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ABSTRACT
Selecting the right set of hyperparameters is crucial in time series
forecasting. The classical temporal cross-validation framework for
hyperparameter optimization (HPO) often leads to poor test per-
formance because of a possible mismatch between validation and
test periods. To address this test-validation mismatch, we propose a
novel technique, H-Pro to drive HPO via test proxies by exploiting
data hierarchies often associated with time series datasets. Since
higher-level aggregated time series often show less irregularity and
better predictability as compared to the lowest-level time series
which can be sparse and intermittent, we optimize the hyperparam-
eters of the lowest-level base-forecaster by leveraging the proxy
forecasts for the test period generated from the forecasters at higher
levels. H-Pro can be applied on any off-the-shelf machine learning
model to perform HPO. We validate the efficacy of our technique
with extensive empirical evaluation on five publicly available hier-
archical forecasting datasets. Our approach outperforms existing
state-of-the-art methods in Tourism, Wiki, and Traffic datasets,
and achieves competitive result in Tourism-L dataset, without any
model-specific enhancements. Moreover, our method outperforms
the winning method of the M5 forecast accuracy competition.

CCS CONCEPTS
• Applied computing → Forecasting; • Computing method-
ologies → Cross-validation; Neural networks.
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1 INTRODUCTION
Time series data is often associated with a hierarchy. For example,
in the retail domain, daily sales of a certain product in a store
constitute a product-level time series. Aggregating all product-level
time series in the store at each time point gives a cumulative store-
level series consisting of the daily sales of that particular store.
Similarly, aggregated time series can be obtained at other levels
like department, state, and country [14]. The notion of generating
forecasts at every level of the data hierarchy is generally termed
as “hierarchical time series forecasting” [12], and it has been an
active area of research in recent years (see Section 3). Hierarchical
forecasting generally requires coherent forecasts at every level;
i.e., the forecast at an aggregated level should be the exact sum of
the forecasts of its children nodes in an associated hierarchy tree.
Accurate and coherent forecasts at different levels of the hierarchy
ensure that consistent and correct business decisions are taken at
different parts of an organization.

A hierarchical forecasting algorithm consists of two components
(either decoupled or integrated): a base-forecasting method, and a
reconciliation technique that ensures coherent forecasts. Recently,
complex machine learning (ML) models with a large number of hy-
perparameters are becoming popular in forecasting since they can
learn from multiple time series and leverage the shared information
between them, contrary to some of the classical forecasters like
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Figure 1: Variation of test error with (a) validation, and (b)
proxy errors in all HPO trials (dots) for a store-clustered
LightGBMmodel on M5 data. (a): Lowest validation errors do
not correspond to the lower range of test errors due to data
mismatch. (b): The lowest proxy error often selects a model
with better test error, and better linear fit is observed with
higher correlation, d , between test and proxy errors.

SARIMA, exponential smoothing, etc. Examples include gradient
boosting models like LightGBM [14], and DNN-based models like
DeepAR [19], N-BEATS [16], and Informer [24]. This leads to an
increase in the adoption of complex ML models for hierarchical
forecasting as well due to their superior performance [8, 15, 17, 18].

The performance of these models depends on hyperparameters
that are generally tuned on validation window(s) via temporal
cross-validation (TCV) [12]. TCV chronologically splits the historical
time series data into train and validation windows. Thus, the val-
idation windows often differ in characteristics from the test data.
The mismatch between validation and test is prevalent in time se-
ries compared to other ML domains because of varying statistical
properties of temporal data [2, 12]. The problem is exacerbated in
hierarchical forecasting because of higher data irregularity (and
sometimes intermittency) at the lowest level. This can lead to subop-
timal hyperparameter optimization (HPO) and poormodel selection,
particularly at the lowest level of the hierarchy (see Figure 1(a)).

We propose a novel HPO technique for hierarchical time series
forecasting. It is based on the frequent observation that time se-
ries at the lowest level of the hierarchy are sparse, irregular, and
sometimes intermittent in nature such as in [14]. However, the
aggregated series at higher levels are generally more consistent and
have better predictability. Based on this observation, we develop
H-Pro, a method for performing HPO of the lowest-level forecast-
ing model based on one or more proxy forecaster(s) at higher levels.
The proxy forecasters are trained on higher-level aggregated time
series, and their forecasts for the test period are obtained. The
lowest-level model treats these forecasts as proxies to the original
time series for the test period, and the HPO of the lowest-level
model is performed with respect to the higher-level proxy forecasts
instead of validation windows as done in conventional TCV (Fig-
ure. 2). Thus, by effectively leveraging the better predictability of
the aggregated series, the lowest-level models are regularized via
HPO. The lowest-level forecasts are then aggregated bottom-up
(Section 3) to derive higher-level forecasts leading to coherent and
accurate forecasts at all levels. From Figure 1(b), we can see that
H-Pro helps in model selection, i.e., choosing a model with the

minimum proxy error criteria corresponds to a much better test
error compared to conventional TCV.

1.0.1 Summary of contributions. (1) To address the commonly oc-
curring test-validation mismatch issue in forecasting, we propose
a novel technique, H-Pro that drives HPO via test proxies by ex-
ploiting the data hierarchy and better predictability of higher level
forecasters. (2) To the best of our knowledge, this is the first work
which empirically and theoretically demonstrate that we can obtain
coherent and accurate hierarchical forecasts just by employing hier-
archical proxy-guided HPO on off-the-shelf MLmodels. Specifically,
H-Pro outperforms state-of-the-art results in Tourism, Traffic,
and Wiki data, and achieves competitive result in Tourism-L data.
Moreover, H-Pro outperforms the winning method of the M5 fore-
cast accuracy competition. (3) State-of-the-art hierarchical reconcili-
ation methods like MinT and ERM (Section 3) can be computationally
expensive for datasets with large number of time series, but the pro-
posed H-Pro does not suffer from this scalability issue. A detailed
comparison is in Appendix A. (4) We also show in experiments that
H-Pro helps improve the performance of TCVwhen ensembled with
it, and hence, emphasize the complementary knowledge captured
by the method.

2 BACKGROUND AND NOTATIONS
2.1 Forecasting
Let G1:) represent a univariate time series of length ) , i.e., at any
time-point C , GC ∈ R. The task of forecasting is to predict � value(s)
in the future given the history G1:) ,

Ĝ)+1:)+� = 5 (G1:) ) (1)

where 5 (·) is the map learned by a forecasting algorithm A, and �
is the forecast horizon. Here we focus on algorithms that learn a
shared map 5 for multiple related time series, as these often work
best in practice (e.g., modern forecasting models like DeepAR, N-
BEATS, and LightGBM).

2.2 Hierarchical forecasting
A hierarchical time series dataset is associated with a hierarchy tree
that has ! levels (; = 1 for the top level, and ; = ! for the lowest
level). We denote the set of levels by [!] = {1, . . . , !}, and the nodes
at a level ; by [#; ] = {1, . . . , #; }. The time series at the leaf nodes
are called lowest-level series, and the time series at other nodes are
called higher-level/aggregated series. The higher-level series at any
node 9 ∈ [#; ] of level ; ∈ [!−1] follows the coherence criteria [12]:
G
;, 9
C =

∑
8∈�;,9

G
(;+1),8
C , where �;, 9 is the set of children of node 9 of

level ; . The task is to forecast accurately at all nodes of all levels so
that the forecast at any higher-level node also follows the coherence
constraint, i.e., Ĝ;, 9C =

∑
8∈�;,9

Ĝ
(;+1),8
C ,∀; ∈ [! − 1], 9 ∈ [#; ].

2.2.1 Hierarchical evaluation. Hierarchical forecasts are evaluated
with a hierarchically aggregatedmetric that can indicate the average
error across all levels [14]. Generally, every level is given equal
weight while aggregating the level-wise metrics, ensuring unbiased
evaluation of hierarchical forecasts across all levels. Hence, any
hierarchical forecasting technique should aim to attain accurate
and coherent forecasting at all levels. More details will be provided
in Section 5.
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Figure 2: Visual explanation of H-Pro for a toy hierarchy.
Temporal cross-validation performs HPO on the validation
period with the actual ground truth data. H-Pro performs
HPO on the test period with the teacher’s proxy forecast.

3 RELATEDWORK
Classical methods of hierarchical forecasting rely on generating
base forecasts for every time series, and reconcile them to produce
coherent forecasts at every level. For example, the bottom-up (BU)
approach produces lowest level forecasts, and simply aggregates
them to obtain coherent forecasts at all levels [12]. Similarly, top-
down and middle-out approaches take particular aggregate level
forecasts and disaggregate them to lower levels [12]. The MinT op-
timal reconciliation algorithm takes independent forecasts and pro-
duces coherent hierarchical forecasts by incorporating information
from all levels simultaneously via a linear mapping to the base
series [12, 22]. MinT minimizes the sum of variances of the forecast
errors when the individual forecasts are unbiased. [5] relaxed the
unbiasedness condition, and proposed ERM which optimizes the
bias-variance trade-off by solving an empirical risk minimization
problem. Since ERM is a successor of MinT, we refer both of them
as optimal reconciliation algorithms throughout the text. [18] pro-
posed HierE2E which trains a single neural network on all time
series together. It enforces coherence conditions in model training.
Another end-to-end approach was proposed in [15] where the rec-
onciliation is imposed in a customized loss function of the neural
network. A probabilistic top-down approach was proposed in [8]
where a distribution of proportions is learnt by an RNN model to
split the parent forecast among its children nodes. A top-down
alignment-based reconciliation was developed in [3] where the
lowest-level forecasts are adjusted based on the higher-level fore-
casts. The method employs a bias-controlling multiplier for the
loss function of the lowest-level model, optimized by manual grid
search. We want to highlight that the proposed H-Pro is compatible
with any search algorithm (see Section 5.2 for details). Moreover,
AutoML frameworks like [1, 9] can internally employ H-Pro for
hierarchical forecasting tasks.

4 H-PRO
We derive the HPO objective for conventional TCV, and then, extend
it for H-Pro. For both cases, the models are trained at the lowest
level, but their HPO techniques differ. Bottom-up (BU) aggregation
is employed in both scenarios to generate coherent forecasts. We
denote a learning algorithm by A

(
X!
train; _

)
, where X!

train is the
training data at the lowest level, _ denotes the hyperparameters,
and we ignore the model’s parameters since those are learned in

a separate optimization regime (not our focus). The goal of HPO
is to find the best _ by minimizing an objective. For a given _, A
provides the forecasting map 5_ as shown in (1). We subscript 5
with _ to concisely denote the forecasting model’s dependency on
the algorithm’s hyperparameters.

4.1 HPO with temporal cross-validation (TCV)
Traditionally, TCV has been used to perform HPO and model se-
lection for forecasting [16, 19]. Figure 2 shows the train, valida-
tion, and test splits for TCV with one validation window. Hence,
those subsets can be expressed with time-ranges. For example,
X!
train = {G!,91:)−� }#!

9=1, and so on. We show the HPO objectives be-
low for one validation window, but it can be generalized to multiple
windows as well. Irrespective of the number of validation windows,
the model is trained again on the entire train and validation pe-
riod (i.e., on X!

train+valid) with the optimal hyperparameters _∗ to
produce test forecasts, Ĝ!,9

)+1:)+� .
The HPO for TCV can target either the lowest-level error, or a

hierarchically aggregated error (see Section 2.2). We denote the
two variants as TCV-Lowest and TCV-Hier. Following [6], the HPO
objective for a single-validation TCV-Lowest can be written as

_∗TCV-Lowest ≈ argmin
_∈Λ

mean
G!∈X!

valid

[
L

(
G!, Ĝ!

)]
= argmin

_∈Λ

1
#!

#!∑
9=1

L
(
G
!,9

)−�+1:) , 5_
(
G
!,9

1:)−�

))
. (2)

While TCV-Lowest targets minimizing lowest-level error, TCV-
Hier better targets the hierarchical forecasting objective as it aims
to obtain low error at all levels. Formally,

_∗TCV-Hier ≈ argmin
_∈Λ

1
!

!∑
;=1

[
1
#;

×

#;∑
9=1

[
L

(
G
;, 9

)−�+1:) ,B
(
5_,

{
G
!,8
1:)−�

}#!

8=1
, ;, 9

))] ]
(3)

where, B (·) is the bottom-up aggregation function which aggre-
gates forecasts from the descendant leaf nodes to produce a forecast
at node 9 of level ; .

4.2 HPO with hierarchical proxy modeling
From (2) and (3) we can see that _∗TCV-Hier and _

∗
TCV-Lowest depend

on the validation data G;, 9
)−�+1:) . Hence, a mismatch between the

test series G;, 9
)+1:)+� and validation series G;, 9

)−�+1:) can lead to poor
test performance. H-Pro attempts to address the issue based on the
observation that, often, the higher-level aggregated time series are
less irregular and have better predictability (e.g., in [14]). It builds
two sets of models: a student model as a base forecaster at the lowest
level, and teacher model(s) as proxy forecasters at any (or all) higher
levels (see Figure 2)1. The student produces the final forecasts at all
levels via bottom-up (BU) aggregation.

1H-Pro is different from knowledge distillation [11]. H-Pro is developed for HPO and
not for model training, it requires a hierarchical dataset, and it differs in the core
algorithm.
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H-Pro proceeds as follows. The teacher model(s) are trained and
their HPO is performed with TCV. Teacher’s forecasts are generated
for the test period. We term these as teacher’s proxy forecasts since
the student treats them as the actual ground truth for the unknown
test period. The student is trained on the entire train and validation
data at the lowest level, but its HPO is performed based on the
proxy forecasts at higher levels. Intuitively, the student model is
regularized in a way such that it tries to mimic the proxy forecasts
of the teacher, but only at higher level(s) since teacher’s forecasts
are not available at the lowest level. We hypothesize that even if we
guide the student to produce accurate forecasts at higher level(s)
for the test period, it would enable the student to produce accurate
forecasts in all or at least some of the lower levels because the
higher level forecasts are obtained by aggregating the lower level
forecasts (Figure. 2).

Following (3), the H-Pro objective can be written as

_∗H-Pro ≈ argmin
_∈Λ

!−1∑
;=1

[
F (;) · 1

#;

×

#;∑
9=1

[
L

(
G̃
;, 9

)+1:)+� ,B
(
5_,

{
G
!,8
1:)

}#!

8=1
, ;, 9

))] ]
(4)

where, G̃;, 9
)+1:)+� denotes the teacher’s proxy forecasts at that node,

and F (;) ∈ [0, 1] assigns a confidence-weight on the teacher at
level ; . Hence,

∑!−1
;=1 F (;) = 1. It is evident that the optimal hyperpa-

rameters _∗H-Pro depend on the teacher’s proxy forecasts G̃;, 9
)+1:)+� ,

and the bottom-up aggregated test forecast of the student. This
removes the dependency of H-Pro-based HPO on the validation
period.

4.2.1 Properties of H-Pro. We describe some characteristics of
H-Pro which will help us understand its strength.

Definition 4.1 (Perfect teacher). A perfect teacher generates proxy
forecasts with zero error, i.e., ∀; ∈ [! − 1], 9 ∈ [#; ], G̃

;, 9

)+1:)+� =

G
;, 9

)+1:)+� .

Definition 4.2 (OPT-BU). The optimal bottom-up (BU)-aggregated
student model is obtained by optimizing the hyperparameters of
a student model, where the HPO objective minimizes a specified
loss L between the bottom-up aggregated student forecasts and
the ground truth data at the test period across all higher levels.

_∗OPT-BU ≈ argmin
_∈Λ

1
! − 1

!−1∑
;=1

[
1
#;

×

#;∑
9=1

[
L

(
G
;, 9

)+1:)+� ,B
(
5_,

{
G
!,8
1:)

}#!

8=1
, ;, 9

))] ]
. (5)

Lemma 4.3. For a perfect teacher, if F (;) = 1
!−1 ,∀; ∈ [! − 1] in

(4), the hyperparameters of the student model obtained by applying
H-Pro are the same as that of the OPT-BU, i.e., _∗H-Pro = _∗OPT-BU.

The proof is in Appendix B. Lemma 4.3 implies that if the teacher
is extremely accurate, H-Pro can regularize the student to have ac-
curate aggregated forecasts at the higher levels. However, a perfect
teacher is rare! The following theorem attempts to quantify the

Table 1: Datasets and models. #!= Number of lowest-level
series,�= forecast horizon,) +�= length of series, !=Number
of hierarchy levels.

Dataset #! ) � ! Teacher Student

Tourism 56 28 8 4 DeepAR DeepAR
Tourism-L 304 216 12 8 Theta (Theta+LightGBM)

Wiki 150 365 1 5 DeepAR DeepAR
Traffic 200 359 7 4 N-BEATS LightGBM

M5 30490 1913 28 12 LightGBM LightGBM

difference between the HPO objectives of H-Pro with an imperfect
and a perfect teacher.

Theorem 4.4. Let n;, 9C = |G;, 9C −G̃;, 9C | and X;, 9C = |G;, 9C −Ĝ;, 9C | be point-
wise absolute errors for the teacher and the BU-aggregated student
forecasts at the 9-th node of ;-th level. Let E denote the teacher’s
aggregated mean squared error at all higher levels. Let O and O∗

denote the HPO objectives of H-Pro and OPT-BU respectively. Let
F (;) = 1

!−1 ,∀; ∈ [! − 1]. Then, for mean squared error objective L,��O − O∗�� ≤ E + 2
! − 1

!−1∑
;=1

1
#;

#;∑
9=1

1
�

)+�∑
C=)+1

n
;, 9
C X

;, 9
C (6)

The proof is in Appendix B. The second term in the RHS of
(6) indicates an inter-related absolute error between the teacher
and the BU-aggregated student forecasts. The significance of The-
orem 4.4 is that if we can a have reasonably accurate teacher
(n;, 9C → 0 =⇒ E → 0), then, H-Pro’s objective is close to that of
OPT-BU, leading to accurate forecasts at the higher levels. On the
contrary, a suboptimal teacher can lead to inferior performance
of the student. However, as explained above, the higher level time
series generally possess better predictability (see Appendix B.3 for
an example), and we observe this phenomena in multiple datasets,
which leads to superior performance of H-Pro in our extensive
experiments (Section 5).

One notable point is that the student is not trained with proxy
forecasts, but they are only regularized with them. The training is
performed on the lowest-level’s ground truth data from the entire
train and validation periods. Hence, H-Pro does not have any direct
effect on the learned parameters of the student model, but only on
its hyperparameters.

5 EXPERIMENTS
5.1 Experimental setting
5.1.1 Datasets. We present extensive empirical evaluation on five
publicly available datasets: Tourism [21], Tourism-L [22], Wiki [23],
Traffic [10], and M5 [14]. The datasets are prepared according
to [18]. A summary is given in Table 1.

5.1.2 Forecasting models. Table 1 shows the models employed for
different datasets. See Section 1 for references to the models. For the
student, H-Proworks with anyMLmodel that can be regularized by
HPO.We validate the strength of H-Pro by employing twomodels as
students: DeepAR and LightGBM. For Tourism-L data, the student is
an ensemble of Theta [4] and LightGBM. For teacher, H-Pro works
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Table 2: Test Hierarchical RMSSE ('� ) (mean±std) for different forecast/HPO methods with their reconciliation algorithms in
four datasets. The best score is in bold, and the second best is underlined. PERMBU failed in Tourism-L data. “Opt. recon.” is the
abbreviation for optimal reconciliation (MinT and ERM).

Tag Sub-tag Forecast/HPO
method

Reconciliation
algorithm Tourism Tourism-L Wiki Traffic

Gold HPO on test Student specific
to dataset BU 0.4668±0.0117 0.4907±0.0018 0.3199±0.0076 0.3736±0.0103

St
at
e-
of
-t
he

-a
rt
s(

SO
TA

s)

Statistical
with opt. recon.

ARIMA BU 0.5434±0.0000 0.5462±0.0000 0.7533±0.0000 0.5353±0.0000
ETS BU 0.5264±0.0000 0.5204±0.0000 0.7180±0.0000 0.4954±0.0000

ARIMA MinT 0.5481±0.0000 0.4960±0.0000 0.4282±0.0000 0.4556±0.0000
ETS MinT 0.5021±0.0000 0.5007±0.0000 0.4455±0.0000 0.4683±0.0000

ARIMA ERM 2.8064±0.0000 1.8756±0.0000 0.3940±0.0000 0.9248±0.0000
ETS ERM 10.2069±0.0000 1.9253±0.0000 0.4229±0.0000 1.4080±0.0000

PERMBU MinT 0.5011±0.0140 – 0.4244±0.0436 0.4704±0.0132
End-to-end

DNN
DeepVAR+ Inherent 0.6757±0.0602 0.6264±0.0349 0.7527±0.1476 0.4693±0.0629
HierE2E Inherent 0.5713±0.0411 0.6201±0.0257 0.5054±0.0905 0.3910±0.0217

Teacher model
with opt. recon.

Teacher specific
to dataset

MinT 0.5220±0.0783 0.4903±0.0000 0.3373±0.0325 0.5382±0.0035
ERM 1.1858±0.1065 1.5465±0.0000 0.3371±0.0035 0.7512±0.3695

Ba
se
lin

es

Student model
with TCV

TCV-Lowest BU 0.8996±0.2112 0.5101±0.0009 0.3904±0.0609 0.4014±0.0073
TCV-Lowest-PO BU 0.8313±0.1558 0.5128±0.0011 0.3904±0.0609 0.4077±0.0146

TCV-Hier BU 0.6966±0.1519 0.4915±0.0020 0.4439±0.0504 0.4128±0.0386
TCV-Hier-PO BU 0.6770±0.1789 0.4997±0.0013 0.4439±0.0504 0.4920±0.0398

O
ur

s H-Pro
variants

H-Pro-Avg BU 0.5310±0.0223 0.4907±0.0018 0.3242±0.0085 0.3827±0.0093
H-Pro-Avg-PO BU 0.4673±0.0094 0.4935±0.0005 0.3242±0.0085 0.3766±0.0034
H-Pro-Top BU 0.5138±0.0179 0.4953±0.0055 0.3230±0.0072 0.3869±0.0070

H-Pro-Top-PO BU 0.5158±0.0178 0.4924±0.0007 0.3230±0.0072 0.3812±0.0193
Relative improvement w.r.t. best SOTA +6.75% -0.08% +4.18% +3.68%

Relative improvement w.r.t. best baseline +30.97% +0.16% +17.16% +6.18%

with both classical models that do not require HPO and complex
ML models needing HPO. We employ Theta, DeepAR, LightGBM,
and N-BEATS as teachers in different datasets. We choose both
the student and teacher models by assessing their performance
on the validation set for every dataset. This approach helps us
establish robust baselines, as described in Section 5.3. Note that an
independent Theta model is built for each time series, while for all
other models, a single model is trained on all time series collected
from the suitable levels.

5.1.3 Teacher configuration. We explore two teacher configura-
tions. (1) In H-Pro-Top, proxies from the top-most level is only
utilized by the student, i.e.,F (1) = 1, andF (;) = 0,∀2 ≤ ; ≤ ! − 1.
(2) In H-Pro-Avg, proxy forecasts from more than one higher level
are utilized by the student. Hence,F (;) = 1/!) ,∀1 ≤ ; ≤ !) ≤ !−1.
We set !) = !−1 for Tourism, Wiki, and Traffic data, and !) = 5
for Tourism-L and M5 data. The reason for choosing lower !) for
Tourism-L and M5 is that they have relatively deep hierarchies, and
training a teacher with data from levels very deep in the tree con-
flicts with our hypothesis of training the teacher with less sparse
data.

5.1.4 Performance metric. We adopt the scale-agnostic Root Mean
Squared Scaled Error (RMSSE) as our base metric (used in M5 compe-
tition). For a single time series G;, 9 , it is defined as: A ;, 9 =

√
4/4naive,

where 4 = 1
�

∑)+�
C=)+1 (G

;, 9
C − Ĝ

;, 9
C )2, and 4naive = 1

)−1
∑)
C=2 (G

;, 9
C −

G
;, 9

C−1)
2. For multiple series, generally a weighted average is consid-

ered. RMSSE at a certain level ; is given by, A ; =
∑

9 U 9 × A ;, 9 . In
our experiments, U 9 = 1/#; for all datasets except for M5. A special
weighting scheme is used in M5 as described in [14]. As introduced
in Section 2, we adopt mean aggregation across levels, and employ
Hierarchical RMSSE, '� = 1

!

∑!
;=1 A

; as our primary metric. A
lower value of '� is preferred. Note that H-Pro and other meth-
ods implemented here always produce coherent forecasts across
hierarchies via reconciliation.

5.2 HPO framework
We adopt Random search [6] and Hyperopt [7] as search algorithms,
and use RayTune [13] to perform end-to-end training and HPO in
a distributed Kubernetes cluster. We employ two model selection
frameworks: (a) The Standard approach selects the best HPO trial
based on the aggregated TCV/H-Pro objective across the entire fore-
cast horizon. (b) The Per-offset (PO) method selects the best trial for
each offset time-point in the horizon based on TCV/H-Pro objective
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at that time, and then concatenates the individual predictions to
generate the forecast for the entire horizon. The second method
does more granular selection from a pool of HPO trials.

5.3 Detailed results on benchmark datasets
Table 2 shows test Hierarchical RMSSE for H-Pro, state-of-the-art,
and baseline methods. We show the mean and standard deviation
(“std”) of the metric over three experiments ran with three differ-
ent random seeds (some classical forecasters have std=0 because
of deterministic behavior). A single HPO run generally contains
hundreds of trials.

5.3.1 Gold. In Table 2, the row with tag “Gold” shows the result
of base (student) forecasters with HPO performed on the test set. It
gives lower bounds on the errors achievable by the students. Hence,
our methods (with tags “Baselines” and “Ours”) should not be able
to outperform the Gold '� scores.

5.3.2 State-of-the-arts (SOTAs). We have three types of SOTAs
(marked with three different sub-tags in Table 2: (1) Statistical
forecasters with optimal reconciliation algorithms, (2) End-to-end
deep learning based models that have inherent reconciliaton, and
(3) Dataset-specific teacher models with optimal reconciliations.

For statistical methods, we choose two classical forecasters:
ARIMA and exponential smoothing (a.k.a. ETS), and present results
in combination with BU, MinT, and ERM. We experimented with two
variants of MinT: MinT-shr and MinT-ols, and report the best one
in the paper. We also present the performance of PERMBU [20] in
combination with MinT.

For DNN-basedmethods, our benchmarks are DeepVAR+with rec-
onciliation as a post-processing [18], and the recent HierE2Emethod
[18]. For probabilistic forecasters (like HierE2E), we take the mean
forecast as point forecast.

For the third sub-category, we choose the teacher model for a
particular dataset (see Table 1), train it on all time series from all
levels, and apply two optimal reconciliation algorithms (MinT and
ERM) on it.

5.3.3 Baselines. Our baselines are the direct application of student
models along with BU reconciliation. TCV-Lowest and TCV-Hier re-
fer to TCV-based models targeting the lowest-level’s RMSSE and hi-
erarchical RMSSE respectively (see Section 4.1). TCV-Lowest-PO and
TCV-Hier-PO refer to their extensions with per-offset model section
(see Section 5.2). We employ single and multiple (up to 4) validation
windows for the baselines, and report the best results.

5.3.4 Observation on Hierarchical RMSSE. We build four versions
of H-Pro as shown in Table 2 with “Ours” tag: H-Pro-Avg and H-
Pro-Top as explained in Section 5.1, and their per-offset extensions
H-Pro-Avg-PO and H-Pro-Top-PO. The relative improvements with
respect to the best SOTA and the best baseline are shown in the
last two rows of Table 2. We can see that H-Pro outperforms all
TCV baselines in the four datasets. H-Pro outperforms all SOTAs
in three datasets (Tourism, Wiki, and Traffic). Only for Tourism-
L dataset, the teacher model with MinT reconciliation is marginally
better than H-Pro. H-Pro is the second best method there.

Note that H-Pro achieves this performance with off-the-shelf
forecasting models, which highlights its strength as an HPO tech-
nique. Moreover, all four datasets have different characteristics, e.g.,
Traffic and Tourism have strong seasonality while Wiki does not.
Despite that H-Pro is able provide similar or superior performance.
This empirically validates our initial hypothesis that the better pre-
dictability at the higher levels can help learn accurate forecasters
(teachers) at those levels, which can in turn help regularize lowest-
level base (student) forecasters. Note that we do not use the teacher
after H-Pro is completed, and the student model along with the sim-
plest BU reconciliation can produce accurate and coherent forecasts
across all levels. It also results in faster reconciliation because BU is
multiple times faster than MinT and ERM (see Appendix A).

Another observation is that the per-offset (PO) model selection
can be helpful sometimes for H-Pro as well as the baseline TCVmeth-
ods. Note that for Wiki, the per-offset extension achieves the same
result as the normal version because the horizon,� = 1. Comparing
H-Pro-Top and H-Pro-Avg , we see that their relative performances
vary across datasets. Hence, a detailed study will be presented in
Section 5.5.

5.3.5 Observation on level-wise RMSSE. Table 3 shows the mean
RMSSE for the best variant of H-Pro, the best baseline, and the best
SOTA method in the above four datasets. Out of total 21 levels, our
method achieves the best performance in 11 levels, and the second
best in 7 out of remaining 10 levels.

5.4 Result on large-scale retail forecasting
Here we validate our method in a large-scale retail forecasting
dataset (∼43K time series, 5.4 years of daily data) from the M5 accu-
racy competition. Note that a set of 24 classical benchmark forecast-
ing methods were significantly outperformed by the winners of the
competition (see appendix of [14]), hence, we only compare the per-
formance of H-Prowith that of theM5winner method.Thewinning
methods in M5 demonstrated superior performance by the models
built after clustering the data based on certain aggregated level ids.
Hence, we perform “department”-wise and “store”-wise clustering,
and train one independent H-Pro model for each cluster. We then
ensemble these two forecasts to obtain our final result. We present
the Hierarchical and level-wise RMSSE for the “department+store”
ensemble model in Table 4. We can see that H-Pro-Top outperforms
the M5 winning method [14] by approximately 2% in the Hierar-
chical RMSSE ('� ), the primary metric used in the competition. It
is also close to the Gold number. H-Pro-Top shows superior perfor-
mance in level-wise RMSSE outperforming the winning method in
the top 9 levels. A slight degradation in performance is observed at
lower levels, possibly because the effect of the proxy is not being
transmitted from the top-most to the lowest level due to the compli-
cated and deep M5 hierarchy. Although, we should note that, in the
M5 competition, the methods that achieved superior performance
in the lower levels could not get the same in higher levels, and that
was also reflected in their degraded Hierarchical RMSSE scores [14].

5.5 Discussion and ablation studies
5.5.1 Teacher performance. In the above experiments, we select
the teacher models through temporal cross-validation with one or
(if length permits) multiple validation windows. Table 5 shows the
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Table 3: Level-wise mean RMSSE for the best H-Pro, best baseline, and best SOTA methods. The best score is bolded, second best
is underlined. “−” denotes unavailability of levels in a dataset.

Data Forecaster L1 L2 L3 L4 L5 L6 L7 L8

Tourism
Ours (H-Pro-Avg-PO) 0.3383 0.4251 0.5336 0.5723 − − − −

Best baseline (TCV-Hier-PO) 0.6473 0.7137 0.6836 0.6635 − − − −
Best SOTA (PERMBU-MinT) 0.3843 0.4766 0.5539 0.5895 − − − −

Tourism-L
Ours (H-Pro-Avg) 0.1812 0.3861 0.4737 0.5749 0.4409 0.5575 0.6405 0.6704

Best baseline (TCV-Hier) 0.1838 0.3869 0.4732 0.5759 0.4433 0.5579 0.6403 0.6705
Best SOTA (Teacher-MinT) 0.1534 0.3777 0.4653 0.5692 0.4823 0.5630 0.6334 0.6784

Wiki
Ours (H-Pro-Top) 0.1954 0.3007 0.3256 0.4420 0.3515 − − −

Best baseline (TCV-Lowest-PO) 0.3947 0.4027 0.3502 0.4558 0.3485 − − −
Best SOTA (Teacher-ERM) 0.1514 0.3107 0.2906 0.4538 0.4790 − − −

Traffic
Ours (H-Pro-Avg-PO) 0.1764 0.2103 0.2865 0.8332 − − − −

Best baseline (TCV-Lowest) 0.2324 0.2627 0.3233 0.7870 − − − −
Best SOTA (HierE2E) 0.2329 0.2423 0.2726 0.8163 − − − −

Table 4: Hierarchical RMSSE, '� (M5 official metric) and level-wise weighted RMSSE for H-Pro, SOTA, and baseline (“Base.”) in
M5 dataset for “department+store” ensemble student model. The best score is in bold.

Tag Method RH L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Gold HPO on test 0.512 0.186 0.294 0.387 0.237 0.328 0.370 0.455 0.465 0.561 1.001 0.954 0.903

SOTA M5 winner 0.520 0.199 0.310 0.400 0.277 0.366 0.390 0.474 0.480 0.573 0.966 0.929 0.884

Base. TCV-Hier 0.534 0.230 0.327 0.410 0.280 0.363 0.403 0.483 0.489 0.580 0.999 0.951 0.899

Ours

H-Pro-Top 0.512 0.186 0.294 0.386 0.237 0.329 0.370 0.456 0.464 0.561 1.003 0.955 0.903
H-Pro-Avg 0.534 0.231 0.327 0.409 0.280 0.363 0.402 0.483 0.488 0.580 1.000 0.951 0.899

H-Pro-Top-PO 0.521 0.189 0.305 0.398 0.247 0.339 0.383 0.468 0.477 0.572 1.009 0.961 0.909
H-Pro-Avg-PO 0.534 0.227 0.325 0.408 0.277 0.362 0.401 0.483 0.486 0.580 1.001 0.953 0.901

level-wise test RMSSE of the selected teachers in different datasets.
In Tourism, Traffic, and Wiki, since the level-wise RMSSE of the
teacher is better than the TCV baseline (from Table 3), H-Pro gets
relatively large improvement (∼ 31%, 17%, 6%) from the baselines.
Similarly, the level-wise teacher performances on the higher levels
in those datasets are almost always better than the SOTAs (except
for one case: Wiki L2), which leads to performance improvements
of ∼ 7%, 4%, and 4% respectively. On the other-hand, for Tourism-
L and M5, where the teacher’s level-wise performance is not always
superior to the TCV baseline, we observe marginal degradation or
slight improvement from SOTAs (∼ −0.1% and 2% respectively for
the two datasets).

An important observation from Table 5 and 3 is that a student
can perform better than its teacher in some of the higher levels,
even though it is regularized with the teacher’s proxy forecasts.
This can be attributed to the student’s learning ability from the
lowest-level data while regularized by the aggregated signals from
the teacher.

5.5.2 Teacher selection and ensemble modeling. As shown in Theo-
rem 4.4, an accurate teacher helps the student to produce accurate
higher-level forecasts. However, in Section 5.3 and 5.4, we saw
that the two variants of H-Pro (H-Pro-Avg and H-Pro-Top) built

Table 5: Teacher’s test RMSSE at different higher levels. Levels
denoted with “−” were not used by the teacher.

Data L1 L2 L3 L4 L5

Tourism 0.3395 0.4297 0.5239 − −
Tourism-L 0.2044 0.4572 0.5458 0.6260 0.5180

Wiki 0.0825 0.3291 0.2710 0.4396 −
Traffic 0.1029 0.1443 0.2299 − −

M5 0.1832 0.6419 0.5850 0.4958 0.5871

with two configurations of the teacher can achieve the best re-
sults interchangeably across datasets. For example, in M5, teacher’s
test accuracy in L1 is good but poor in other levels. Hence, we
observe H-Pro-Top outperforms SOTA while H-Pro-Avg fails, as
shown in Table 4. In practice, since the teacher’s test accuracy is
not known, we would need a mechanism to achieve stable per-
formance of H-Pro Top and H-Pro-Avg across datasets. To address
this, we build ensemble models between different variants of H-
Pro. We use the mean of the forecasts from multiple models for
ensembles. As an ablation study, we also build ensemble models
between H-Pro and TCV baselines. We denote these ensembles with
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Figure 3: Test errors vs. validation errors (upper figure for each subplot). Test errors vs. proxy errors (lower figure for each
subplot). The solid purple circles denote the HPO trials. Linear trend is shown with the dotted black line, along with Pearson
correlation value (d). The red horizontal line denotes the minimum validation (or, proxy) error, and the corresponding test
error is annotated beside the red vertical line. The plots are shown for one random seed. For M5-Store, refer to Figure 1. Best
viewed in color.

Table 6: Hierarchical RMSSE of ensemble models (1) to (4).

Data (1) (2) (3) (4) Best
SOTA

Best
Baseline

Tourism 0.506 0.479 0.483 0.486 0.501 0.677
Tourism-L 0.491 0.488 0.488 0.488 0.490 0.491

Wiki 0.323 0.323 0.323 0.352 0.337 0.390
Traffic 0.378 0.373 0.366 0.370 0.391 0.401

M5 0.520 0.520 0.519 0.521 0.520 0.534

the following numbers for concise representation in Table 6. (1) H-
Pro-Avg and H-Pro-Top, (2) H-Pro-Avg-PO and H-Pro-Top-PO, (3) 1
and 2, (4) 3 and the best TCV baseline as obtained in Table 2. In all
datasets, the ensembles perform better than the baselines. We can
see that the ensemble among all H-Pro variants (id=3) outperforms
the best SOTAs and baselines across all five datasets, and hence, can
be considered a more stable version of H-Pro, which is more robust
to possible sub-optimal teacher performance. Moreover, ensembles
of H-Pro variants and TCV improve the performance of the latter,
which is beneficial as it shows complementary information was
integrated by our approach.

5.5.3 Correlation study. Figure 3 plots the test errors in different
HPO trials with respect to validation (or, proxy) errors in those
trials for all five datasets used in our experiment. We present the
plots for TCV-Hier and H-Pro-Top variants. The linear trend lines
are also shown along with Pearson correlation values. It is evident
that H-Pro obtains much better correlation than TCV for Tourism,
Wiki, M5-Department, and M5-Store data (for the last one, refer to
Figure 1). Hence, HPO trial chosen with the best proxy error of-
ten corresponds to better (sometimes the best) test error. On the
other hand, HPO trial selected with the best validation error often
results in worse test errors in those scenarios. For Traffic data, in

the specific random experiment dictated by the seed, we see that
TCV-Hier obtains better test error than H-Pro-Top, but the corre-
lation score is higher in the latter. For Tourism-L data, the scatter
plots look similar which is expected from their similar performance
(refer to Table 2). Overall, in five out of six scenarios, we see H-Pro’s
proxy error to have better correlation with the actual test error.
This highlights the benefits of our approach in performing HPO
with proxy errors, particularly when there is a potential mismatch
between the validation and test periods (e.g., in M5).

5.5.4 Adaptation to new test window. Although, H-Pro is targeted
to a particular test-window, we can easily tune it to new test win-
dows by leveraging the saved models from the previous HPO run.
H-Pro only requires recomputing the predictions and evaluating
the HPO objective for every trial in the past HPO run to select the
best model for the new test window.Thus, retraining for all the HPO
trials is not mandatory for H-Pro, leading to faster adaptation to
newer test windows. We should note that, often in forecasting, the
immediate past is utilized in training. In that scenario, H-Pro and
TCV both need to rerun full HPO.

6 CONCLUDING REMARKS
We proposed a hierarchical proxy-guided HPO method for hierar-
chical time series forecasting to mitigate the perennial problem of
data mismatch between validation and test periods in real-life time
series. We provided theoretical justification of the approach along
with extensive empirical evidence.Themain benefit of the proposed
approach is that it is essentially a model selection or HPO method
that can be applied to any off-the-shelf machine/deep learning
model for hierarchical time series forecasting. We validated H-Pro-
based HPO with classical machine learning as well as deep learning
models in our experiments. H-Pro outperformed the conventional
temporal cross-validation based HPO approaches in all datasets. It
also achieves superior results than well-established state-of-the-art
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methods in four forecasting datasets, and competitive result in one
dataset. The performance gain is observed in datasets from diverse
domains without requiring any model-specific enhancements.

A future extension can be on formulating a fractional confidence
score for the teacher at a certain higher-level node so that the subop-
timal teacher forecasts can be given lower priority during the HPO
of the student model. H-Pro can also be extended to other domains
(such as computer vision) when the dataset possesses an inherent
hierarchical structure (e.g., in hierarchical image recognition).
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APPENDIX
A ADVANTAGES OF H-PRO OVER EXISTING

RECONCILIATION METHODS
State-of-the-art reconciliation methods like MinT and ERM try to
factor in forecasts at all levels to derive the final adjusted forecasts,
but these have several shortcomings.  First, they are generally not
scalable to large number of time series, since they at least require
fitting parameter matrices that have size on the order of # × #

where # is the number of base time series.  This fitting essentially
requires multiple matrix inversions of matrices of this size (which
has complexity more than$ (# 4)), or for the best performing ERM,
solving an even bigger regression problemwith$ ()# 2) data points
(where ) is the number of historical time points) and $ (# 2) vari-
ables.  Additionally they add significant complexity to the forecast
process (i.e., getting all hierarchy forecasts on historical data, fitting
the reconciliation model, getting forecasts and applying reconcilia-
tion model at test time to adjust base forecasts, etc.), and can suffer
from overfitting especially with modern ML and DL forecasting ap-
proaches that may have close to zero training error, since typically
training data forecasts are used to fit the reconciliation model.

Furthermore, both these and the simpler top-down / middle-out
reconciliation approaches use fixed linear combinations of different
series’ forecasts (a single series in the case of top-down and middle-
out) to get the adjusted base forecasts, which can be insufficient to
accurately predict the base level when the relationship between the
levels is more complex (e.g., nonlinear) or changes over time, which
is a common case as different local effects can cause proportions
relative to aggregates to shift (e.g., consider events like promotion,
price change, or advertisement in a retail setting, causing demand
and sales for one product to shift to another).

H-Pro on the other hand adjusts the selected base level fore-
casters directly by leveraging aggregate-level information, hence,
can still have time-evolving changes in relative proportions for
base level series that factor in all local information. Additionally
it avoids having to fit a reconciliation model and apply a complex
reconciliation process so it is much more scalable, simpler, and
easier to use. While it does require some aggregate level forecasts,
these are only needed for the test periods used for model selection.

B PROOFS
B.1 Proof of Lemma 4.3
This can proved trivially, by employing Definition 4.1 in (4), and
comparing with (5).
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B.2 Proof of Theorem 4.4
Proof. Following (4),

O =
1

! − 1

!−1∑
;=1

1
#;

#;∑
9=1

1
�

)+�∑
C=)+1

(
G̃
;, 9
C − Ĝ

;, 9
C

)2
, (7)

where, we denote Ĝ
;, 9
C = B

(
5_,

{
G
!,8
1:)

}#!

8=1
, ;, 9

)
for compactness.

Following (5),

O∗ =
1

! − 1

!−1∑
;=1

1
#;

#;∑
9=1

1
�

)+�∑
C=)+1

(
G
;, 9
C − Ĝ

;, 9
C

)2
. (8)

To make the equations concise, let

S (·) = 1
! − 1

!−1∑
;=1

1
#;

#;∑
9=1

1
�

)+�∑
C=)+1

(·) . (9)

Hence,
O = S

(
G̃
;, 9
C − Ĝ

;, 9
C

)2
(10)

O∗ = S
(
G
;, 9
C − Ĝ

;, 9
C

)2
. (11)

Hence,����O − O∗
����

=

����S ((
G̃
;, 9
C − Ĝ

;, 9
C

)2
−
(
G
;, 9
C − Ĝ

;, 9
C

)2)����
=

���S ((
G̃
;, 9
C − G

;, 9
C

) (
G̃
;, 9
C − 2Ĝ;, 9C + G

;, 9
C

))���
=

���S ((
G̃
;, 9
C − G

;, 9
C

) (
2
(
G
;, 9
C − Ĝ

;, 9
C

)
+
(
G̃
;, 9
C − G

;, 9
C

)))��� .
Applying triangle inequality (|0 + 1 | ≤ |0 | + |1 |),����O − O∗

����
≤ S

(���(G̃;, 9C − G
;, 9
C

) (
2
(
G
;, 9
C − Ĝ

;, 9
C

)
+
(
G̃
;, 9
C − G

;, 9
C

))���)
= S

(���G̃;, 9C − G
;, 9
C

��� ���2 (G;, 9C − Ĝ
;, 9
C

)
+
(
G̃
;, 9
C − G

;, 9
C

)���) .

Applying triangle inequality again on the inner term,����O − O∗
����

≤ S
(���G̃;, 9C − G

;, 9
C

��� (���2 (G;, 9C − Ĝ
;, 9
C

)��� + ���G̃;, 9C − G
;, 9
C

���) )
= S

(���G̃;, 9C − G
;, 9
C

���2) + 2S
(���G̃;, 9C − G

;, 9
C

��� ���G;, 9C − Ĝ
;, 9
C

���)
(12)

Let E denote the aggregated mean squared error of teacher’s proxy
forecasts in all higher levels. Formally,

E =
1

! − 1

!−1∑
;=1

1
#;

#;∑
9=1

1
�

)+�∑
C=)+1

(
G̃
;, 9
C − G

;, 9
C

)2
(13)

= S
(���G̃;, 9C − G

;, 9
C

���2) . (14)

Substituting (14) in (12),����O − O∗
����

≤ E + 2
! − 1

!−1∑
;=1

1
#;

#;∑
9=1

1
�

)+�∑
C=)+1

n
;, 9
C X

;, 9
C .

�

B.3 Example of reduced variance at higher level
For the toy hierarchy shown in Figure 2, let -1 and -2 be the time
series values at the the leaf nodes, and . the aggregated sum at the
parent. Assume -1, -2 are jointly normal random variables with
the following mean and covariance:

- =

[
`1
`2

]
, � =

[
f21 df1f2

df1f2 f22

]
. (15)

Then . = -1 + -2 is also normally distributed:

. ∼ N
(
`1 + `2, f

2
1 + f22 + 2df1f2

)
(16)

If we assume f1 = f2 = f , then for d ≤ −0.5,
f2. ≤ f2 . (17)
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