as the conditional prior but takes target node
data 𝑌𝑚 as inputs. Then the deterministic and stochastic modules
can be optimized together by the evidence lower-bound (ELBO):

log𝑝 (𝑌𝑚 |𝑋𝑚, C, 𝐴) ≥ E𝑞 (𝑍𝑚 ) [log 𝑝 (𝑌𝑚 |𝑋𝑚, 𝑍𝑚)]
− KL(𝑞(𝑍𝑚 |C ∪ D, 𝐴) | |𝑝 (𝑍𝑚 |𝑋𝑚, C, 𝐴)).

(11)

Given the hierarchical structure of Equation 10, the Kullback–Leibler
divergence term KL can be further decomposed as:

KL(·| |·) =
𝐿∑︁
𝑙=1
E
𝑞 (𝑍 𝑙+1

𝑚 ) [KL(𝑞(𝑍
𝑙
𝑚 |𝑍 𝑙+1

𝑚 ,𝑉 ′
𝑚
𝑙
, 𝐻 𝑙 , 𝐴)

| |𝑝 (𝑍 𝑙𝑚 |𝑍 𝑙+1
𝑚 ,𝑉 𝑙𝑚, 𝐻

𝑙 , 𝐴)],

(12)

where unlike using the learned token, 𝑉 ′
𝑚

0 is the feature embed-
dings of 𝑌𝑚 . Following [9], we use the same variational module to
approximate the conditional prior so that 𝑝 (·) = 𝑞(·) in Equation 12
During optimization, ELBO can be minimized using stochastic gra-
dient descent with the reparameterization trick [19].

4 EXPERIMENTS
To evaluate the performance and properties of STGNP, we con-
ducted experiments to answer the following questions:
• Q1: How does STGNP perform on real-world datasets compared
to other baselines?

• Q2: What is the quality of the uncertainty estimates?
• Q3: What is the effect of each component in our model, e.g., the
learnable token, CSGCN, DCConv and GBA.

• Q4: Is STGNP resistant to different missing ratios in datasets?
• Q5: Is it sensitive to hyperparameters and prone to overfitting?
• Q6: Does STGNP show robust generalizability when the domain
of sensors changes?

4.1 Experimental Setup
4.1.1 Dataset Descriptions. We carry out experiments on three
real-world spatio-temporal datasets.
• Beijing [51]: Beijing contains air quality indexes (AQI) from 36
stations and district-level meteorological attributes. Following [5,
12], we aim to extrapolate the AQI of PM2.5, PM10, and NO2,
using meteorological attributes such as temperature, humidity,
pressure, wind speed, direction, and weather as covariates.

• London1: We adopt London to evaluate the performance on dif-
ferent domains to answer Q6. It collects signals from 24 stations.
Note that some baselines use non-publicly available covariates
like POIs in the above two datasets. To ensure a fair comparison,
we do not utilize them for all models in this work.

1https://www.biendata.xyz/competition/kdd_2018/
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• UrbanWater [22, 26, 27]: The urban water quality data comes
from 15 monitoring stations in Shenzhen, which collects 3 water
measures of water quality: residual chlorine (RC), turbidity (TU),
and power of hydrogen (pH). Following [26], we extrapolate RC
given exogenous covariates TU and pH.

4.1.2 Baselines. We consider eight baselines which can be catego-
rized into three classes.
• Statistical models: We utilize KNN, IDW [28], RF [7], and
ANCL [32]. ANCL is a GPs-based framework that designs spe-
cialized kernels for different data attributes.

• Neural Networkmethods:We take ADAIN [5] andMCAM [12]
as NNs baselines. ADAIN uses MLP and RNN layers for static and
dynamic data, followed by an attention mechanism to aggregate
features, whereas MCAM introduces multi-channel attention
blocks for static and dynamic correlations.

• Neural Processes approaches: We modify SNP [38] and name
the variant as SGNP. As SNP cannot deal with graph data, we
add a cross-set graph network at each recurrent step before the
aggregation. SGANP is an advanced version of SGNP modified
from [33], which utilizes attention mechanisms as the aggregator.
Our model, STGNP, is based on a probabilistic framework and

is a general method that is not tailored to specific tasks. It can
also be applied in situations where exogenous covariates are not
available by simply removing the corresponding causal convolution
blocks. In contrast, ANCL relies on periodic and categorical kernels
and MCAM utilizes horizontal and vertical wind speeds that are
specific to the air quality task. SGNP and SGANP have a similar
NP framework to ours, but we abandon the recurrent structure and
propose GBA to aggregate nodes under a Bayesian framework.

4.1.3 Evaluation Strategy and Hyperparameters. In Figure 5, we
illustrate the evaluation strategy for experiments. As we lack fine-
grained data for the areas, we manually set aside 30% of existing
stations in the dataset as target nodes for reporting performance.
The remaining 70% is used for training purposes, ensuring a ratio
of 3𝑁 = 7𝑀 . This ensures that target nodes will not involve in the
training phase. The data is sequentially divided into three segments:
an 80% training set, a 10% validation set, and a 10% test set. During
training and validation, we use 𝑁 − 3 nodes to extrapolate the
remaining 3 randomly selected nodes. We report extrapolation
metrics of MAE, MSE, and MAPE of the target stations. Since our
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Figure 5: Evaluation strategy and dataset division. During
testing, we use context nodes to extrapolate target nodes.

model, SGNP, and SGANP contain stochastic modules, we adopt
the mean of distributions directly, instead of sampling, to report
the results. The time window 𝑇 is 24 and the adjacency matrix
is constructed based on the locations of stations, normalized by a
thresholded Gaussian kernel [37]. It is worth noting that, in the case
of NNs, data processing is necessary to handle missing values in the
dataset. For this reason, we employ linear interpolation to fill in the
missing values for ADAIN andMCAM, while for the other baselines,
missing values are left as zero. Hyperparameters are the same on all
datasets for STGNP. The deterministic learning stage has 3 layers
with a kernel size 𝑘 = 3 and channel numbers [16, 32, 64]. The
stochastic stage is a 3-layer 1 × 1 convolutions module and the
channels of latent variables are [16, 32, 64]. The likelihood function
is a 3-layer 1×1 convolutionwith 128 channels in each layer. STGNP,
ADAIN, MCAM, SGNP, and SGANP are implemented with PyTorch
and trained on an NVIDIA A100 GPU. We repeat each experiment
5 times and report the average and variance of the metrics. Our
implementations2 are publicly available.

4.2 Overall Performance
To answerQ1, we report the overall results of baselines over Beijing
and Water datasets, as shown in Table 1. Note that ANCL and
MCAM require meteorological features, so they cannot be applied
to theWater dataset. From the table, we see that STGNP consistently
outperforms other baseline models with a notable margin, with
the lowest errors on all datasets. Moreover, we have the following
observations. First, the GPs model ANCL outperforms the other
statistical models, indicating that GPs have the essential ability to
capture complex dependencies with dedicated kernels. Second, NNs
models surpass the above methods on all datasets because of their
strong learning capability. Third, we find that SGNP and SGANP
cannot consistently outperform NNs, possibly due to the transition
collapse of the recurrent structure which may cause them to ignore
the input contexts. Comparing these two models, although the
attention aggregator performs better than the mean aggregator on
tasks like computer vision, this is not always the case for graph data.
This is because the data is constrained by a graph, which should
be considered explicitly. Our STGNP has the best results due to the
use of causal convolutions to alleviate transition collapse and the
GBA to take into fact node uncertainties.

Another interesting discovery is that our model, SGNP, SGANP,
and ANCL exhibit lower metric variances compared to other NN
models. Evidently, for PM10 concentrationswith large extrapolation
errors, the metric variances for these models are small whereas for
ADAIN and MCAM, their MAE and RMSE reach high values of 1.3,
3.4, and 3.2, 5.5, separately. The primary reason for the models with
low variances is their ability to model data in a probabilistic manner
and their awareness of uncertainty. This characteristic enables the
models to be robust to parameter initialization and reduces the
chance of getting trapped in local minima.

We also visualize extrapolation results in Figure 6 which illus-
trates the PM2.5 extrapolations of the five best models on the Beijing
dataset, together with the ground truth. We observe that our model
produces the most accurate results toward the ground truth data.
This is particularly evident during the sudden change in the data

2https://github.com/hjf1997/STGNP
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Table 1: Performances of STGNP and the baselines on two datasets. We denote the metric variance as Δ𝑣𝑎𝑟 = 0.1 × 𝑣𝑎𝑟 .

Model Beijing-PM2.5 Beijing-PM10 Beijing-NO2 Water-RC

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

KNN 28.08±Δ0 39.87±Δ0 0.62 61.11±Δ0 99.20±Δ0 0.61 24.18±Δ0 31.36±Δ0 0.95 0.21±Δ0 0.25±Δ0 0.48
IDW 39.11±Δ0 48.90±Δ0 0.73 72.72±Δ0 116.28±Δ0 0.69 24.15±Δ0 29.76±Δ0 0.96 0.16±Δ0 0.21±Δ0 0.31
RF 24.20±Δ0 35.31±Δ0 0.54 48.35±Δ0 80.75±Δ0 0.51 23.49±Δ0 30.33±Δ0 0.92 0.17±Δ0 0.22±Δ0 0.35
ANCL 19.72±Δ5 30.87±Δ8 0.44 32.43±Δ4 53.15±Δ6 0.31 20.95±Δ3 26.50±Δ6 0.79 _ _ _
ADAIN 16.81±Δ16 27.00±Δ26 0.32 31.25±Δ13 55.08±Δ34 0.28 16.86±Δ4 22.87±Δ11 0.54 0.15±Δ0 0.19±Δ0 0.27
MCAM 16.40±Δ10 26.47±Δ11 0.34 32.17±Δ32 56.41±Δ55 0.30 17.89±Δ1 23.89±Δ1 0.63 _ _ _
SGNP 17.82±Δ1 28.51±Δ9 0.37 33.76±Δ2 63.96±Δ9 0.29 17.26±Δ1 22.74±Δ0 0.59 0.14±Δ0 0.17±Δ0 0.26
SGANP 17.06±Δ2 26.74±Δ3 0.33 31.52±Δ3 55.96±Δ6 0.28 17.42±Δ2 23.01±Δ0 0.62 0.15±Δ0 0.18±Δ0 0.26
STGNP 14.75±Δ3 25.20±Δ4 0.28 27.82±Δ3 49.20±Δ7 0.26 15.37±Δ1 21.98±Δ3 0.45 0.11±Δ0 0.16±Δ0 0.23

after 9 AM on March 29, as highlighted in the red box. This demon-
strates the effectiveness of our model in capturing both spatial
information from surrounding sensors and temporal dependencies.

4.3 Uncertainty Estimates Analysis
One of the key benefits of our STGNP model is its capability to
provide high-quality uncertainty estimates. To answer Q2, we first
evaluate the qualitative results to show that they provide valuable
information. In Figure 6, our model consistently has more accu-
rate extrapolations compared with baselines. However, at 3–6 AM,
March 28 shown in the blue box, all methods fail to generate precise
data. Significantly, our model renders higher uncertainties (orange
shadow), indicating possible inaccurate extrapolations. This abil-
ity to accurately estimate uncertainty can be extremely useful in
practical decision-making. For instance, if the uncertainty for a
location is consistently high, researchers could use this information
to prioritize the deployment of sensors in order to achieve more
accurate data analysis with minimal expenditure.

Next, to evaluate the quality of our estimates quantitatively, we
follow the approach used in [4] and examine the number of extrap-
olations that fall in the uncertainty intervals. Assume a Gaussian
likelihood with variance 𝜎2 to suggest uncertainty, the intervals
1𝜎, 2𝜎, 3𝜎 centered at the predicted data cover ≈ 68.3%, 95.5%, 99.7%
of the probability density. We posit that a better model should have
a higher proportion of points falling in the intervals. Table 2 reports

Figure 6: PM2.5 extrapolation results of the Beijing dataset
during March 28 – 31, 2015.

the statistical results of the proportions for ANCL, SGNP, SGANP,
and STGNP. It shows that all NPs methods have superior perfor-
mance compared to ANCL and that our STGNP outperforms SGNP
and SGANP in most metrics. This is likely due to the fact that our
model also considers uncertainties in context nodes through GBA.

Table 2: Proportions (%) of data falling in the intervals of
1𝜎 − 3𝜎 , where 𝜎 is the standard deviation of the likelihood.

Model Beijing-PM2.5 Beijing-PM10 Beijing-NO2 Water-RC

1𝜎 / 2𝜎 / 3𝜎 1𝜎 / 2𝜎 / 3𝜎 1𝜎 / 2𝜎 / 3𝜎 1𝜎 / 2𝜎 / 3𝜎

ANCL 44 / 67 / 86 16 / 30 / 49 35 / 70 / 88 _
SGNP 71 / 92 / 96 72 / 91 / 97 71 / 95 / 98 62 / 90 / 95
SGANP 73 / 92 / 97 78 / 93 / 97 69 / 91 / 96 61 / 92 / 97
STGNP 77 / 92 / 98 85 / 96 / 98 76 / 94 / 98 66 / 94 / 99

4.4 Ablation Study
To assess the contribution of each component to the overall perfor-
mance of our model and answer Q3, we conduct ablation studies
and present the results in Figure 8. In each study, we only modify
the corresponding part while leaving other settings unchanged.

Effect of learnable token: We remove the learned token and
use linear interpolation to preprocess target nodes (w/o TK). The
results unveil that the token has a positive impact on the model’s
performance. We believe this is because using simple interpolation
to represent all signals of the target nodes leads to significant errors.
Mingled with context nodes’ signals, this hobbles the model’s learn-
ing ability, and even the uncertainty estimates struggle to rectify
them. In contrast, the learned token identifies a suitable position in
the feature space that accurately indicates the target nodes, thereby
avoiding this problem.

Effect of CSGCN: To evaluate the effectiveness of cross-set
graph convolutional network, we compare it to three variants: (a)
w/o CSGCN: removing CSGCN in our model; (b) r/p GCN: replacing
CSGCN with a standard GCN. (c) r/p RGCN: replacing it with an
advance relational GCN [34]. Our results show that removing the
spatial learning module CSGCN leads to a degradation in perfor-
mance, underscoring the importance of capturing spatial dependen-
cies. Additionally, we find our CSGCN achieves performance on
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(a) Missing ratios of data (b) Channels of Stages w.r.t. 𝑢 (c) Channels of likelihood module (d) Number of STGNP Layers

Figure 7: Data missing ratio and hyperparameter study. In (b), channel numbers are [8𝑢, 16𝑢, 32𝑢] for causal convolutions and
latent variables with 𝑢 ranging from 1 to 4.

par with the standard GCN, which learns dependencies among all
nodes in two sets, and even slightly better than the RGCN, which
explicitly characterizes categorical relations among nodes. This ob-
servation suggests that modeling dependencies across two sets are
sufficient to achieve satisfactory performance, thereby validating
our insight.

Effect of GBA: Results from experiments where GBA is dis-
carded (w/o GBA) or replaced with a max aggregator (r/p MAX),
a mean aggregator (r/p MEAN), or an attention aggregator (r/p
ATTN) highlight the critical role of GBA. Removing or replacing
it leads to a significant decline in results on most datasets. This is
likely because context nodes have varying levels of ambiguities.
Without uncertainty estimates, the model has difficulty extracting
valuable context information, which hampers the performance of
the likelihood module.

Effect of causal convolution:We replace our temporal learning
framework with an RNN structure (r/p RNN) and the results show a
strong deterioration in the model’s performance. The outcome indi-
cates transition collapse, which occurs in an RNN because of a large
number of transitions, can have a substantial impact on the model’s
capability. In contrast, our STGNP model effectively mitigates this
issue by significantly reducing the number of transitions.

Figure 8: Effectiveness of different modules in STGNP.

4.5 Missing Ratio Study
Evaluating the model’s performance on data with missing values
is important, as real-world sensors might lose signals due to un-
predictable factors. To answer Q4, we train models using manually
corrupted data by randomly replacing a ratio of data with zero.
Following the same procedure, we preprocess them with linear
interpolation for NNs, while leaving the missing values as zero for
NPs models. The results, which illustrate the MAE performance
of various baselines for ratios ranging from 0.2 to 0.7, are shown
in Figure 7(a). We observe significant performance degradation
in ADAIN and MCAM, which can be similarly attributed to large
errors caused by interpolation. In contrast, STGNP and SGANP
demonstrate better performance, with STGNP performing the best
results. The key factor behind their success lies in the ability of
their likelihood modules to capture uncertainties associated with
the target nodes. This capability effectively mitigates the impact
of missing data. Compellingly, the GBA module in our STGNP
is able to further enhance its robustness by accurately modeling
uncertainties in the signals of individual sensors.

4.6 Hyperparameter Study
To answer Q5, we study the performance of STGNP under various
hyperparameter settings. We first explore the impact of the number
of channels in two stages. Following the default setting of the chan-
nel numbers [8𝑢, 16𝑢, 32𝑢] where𝑢 = 2, we vary𝑢 from 1 to 4. From
Figure 7(b), we observe that even with the drastically increasing
number of learnable parameters (violet curves), the MAE metrics
(green, blue, red, and yellow curves) keep stable. Then, we examine
the effect of changing the number of channels of the likelihood mod-
ule ranging from 32 to 256 and also observe stable performances,
as shown in Figure 7(c). Finally, we investigate the effect of the
number of layers ranging from 1 to 5. From Figure 7(d), the perfor-
mances initially improve as it increases, but start to oscillate since
3 layers. This can be explained by the perceptive field of the model,
where 1 and 2 layers correspond to fields of 3 and 7, respectively.
These limited perceptive fields constrain the model’s performance.
However, once the perceptive field becomes sufficiently large (i.e.,
at 3 layers and above), the model captures long enough temporal
dependencies, leading to improved and more stable performance.
These findings suggest STGNP is insensitive to hyperparameters,
as long as the perceptive field is adequately large.

759



Graph Neural Processes for Spatio-Temporal Extrapolation KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

4.7 Cross-Domain Evaluation
To assess the generalization ability of models and answer Q6, we
train them on the Beijing dataset and evaluate results using the
London dataset. Table 3 reports the performances of PM2.5, where
the first and second columns of MAE mean the performance of
training models using London data directly and training on Beijing
while evaluating on London. We confirm that our STGNP has the
best results in both training approaches. In addition, when mea-
suring the performance discrepancy, we also discover that STGNP
has the smallest performance degeneration, especially compared to
NNs models. This is likely due to STGNP’s strong spatio-temporal
learning capability as well as its non-parametric design inherited
from GPs. This allows the model to learn high-level spatio-temporal
principles in the feature space and to instantiate these dependencies
during testing by constructing a stochastic process from the sets.

Table 3: Performances of cross-domain evaluation.

Model Beijing→London-PM2.5

MAE RMSE MAPE

ADAIN 4.35/3.57 (↓0.78) 5.79/4.69 (↓1.10) 0.62/0.42 (↓0.20)
MCAM 4.38/3.78 (↓0.60) 5.38/4.80 (↓0.58) 0.68/0.49 (↓0.19)
SGNP 4.31/4.11 (↓0.20) 5.41/5.12 (↓0.29) 0.66/0.60 (↓0.06)
SGANP 3.85/3.61 (↓0.24) 5.15/4.82 (↓0.33) 0.52/0.45 (↓0.07)
STGNP 3.20/3.03 (↓0.17) 4.30/4.26 (↓0.04) 0.40/0.33 (↓0.07)

5 RELATEDWORK
5.1 Spatio-Temporal Extrapolation
Spatio-temporal extrapolation is a task that involves predicting the
state of a surrounding environment based on known information.
Early works in this area use statistical machine learning methods,
such as 𝐾-Nearest Neighbors (KNN) and Random Forest (RF) [7],
to solve this problem. KNN approaches rely on linear dependencies
between data points, while RF can capture non-linear dependencies.
However, these methods only consider spatial relations and strug-
gle to model more complex and dynamic correlations. Gaussian
Processes [35] learn to construct stochastic processes, in which
the spatio-temporal dependencies are captured by flexible kernels
that are designed to handle different types of features [21]. For
instance, Patel et al. [32] used periodical and Hamming distance
kernels for temporal and categorical features respectively. However,
these kernels are tailored to specific scenarios and the cubic time
complexity limits their applicability. Some approaches view extrap-
olation as a tensor completion task [49]. Based on a low-rank matrix
assumption, these methods capture the spatio-temporal patterns
while being efficient to optimize. However, they are transductive,
meaning that they can only infer the state of nodes involved in
the training process. They are not able to generalize to new nodes
that were not present in the training data. Recently, Neural Net-
works (NNs) have become the dominant paradigm. Cheng et al.[5]
proposed an attention model for air quality inference, where the
dynamic and static data are encoded by RNNs and MLPs, and the at-
tention mechanism integrates the features of nodes. Han et al. [12]
combined GCNs with a multi-channel attention module to improve

performance. However, NNs tend to struggle with learning uncer-
tainties and can overfit on datasets with low amounts of data. Some
NNs also view extrapolation as a kriging problem. For instance,
Appleby et al. [2] interpolate a node given its neighbors with time
information as extra features, and We et al. [45] learn the temporal
dynamics, explicitly. However, the first only captures spatial rela-
tions and the second cannot incorporate exogenous covariates. On
the contrary, our approach is able to achieve both goals.

5.2 Neural Processes Family
Neural Processes (NPs) combine the merits of both NNs and GPs [9],
which possess strong learning ability and uncertainty estimates. Ba-
sically, it induces latent variables over the context set, forming a con-
ditional latent variable model. Then, a likelihood module is utilized
to generate the target outputs. Le et al. [20] found that NPs suffer
an underfitting problem because of the incapable aggregation func-
tion (e.g., mean or sum). Then, Kim et al. [16] proposed Attentive
Neural Processes (ANP) to calculate the importance within/across
the context set and target set. Kim et al. [17] further proposed a sto-
chastic attention mechanism for aggregation where the attention
weights are inferred using Bayesian inference and Volpp et al. [41]
introduced a stochastic aggregator to aggregate context variables
directly. However, these works only consider the spatial domain
and cannot handle graph data. Singh et al. [38] first focused on
sequential data and proposed Sequential Neural Processes (SNP).
With a latent state transition function from a variational recurrent
neural network (VRNN) [6], it constructs a sequential stochastic
process for a timeline. Then, Yoon et al. [47] introduced Recurrent
Memory Reconstruction to compensate for the distribution shift in
a sequence. However, these recurrent structures have the transition
collapse problem, which can make it difficult to learn temporal re-
lations over long sequences. In contrast, our method utilizes casual
convolutions to alleviate the challenge.

6 CONCLUSIONS AND FUTUREWORK
We introduce Spatio-Temporal Graph Neural Processes, the first
framework for spatio-temporal extrapolation in the Neural Pro-
cesses family. Our model captures temporal relations and addresses
the transition collapse problem using causal convolutions while
effectively learning spatial dependencies using the cross-set graph
network. The Graph Bayesian Aggregation aggregates context
nodes in a way that takes into account their uncertainties and
enhances the learning ability of NPs on graph data. Experimental
results demonstrate the superiority of STGNP in terms of extrapo-
lation accuracy, uncertainty estimates, robustness, and generaliz-
ability. In the future, an intriguing direction would be to explore
STGNP for spatio-temporal forecasting, which is another funda-
mental task in the area. By aggregating historical representations,
the model could provide predictions about future time steps.
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A MATHEMATICAL NOTATION
We define the major mathematical notations in the paper in Table 4
for better understanding.

Table 4: Major notations used in the paper.

Notation Dimension Description

𝑁 ,𝑀 R1 number of context, target nodes
𝑇 R1 time length of a sequence
𝐴𝑚,𝑛 R1 weight between node𝑚 and 𝑛
𝑛,𝑚 R1 index of a context and target node
𝑑𝑙 , 𝑑𝑥 , 𝑑𝑦 R1 feature dimensionalities

C R𝑁×𝑇×(𝑑𝑥+𝑑𝑦 ) context set
D R𝑀×𝑇×(𝑑𝑥+𝑑𝑦 ) target set
𝐻 R𝑀×𝑇×∑𝐿

𝑙=1 𝑑𝑙 ) representations of context nodes

𝑋𝑛 , 𝑌𝑛 R𝑇×(𝑑𝑥+𝑑𝑦 ) covariates, data of a context node
𝑋𝑚 , 𝑌𝑚 R𝑇×(𝑑𝑥+𝑑𝑦 ) those of a target node
𝐻𝑛 R𝑇×

∑𝐿
𝑙=1 𝑑𝑙 representations of context node 𝑛

𝑉𝑚 R𝑇×
∑𝐿

𝑙=1 𝑑𝑙 representations of target node𝑚
𝑅𝑛 R𝑇×

∑𝐿
𝑙=1 𝑑𝑙 latent observations of node 𝑛

𝑍𝑚 R𝑇×
∑𝐿

𝑙=1 𝑑𝑙 latent variables of target node𝑚

B DERIVATION OF GRAPH BAYESIAN
AGGREGATION

In this section, we give formal derivations of the proposed Graph
Bayesian Aggregation. We first derive the general GBA without
factorization or specific graph stricture. We assume a latent prior
𝑍 over a target node (omitting subscript𝑚 for brevity). The latent
observation functions of all context nodes are an independent linear
transformation of 𝑍 following Gaussian distributions:

𝑝 (𝑍 ) = N(𝑍 |𝜇,Λ−1), (13)

𝑝 (𝑅𝑛 |𝑍 ) = N(𝑅𝑛 |𝐴𝑛𝑍, 𝐿−1
𝑛 ) For 𝑛 ∈ [1, 𝑁 ], (14)

where we use the precision matrix Λ and 𝐿 for convenience; 𝐴𝑛
is a transformation matrix, representing the graph structure. The
logarithmic joint probability over 𝑍 and [𝑅1, .., 𝑅𝑁 ] is:

ln 𝑝 (𝑍, 𝑅1, .., 𝑅𝑁 ) = ln 𝑝 (𝑍 ) + ln 𝑝 (𝑅1 ...𝑅𝑁 |𝑍 ) (15)

= −1
2
(𝑍 − 𝜇)𝑇Λ(𝑍 − 𝜇)

−1
2

𝑁∑︁
𝑛=1

(𝑅𝑖 −𝐴𝑖𝑍 )𝑇 𝐿𝑖 (𝑅𝑖 −𝐴𝑖𝑍 ) + Const,

where the second order terms can be decomposed as:

−1
2


𝑍

𝑅1
.
.
.

𝑅𝑁



Λ + ∑𝑁

𝑛=1𝐴
𝑇
𝑛𝐿𝑛𝐴𝑛 −𝐴𝑇1 𝐿1 · · · −𝐴𝑇

𝑁
𝐿𝑁

−𝐿1𝐴1 𝐿1 · · · 0
.
.
.

.

.

.
. . .

.

.

.

−𝐿𝑁𝐴𝑁 0 · · · 𝐿𝑁

︸                                                          ︷︷                                                          ︸
𝑃


𝑍

𝑅1
.
.
.

𝑅𝑁


.

According to [3], matrix 𝑃 above is the precision matrix of the joint
distribution, where the covariance matrix can be calculated as:

cov[𝑍, 𝑅1, .., 𝑅𝑁 ] = 𝑃−1 . (16)

Next, the linear terms in Equation 15 can be decomposed as:

𝑍⊤Λ𝜇 =
[
𝑍, 𝑅1, · · · , 𝑅𝑁

] [
Λ𝜇, 0, · · · , 0

]⊤
. (17)

Then from [3], the mean of the joint distribution is computed by:

E[𝑍, 𝑅1, .., 𝑅𝑁 ] = 𝑃−1 [
Λ𝜇, 0, · · · , 0

]⊤
=

[
𝜇,𝐴1𝜇, · · · , 𝐴𝑁 𝜇

]⊤
. (18)

Themean and covariance of themarginal distribution of 𝑝 (𝑅1, .., 𝑅𝑁 )
can be extracted from Equation 17 and 16:

E
[
𝑅1 · · · 𝑅𝑁

]
=

[
𝐴1𝜇, · · · , 𝐴𝑁 𝜇

]⊤
, (19)

cov[𝑅1 · · ·𝑅𝑁 ] =

𝐿−1

1 +𝐴1Λ−1𝐴⊤
1

.

.

.

𝐿−1
𝑁

+𝐴𝑁Λ−1𝐴⊤
𝑁

 . (20)

Finally, with 𝑝 (𝑍, 𝑅1, .., 𝑅𝑁 ), and 𝑝 (𝑅1, .., 𝑅𝑁 ), we could obtain the
probability of 𝑝 (𝑍 |𝑅1, .., 𝑅𝑁 ) through Gaussian conditioning, which
is also a Gaussian:∑

𝑍 |𝑅1 · · ·𝑅𝑁 =

(
𝐿 +

𝑁∑︁
𝑛=1

𝐴𝑛Λ𝐴
⊤
𝑛

)−1

, (21)

𝜇𝑧 |𝑅1 · · ·𝑅𝑁 =
∑
𝑧 |𝑅1 · · ·𝑅𝑁

(
Λ𝜇 +

𝑁∑︁
𝑛=1

𝐴𝑇𝑛𝐿𝑛𝑅𝑛

)
. (22)

In GBA, the Gaussian distributions assume to be factorized; thus
Λ−1 = diag(𝜎𝑧) and 𝐿−1

𝑛 = diag(𝜎𝑅𝑛 ). The transformation 𝐴𝑛 =

𝐼 (𝑎𝑛), where 𝑎𝑛 represents the distance between a target node and
the context node 𝑛. Then, the Gaussian can be further weight as:

𝜎2
𝑍 =

[
(𝜎𝑍 )−2 +

𝑁∑︁
𝑛=1

(
𝜎𝑅𝑛/𝑎𝑛

)−2
]−1

, (23)

𝜇𝑍 = 𝜎2
𝑍

(
𝜇𝑍 /𝜎2

𝑍 +
𝑁∑︁
𝑛=1

𝑎𝑛𝑅𝑛/𝜎2
𝑅𝑛

)
. (24)

C DERIVATION OF ELBO FOR STGNP
Here, we derive the evidence lower-bound (ELBO) for STGNP. For
brevity, we still omit the subscript𝑚.

log 𝑝 (𝑌 | 𝑋, C, 𝐴) = logE𝑞 (𝑍 | C∪D,𝐴)
𝑝 (𝑌, 𝑍 | 𝑋, C, 𝐴)
𝑞 (𝑍 | C ∪ D, 𝐴)

≥ E𝑞 ( ·)
[
log

𝑝 (𝑌 | 𝑋,𝑍 ) 𝑝 (𝑍 | 𝑋, C, 𝐴)
𝑞 (𝑍 | C ∪ D, 𝐴)

]
= E𝑞 ( ·)

[
log 𝑝 (𝑌 | 𝑋,𝑍 ) − log

𝑞 (𝑍 | C ∪ D, 𝐴)
𝑝 (𝑍 | 𝑋, C, 𝐴)

]
= E𝑞 ( ·)

log𝑝 (𝑌 | 𝑋,𝑍 ) − log

∏𝐿
𝑙=1 𝑞

(
𝑍 𝑙 | 𝑍 𝑙+1,𝑉 ′𝑙 , 𝐻 𝑙 , 𝐴

)
∏𝐿
𝑙=1 𝑞

(
𝑍 𝑙 | 𝑍 𝑙+1,𝑉 𝑙 , 𝐻 𝑙 , 𝐴

) 
= E𝑞 (𝑍 | C∪D,𝐴) [log𝑝 (𝑌 | 𝑋,𝑍 )] −
𝐿∑︁
𝑙=1
E𝑞 (𝑍 𝑙+1 )

[
KL

(
𝑞(𝑍 𝑙 |𝑍 𝑙+1,𝑉 ′𝑙 , 𝐻 𝑙 , 𝐴) | |𝑞(𝑍 𝑙 |𝑍 𝑙+1,𝑉 𝑙 , 𝐻 𝑙 , 𝐴)

)]
.

(25)
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Figure 9: Detailed Architecture of STGNP.

D EXPERIMENTAL DETAILS
D.1 STGNP Architectures
Our STGNP has two major architectural components for determin-
istic and stochastic learning as shown in Figure 9:
• Deterministic spatio-temporal stage: The core component of
this stage is the spatio-temporal learning module consisting of
dilated causal convolutions and cross-set graph neural networks.
Each layer contains a CSGCN to learn spatial dependencies and
a DCconv to model temporal relations of sensor data. A DCconv
has a kernel size of 𝑘 = 3 and the number of output channels is de-
noted by 𝑑 . A CSGCN includes a multilayer perceptron layer with
𝑑 neurons. We stack 3 layers with skip connections to capture
spatial-temporal dependencies with 𝑑 = [16, 32, 64]. The dilation
factor is set to have an exponentially increasing rate of 2 w.r.t
the layers so the receptive field reaches 15. Although this field
is smaller than the length of the sequence (𝑇 = 24), the ablation
study shows that it still produces satisfactory performance.

• Stochastic generative stage: The Graph Bayesian Aggregation
and the likelihood function are major modules in this stage. The
GBA includes a prior and a latent observation module. Both two
modules contain a 1-layer 1 × 1 convolution with 𝑑 kernels fol-
lowed by 2 1×1 convolutions to obtain themean and variance.We
stack 3 GBAs corresponding to the 3 blocks in the first stage with
𝑑 = [16, 32, 64]. The likelihood function generating extrapolation
results is a 3-layer 1 × 1 convolution with 128 channels.

D.2 Training Settings
All parameters are initialized with Xavier normalization [10] and
optimized by the Adam optimizer [18] with a learning rate of 10−3.

We train each model for 150 epochs. At each iteration, we randomly
sample 𝑁 − 3 nodes to extrapolate the remaining 3 nodes, with the
time length 𝑇 = 24. Note that the number of target nodes has an
impact on the performance of the trained models. We conducted
experiments to determine the optimal number of target nodes and
found that using 3 nodes generally resulted in the best performance
across all baseline models.

D.3 Cross-Domain Evaluation
We first learn models using the Beijing dataset and then evaluate
their performances on the London dataset. As the London dataset
lacks weather information, we remove this attribute in Beijing dur-
ing training. The other training procedures remain the same. Note
that we only investigate the performance of PM2.5 concentration
and exclude stations BX1, and HR1 due to their large portion of
missing values. This is because, for the London dataset, both PM10
and NO2 have a significant amount of missing data (5/7 stations
without any signal, and 2/1 stations with missing rates larger than
60%), which makes training unstable and the performance of the
models largely depends on the training and testing data split.

E ADDITIONAL VISUALIZATIONS
We present additional visualization results of STGNP and the base-
lines on the Beijing dataset. As shown in Figure 10, our model
consistently outperforms others on all time steps. Additionally,
on less accurate extrapolations, our model is able to yield large
uncertainties, which facilitates decision-making.

Figure 10: Visualizations of PM2.5, PM10, and NO2 extrapo-
lations of station 1019 on the Beijing dataset.
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