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ABSTRACT

Movement paths are used widely in intelligent transportation and smart city applications. To serve
such applications, path representation learning aims to provide compact representations of paths
that enable efficient and accurate operations when used for different downstream tasks such as
path ranking and travel cost estimation. In many cases, it is attractive that the path representation
learning is lightweight and scalable; in resource-limited environments and under green computing
limitations, it is essential. Yet, existing path representation learning studies focus on accuracy and
pay at most secondary attention to resource consumption and scalability. We propose a lightweight
and scalable path representation learning framework, termed LightPath, that aims to reduce resource
consumption and achieve scalability without affecting accuracy, thus enabling broader applicability.
More specifically, we first propose a sparse auto-encoder that ensures that the framework achieves
good scalability with respect to path length. Next, we propose a relational reasoning framework to
enable faster training of more robust sparse path encoders. We also propose global-local knowledge
distillation to further reduce the size and improve the performance of sparse path encoders. Finally, we
report extensive experiments on two real-world datasets to offer insight into the efficiency, scalability,
and effectiveness of the proposed framework.

Keywords Path representation learning · Lightweight · Self-supervised learning

1 Introduction

Motivated in part by an increasing number of intelligent transportation and smart city services that operate on movement
paths, path representation learning (PRL) has received remarkable attention [1, 2, 3]. Path representation learning
aims to learn a generic path representation (PR) vector (ref. Rd in Figure 1) that can be utilized in a range of different
downstream tasks. This is in contrast to task-specific path representation learning performed by supervised methods
that yield representations that work well on task-labeled data but work poorly in other tasks. For example, in Figure 1
Lightpath takes as input a path p and returns a generic PR that can support a variety of tasks, e.g., travel time estimation
and path ranking.

In fact, a variety of intelligent transportation services involve paths, e.g., travel cost estimation [4, 5, 6, 7, 8, 9], trajectory
analysis [10, 11, 12, 13, 14, 15, 16, 17], and path ranking [18, 19, 4, 20, 21]. Path representations that are both accurate
and compact, thus facilitating efficient operations, are in high demand as they hold the potential to significantly improve
the services that use them. Indeed, recent path representation learning methods, in particular deep learning based
methods, demonstrate impressive and state-of-the-art performance on a wide variety of downstream tasks.

∗Corresponding Author: Jilin Hu (jlhu@dase.ecnu.edu.cn)
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Figure 1: Intuition of the Lightweight Path Representation Learning Problem

Table 1: Model Parameter Size with Varying Encoder Layers

Encoder Layers L 12 24 48 96
Parameters
(Millions) 29.85 55.07 105.51 206.40

However, existing path representation learning methods focus on accuracy improvement and pay at best secondary
attention to scalability and resource usage. The resulting models often include large numbers of layers and parameters,
driving up computational costs, power consumption, and memory consumption, especially for long paths. Although
path encoders with many parameters may achieve good accuracy, they have two limitations. First, using large path
encoders in the cloud consumes substantial energy, which is not eco-friendly (cf. Fig 1(a)). Second, increasingly many
users enjoy personalized services, e.g., personalized travel time estimation based on their own trajectories. Due to
privacy concerns, such personalized services often require the path encoder to be deployed in resource-limited edge
environments, such as on individual users’ mobile phones (cf. Fig 1(b)), without having to upload their trajectories to
the cloud. More generally, it is sensible to enable lightweight path representation learning that works in resource-limited
environments.

Next, existing path representation methods suffer from two limitations.

Poor scalability w.r.t. path length Since a path is a sequence of road-network edges, path representation learning
benefits from models that are good at capturing sequential relationships, such as the Transformer [22]. However, a
Transformer-based method [23] employs a self-attention mechanism, where one edge attends to all other edges in a
path in each attention, resulting in quadratic complexity, O

(
N2

)
, in the path length N . This results in poor scalability

to long paths with many edges. Figure 2 gives an example of the scalability w.r.t. path length N , covering both

50 100 150 200
1.5

2.0

2.5

3.0

3.5

4.0

Path Length

gM
em

. (
G

iB
)

LightPath
Transformer-Based

(a) GPU Memory

50 100 150 200
0

40

80

120

Path Length

G
FL

O
Ps

 

LightPath
Transformer-Based

(b) GFLOPs

Figure 2: Scalability w.r.t. Path Length.
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Figure 3: Encoder Architectures: (a) A traditional transformer encoder with L layers and M heads, takes as input a
path (N -Length) and has complexity O

(
L ·M ·N2

)
; (b) A sparse transformer encoder takes as input a sparse path

(i.e., reducing path length from N to N ′), resulting in O
(
L ·M ·N ′2) complexity; (c) LightPath further compresses

the traditional transformer in terms of layers and heads, yielding complexity O
(
L′ ·N ′2), making it more scalable and

lightweight than a traditional transformer encoder.

memory consumption and computational cost, in terms of GPU memory (gMem.) and Giga floating point operations
per second (GFLOPs). We observe that when the path length N increases from 50 to 200 edges, the Transformer-based
method performs poorly. A method that scales better w.r.t. N is desirable.

Very large model size. Many existing PRL models have large numbers of parameters, which restricts their use in
resource-limited environments. For example, in a Transformer-based method [23], where the Transformer stacks L
transformer layers, each layer employs multi-head (i.e., M heads) attentions. Thus, the Transformer functions like a
large cuboid, with a complexity of O

(
L ·M ·N2

)
, as shown in Figure 3a. For example, Table 1 shows the numbers of

parameters of Transformer-based path encoders when varying the number of layers among 12, 24, 48, and 96 while
fixing the number heads at 8 per layer and the feature dimension of the encoder at 512. We observe that the model
parameters grow dramatically when the number of encoder layers increase, preventing the models from being deployed
in resource-limited environments.

Moreover, models with large amounts of parameters also suffer from high storage and computational costs, which is
not eco-friendly. More specifically, as shown in Figure 2a, for path length N = 200, the Transformer-based model
consumes almost 3.4GiB GPU memory.

Proposed Solution. To tackle the above limitations, we propose LightPath, a lightweight and scalable path representation
learning approach. To address the first limitation, we first propose a sparse auto-encoder targeting good scalability,
w.r.t., path length. In particular, the introduction of sparseness reduces the path length from N to N ′ by removing edges
and returning a sparse path of length N ′. The sparse path is fed into a Transformer-based encoder, which reduces the
complexity from O

(
L ·M ·N2

)
to O

(
L ·M ·N ′2). As shown in Figure 3b, this reduces a huge cuboid to a slimmer

cuboid. To avoid information loss due to the removed edges, we connect the encoder with a decoder, with the aim of
reconstructing the full path. This enables scalable yet effective unsupervised training.

To further improve the training of the sparse encoder, we add an additional training scheme based on relational
reasoning. In particular, for each path pi, we construct two distinct sparse path views, denoted as p1i and p2i , using
different reduction ratios, e.g., removing 40% and 80%, respectively. Then, we propose a dual sparse path encoder,
including the original main encoder, and an additional, auxiliary encoder. The dual sparse path encoder encodes the two
path views. Thus, we achieve four path presentations PR1

i , PR2
i , P̂R

1

i , and P̂R
2

i for path pi according to the two path
views and the two sparse path encoders, where PR and P̂R denote the representations from the main and the auxiliary
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encoders, respectively. Finally, given two path representations, we train a relational reasoning network to determine
whether the two path representations are from the same “relation.” If they are from the same path, we consider them as
positive relations; otherwise, they are negative relations.

To address the second limitation, we propose a global-local knowledge distillation framework that aims to reduce the
model size of the main path encoder, which not only enables use in resource-limited environments but also improves
accuracy. To this end, we consider the main path encoder as a teacher, and we create a lightweigth sparse encoder
with fewer layers and one head as a student, further reducing a slimmer cuboid to a slim rectangle (cf. Figure (3c)).
The global knowledge distillation tries to push the lightweight student to mimic the teacher from a global semantic
level (i.e., path representation level), while the local knowledge distillation can push the lightweight student to mimic
the edge correlations from the teacher, thus building a lightweight encoder while maintaining or even improving the
accuracy of downstream tasks.

To the best of our knowledge, this is the first study that systematically targets lightweight and scalable path representation
learning. The study makes four main contributions.

• Sparse Auto-encoder. We propose a unified sparse auto-encoder framework that provides LightPath with good
scalability. w.r.t. path length.

• Relational Reasoning. We introduce relational reasoning to enable efficient sparse auto-encoder training.
Specifically, we propose two types of relational reasoning objectives for accurate and efficient path representa-
tion learning. These two objectives regularize each other and yield a more effective path encoder.

• Global-local Knowledge Distillation. We propose a novel global-local knowledge distillation framework that
enables a lightweight student sparse encoder to mimic a larger teacher sparse encoder from global and local
perspectives.

• Extensive Experiments. We report on extensive experiments on two large-scale, real-world datasets with two
downstream tasks. The results offer evidence of the efficiency and scalability of the proposed framework as
compared with nine baselines.

2 Preliminaries

We first cover important concepts that underlie the paper’s proposal and then state the problem addressed.

2.1 Definitions

Definition 1 Road Network. A road network is defined as a graph G = (V,E), where V is a set of vertices vi that
represents road intersections and E ⊆ V × V represents a set of edges ei = (vj , vk) that denotes road segments.

Definition 2 Path. A path p = ⟨e1, e2, e3, · · · , eN ⟩ is a sequence of connected edges, where ei ∈ E denotes an edge
in path and two adjacent edges share a vertex. Next, p. N denotes the length of path, i.e., the number of edges in p. We
let p.Φ = [1, 2, 3, · · · , N ] denote a sequence of orders of the edges in p.

Definition 3 Sparse Path. A sparse path p′ = ⟨ei⟩i∈p′.Ω contains a subset of the edges in path p, where p′.Ω is a
sub-sequence of p.Φ.

Example. Given a path p = ⟨e1, e3, e4, e6, e7⟩ and p.Φ = [1, 2, 3, 4, 5] then path p′ = ⟨e1, e4, e7⟩, where p′.Ω =
[1, 3, 5], is one of the sparse paths for p.

Definition 4 Edge Representation. The edge representation of an edge in a road network graph is a vector in Rdk ,
where dk is the dimensionality of the vector. For simplicity, we reuse ei to denote an edge representation.

Definition 5 Path Representation. The path representation PR of a path p is a vector in Rd.

2.2 Problem Definition

Given a set of paths P = {pi}|P|i=1 in a road network G, scalable and efficient path representation learning aims to learn
a function SPEθ (·) that can generate a generic path representation for each path pi ∈ P without relying on labels. It
can be formulated as follows.

PR = SPEθ (pi) : RN×dk → Rd , (1)
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where PR is learned path representation, θ represents the learnable parameters for the sparse path encoder, N is the
path length and dk and d are the feature dimensions for an edge and a final path representation, respectively.

2.3 Downstream Tasks

A downstream task is a task that consumes a path representation. We consider travel time estimation and path ranking
score estimation. In particular, we formulate task estimation as a regression problem and define the corresponding
regression model as:

Regtaskk(ψ) (PRi) : R
d → R , (2)

where taskk(ψ) is a learnable parameter for task k and PRi is the learned path representation of pi.

3 Sparse Path Encoder

3.1 Transformer based Encoder

We first introduce the Transformer based encoder due to its parallelism pipeline and effectiveness for long sequence
modeling. Thus, given a sequence of edge representations Xp = ⟨e1, e2, e3, · · · , eN ⟩ for a path p. Transformer based
encoder takes as input Xp and returns the encoded edge representations Zp = ⟨z1, z2, z3, · · · , zN ⟩ that capture the
correlation of different edges. Especially, instead of employing a single attention function, we define multi-head
attention that linearly projects the queries, keys and values into M subspaces with different, learned linear projections
to dk, dk and dv dimensions, respectively. Multi-head attention allows the model to jointly attend to information from
different representation subspaces at different positions. Then, we formulate it as:

Zp = MultiHead(Xp) = Concat ( head 1, . . . , head M ) ·WO , (3)

head i(·) = softmax

((
XpW

Q
i

)(
XpW

K
i

)T
/
√
dk

)(
XpW

V
i

)
, (4)

where Concat(·, ·) represents concatenation. WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , WO ∈

RMdv×dmodel are projections parameter matrices for scaled dot-product attention with respect to the learnable parameter
θ in LightPaht. M denotes number of heads. dmodel represents the feature dimension of final output. Zp ∈ RN×dk .

Except the attention sub-layers, each of the layers in Transformer based encoder also contains a fully connected
feed-forward network (FFN), which is used to each position separately and identically. This FFN consists of two linear
transformations with ReLU activation in between. Specifically, we have

FFN(Zp) = max
(
0,ZpW

FFN
1 + bFFN

1

)
WFFN

2 + bFFN
2 , (5)

where WFFN
1 , WFFN

2 , bFFN
1 , and bFFN

2 are learnable parameters of feed-forward network, and FFN(Zp) ∈ RN×d.

However, Transformer based encoder suffers from poor scalability w.r.t. path length and large mode size (ref. as to
Section 1). To this end, we aim to study a sparse path encoder.

3.2 Overview

Figure 4 illustrates the sparse path encoder framework, which includes a sparsity operation, a sparse path encoder, and a
path reconstruction decoder. The sparsity operation takes as input a full path and returns a sparse path with respect to a
reduction ratio γ. Sparse path encoder takes as input a sparse path and learnable path representation and outputs learned
path representations. Next, we introduce a path reconstruction decoder to reconstruct the path, thus ensuring the learned
path representation captures the entire path information.

3.3 Sparsity Operation

A path consists of a sequence of edges p = ⟨e1, e2, e3, · · · , eN ⟩, which are the basic processing units of different
sequential models. The processing times of sequential models become longer when the path gets longer. Thus, we
propose a sparsity operation, which is an approach to reduce the path length from N to N ′, where N ′ is much less
than N . For simplicity, we conduct path reduction by randomly removing a subset of edges in a path based on a high
reduction ratio γ (e.g., γ = 0.6). A high reduction ratio γ (the ratio for edge removal) can significantly reduce the
length of each input path, thus enabling the scalability of the path. Specifically, we construct the sparsity operation as:

p′ = f (p, γ) = ⟨ej⟩j∈Ω , (6)
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Figure 4: Sparse Auto-encoder. We remove a subset of edges from a path based on a reduction ratio γ to obtain a sparse
path. We introduce a learnable path representation in front of the sparse path. And then, we fed the resulting sparse path
vectors with position embeddings to a Transformer based encoder. We then introduce a learnable edge representation,
denoted as a triangle, to represent the removed edges. The encoded edges in the sparse path and the removed edge
representations with position embeddings are processed by a decoder that reconstructs the edges in the original path.

where p is input path. p′ denotes the sparse path. For example, as shown in Figure 4, if we have a path p =
⟨e1, e3, e4, e6, e7⟩, then we conduct sparsity operation, which randomly removes a subset of edges in p, i.e., ⟨e1, e4, e7⟩
based on reduction ratio γ = 0.6 and achieve the sparse path p′ = ⟨e3, e6⟩ and p′.Ω = [2, 4]. Thus, we can reduce path
from N to N ′, i.e., from 5 to 2 in this example.

3.4 Learnable Path Representation

We use Transformer as our path encoder since it processes the input edges parallelly with respect to the self-attention
mechanism. In contrast, the recurrent neural network (RNN) family is inefficient due to its recurrent nature. To avoid
achieving path representation through extra aggregation function [4], we add a super extra learnable path representation
representative PR in front of each sparse path. Moreover, PR is attached to position 0 for every path, thus enabling it
to capture global information of the path during the training procedure. Thus, we update the p′ as:

p′ = ⟨PR⟩+ ⟨ej⟩j∈Ω = ⟨ek⟩k∈Ω′ , (7)

where e0 = PR denotes a virtual edge and Ω′ = [0,Ω].

To preserve the sequential information of the path, we add learnable position embedding into the sparse path representa-
tions based on order information in Ω′. Specifically, we have:

X′
p = Concat⟨xk⟩k∈Ω′ , where xk = ek + posk , (8)

where posk represents the learnable position embedding for edges in the sparse path and X′
p represents the sparse path

edge representation after concatenation.

Take Figure 4 as an example, we first construct p′ = ⟨PR, e3, e6⟩. Then, we add corresponding position embedding
to the edge vectors of p′, i.e., positions 0, 2, and 4, where the added position embeddings can help the Transformer
encoder to be aware of the input order instead of treating them as a set of unordered path edges. Meanwhile, they enable
the learned path representation PR to capture global-level semantics in the sense that edges might play a different role
in a road network. The intuition is that the super learnable path representation representative PR can attend attention
with other edges, which captures global-level semantic. In contrast, the learnable edge representation aims to construct
a full path set and reconstruct the specific edge in input path.

3.5 Transformer Path Encoder

To achieve better performance, we usually stack multiple Transformer layers, each consisting of two sub-layers:
multi-head attention and position-wise feed-forward network mentioned above (ref. as to Section 3.1 ). Motivated
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by [24], we employ a residual connection around each sub-layers, followed by layer normalization [25]. The stacked
transformer model can be formulated as:

Z ′
p = LayerNorm(X′

p + MultiHead (X′
p)) , (9)

PR = LayerNorm
(
Z ′
p + FFN

(
Z ′
p

))
, (10)

where LayerNorm represents layer normalization and PR is learned path representation.

Remarkably, our path encoder only takes as input a small subset of edges (e.g., 60%) of the full path edges, which
means we ignore the removed edges and just consider unremoved edges during the encoder stage to enable the path
scalability. Path scalability enables us to train our path encoders concerning different lengths of path effectively and
reduce the corresponding computational cost and memory usage.

3.6 Path Reconstruction Decoder

To capture the global information of the full path, we further introduce a lightweight path decoder to reconstruct the
removed edges in a path. As shown in Figure 4, we first complement the encoded path edges and path representation
with a shared, learnable vector that represents the presence of a removed edge based on the original index of each edge
in a path. Then, we add the position embedding vectors to all edge representation, which enables the learnable path
representation vector to capture the global information of the entire path. Next, the path decoder takes as input the full
set of representations, including (1) path representation, (2) encoded unremoved edges, and (3) removed edges. We
select a more lightweight decoder structure, which has less number of Transformer layers. Since the path decoder is
only used to perform path reconstruction, the architecture of our path decoder can be more flexible and independent of
the path encoder. Thus, the decoder is much shallower than the encoder, e.g., one layer for the decoder and 12 layers
for the encoder, which significantly reduces training time. We reconstruct the input path by predicting the removed
edges to ensure the learned path representation contains complete information about the entire path. We employ mean
squared error (MSE) as our reconstruction loss function and compute MSE between the reconstructed and initial edge
representations in the edge level. We only employ MSE loss on removed edges, which can be formulated as follows:

Lrec =
1

N

N∑
i=1

(ei − êi)
2 , (11)

where ei and êi are the initial and predicted masked edge representation, respectively. N represents the number of
edges for each input path.

4 Relational Reasoning Path Representation Learning

4.1 Overview

To further enhance sparse auto-encoder (cf. Section 3) training, we propose a novel self-supervised relational reasoning
(RR) framework, as shown in Figure 5. The intuition behind this is that we train a relation headRRHφ(·) to discriminate
how path representations relate to themselves (same class) and other paths (different class). In particular, this framework
consists of path representation construction (cf. Figure 5a) and relational reasoning (cf. Figure 5b), which includes
cross-network relational reasoning and cross-view relational reasoning. To train our dual sparse auto-encoder, we
first generate two path views, denotes as p11 and p21, based on two different reduction ratios γ1 and γ2. After this, by
processing these two path views via the main encoder and the auxiliary encoder of the sparse path encoder, we construct
different paths on multiple views in the representation space. Finally, we employ relational reasoning to enable efficient
path representation learning.

4.2 Dual Sparse Path Encoder

In this section, we introduce our dual sparse path encoder (SPE) that is employed to generate different path representa-
tions based on different path views. As shown in Figure 5a, given a path p1, we first generate sparse paths in terms of
two different reduction ratios γ1 and γ2. We consider them as different path views, i.e., path view 1 and path view 2.
Then, our dual sparse path encoder, including a main encoder and an auxiliary encoder, takes as input two different path
views (i.e., p11 and p21) and returns different path representations. Specifically, each encoder takes as input two different
path views and returns two different path representations, where solid and dotted □ denote the path representations
returned from main encoder based on path view 1 and path view 2, respectively, i.e., PR1

1 and PR2
1. In contrast, solid

and dotted △ represent the path representations achieved from auxiliary encoder based on both path views, respectively,
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Figure 5: Illustration of RR Training: (a) Given an input path p1, we construct two path views (i.e., p11 and p21) through
two reduction ratios γ1 and γ2, based on which a main encoder and an auxiliary encoder are employed to generate path
representations for each view (i.e., PR1

1, PR2
1, P̂R

1

1, and P̂R
2

1). (b) After getting corresponding path representations
for paths in a minibatch, a relational reasoning path representation learning scheme, which utilizes both cross-network
and cross-view relational reasoning modules, is deployed. In particular, for both modules, an aggregation function a
joins positives (representations of the same paths, e.g., a(PR1

1, P̂R
1

1), a(PR
1
1,PR

2
1)) and negatives (randomly paired

representations, e.g., a(PR1
1, P̂R

1

3), a(PR
1
1,PR

2
3)) through a commutative operator. Then relation head module

RRHφ(·) estimates the relation score y, which must be 1 for positive and 0 for negatives. Both cross-network and
cross-view objectives are optimized minimizing the binary cross-entropy (BCE) between prediction and target relation
value t. In this example, i ∈ [1, 2, 3] denotes the number of paths in the minibatch and j ∈ [1, 2] represents the number
of views.

i.e,. P̂R
1

1 and P̂R
2

1. To this end, we construct four different path representations for a given path, which promote our
design of cross-network relational reasoning and cross-view relational reasoning in turn. Finally, we formulate it as:

PRji = SPEθ(p
j
i , γ) , P̂R

j

i = SPEθ̂(p
j
i , γ) , (12)

where PRji and P̂R
j

i are path representations obtained from the main encoder and the auxiliary encoder, respectively. pi
denotes the i-th path in the path set. j ∈ [1, 2] denotes the path views. θ and θ̂ are the parameters for the main encoder
and auxiliary encoder.

8
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4.3 Relational Reasoning

4.3.1 Cross-Network Relational Reasoning

In LightPath, we employ a dual sparse path encoder, which includes main and auxilary encoder, as shown in Figure 5a.
We first construct path representations through sparsity operation based on different reduction ratios γ1 and γ2. Given a
set of path

{
p1, p2, · · · , pK

}
, we can have a set of path representations

{
PR1

1,PR
1
2, · · · ,PR

1
K

}
from main encoder and{

P̂R
1

1, P̂R
1

2, · · · , P̂R
1

K

}
or

{
P̂R

2

1, P̂R
2

2, · · · , P̂R
2

K

}
from auxiliary encoder by using path representation construction.

Then we employ relation aggregation a(·) that joins the positive path representation relations ⟨PR1
i , P̂R

1

i ⟩ or ⟨PR1
i ,

P̂R
2

i ⟩ and the negative path representation relations ⟨PR1
i , P̂R

1

\i⟩, where i denotes the i-th path sample and \i ̸= i
represents randomly selected path representations in a minibatch. Take Figure 5b as an example, where K = 3. we
join ⟨PR1

1, P̂R
1

1⟩ as a positive relation pair (representation from same path), and ⟨PR1
1, P̂R

1

2⟩ as a negative relation
pair (representation from different paths) through aggregation function a. Next, the relational head RRHφ(·), which is
non-linear function approximator parameterized by φ, takes as input representation relation pairs of cross-network and
returns a relation score y. Finally, we formulate the cross-network relational reasoning task as a binary classification
task, where we use binary cross-entropy loss to train our sparse path encoder, which is given as follows.

Lcn = argmin
θ,φ

K∑
i=1

2∑
j=1

L
(
RRHφ

(
a
(
PRji , P̂R

j

i

))
, t = 1

)
+ L

(
RRHφ

(
a
(
PRji , P̂R

j

\i

))
, t = 0

)
, (13)

where K is the the number of path samples in the minibatch. a(·, ·) is an aggregation function. L is a loss function
between relation score and a target relation value. t is a target relation values.

The intuition behind this is to discriminate path presentations of same path and different paths, which are from different
views across dual sparse path encoder and are able to distill the knowledge from historical observations, as well as
stabilizing the main encoder training. To realize this, we adopt Siamese architecture for our dual sparse path encoder,
where the auxiliary encoder does not directly receive the gradient during the training procedure. In contrast, we update
its parameters by leveraging the momentum updating principle:

θ̂t = m× θ̂(t−1) + (1−m)× θt, (14)

where m is momentum parameters. θ and θ̂ are the parameters of the main encoder and the auxiliary encoder.

4.3.2 Cross-View Relational Reasoning

To enhance the learning ability of our LightPath, we further consider the ties between two views within main encoder,
which acts as a strong requarization to enhance the learning ability of our methods. We do not have to include such
relational reasoning within the auxiliary encoder because it will not directly compute gradient during training, and
our goal is to train main encoder. Figure 5b shows the design of our cross-view relational reasoning, which contains
two similar representations from two views based on γ1 and γ2. The intuition of cross-view relational reasoning is to
preserve the relation between two views of the same path and discriminate them from the view of other paths.

Similar with cross-network, given a set of paths
{
p1, p2, · · · , pK

}
. We first achieve two set of path representations in

terms of two path views based on main encoder, i.e.,
{
PR1

1,PR
1
2, · · · ,PR

1
k

}
and

{
PR2

1,PR
2
2, · · · , PR2

K

}
. Then, we

join the positive relation pairs (e.g., ⟨PR1
i ,PR

2
i ⟩) and negative relation pairs (e.g., ⟨PR1

i ,PR
2
\i⟩) through aggregation

function. For example, as shown in Figure 5b, there are 3 paths in the set. Thus, we can denote ⟨PR1
1,PR

2
1⟩ as a positive

pair and ⟨PR1
1,PR

2
3⟩ as a negative pair. Then, we further employ relational head RRHφ(·), which takes as input a

positive pair and a negative pairs from different views, to achieve the corresponding relation score y for the cross-view
relational reasoning. Last, we formulate the cross-view relational reasoning loss to discriminate how different views of
a path is related to themselves and other paths. In this phase, the complete learning objective can be specified as:

Lcv = argmin
θ,φ

K∑
i=1

L
(
RRHφ

(
a
(
PR1

i ,PR
2
i

))
, t = 1

)
+ L

(
RRHφ

(
a
(
PR1

i ,PR
2
\i

))
, t = 0

)
, (15)

where K is the the number of path samples in the minibatch.
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Figure 6: Illustration of GLKD. Given an input path, we formulate our GLKD as a weighted sum of global path
representation knowledge distillation (GPRKD) loss and local edge representation knowledge distillation (LERKD)
loss.

4.3.3 Objective for RR

To train our dual path encoder end-to-end and efficient learn path representations for downstream tasks, we jointly
leverage both the cross-network and cross-view relation reasoning loss. Specifically, the overall objective function is
formulated as Eq. 16.

min
θ,φ

LRR = Lcn + Lcv (16)

4.4 LightPath Training

To train our sparse path encoder and learn path representations for downstream tasks, we jointly minimize the
reconstruction and RR loss. Specifically, the overall objective function is defined as:

L = Lrec + LRR (17)

5 Global Local Knowledge Distillation (GLKD)

So far, we realize our LightPath through sparse auto-encoder and relational reasoning and transform it from large
cuboid (cf. Figure 3a to a slim cuboid (cf. Figure 3b). To enable the LightPath that can be deployed on resource-limited
mobile devices, we introduce our global-local knowledge distillation (GLKD) to further reduce the size of the sparse
auto-encoder, as shown in Figure 6. We first train a large cuboid teacher encoder with multiple transformer layers and
heads (cf. Figure 3b) based on path reconstruction (cf. Section 3) and relational reasoning (cf. Section 4 ). Then, we
employ a small rectangle student encoder (cf. Figure 3c), which has less layers and heads, to mimic a large teacher
model and use the teacher’s knowledge to obtain similar or superior performance based on GLKD. Specifically, GLKD
constructs a local knowledge distillation by matching the representations of correlated edges. On such a basis, the global
term distills the knowledge from teacher to student that enabling the informative and powerful path representation for
the student model.

5.1 Global-path Representation Distillation

Given a path pi = ⟨e1, e2, e3, · · · , eN ⟩, where N is the number of edges in a path. We define PRT (pi) and PRS(pi)
represent the path representations achieved from teacher encoder Tθ and student encoder Sθ. The intuition of global
path representation knowledge distillation is to let the student encoder mimic the global properties captured by a large
cuboid teacher encoder. And thus, the goal of global path representation knowledge distillation is to put closer the path
representation from teacher encoder and student encoder in the latent space. We formalize this problem as minimizing a
latent space distance representation pairs in terms of the large cuboid teacher encoder and the rectangle student encoder.

10
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The formulation of the objective function is given as follows:

min
θ

Lglobal

(
PRT (pi),PR

S(pi)
)
=

∥∥∥sp(PRT (pi)/t)− sp(PRS(pi)/t)
∥∥∥2

, (18)

where sp(·) is exponential function. t denotes the temperature. Using a higher value for t produces a softer probability
distributions over path representations.

5.2 Local-edge Correlation Distillation

The goal of local-edge structure distillation is to preserve the local similarity of the edge correlations in a path. In
particular, it is expected that the representation of the same edge in a path represented by the teacher encoder and
the student encoder should be close to each other. The intuition is that a rectangle student encoder mimics the edge
correlations in a path captured by a large cuboid teacher encoder. Using a similarity measurement, we formulate the
local-edge structure distillation problem as minimizing the latent space distance of edge representations from the teacher
encoder and then student encoder.

In specific, given a path p = ⟨e1, e2, e3, · · · eN ⟩ in a road network, where N is the number of edges in a path. Through
applying an L-layers Transformer encoder (i.e., teacher encoder Tθ) and L′-layers Transformer encoder (i.e., student
encoder Sθ) upon sparse path p′, where L≪ L′, the edge representation that captures spatial dependencies are derived
as follows.

F T (ei)
N ′

i=1 = Tθ(p) , FS(ei)
N ′

i=1 = Sθ(p) , (19)

where F T (ei)
N ′

i=1 and FS(ei)
N ′

i=1 represent the edge representation with respect to the teacher and student encoder,
respectively.

In this phase, the goal of learning is to reduce the latent space distance between same edge pair from the teacher
and student encoder, respectively. To this end, we aim to minimize the following objective functions between edge
representation pairs in terms of the parameters of the student encoder.

min
θ

Llocal

(
FT (ei),F

S(ei)
)
=

1

n

n∑
i=1

∥∥∥sp(FT (ei)/t)− sp(FS(ei)/t)
∥∥∥2

, (20)

where sp(·) represents exponential function. t denotes the temperature. Using a higher value for t produces a softer
probability distributions over edges.

5.3 Objective for GLKD

To train our global and local knowledge distillation in an end-to-end fashion, we jointly leverage both the global and
local knowledge distillation loss. Specifically, the overall objective function to minimize is defined in Eq. 21.

min
θ

LGLKD = α ∗ Lglobal + (1− α) ∗ Llocal , (21)

where α is balancing factor.

6 Experiments

6.1 Experimental Setup

6.1.1 Datasets

We conduct experiments on two real-world datasets and one synthetic dataset to enable fair comparisons with existing
studies. Based on two real-world datasets, we report results for two downstream tasks: travel time estimation [26, 6],
and path ranking [19, 27, 18]. Due to the lack of large amounts of long paths in the real-world datasets, we construct
one synthetic dataset that contains paths with lengths of 100, 150, and 200 to verify the efficiency and scalability of
LightPath.

Aalborg, Denmark: We collect the road network of Aalborg from OpenStreetMap2 that contains 10,017 nodes and
11,597 edges. Specifically, this dataset contains 180 million GPS records from 183 vehicles sampled at 1 Hz over a
two-year period from 2017 to 2018. After map matching [28], we obtain 39,160 paths with length 50.

2https://www.openstreetmap.org
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Chengdu, China: This dataset was collected from Chengdu, China, on October and November 2016. We obtain the
corresponding road network from OpenStreetMap. The network contains 6,632 nodes and 17,038 edges. The GPS data
was sampled at about 1/4-1/2 Hz. We obtain 50,000 paths through map matching with lengths 50.

Synthetic: Due to the lack of large amounts of long paths in the real-world datasets, we construct one synthetic dataset
to verify the efficiency and scalability of LightPath. In particular, we first randomly pick 500 nodes in road network of
Aalborg dataset, and then expand each node to a path by random walking until the path length reach the threshold (i.e.,
100, 150, 200), which we refer as to generation process. Subsequently, we iterate the generation process 10 times to
construct 5,000 paths for each path length.

6.1.2 Downstream Tasks

We report the results on two downstream tasks:

Path Travel Time Estimation: We obtain travel time (in seconds) for each path from the trajectory. We aim to utilize
a regression model to predict the travel time based on the learned path representations. We employ Mean Absolute
Error(MAE), Mean Absolute Relative Error(MARE), and Mean Absolute Percentage Error(MAPE) to evaluate the
performance of travel time estimations. The smaller values of these metrics, the better performance we achieve.

Path Ranking: Each path is assigned a ranking score in the range [0, 1], which is obtained from historical trajectories
by following the existing studies [18, 27]. More specifically, we take the path that is used by a driver in the historical
trajectories as the trajectory path, which is denoted as the top ranked path. Then, we generate multiple paths connecting
the same source and destination via path finding algorithms [29]. Finally, we calculate the similarity between a generated
path and the trajectory path as a ranking score. The higher ranking score indicates a generated path is more similar to
the trajectory path, and the trajectory path itself has a score of 1 and ranks the highest. To measure the path ranking, we
apply MAE, the Kendall rank correlation coefficient (τ ), and the Spearman’s rank correlation coefficient (ρ), which are
widely used metrics in path ranking, to evaluate the effectiveness of path ranking.

6.1.3 Models for Downstream Tasks

For all unsupervised learning methods, we first achieve the corresponding d dimensionality path representation and
then we build a regression model that takes as input a path representation and output estimated the travel time and
path ranking, respectively. In particular, we select ensemble model Gradient Boosting Regressor(GBR) [30] as our
prediction model since they are regression problems.

6.1.4 Baselines

We compare LightPath with 9 baselines, including 6 unsupervised learning-based methods and 3 supervised learning-
based methods. The details of these baseline methods are summarized as follows:

• Node2vec [31] is an unsupervised node representation model that learn node representation in a graph. We
achieve the path representation by aggregating the node representations of the nodes in a path.

• MoCo [32] is a momentum contrast for unsupervised visual representation learning. Here we use momentum
contrast to learn path representations.

• Toast [23] first uses auxiliary traffic context information to learn road segment representation based on the
skip-gram model and then utilizes a stacked transformer encoder layer to train trajectory representation through
route recovery and trajectory discrimination tasks. We use the same schema to learn path representations.

• t2vec [33] is a trajectory representation learning method for similarity computation based on the encoder-
decoder framework, which is trained to reconstruct the original trajectory. We use a sequence of edges in a
path to represent a trajectory.

• NeuTraj [34] is a method that revised the structure of LSTM to learn representations of the grid in the process
of training their framework. To support our task with it, we replace the grid with edges in their framework.

• PIM [4] is an unsupervised path representation learning approach that first generates negative samples
using curriculum learning and then employs global and local mutual information maximization to learn path
representations.

• HMTRL [19] is a supervised path representation learning framework for multi-modal transportation recom-
mendation.

• PathRank [18] is a supervised path representation learning model based on GRUs, which treats departure
time and driver ID as additional information.

12
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• CompactETA [35] aims to estimate travel time based on a real time predictor and an asynchronous updater.

• HierETA [36] is a supervised multi-view trajectory representation method to estimate the travel time.

• LightPath-Sup is a supervised version of our LightPath, where we train it in a supervised manner.

For all unsupervised learning methods, we first use unlabeled training data (e.g., 30K unlabeled Aalborg dataset and
50K unlabeled Chengdu dataset) to train path encoders to obtain path representations. Then a regression model takes as
input path representations and returns the estimated travel time and path ranking score using a limited labeled training
dataset, e.g., the 12K labeled Aalborg dataset. In comparison, for all supervised learning methods, we directly train
path encoders using a limited labeled training dataset, e.g., the 12K labeled Aalborg dataset and Chengdu dataset.

6.1.5 Implementation Details

We employ an asymmetrical sparse auto-encoder architecture and randomly initialize all learnable parameters with
uniform distributions. In particular, we adopt Siamese architecture, where we update the parameters of the auxiliary
encoder based on the momentum updating principle based on the main encoder and we set the momentum parameter
m = 0.99. We employ node2vec [31] to embed each edge to 128-dimensional vectors and set the dimension for path
representation to 128. For a fair comparison, we set the path representation dimensionality of all baseline methods as
128. We select concatenate as the relation aggregation function a(·, ·). We use the AdamW optimizer with a cosine
decay learning rate schedule over 400 epochs, with a warm-up period of 40 epochs. We set the base learning rate to
1e-3 and betas as (0.9, 0.95). We vary γ from 0.1,0.3,0.5,0.7,0.9 to study the effect of path scalability and efficiency for
the LightPath. In addition, we consider four different path lengths, i.e., 50, 100, 150, and 200, to study the effectiveness,
efficiency, and scalability of the LightPath. We then evaluate our LightPath as well as all baselines on a powerful Linux
server with 40 Intel(R) Xeon(R) W-2155 CPU @ 3.30GHz and two TITAN RTX GPU cards. Finally, all algorithms are
implemented in PyTorch 1.11.0.

6.2 Experimental Results

6.2.1 Overall Performance

Table 2 shows the overall performance of our LightPath and all the compared baselines on both datasets in terms
of different evaluation metrics. Especially, we select 30K unlabeled paths on Aalborg and Chengdu, respectively,
but we only have 12K labeled paths for both datasets. Thus, we use 30K unlabeled paths to train path encoder for

Table 2: Overall Accuracy on Travel Time Estimation and Ranking Score Estimation

Method
Aalborg Chengdu
Travel Time Estimation Path Ranking Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ MAE MARE MAPE MAE τ ρ

Node2vec 154.07 0.20 25.22 0.24 0.59 0.64 267.28 0.23 26.30 0.15 0.74 0.77
MoCo 146.29 0.19 21.60 0.25 0.53 0.57 237.14 0.20 23.13 0.15 0.77 0.81
Toast 137.27 0.17 20.43 0.24 0.59 0.63 240.57 0.21 23.50 0.11 0.65 0.68
t2vec 147.24 0.19 22.13 0.25 0.52 0.56 242.96 0.21 23.65 0.14 0.77 0.82
NeuTraj 117.06 0.15 18.09 0.25 0.60 0.64 232.96 0.20 22.73 0.12 0.79 0.83
PIM 102.09 0.14 14.92 0.20 0.63 0.67 223.34 0.19 21.69 0.12 0.80 0.84
HMTRL 101.81 0.13 14.51 0.17 0.68 0.72 218.94 0.19 21.22 0.09 0.83 0.84
PathRank 115.37 0.15 16.41 0.21 0.64 0.68 229.85 0.20 22.53 0.11 0.81 0.82
CompactETA 106.47 0.15 16.22 0.17 0.67 0.70 236.28 0.20 23.13 0.11 0.79 0.80
HierETA 88.95 0.12 14.23 0.15 0.71 0.74 215.39 0.19 21.66 0.09 0.84 0.85
LightPath-Sup 105.51 0.15 16.35 0.14 0.68 0.72 218.67 0.19 21.36 0.13 0.76 0.79
LightPath 85.76 0.11 12.12 0.13 0.73 0.77 212.61 0.18 20.75 0.07 0.87 0.88

unsupervised-based methods. However, supervised approaches can only use the 12K labeled paths. Overall, LightPath
outperforms all the baselines on these two tasks for both datasets, which demonstrates the advance of our model.
Specifically, we can make the following observations. Graph representation learning based approach Node2vec is much
worse than LightPath. This is because Node2vec fails to capture spatial dependencies in a path. In contrast, LightPath
considers the spatial dependencies through the self-attention mechanism, thus achieving better performance.

Although MoCo considers the dependencies among edges in a path, this method still performs worse. The main
reason is that MoCo can leverage the spatial dependencies, but it converges very slow since it needs large amounts of
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Figure 7: Effects of Pre-training.

negative samples to enable training. LightPath also outperform t2vec and NeuTraj, which both are first design to learn
trajectory representation for trajectory similarity computation. This suggests that random drops on some edges and not
reconstruct these edges in a path resulting in spatial information missing, thus achieving the worse performance on
downstream tasks. PIM consistently outperforms all other unsupervised baselines, which demonstrates the effectiveness
of representation learning. The main reason is that PIM is designed for path representation learning. However, PIM
is InfoNCE based method and has high computation complexity, making it hard to deploy on resource-limited edge
devices. HMTRL, PathRank and LightPath-Sup are three supervised learning methods that achieve relatively worse
performance due to the lack of labeled training data. Since labeling data is very time-consuming and expensive. We
consider a scenario where labeled data is limited in this paper.

6.2.2 Using LightPath as Pre-training Methods

Model pre-training aims to create generic representations that can then be fine-tuned for multiple downstream tasks using
a limited labeled dataset. Especially for many personalized services (e.g., personalized travel time estimation or path
ranking estimation) in transportation applications, a user can use his/her trajectory to fine-tune the pre-trained model
and then achieve the personalized service, where we do not have many trajectories from the user. In this experiment,
we evaluate the effect of Pre-training. We employ LightPath as a pre-training method for the supervised method
LightPath-Sup. Specifically, we first train LightPath in an unsupervised fashion, and then we use the learned transformer
path encoder to initialize the transformer in LightPath-Sup. Here, it takes as input a sequence of edge representations
and predicts the travel time and path ranking score. Figure 7 illustrates the performance of LightPath-Sup w. and w/o
pre-training over two downstream tasks on both datasets. When employing non-pre-trained LightPath-Sup, we train it
using 12K labeled training paths. We notice that (1) when employing pre-training, we can obtain the same performance
with no-pre-trained LightPath-Sup using less labeled data. For example, LightPath-Sup w. pre-training only needs
8K, and 10K labeled training paths for the Aalborg and Chengdu, respectively, to achieve the same performance of
LightPath-Sup w/o pre-training with 12k labeled samples on the task of travel time estimation. (2) LightPath-Sup w.
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Table 3: Effect of Variants of LightPath

Method
Aalborg Chengdu
Travel Time Estimation Path Ranking Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ MAE MARE MAPE MAE τ ρ

w/o RR 90.90 0.12 13.85 0.17 0.66 0.70 224.31 0.19 21.90 0.14 0.76 0.79
w/o Rec. 103.45 0.14 15.76 0.15 0.65 0.69 229.24 0.20 22.36 0.16 0.69 0.73
w/o ME 91.57 0.12 13.09 0.16 0.68 0.72 223.81 0.19 21.86 0.13 0.78 0.81
w/o CN 93.17 0.12 13.35 0.15 0.68 0.73 217.14 0.18 21.29 0.08 0.80 0.83
w/o CV 89.84 0.12 13.51 0.15 0.68 0.72 215.59 0.18 21.20 0.09 0.81 0.83
LightPath 85.76 0.11 12.12 0.13 0.73 0.77 212.61 0.18 20.75 0.07 0.87 0.88

Table 4: Effect of KD, Global Loss and Local Loss

Method
Aalborg Chengdu
Travel Time Estimation Path Ranking Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ MAE MARE MAPE MAE τ ρ

w/o KD 87.77 0.11 12.94 0.14 0.70 0.74 213.26 0.18 20.97 0.08 0.84 0.86
w/o Global 90.24 0.12 13.31 0.18 0.67 0.71 220.32 0.19 21.52 0.09 0.79 0.81
w/o Local 89.23 0.12 12.78 0.16 0.69 0.73 215.03 0.19 21.02 0.08 0.82 0.84
LightPath 85.76 0.11 12.12 0.13 0.73 0.77 212.61 0.18 20.75 0.07 0.87 0.88

pre-training achieves higher performance than LightPath-Sup w/o pre-training. We observe similar results on the task of
path ranking, demonstrating that LightPath can be used as a pre-training method to enhance supervised methods.

6.2.3 Ablation Studies

To verify the effectiveness of different components in LightPath, we conduct ablation studies on LightPath: a) effect of
variants of LightPath, specifically reconstruction (Rec) loss, relational reasoning (RR) loss, cross-network loss and
cross-view loss; b) effect of global-local knowledge distillation.

a) Effect of variants of LightPath, we consider five variants of LightPath: 1) w/o RR; 2) w/o Rec.; 3) w/o ME; 4) w/o
CN; 5) w/o CV. In w/o RR, we only consider path reconstruction loss and use main encoder; In w/o Rec., we only
consider relational reasoning loss; In w/o ME, we consider both path reconstruction and relational reasoning losses, but
we do not consider Siamese architectures in dual path encoder; In w/o CN, we remove the cross-network loss in RR;
And in w/o CV, we remove cross-view loss in RR. Table 3 reports the results on both dataset. We can observe that (1)
LightPath w/o Rec. achieves the worst performance because the learned PR only capture information from sparse path
while ignoring the removed edges, which verifies the importance of path reconstruction decoder; (2) LightPath w/o RR
also achieves the poor performance, which implies the effectiveness of self-supervised relational reasoning. (3) We
observe that the performance of LightPath degrades without cross-network and cross-view loss on both datasets, which
further demonstrates the effectiveness of our relational reasoning loss. (4) We notice that LightPath achieves the best
performance. This result implies that all the proposed modules contribute positively to the final performance, which
validates that LightPath takes advantage of all designed components.

b) Effect of KD, global KD loss, local KD loss: We further study the effect of global-local knowledge distillation. We
compared our framework with three variants: 1) w/o KD, which denotes the performance of the teacher model; 2)
w/o global KD loss, which removes global loss from global-local knowledge distillation; and 3) w/o local KD loss,
which removes local loss from global-local knowledge distillation. As shown in Table 4, compared with KD, LightPath
achieves a better performance, which verifies that the teacher model can improve the performance of the student model.
Both global and local loss can improve the performance of the learned path representation of the student model. In
specific, global loss makes more contributions to the learned path representations. As a result, removing global loss
degrades performance significantly.

6.2.4 Parameter Sensitivity Analysis

We proceed to study three important hyper-parameters, including 1) model scalability w.r.t. reduction ratio and path
length, 2) Effect of Reduction Ratio γ, 3) the parameter of temperature for global-local knowledge distillation, and 4)
effect of balancing factor α.
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Table 6: Effect of Reduction Ratio γ

γ
Aalborg
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

0.1 82.79 0.11 11.95 0.12 0.74 0.77
0.3 84.75 0.11 12.14 0.13 0.73 0.77
0.5 84.81 0.11 11.86 0.14 0.72 0.76
0.7 85.91 0.11 12.49 0.14 0.71 0.75
0.9 85.76 0.11 12.12 0.13 0.73 0.77

Table 7: Effect of Temperature t in KD

t
Aalborg Chengdu
Travel Time Estimation Path Ranking Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ MAE MARE MAPE MAE τ ρ

1 90.01 0.12 13.30 0.16 0.65 0.69 225.70 0.20 22.02 0.09 0.79 0.82
3 94.11 0.12 13.54 0.15 0.68 0.72 217.07 0.19 20.77 0.09 0.81 0.84
5 90.39 0.12 12.76 0.15 0.66 0.70 216.93 0.19 21.24 0.08 0.83 0.86
7 89.64 0.12 12.76 0.15 0.70 0.74 214.88 0.19 20.98 0.08 0.86 0.87
9 85.76 0.11 12.12 0.13 0.73 0.77 212.61 0.18 20.75 0.07 0.87 0.88
11 87.15 0.12 12.43 0.14 0.70 0.74 214.17 0.19 21.00 0.08 0.83 0.85

Model Scalability In the sequel, we explore the model scalability in terms of reduction ratio and path length
based on the synthetic dataset. Table 5 depicts the results for both LightPath and its teacher model, with varying
γ = 0, 0.1, 0.3, 0.5, 0.7, 0.9. γ = 0 denotes we do not conduct sparsity operation for the input path, i.e., using a classic
Transformer based encoder. We can observe that the GFLOPs and gMem. (GiB) decrease with the increase in the
reduction ratio. It is because the higher value of γ is, the more edges we can remove. Second, LightPath has significantly
reduced model complexity, w.r.t., GFLOPs and gMem.. For example, we can reduce the training GFLOPs by 2.54×
for the LightPath by increasing the reduction ratio γ from 0 to 0.9 in terms of path length 200. Moreover, LightPath
also shows better performance (i.e., GFLOPs and gMem.) over teacher model, e.g., 1.79× GFLOPs speedup with
reduction ratio γ = 0.9. Third, the parameters (Para. (Millions)) of teacher model is at least 3.5× of LightPath, which
implies the effectiveness of our proposed framework. Overall, LightPath shows potential of scalability to support path
representation learning for long paths.

Effect of Reduction Ratio γ To study the impact of reduction ratio γ in the final performance, we conduct an
experiment by varying the γ from 0.1 to 0.9 on Aalborg, which is shown in Table 6. We can observe that the overall
performance in both downstream tasks degrades a little when γ increases, which is reasonable as the the model has more
input information. However, we can also observe the performance differences are not so significant, which suggests the
effectiveness of our proposed framework. Even when a high reduction ratio is applied, the performance does not does
not go down too much. Therefore, our proposed method can achieve good scalability while ensuring accuracy.

Effect of Temperature t of Knowledge Distillation To study the effect of the temperature t, we conduct a parameter
study on both datasets, which is reported in Table 7. We can observe that the performance of LightPath varies with
different temperatures. It can be figured out that the best temperature t is 9, which indicates warm temperature can
mitigate the peakiness of the teacher model and results in better performance.

Effect of Balancing Factor α To study the effect of the balancing factor of global-local knowledge distillation, we
conduct a parameter study on both datasets. Based on the results reported in Table 8, we observe that the performance
of our model changes when varying α. We can observe that the optimal α is 0.6, which means that global and
local knowledge distillation loss can contribute to the LightPath’s performance. When α = 0, the global knowledge
distillation loss is ignored, which yields poor performance. When α = 1.0, the local knowledge distillation loss is
ignored, and the performance also performs poorly. This confirms our conjecture that the two proposed global-local
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Table 8: Effect of Balancing Factor α

α
Aalborg Chengdu
Travel Time Estimation Path Ranking Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ MAE MARE MAPE MAE τ ρ

0 90.24 0.12 12.78 0.16 0.69 0.73 220.32 0.19 21.52 0.09 0.79 0.81
0.2 89.35 0.12 12.85 0.14 0.69 0.73 217.10 0.19 21.34 0.09 0.78 0.80
0.4 91.57 0.12 13.17 0.15 0.69 0.73 217.33 0.19 21.21 0.08 0.85 0.87
0.6 85.76 0.11 12.12 0.13 0.73 0.77 212.61 0.18 20.75 0.07 0.87 0.88
0.8 87.44 0.12 12.76 0.14 0.70 0.75 214.34 0.19 20.93 0.08 0.84 0.86
1 89.23 0.12 12.78 0.16 0.69 0.73 215.03 0.19 21.02 0.08 0.82 0.84

Table 9: Comparison with Whole Path Input

Aalborg
Travel Time Estimation
MAE MARE MAPE

LightPath w/o RR (γ = 0.1) 91.97 0.12 13.53
LightPath w/o RR (γ = 0.1) 90.85 0.12 13.39
LightPath (γ = 0.1) 82.79 0.11 11.95

knowledge distillation losses can regularize each other and achieve better results than only optimizing one of them (i.e.,
α = 0.0 or α = 1.0).

6.3 Comparison with Whole Path Input

Compared with whole path input, we consider a variant “LightPath w/o RR” where only reconstruction loss is used and
the relational reasoning (RR) loss is disabled. In this setting, we can see in the table 9 that LightPath w/o RR (γ = 0),
i.e., using whole paths, outperforms LightPath w/o RR (γ = 0.1), i.e., using partial paths. This means that, when only
using the reconstruction loss, using whole paths are indeed better than using partial paths. However, when using both
losses, LightPath (γ = 0.1) outperforms LightPath w/o RR (γ = 0). This demonstrates that the relational reasoning
loss, which employs partial paths to create different views, is indeed effective.LigthPath,

6.4 Comparison with Fixed Interval Strategy

We then conducted additional experiments where we removed edges at fixed intervals strategy. Specifically, we set
the fixed interval to 10 and removed n edges out of every 10 (for instance, we deleted 1 edge out of every 10 edges,
i.e., corresponding to a removal ratio of γ = 0.1). The results on travel time estimation in Aalborg shown in Table 10,
which indicate that the fixed interval edge removal strategy (ref. as to first three rows) achieves the worse performance
compared with the random edge removal strategy (ref. as to last row).

6.4.1 Model Efficiency

We finally evaluate the model efficiency, including training and inference phases. Figure 8 illustrates the corresponding
results. The first observation is that LightPath outperforms PIM and Toast in both training and inference phases. In the
training phase, LightPath is more than 3× faster than PIM and almost 5× faster than Toast when path length is 200. In
the testing phase, we measure the running time for each path sample. As observed, LightPath achieves up to at least
100% and almost 200% performance improvement compared with PIM and Toast when path length is 200.

7 Related Work

7.1 Path Representation Learning

Path Representation Learning (PRL) aims to learn effective and informative path representations in road network that
can be applied to various downstream applications, i.e., travel cost estimation, and path ranking. Existing PRL studies
can be categorised as supervised learning (SL) based [27, 18, 19], unsupervised learning (UL) based [4], and weakly
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Table 10: Comparison with Fixed Interval Strategy

Strategy γ
Aalborg
Travel Time Estimation
MAE MARE MAPE

LightPath-Fixed 1/10 87.77 0.12 12.95
LightPath-Fixed 5/10 89.63 0.12 12.86
LightPath-Fixed 9/10 92.87 0.12 12.23
LightPath-Random 0.9 85.76 0.11 12.12
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Figure 8: Model Efficiency Evaluation

supervised learning (WSL) based [26] approaches. SL based methods aim at learning a task-specific path representation
with the availability of large amounts of labeled training data [19, 27, 18], which has a poor generality for other tasks.
UL methods are to learn general path representation learning that does not need labeled training data and generalizes
well to multiple downstream tasks [4, 26]. In contrast, WSL methods try to learn a generic temporal path representation
by introducing meaningful weak labels, e.g., traffic congestion indices, that are easy and inexpensive to obtain, and
are relevant to different tasks [26]. However, we aim to learn generic path representations instead of temporal path
representations in this paper. Thus, we do not select WSL method as baseline method. In particular, these methods are
computationally expensive and hard to deploy in resource-limited environments.

7.2 Self-supervised Learning

State-of-the-art self-supervised learning can be classified into contrastive learning-based and relation reasoning-based
methods. Contrastive learning-based methods [37, 38, 39, 4, 40], especially for InfoNCE loss-based, commonly
generate different views of same input data through different augmentation strategies, and then discriminate positive
and negative samples. However, these methods suffer from their quadratic complexity, w.r.t. the number of data
samples, given that it needs a large number of negative samples to guarantee that the mutual information lower bound
is tight enough [38]. In contrast, relation reasoning-based methods [41, 42] aim to learn relation reasoning head that
discriminates how entities relate to themselves and other entities, which results in linear complexity. However, existing
studies construct relation reasoning between different views from the same encoder, ignoring the effect of different
views between different encoders, i.e., main encoder and auxiliary encoder in Siamese encoder architecture.

8 Conclusion

We design a lightweight and scalable framework called LightPath for unsupervised path representation learning. In this
framework, we first propose sparse auto-encoder that is able to reduce path length N to N ′, where N is much larger
than N ′, which in turn reduces the computation complexity of the model. Then, we use path reconstruction decoder to
reconstruct the input path to ensure no edges information missing. Next, we propose a novel self-supervised relational
reasoning approach, which contains cross-network relational reasoning and cross-view relational reasoning loss, to
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enable efficient unsupervised training. After that, we introduce global-local knowledge distillation to further reduce the
size of sparse path encoder and improve the performance. Finally, extensive experiments on two real-world datasets
verify the efficiency, scalability, and effectiveness of LightPath.
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