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ABSTRACT

Conversational recommender systems (CRSs) aim to provide recom-

mendation services via natural language conversations. Although a

number of approaches have been proposed for developing capable

CRSs, they typically rely on sufficient training data for training.

Since it is difficult to annotate recommendation-oriented dialogue

datasets, existing CRS approaches often suffer from the issue of

insufficient training due to the scarcity of training data.

To address this issue, in this paper, we propose a CounterFactual

data simulation approach for CRS, named CFCRS, to alleviate the

issue of data scarcity in CRSs. Our approach is developed based on

the framework of counterfactual data augmentation, which gradu-

ally incorporates the rewriting to the user preference from a real

dialogue without interfering with the entire conversation flow. To

develop our approach, we characterize user preference and organize

the conversation flow by the entities involved in the dialogue, and

design a multi-stage recommendation dialogue simulator based on

a conversation flow language model. Under the guidance of the

learned user preference and dialogue schema, the flow language

model can produce reasonable, coherent conversation flows, which

can be further realized into complete dialogues. Based on the sim-

ulator, we perform the intervention at the representations of the

interacted entities of target users, and design an adversarial training

method with a curriculum schedule that can gradually optimize the

data augmentation strategy. Extensive experiments show that our
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approach can consistently boost the performance of several com-

petitive CRSs, and outperform other data augmentation methods,

especially when the training data is limited. Our code is publicly

available at https://github.com/RUCAIBox/CFCRS.
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1 INTRODUCTION

The recent success of conversational intelligence [1, 7] has empow-

ered a more convenient way for information seeking by conversa-
tional recommender systems (CRSs) [3, 6, 14], which aims to provide

high-quality recommendation service through multi-turn natural

language conversations. Typically, a CRS recommends the suitable

items that satisfy the user need via a recommender module, and
generates the proper response based on the conversation context

and predicted items via a conversation module. These two modules

are systematically integrated to fulfill the information-seeking task.

To develop capable CRSs, various approaches have been pro-

posed in the literature [19, 30, 50] based on deep neural networks.

In particular, the powerful Transformer network [2] and pre-trained

language models (PLM) [36] have largely raised the performance

bar on conversational recommendation. These approaches rely

on high-quality recommendation-oriented conversation data for

model training. While it is difficult to manually create large-scale

CRS datasets, which require well-trained annotators to generate
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coherent, diverse conversation flow in an information-seeking sce-

nario [22, 54]. Therefore, existing CRS datasets [18, 22] are often

limited in data size, lacking sufficient coverage of diverse informa-

tion needs and user preferences. To alleviate this issue, existing

studies incorporate external data (e.g., knowledge graphs [2, 52])
and model resources (e.g., DialoGPT [48]) to reduce the demand for

training data in developing a capable CRS.

Despite the performance improvement, the fundamental issue of

insufficient training in existing CRSs has not been well addressed

due to the scarcity of training datasets. As a general solution to data

scarcity, data augmentation techniques [5, 34, 43] have been widely

applied in a variety of tasks, which either use heuristic strategies [40,

42] or learnable models [31, 45] for enlarging the data size. However,

it is challenging to augment high-quality recommendation-oriented

dialogues (short as recommendation dialogues) with automatic ap-

proaches, since it needs tomimic the interactive information-seeking

process via a reasonable, coherent conversation flow. To be reason-
able, the conversation scenario should be designed with meaningful

user needs and suitable item recommendations, which conform to

the factual information in the given domain. To be coherent, the
augmented user preference should be consistent throughout the

whole conversation, which should be well clarified and maintained

as the conversation progresses. Considering these difficulties, ex-

isting work [13, 16] that uses specific rewriting strategies cannot

generate high-quality CRS datasets.

To enhance the reasonableness and coherence of the conversa-

tion flow, we take a holistic perspective to develop the augmentation

approach for recommendation dialogues by gradually incorporat-

ing the rewriting or adaptation into a real dialogue. Specially, each

rewriting is expected to be carefully controlled without interfer-

ing with the entire conversation flow. Indeed, such intuition can

be well fit into the framework of counterfactual data augmenta-
tion [8, 20, 27], which incorporates counterfactual learning for

augmenting the limited data. In this setting, the essence of our

approach is to answer the key question: “What the dialogues would
be if we intervene on the observed user preference?”, where user pref-
erence is considered to be the most important factor to determine a

conversation flow. To instantiate it, we consider characterizing user

preference and organizing the conversation flow by the entities

involved in the dialogue (e.g., movie actors and genres). Further,

our rewriting strategy is implemented by a learnable edit function,

which can produce informative edits to the entity representations

for improving the recommendation module. In this way, the origi-

nal user preference is gradually revised and finally reaches the level

that a high-quality yet different conversation is augmented.

To this end, in this paper, we present the proposedCounterFactual

data simulation approach for CRS, named CFCRS, for alleviating

the issue of data scarcity in CRSs. Our core idea is to leverage coun-

terfactual learning to augment user preference and then employ the

augmented user preference to simulate conversation data. Specif-

ically, we design a recommendation dialogue simulator that can

generate reasonable, coherent conversations for two target users.

To guarantee the quality of the simulated conversations, we design

a flow language model to generate the conversation flow, which is

guided by the learned user preference and dialogue sketch. Based

on the dialogue simulator, we perform the intervention at the rep-

resentations of the interacted entities of target users, and design an

adversarial training method with a curriculum schedule that can

gradually optimize the edit function towards an improved recom-

mendation capacity of CRSs.

To the best of our knowledge, it is the first time that counterfac-
tual data simulation has been utilized to improve CRS models. Our

proposed framework is agnostic to model implementations, hence

is general to various CRS methods. To evaluate the effectiveness of

our approach, we evaluate its performance with several representa-

tive CRS models on two public CRS datasets. Experimental results

show that our approach can consistently boost the performance of

these models, and outperform other data augmentation methods,

especially when the training data is limited.

2 RELATEDWORK

In this section, we summarize the related work as follows.

Conversational Recommender System. Conversational recom-

mender systems (CRSs) aim to provide recommendation services

through conversational interactions. One line of work [17, 33, 53] re-

lies on pre-defined interactive actions (e.g., asking preferences about
item attributes or making recommendations) and hand-crafted tem-

plates to converse with users. They mainly focus on capturing

user preferences and giving accurate recommendations within as

few turns as possible. Another line of work [2, 18, 52] focuses on

interacting with users through more free-form natural language

conversations. They aim to capture the preferences from the con-

versation context and then generate the recommended items with

persuasive responses. The above CRS methods are mostly devel-

oped by deep neural networks, which require sufficient high-quality

data for training. However, it is expensive to annotate high-quality

CRS examples and existing datasets are generally limited in scale.

To address it, external resources like knowledge graphs [2, 52] and

reviews [24, 55] have been introduced to enrich the datasets. How-

ever, the fundamental problem of insufficient training examples has

not been well solved. In this work, we aim to solve the data scarcity

problem via counterfactual data simulation.

Counterfactual Data Augmentation. Counterfactual data aug-

mentation [20, 27, 56] focuses on generating unrecorded counter-

factual examples from the real ones. Recently, it has been leveraged

to alleviate the data scarcity problem and can improve the perfor-

mance and robustness of deep neural networks. For example, in

recommender systems, CASR [41] proposes to generate counter-

factual user behavior sequences based on the real ones to supply

the data for training sequential recommendation models. While for

open-domain dialogue generation, CAPT [26] uses counterfactual

inference to automatically augment high-quality responses with

different semantics to solve the one-to-many problem. In this work,

we apply counterfactual data augmentation to the CRS task, aiming

to obtain sufficient high-quality data. We also propose a curricu-

lum learning strategy to gradually optimize the data augmentation

strategy for CRSs.

3 APPROACH

In this section, we present the proposed CounterFactual data simu-

lation approach for CRS, named CFCRS, for alleviating the issue

of data scarcity in CRSs, which is depicted in Figure 1.
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Figure 1: The overview of our approach CFCRS. We first adopt curriculum counterfactual learning to augment the user

preference at the representation level, and then use the flow language model guided by user and schema prompts to generate

conversation flows, which are then realized into dialogues. The edit function and CRS model are optimized with adversarial

training to improve both the quality of the augmented data and the recommendation performance.

3.1 Overview of Our Approach

Task Formulation. Conversational recommender systems (CRSs)

aim to provide accurate item recommendation services through

multi-turn natural language conversations. At each turn, the system

either makes recommendations or chats with the user for prefer-

ence elicitation. Such a process ends when the user accepts the

recommended items or leaves. Formally, at the ( 𝑗 +1)-th turn, given

the dialogue history 𝐶 𝑗 = {𝑠𝑘 }
𝑗

𝑘=1
consisting of 𝑗-turn utterances

and the item set I, the system should (1) select a set of candidate

items I𝑗 from the entire item set I to recommend, and (2) gen-

erate the response utterance 𝑠 𝑗+1 to the user. Besides, knowledge

graph [2, 55] as an important auxiliary resource is usually avail-

able, denoted by G. Typically, a CRS consists of the recommender

module (parameterized by Θ𝑅 ) and the conversation module (pa-

rameterized by Θ𝐶 ), which are responsible for the recommendation

and response generation tasks, respectively.

General Model Learning. Formally, let D = {⟨𝐶 𝑗 , 𝑟 𝑗 , 𝑖 𝑗 ⟩} denote
the set of training samples, where 𝐶 𝑗 is the dialogue history, 𝑟 𝑗
is the ground-truth response, and 𝑖 𝑗 is the recommended item for

the 𝑗-th training sample. The optimization objectives for the two

modules can be denoted as follows:

𝐿Θ𝑅
(D) = −

∑︁
⟨𝐶 𝑗 ,𝑖 𝑗 ⟩∈𝐷

log𝑔(𝑖 𝑗 |𝐶 𝑗 ;Θ𝑅), (1)

𝐿Θ𝐶
(D) = −

∑︁
⟨𝐶 𝑗 ,𝑟 𝑗 ⟩∈𝐷

logℎ(𝑟 𝑗 |𝐶 𝑗 ;Θ𝐶 ), (2)

where 𝑔(·) and ℎ(·) are the recommender and conversation mod-

ules, respectively. In the literature, existing CRSs mainly focus on

designing various models or architectures to implement the two

modules. For the recommendation module, it can be implemented

with collaborative filtering [18], GNN [52], or Transformer [57]

models. For the conversation module, it can be implemented with

the vanilla Transformer [2] or PLM [39]. These approaches rely on

high-quality CRS datasets to train the underlying models, which

are often limited in size. To address this limitation, we propose

to simulate high-quality data for conversation recommendation,

which can be generally applied to various CRSs.

Counterfactual Learning for Dialogue Simulation. Our ap-

proach is inspired by the recent progress on counterfactual data

augmentation [25], which incorporates counterfactual learning for

augmenting the limited data. In our setting, the essence of our ap-

proach is to answer the core question: “What the dialogues would
be if we intervene on the observed user preference?”. As the basis

of our approach, we design a recommendation-oriented dialogue

simulator (short as recommendation dialogue simulator) that can
generate reasonable, coherent conversations tailored for two tar-

get users (Section 3.2). Our recommendation dialogue simulator

adopts a multi-stage generation process guided by the learned user

preference and dialogue sketch: flow schema→ conversation flow
→ dialogue realization. Based on the simulator, we construct the

data augmentation via counterfactual learning (Section 3.3), which

performs the intervention at the representations of the interacted

entities of a target user. Further, we design an adversarial training

method with a curriculum schedule that can gradually optimize

the edit function towards an improved recommendation capacity

of CRSs. In what follows, we introduce the two parts in detail.

3.2 Recommendation Dialogue Simulator

The goal of the recommendation dialogue simulator is to generate

recommendation-oriented conversation data, so as to improve the

performance of existing CRSs. Typically, it is difficult to create

fluent, coherent conversation data, since it needs to simulate the

free interaction for information seeking between two real users

via chit-chat. As our solution, we develop a multi-stage generation

process that first generates the conversation flow according to the

predicted flow schema and then realizes the dialogue based on

the generated flow. In our approach, we first introduce the basic

concepts of conversation flow and flow schema.

3.2.1 Conversation Flow and Flow Schema. The conversation flow

explicitly traces the key elements (i.e., entities) of the information-

seeking process. For example, given a two-turn conversation:

[Seeker]: I love all kinds of comedy movies.
[Recommender]: Have you seen 21 Jump Street?
[Seeker]: Yes, I love this film because Jonah Hill is in it.
[Recommender]: Try another comedy movie with him, Superbad.

we can derive a conversation flow: comedy→ 21 Jump Street→
Jonah Hill→ comedy→ Superbad. Based on such a flow, we can

further generalize it into a flow schema: genre→ item→ actor→
genre→ item.
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Formally, a conversation flow 𝑓𝑢,𝑣 between two users 𝑢 and

𝑣 is characterized as a sequence of mentioned entities in a con-

versation arranged in the occurrence order, denoted by 𝑓𝑢,𝑣 =

⟨𝑒1, · · · , 𝑒 𝑗 , · · · , 𝑒𝑛⟩, and the corresponding flow schema (with an

equal length to the flow) is characterized as a sequence of type to-

kens, denoted by 𝑠𝑢,𝑣 = ⟨𝑡1, · · · , 𝑡 𝑗 , · · · , 𝑡𝑛⟩, where 𝑒𝑖 is a mentioned

entity from a knowledge graph (KG) E and 𝑡𝑖 = Type(𝑒𝑖 ) indicating
the type of 𝑒𝑖 . As we can see, conversation flow and flow schema

are useful to generate concrete conversation content by capturing

the entity preferences of users and establishing the dialogue sketch.

3.2.2 Preference Prompt Guided Flow Language Model. In our ap-

proach, we design a flow language model (FLM) that is parame-

terized by Θ𝐹 based on the preference prompts for generating the
conversation flow. Specifically, to generate a conversation flow,

we first sample two target users 𝑢 and 𝑣 as the seeker and recom-

mender, respectively, and then employ the two users to predict a

flow schema 𝑠𝑢,𝑣 . Then, the representations of target users (i.e., user
prompt) and the predicted schema (i.e., schema prompt) are taken

as the prompts to the FLM for generating the conversation flow as

follows:

𝑓𝑢,𝑣 ← FLM

( [
𝒆𝑢 , 𝒆𝑣︸︷︷︸

user prompt

, {𝒕 𝑗 }𝑛𝑗=1︸  ︷︷  ︸
schema prompt

]
; Θ𝐹

)
. (3)

Next, we discuss how to derive the two parts of prompts.

User Prompt Learning. Since the simulated dialogue occurs be-

tween the two target users, it is important to consider their pref-

erences for generating the conversation flow. To capture the user

preference, in recommender systems, it is common to assign each

user a unique user ID, and learn the ID embedding based on the inter-

acted items or entities as the user preference representation [12, 15].

However, in our simulation setting, we would like to generate more

diverse user representations that are not limited to the real users

in the CRS datasets. For this purpose, we do not explicitly maintain

a user ID but learn ID-agnostic user representations. Specifically,

following the previous work on CRSs [47, 52], we assume that a

KG is available and extend this KG by attaching user nodes to their

interacted entity nodes to compose a new heterogeneous knowl-

edge graph (HKG), denoted as G. To capture relational semantics

between entities, we utilize R-GCN [32] to learn entity represen-

tations on the HKG. Formally, let 𝑛 denote a node placeholder for

the HKG, associated with an embedding vector 𝒆𝑛 ∈ R𝑑𝐸 derived

from R-GCN, where 𝑑𝐸 denotes the embedding size. We utilize the

self-attention mechanism to aggregate entity embeddings as the

preference representation of the user 𝑢:

𝒆𝑢 = E𝑢 · 𝜶 , (4)

𝜶 = softmax(𝒃⊤ · tanh(W𝛼E𝑢 )),

where E𝑢 is the matrix consisting of the embeddings of all the inter-

acted entities of user 𝑢, 𝜶 is the attention weight vector reflecting

the importance of each entity, and W𝛼 and 𝒃 are trainable parame-

ters. A major advantage of this representation method is that it can

be easily adapted to new users by modeling the entity preference

based on the associated interaction records.

Schema Prompt Learning. In order to produce fluent, coherent
conversations, we employ frequent flow schema to structure the

conversation. Although the conversation flows can be very diverse,

the frequent flow schemas for a CRS corpus are usually limited.

Thus, we consider employing real CRS datasets to construct flow

schemas with frequent pattern mining algorithms [9], and obtain

a set of frequent flow schemas, denoted as S. Then, the schema

prediction task is cast as a classification problem over the schema

setS based on user preference. Formally, we compute the prediction

probability for a flow schema as follows:

Pr(𝑠𝑢,𝑣 |𝑢, 𝑣) = softmax

(
MLP( [𝒆𝑢 , 𝒆𝑣])

)
, (5)

where𝑢 and 𝑣 are the two target users involved in the dialogue, and

𝑠𝑢,𝑣 is the flow schema. In practice, first, we select the most probable

flow schema according to Eq. (5). Then, we obtain the corresponding

type embeddings by decomposing the predicted schema into type

tokens {𝒕 𝑗 }𝑛𝑗=1, where each type token embedding 𝒕 𝑗 is obtained by

looking up the type embedding table.

Flow Language Model Pre-Training. To model the conversation

flow, we construct an FLM based on Transformer, which utilizes the

encoder-decoder architecture. Following Eq. (3), the encoder takes

the learned user prompt (i.e., 𝒆𝑢 and 𝒆𝑣 ) and schema prompt (i.e.,
{𝒕 𝑗 }𝑛𝑗=1) as input, and the decoder generates the conversation flow

in an autoregressive manner based on the prompt. Formally, let 𝒆 𝑗
be the embedding of a token 𝑒 𝑗 (an entity) in the conversation flow

𝑓𝑢,𝑣 , and the probability of the flow to be generated is formulated

as:

Pr(𝑓𝑢,𝑣) =
𝑛∑︁
𝑗=1

Pr(𝑒 𝑗 |𝑒0, . . . , 𝑒 𝑗−1) (6)

=

𝑛∑︁
𝑗=1

softmax

(
W[𝒆 𝑗 ; 𝒛𝑢,𝑣] + 𝒃

)
where 𝒛𝑢,𝑣 is the encoding of prompt,W and 𝒃 are trainable parame-

ters. To pre-train the FLM, we require large amounts of conversation

flows from various user pairs. Since the original CRS dataset is usu-

ally limited in conversation size, we consider generating pseudo

conversation flows for pre-training. The basic procedure consists

of three major steps: (i) we first randomly sample one flow schema

from the frequent flow schema set S; (ii) then, we sample an entity

sequence from the constructed HKG G as the conversation flow

according to the schema; (iii) finally, we randomly divide the en-

tities in the sequence into two groups, which correspond to the

entity preference of two users involving the conversation. When

a schema cannot lead to a reachable entity path, we continue to

sample another schema.

3.2.3 Dialogue Realization. With the pre-trained FLM and entity

preference of users, we can generate the corresponding conversa-

tion flows at a large scale. Next, we realize the generated conversa-

tion flows into recommendation dialogues.

Here, we adopt a simple template-based approach for dialogue

realization. Specifically, we first collect the templates from observed

dialogues by delexicalization, i.e., substituting the mentioned en-

tities with placeholders, e.g., “<genre>” for “comedy”. Then, the

entities in conversation flows can be sequentially filled into these
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templates as new recommendation dialogues. For instance, an ut-

terance “I am in a mood for something scary” would be converted to
the template “I am in a mood for something <genre>”. Since the focus
of this work is to enhance the recommendation ability of CRSs

instead of the general chit-chat ability, we do not adopt pre-trained

dialogue models (e.g., DialogGPT [48]) to realize these utterances.

Our proposed method is simple yet effective to ensure fluency in

language and faithfulness in conversation flow.

After building the recommendation dialogue simulator, we can

employ it to generate simulated data with user preference repre-

sentations as input (as will be used in Section 3.3).

3.3 Curriculum Counterfactual Learning

Although the above recommendation dialogue simulator can ef-

fectively enlarge the dataset by simulation, it is still limited to the

actual users in existing datasets. In this part, we introduce a curricu-

lum counterfactual learning approach that can learn to generate

diverse data by augmenting the user preference representations.

3.3.1 Counterfactual User Preference Augmentation. Recall that in
Section 3.2.2, we utilize a self-attentive mechanism to learn the

user preference representation based on the interacted entities with

Eq. (4). Formally, the set of interacted entities of user𝑢 is denoted as

E𝑢 = {𝑒1, . . . , 𝑒𝑖 , . . . , 𝑒𝑛}, and their embeddings are also aggregated

as a matrix E𝑢 = [𝒆1, . . . , 𝒆𝑖 , . . . , 𝒆𝑛].
In existing work [21, 28], discrete [21] and continuous [28] item-

level edits have been explored for user data augmentation. To com-

bine the merits of both approaches, we consider an entity-level edit

to augment new user preferences. Specifically, we revise one entity

embedding at each time with a specially designed edit function 𝑓 (·),
in which the entity selection is discrete and the embedding revision

is continuous. Such a way can generate diverse user preferences

while gradually incorporating controllable revisions. To instantiate

the edit function, a number of model choices can be considered, e.g.,
neural networks. However, we empirically find that it is difficult

to optimize such an edit function, due to the lack of supervision

signals in real datasets. Thus, we consider a simple yet effective

edit function that directly adds a small disturbance vector 𝚫𝑖 :

𝑓 (𝒆𝑖 ) = 𝒆𝑖 + 𝚫𝑖 , (7)

We denote all the disturbance vectors as Θ𝐸 .

According to [8], such a simplified edit function is easier to learn

and interpret, since samples near the decision boundary are usually

discriminative in revealing the underlying data patterns. For each

user 𝑢, we can perform the edit 𝑘 times, so as to produce 𝑘 different

augmentations, each editing one specific entity embedding in E𝑢
to generate the augmented user preference �̃�𝑢 (originally 𝒆𝑢 ).

3.3.2 Adversarial Learning with Curriculum Schedule. As our edit
function can be learned in a differentiable manner, we propose

to use adversarial learning to enhance the informativeness of the

augmented user preference representations. Intuitively, a more

informative training instance tends to cause a larger loss in the

recommendation accuracy, as such a user preference has not been

well captured by the current model. Taking an adversarial learning

perspective, the counterfactual edit function (parameterized by Θ𝐸 )

aims to maximize the loss of the recommender module (parame-

terized by Θ𝑅 ), while the recommender module aims to minimize

its loss on the simulated data. In addition, we perform adversarial

learning with a curriculum schedule to stabilize the optimization.

Adversarial Training. Let 𝜋Θ𝐸
(𝐶 |�̃�𝑢 , �̃�𝑣) denote the recommenda-

tion dialogue simulator, which returns the probability of generating

a dialogue 𝐶 given the edited embeddings of two users �̃�𝑢 and �̃�𝑣
by Θ𝐸 . The learning objective can be formulated as follows:

𝐽Θ
∗
𝑅
,Θ∗

𝐸 = min

Θ𝑅

max

Θ𝐸

E𝐶∼𝜋Θ𝐸 ( · | �̃�𝑢 ,�̃�𝑣 ) [𝐿Θ𝑅
(𝐶) − 𝜆· ∥ Θ𝐸 ∥22], (8)

where Θ𝐸 = {𝚫𝑢 ,𝚫𝑣} is the edit vectors for users 𝑢 and 𝑣 (Eq. (7)),

𝐿Θ𝑅
(𝐶) is the loss of the recommendation module for the generated

data 𝐶 , and 𝜆 is the regularization weight for Θ𝐸 . Note that Eq. (8)

presents the optimization objective for a pair of users, which can

be easily extended to all user pairs. To optimize the above objective

(with two groups of parameters Θ𝑅 and Θ𝐸 ), we can alternatively

optimize each group of parameters by keeping the other group

fixed. It is relatively straightforward to train the parameters of the

recommender module (i.e., Θ𝑅 ) by a standard recommendation loss

(e.g., cross-entropy loss [30]). However, it is infeasible to directly

optimize the edit vectors in an end-to-end way, since it involves

the generation of discrete conversation data. To tackle this issue,

we adopt the classic REINFORCE algorithm [44] to update the

parameters as follows:

Θ𝐸 = Θ𝐸 +𝛼
( 𝑇∑︁
𝑡=1

𝐿Θ𝑅
(𝐶𝑡 )∇Θ𝐸

log

(
𝜋Θ𝐸
(𝐶𝑡 |�̃�𝑢 , �̃�𝑣)

)
−2𝜆 ·Θ𝐸

)
, (9)

where 𝛼 is the learning rate and 𝑇 conversations are sampled.

Curriculum Arrangement. In order to keep the training sta-

ble, we consider a curriculum learning approach that gradually

increases the augmentation level: small variations are encouraged

at the beginning of training, while larger variations can be grad-

ually applied to enhance the model capacity. As shown in Eq. (8),

we incorporate a controlling weight 𝜆 on Θ𝐸 . To simulate coun-

terfactual data in an easy-to-difficult process, we dynamically tune

the augmentation level in each iteration. Specifically, we apply an

annealing mechanism to regularize Θ𝐸 with a shrinking 𝜆:

𝜆 = 𝜌 × 𝛿 (𝑘 ) , (10)

where 𝜌 is the initial weight, 𝛿 is the decay ratio, and 𝑘 is the

current course. In this way, as the course gets more difficult, i.e.,
the augmentation level increases, the CRS model can continually

learn from diverse and informative training samples to improve its

performance.

3.4 Parameter Learning

The parameters of our framework consist of four groups, namely

the recommendation dialogue simulator Θ𝑆 , the counterfactual edit

function Θ𝐸 , and the recommender module Θ𝑅 and conversation

modules Θ𝐶 of the target CRS model. Algorithm 1 presents the

training algorithm of our framework.

First of all, we pre-train the parameters of the recommendation

dialogue simulator Θ𝑆 with the union of real and pseudo conver-

sation flow data using the cross-entropy loss. After pre-training,

parameters Θ𝑆 are fixed. Then, we perform curriculum counter-

factual learning to augment new data for CRS learning. In each

iteration, the parameters of the counterfactual edit function Θ𝐸
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Algorithm 1: The training algorithm of our framework.

Input: The conversational recommendation dataset D, HKG G
Output: Parameters of the recommender module Θ𝑅 and

conversation module Θ𝐶 in CRSs.

1 Pre-train the parameters of the recommendation dialogue simulator

Θ𝑆 with the union of real and pseudo data sampled from G.
2 Pre-train the parameters of the recommender module Θ𝑅 using the

real dataset D.

3 for 𝑘 = 1→ 𝑁 do

4 Set the regularization parameter 𝜆 according to curriculum

arrangement using Eq. (10).

5 Optimize the parameters of edit function Θ𝐸 by maximizing

the loss of the recommender module using Eq. (9) and derive

new user preference �̃�.
6 Use new user preference �̃� to simulate data𝐶 with the

recommendation dialogue simulator by Eq. (3) and Eq. (4).

7 Optimize the parameters of the recommender module Θ𝑅 by

minimizing its loss on simulated data𝐶 .

8 end

9 Optimize the conversation module Θ𝐶 with the augmented data.

10 return Θ𝑅 and Θ𝐶 .

Table 1: Statistics of the datasets after preprocessing.

Dataset #Dialogues #Utterances #Items

INSPIRED 1,001 35,811 1,783

ReDial 10,006 182,150 51,699

and the recommender module of the target CRS model Θ𝑅 are opti-

mized via adversarial learning using Eq. (8). Specifically, we first

learn the counterfactual edit function to maximize the loss of the

recommender module, and then optimize the recommender module

to minimize its loss on the simulated data. After the curriculum

learning schedule, we optimize the parameters of the conversation

module Θ𝐶 with the union of simulated and real data.

4 EXPERIMENT

In this section, we first set up the experiments, then report the

results and give a detailed analysis.

4.1 Experimental Setup

Datasets. To verify the effectiveness of our approach, we conduct

experiments on two widely used English CRS datasets, i.e., Re-
Dial [18] and INSPIRED [10]. The ReDial dataset is an English CRS

dataset about movie recommendations, and is constructed through

crowdsourcing workers on Amazon Mechanical Turk (AMT). Simi-

lar to ReDial, the INSPIRED dataset is also an English CRS dataset

about movie recommendations, but with a much smaller size. The

statistics of both datasets are summarized in Table 1.

Baselines. Here we consider two major tasks for CRS evaluation,

namely recommendation and conversation. For comparison, we

select several representative methods (including both CRS models

and adapted PLMs) tailored to each task.

• BERT [4]: It is a bidirectional PLM pre-trained via the masked

language modeling task on a large-scale general corpus. We utilize

the representation of the [𝐶𝐿𝑆] token for recommendation.

• GPT-2 [29]: It is an autoregressive PLM pre-trained via the

language modeling task on large-scale general corpora. We con-

catenate the utterances in the conversation history as inputs, and

take the generated text for response while using the representation

of the last token for recommendation.

• DialoGPT [48]: It continues to pre-train GPT-2 on large-scale

dialogue corpora. We use it in the same way as GPT-2.

• ReDial [18]: It is proposed along with the ReDial dataset, which
includes a conversation module based on HRED [35] and a recom-

mendation module based on a denoising auto-encoder [11].

• KBRD [2]: It introduces DBpedia to enhance the semantics of

entities mentioned in the dialogues.

• BARCOR [37]: It proposes a unified framework based on BART,

which tackles two tasks with a single model.

• UniCRS [39]: It designs knowledge-enhanced prompts based

on DialoGPT to fulfill both tasks in a unified approach.

Among these baselines, BERT, GPT-2, and DialoGPT are PLMs,

where BERT and GPT-2 is pre-trained on general corpora while

DialoGPT is pre-trained on dialogue corpora. We fine-tune these

PLMs to encode the dialogue and generate items to recommend

and utterances to respond to. ReDial, KBRD, BARCOR, and Uni-

CRS are CRS methods, where ReDial and KBRD use mentioned

entities for recommendation, BARCOR utilizes dialogue texts for

recommendation, and UniCRS makes use of both entities and texts

for recommendation. To verify the generality of our framework,

we apply it to KBRD, BARCOR, and UniCRS. To demonstrate the

effectiveness of our framework, we compare it with several repre-

sentative data augmentation methods.

• EDA [42]: It augments new examples by randomly performing

edit operations, i.e., replacement, insertion, swap, and deletion.

•Mixup [46]: It augments new examples in the continuous latent

space by linear interpolations of input representations and labels

of two random examples.

Evaluation Metrics. Following existing work [2, 18], we adopt

different metrics to evaluate the recommendation and conversation

tasks separately. For the recommendation task, following [2, 54],

we use Recall@𝑘 , MRR@𝑘 , and NDCG@𝑘 (𝑘=10,50). For the con-

versation task, following [52, 55], we adopt Distinct-𝑛 (𝑛=2,3,4) to

evaluate the diversity of the generated responses. Besides, follow-

ing KGSF [52], we invite three annotators to score the generated

responses from two aspects, namely Fluency and Informativeness.
The range of scores is 0 to 2. For all the above metrics, we calculate

and report the average scores on all test examples.

Implementation Details.We implement all the baseline models

based on the open-source toolkit CRSLab [51]
1
, which contains

comprehensive CRS models and benchmark datasets. For the rec-

ommendation dialogue simulator, we adopt a Transformer with

12-layer encoders and decoders as the FLM, and its hidden size and

embedding size are 768. To be consistent with the FLM, the hidden

size of the user prompt and schema prompt is also 768. In curricu-

lum counterfactual learning, the maximum training iterations are

1
https://github.com/RUCAIBox/CRSLab
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Table 2: Results on the recommendation task. The best methods in each group are marked in bold. Numbers marked with *

indicate that the improvement is statistically significant compared with the baseline (t-test with p-value < 0.05).

Datasets ReDial INSPIRED

Models Recall@10 Recall@50 MRR@10 MRR@50 NDCG@10 NDCG@50 Recall@10 Recall@50 MRR@10 MRR@50 NDCG@10 NDCG@50

ReDial 0.129 0.287 0.003 0.004 0.005 0.011 0.117 0.285 0.004 0.003 0.005 0.012

BERT 0.156 0.357 0.055 0.063 0.079 0.121 0.179 0.328 0.067 0.085 0.098 0.133

GPT-2 0.147 0.327 0.051 0.056 0.071 0.107 0.112 0.278 0.063 0.076 0.089 0.128

DialoGPT 0.173 0.361 0.062 0.068 0.089 0.135 0.125 0.247 0.059 0.081 0.092 0.120

KBRD 0.170 0.366 0.063 0.072 0.088 0.131 0.210 0.390 0.112 0.118 0.135 0.172

KBRD-EDA 0.174 0.371 0.068 0.077 0.093 0.136 0.180 0.364 0.088 0.094 0.109 0.146

KBRD-mixup 0.189 0.390 0.072 0.081 0.099 0.144 0.210 0.390 0.104 0.113 0.122 0.165

KBRD-CFCRS 0.206* 0.408* 0.084* 0.093* 0.109* 0.156* 0.226* 0.426* 0.123* 0.129* 0.145* 0.188*

BARCOR 0.169 0.374 0.063 0.073 0.088 0.133 0.185 0.339 0.080 0.087 0.104 0.137

BARCOR-EDA 0.179 0.395 0.067 0.077 0.093 0.140 0.210 0.390 0.102 0.109 0.127 0.166

BARCOR-mixup 0.169 0.363 0.061 0.070 0.086 0.129 0.139 0.344 0.070 0.081 0.086 0.132

BARCOR-CFCRS 0.198* 0.406* 0.079* 0.088* 0.107* 0.151* 0.246* 0.421* 0.114* 0.122* 0.145* 0.183*

UniCRS 0.217 0.428 0.088 0.096 0.118 0.163 0.272 0.441 0.156 0.164 0.184 0.224

UniCRS-EDA 0.167 0.357 0.068 0.077 0.091 0.133 0.295 0.451 0.132 0.165 0.186 0.220

UniCRS-mixup 0.206 0.394 0.073 0.088 0.116 0.158 0.246 0.426 0.153 0.164 0.182 0.219

UniCRS-CFCRS 0.231* 0.444* 0.096 0.111* 0.129* 0.175* 0.308* 0.466* 0.168* 0.176* 0.204* 0.242*

set to 20, and we adopt the early stopping strategy. The initial value

of the regularization weight and the decay ratio is tuned in the

range of [10−1, 10−2, 10−3] and [0.9, 0.8, 0.7] for different models.

We use AdamW [23] with the default parameter setting to optimize

the parameters in our framework. The learning rate is mostly set

to 1𝑒−4 and tuned in the range of [5𝑒−5, 1𝑒−4, 5𝑒−4, 1𝑒−3].

4.2 Evaluation on Recommendation Task

In this part, we conduct experiments to evaluate the effectiveness

of our model on the recommendation task.

Automatic Evaluation. Table 2 shows the performance of different

methods on the recommendation task. First, we can see that KBRD,

BARCOR, and UniCRS mostly outperform the other baselines in

all metrics. The three methods all incorporate external KGs to

enrich the information of mentioned entities in the conversation

context, which can effectively alleviate the data scarcity problem

and better capture user intents and preferences. Among the three

methods, UniCRS performs the best in all metrics. UniCRS utilizes

knowledge-enhanced prompts to guide the PLM, and incorporates

a pre-training task to improve the quality of prompts. Such a way

can effectively endow the PLM with entity knowledge for better

performance.

Second, for the two data augmentation baselines, we observe that

most of the time they both improve the performance of the three

CRS methods. It indicates the effectiveness of data augmentation

strategies in the CRS task, since the training data is not sufficient.

However, we can see that the improvement is not stable, and even

causes performance degradation for UniCRS on the ReDial dataset.

A possible reason is that the two methods only rely on heuristic

rules to modify the original examples for augmenting new ones,

which makes it hard to guarantee the quality of the augmented

data and may even produce abnormal conversations.

Finally, we can see that our model can improve the performance

of the three CRS methods by a large margin. It indicates the ef-

fectiveness and generality of our framework. Furthermore, our

Table 3: Ablation analysis on the recommendation task.

“FLM” denotes the flow language model and “Template” de-

notes template-based dialogue realization. “-” denotes remov-

ing the corresponding component.

Datasets ReDial INSPIRED

Metrics Recall@10 Recall@50 Recall@10 Recall@50

BARCOR 0.169 0.374 0.185 0.339

+CFCRS 0.198 0.406 0.246 0.421

-Curriculum 0.187 0.399 0.190 0.405

-Adversarial 0.184 0.389 0.225 0.395

-FLM 0.181 0.385 0.211 0.390

-Frequent Schema 0.186 0.394 0.246 0.407

-Template 0.183 0.382 0.174 0.385

approach mostly outperforms the two data augmentation baselines

significantly. In our approach, we use a counterfactual data simu-

lation approach, which includes a pre-trained FLM to guarantee

the coherence of the conversation flow and adversarial training to

enhance the informativeness of simulated data. Besides, we utilize

the curriculum learning strategy to gradually optimize CRS models

using examples with different augmentation levels, which further

improves the stability of the training process.

Ablation Study. Our approach incorporates several important

components to improve the quality of the augmented data. To verify

the effectiveness of each component, we conduct the ablation study

on BARCOR using the ReDial and INSPIRED datasets. We report

the results of Recall@10 and Recall@50. We consider removing

the curriculum schedule, the adversarial training objective, the

FLM, the frequent flow schemas, and the template-based dialogue

realization, respectively.

The results are shown in Figure 3. We can see that removing any

component would lead to performance degradation. It indicates



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wang, et al.

Table 4: Automatic evaluation results on the conversation

task.We abbreviate Distinct-2,3,4 as Dist-2,3,4. The bestmeth-

ods in each group are marked in bold. Numbers marked with

* indicate that the improvement is statistically significant

compared with the baseline (t-test with p-value < 0.05).

Datasets ReDial INSPIRED

Models Dist-2 Dist-3 Dist-4 Dist-2 Dist-3 Dist-4

ReDial 0.023 0.236 0.228 0.153 0.255 0.397

GPT-2 0.354 0.486 0.441 2.347 3.691 4.568

DialoGPT 0.476 0.559 0.486 2.408 3.720 4.560

KBRD 0.198 0.339 0.473 0.223 0.415 0.616

KBRD-EDA 0.323 0.476 0.565 0.466 0.856 1.174

KBRD-mixup 0.172 0.292 0.449 0.362 0.680 0.987

KBRD-CFCRS 0.477* 0.603* 0.728* 0.573* 1.148* 1.645*

BARCOR 0.404 0.540 0.654 2.923 4.172 4.992

BARCOR-EDA 0.522 0.698 0.717 3.597 5.108 5.959

BARCOR-mixup 0.568 0.704 0.740 3.856 5.582 6.576

BARCOR-CFCRS 0.701* 0.971* 0.969* 4.081* 5.953* 6.979*

UniCRS 0.351 0.631 0.897 2.809 4.530 5.555

UniCRS-EDA 0.440 0.801 1.141 2.882 4.859 6.166

UniCRS-mixup 0.412 0.701 0.918 2.517 4.173 5.496

UniCRS-CFCRS 0.632* 1.195* 1.524* 4.225* 6.824* 8.155*

that all the components in our model are useful to improve the per-

formance of the recommendation task. Among them, performance

decreases the most after removing the template-based dialogue re-

alization. It indicates that the template-based dialogue realization is

important in our approach, since it can ensure fluency in language

and faithfulness in conversation flow without introducing noise to

the simulated data, which is beneficial for the improvement of the

recommendation ability of CRSs.

4.3 Evaluation on Conversation Task

In this part, we conduct experiments to verify the effectiveness of

our model on the conversation task.

Automatic Evaluation.We show the evaluation results of auto-

matic metrics about different methods in Table 4. As we can see, the

methods using PLMs (i.e., GPT-2, DialoGPT, BARCOR, and UniCRS)
mostly achieve better performance than other methods. Since PLMs

have been pre-trained with generative tasks on large-scale corpora,

they can quickly adapt to the CRS task and generate diverse re-

sponses after fine-tuning. Among these methods, UniCRS mostly

achieves the best performance. Since UniCRS is based on DialoGPT,

a PLM that has been pre-trained on large-scale dialogue corpora, it

is more capable of generating responses. It also performs semantic

fusion and prompt pre-training to inject task-specific knowledge

into DialoGPT, helping generate more informative responses.

Besides, we can see that the two data augmentation methods

also improve the performance of the three CRS models. Despite

the fact that the improvement is not stable, it can demonstrate that

CRS models are hungry for training data.

Finally, our model also consistently boosts the performance of

the three CRS models, and significantly outperforms the two data

augmentation methods. It further indicates the effectiveness and

Table 5: Human evaluation results about the conversation

task on the ReDial dataset.

Models Fluency Informativeness

KBRD 0.91 0.86

KBRD-EDA 1.12 1.04

KBRD-mixup 1.05 0.93

KBRD-CFCRS 1.27 1.09

BARCOR 1.23 1.14

BARCOR-EDA 1.29 1.22

BARCOR-mixup 1.36 1.30

BARCOR-CFCRS 1.47 1.38

UniCRS 1.41 1.33

UniCRS-EDA 1.57 1.49

UniCRS-mixup 1.48 1.41

UniCRS-CFCRS 1.69 1.60

generality of our framework among different CRS methods. Besides,

we can see that with the help of our approach, the model KBRD

can even outperform PLM-based methods on the ReDial dataset.

It shows that our proposed data augmentation approach suits well

with KBRD, and can inspire its potential to generate high-quality

responses.

Human Evaluation. To provide a more qualified evaluation of

the conversation task, we conduct the human evaluation following

previous work [52]. We select KBRD, BARCOR, and UniCRS as

the backbone, and implement our approach on them. We invite

three annotators to evaluate the fluency and informativeness of the
generated responses from examples from these models, and present

the results on the ReDial dataset in Table 5. The average Cohen’s

kappa between any two annotators is 0.89, which indicates good

agreement.

First, we can also see a similar tendency to the automatic met-

rics: UniCRS > BARCOR > KBRD. It indicates the effectiveness of

UniCRS which incorporates DialoGPT and knowledge-enhanced

prompts. Besides, the two data augmentation methods can con-

sistently improve the quality of the generated response, but their

performance order is not stable. A possible reason is that they rely

on heuristic rules for augmentation without considering the tar-

get model, which may produce useless examples for specific CRS

models. Although the augmented examples may contain noise, they

are still able to alleviate the data-hungry problem of CRS models.

Finally, our approach can consistently outperform these baseline

models. It further demonstrates the effectiveness of our framework,

which can augment more high-quality examples to improve the

training of CRS models, helping them generate fluent and informa-

tive responses.

4.4 Performance Comparison w.r.t. Different

Amount of Training Data

In real-world applications, the data scarcity problem can be more

serious and greatly constrain performance. Since our approach can

augment high-quality examples, they can alleviate this problem to
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Figure 2: Performance comparison w.r.t. different amounts

of training data on the ReDial dataset. We implement our

framework on KBRD.
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Figure 3: Performance comparison w.r.t. different ratios of

augmented examples on ReDial and Inspired dataset. We

implement our approach on KBRD.

some extent. To validate this, we simulate a data scarcity scenario

by sampling different proportions of the training data, i.e., 20%, 40%,
60%, 80%, and 100%. We implement our approach on KBRD and

report the results of the recommendation and conversation tasks

on the ReDial dataset.

Figure 2 shows the evaluation results in different data scarcity

settings. As we can see, with just 20% training data, our approach

can still achieve comparable performance with KBRD that is trained

using 100% data. It indicates that our approach can augment high-

quality conversations, greatly alleviating the data scarcity problem.

Besides, with less available training data, the performance of our

approach is relatively stable. It also shows the potential of our

approach to dealing with the cold-start scenario in real-world ap-

plications.

4.5 Hyper-parameters Analysis

In our framework, there are two major hyper-parameters to tune:

the ratios of augmented examples for each instance and the weights

of the L2-norm loss 𝜆 during the adversarial training. Here, we

investigate the effect of each hyper-parameter on our approach.

We conduct the analysis experiments on the recommendation and

conversation tasks on the ReDial and INSPIRED datasets. We im-

plement our approach on KBRD and report the results for the two

hyper-parameters in Figure 3 and Figure 4, respectively.

First, we can see that for the ReDial dataset, the performance is

stable when tuning the two hyper-parameters. It indicates that our

approach is not too sensitive to the two hyper-parameters on this

dataset. Whereas, too large or too small weights of the L2-norm loss

𝜆 would cause performance degradation, since too large 𝜆 might

0.0001 0.001 0.01 0.1 0
0.41

0.43

0.45

0.47

0.49
Recall@50

Redial Inspired

0.0001 0.001 0.01 0.1 0
1.34

1.39

1.44

1.49

1.54

Dist-4
Redial Inspired

Figure 4: Performance comparison w.r.t. different weights

of the L2-norm loss 𝜆 on ReDial and Inspired dataset. We

implement our approach on KBRD.

punish the noise vectors too much, while too small one may bring

too much noise. Second, for the INSPIRED dataset, we can see the

performance is not stable. A possible reason is that INSPIRED owns

very few conversations in the training set, which may hurt the

robustness of CRS models. Besides, on the INSPIRED dataset, the

best points of the two hyper-parameters in the recommendation

and conversation tasks are different. The reason may be that the

two tasks focus on different goals, which may lead to conflict in

their best hyper-parameter settings.

5 CONCLUSION

In this paper, we proposed a counterfactual data simulation ap-

proach, named CFCRS, for alleviating the issue of data scarcity in

CRSs. We developed our approach under the framework of counter-
factual data augmentation, and employed counterfactual learning

to enhance the quality of the augmented recommendation dialogue

data. Specially, in our approach, we characterized the conversation

flow and user preference via the entities mentioned in the conversa-

tion. Our approach gradually augmented the user preference from

a real dialogue without interfering with the entire conversation

flow. Such an augmentation strategy was well learned by an ad-

versarial training method with a curriculum schedule. As a key

component, we designed a multi-stage recommendation dialogue

simulator based on a conversation flow language model, which can

generate reasonable, coherent conversation flows for dialogue real-

ization. Extensive experiments have shown that our approach can

consistently boost the performance of several competitive CRSs,

and outperform other data augmentation methods.

Currently, our approach adopts a multi-stage stimulationmethod

to generate recommendation dialogue data. For future work, we

will investigate more unified and simplified approaches for high-

quality data augmentation, such as the utilization of large language

models [38, 49].
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