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ABSTRACT

The detection of fake news has received increasing attention over
the past few years, but there are more subtle ways of deceiving
one’s audience. In addition to the content of news stories, their pre-
sentation can also be made misleading or biased. In this work, we
study the impact of the ordering of news stories on audience percep-
tion. We introduce the problems of detecting cherry-picked news
orderings and maximizing neutrality in news orderings. We prove
hardness results and present several algorithms for approximately
solving these problems. Furthermore, we provide extensive experi-
mental results and present evidence of potential cherry-picking in
the real world.
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1 INTRODUCTION

Access to information is a hallmark of modern democracy and
society. Many people rely on online news sources or social media to
understand the problems facing their communities, stay informed
on current events, and determine who they would like to represent
them in government. As such, they often have to blindly trust that
their news sources are providing them with accurate information
and presenting it in an unbiased way. Media organizations can
take advantage of this trust to push their own agendas and spread
disinformation when it benefits them financially or politically. As
people become more aware of the prevalence of misinformation
online, news sources risk losing their credibility if they are caught
spreading outright lies. But even if the information they provide is
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technically accurate, there are still ways in which they can inject
bias into its presentation [51].

One way in which this can be done is through deceptive ordering
of news stories in a broadcast or web page. For example, suppose
two headlines are placed next to each other in a user’s feed:
• “Immigration rates are on the rise again”
• “Crime rates in major cities have reached historic highs”

Viewing one headline may influence the user’s opinion of the
story corresponding to the second headline — by affecting their
belief in the veracity of the story, their stance (for or against) on
the events in the story, or by inducing them to perceive a causal
relationship when there is only correlation. We term this phenome-
non “opinion priming”. Viewing one headline primes1 the user to
form a certain opinion when shown the second headline.

In this particular case, the user may perceive a causal relationship
between these two events, even though it is never explicitly stated
by the news source. In reality, this correlation could be completely
spurious, but a news organization with ulterior motives could use
this psychological trick by placing the two stories next to each
other to influence the views of its audience.

On the other hand, a socially responsible news corporation, or
an organization auditing a less scrupulous corporation to hold them
accountable, may seek to order news stories in a way that minimizes
this risk of opinion priming. Alternatively stated, they may seek to
maximize the neutrality of a news ordering.

Acknowledging that there are other objectives at play as well,
including profitability for the news corporation and relevance to
the user, in this paper, we focus on maximizing neutrality and leave
simultaneous optimization of all these objectives as an important
direction for future work.
Problem Novelty. In this paper, we study news ordering neu-
trality2 from an algorithmic perspective. While there has been
extensive work in recent years on different aspects of news cover-
age selection bias [18, 57, 63, 65], diversifying news recommenda-
tions [13, 46, 61, 69], and computational fact-checking [49, 72, 99],
to the best of our knowledge, this paper is the first to consider the
impact of the ordering of news stories on neutrality.
Contributions. Our contributions in this paper are as follows:
• We formalize the notion of news ordering and introduce the
problems of (a) detecting cherry-picked news orderings and (b)
maximizing neutrality in news orderings (§2).
• We present an algorithm to efficiently detect cherry-picked news
orderings (§3). The algorithm uses random shuffling and tail

1The occurrence of priming has been extensively studied in related settings [2, 14, 25,
31, 82]. We performed a user study (§6.4) to confirm the existence of priming in our
setting.
2This paper addresses one important technical piece of a larger socio-technical problem
with many dimensions [51]. We discuss related work in more detail in §7.
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inequalities to detect if the neutrality of the given ordering is
significantly different from the mean.
• We study the problem of maximizing neutrality in news order-
ings. We prove results on the theoretical hardness of solving
this problem and provide several approximation algorithms (§4
and §5). Our algorithms make (non-trivial) connections to other
problems such as max-weight matching [37] and max-weight
cycle cover [17], by using them as subroutines in the algorithms.
• We introduce new variations of the fundamental maximum trav-
eling salesman problem and propose algorithms that can be used
to solve problems with a broad range of applications. In particu-
lar, we define the PathMaxTSP problem of finding a Hamiltonian
path with maximum total weight in a graph.
• We conduct comprehensive experiments on real and synthetic
datasets to validate our theoretical results (§6). We were able to
find potential evidence of cherry-picked orderings in the real world,
further motivating our study. In addition, our user study with
over 50 participants confirms the existence of priming in our
setting.

We conclude the paper with a discussion of related work (§7) and
directions for future research (§8).

2 PROBLEM SETUP

Let t = { 𝑡1, 𝑡2, . . . , 𝑡𝑛 } be a set of 𝑛 news stories to be presented
by a news source. Let s = { 𝑠1, 𝑠2, . . . , 𝑠𝑛 } be a permutation of the
integers from 1 to 𝑛 representing an ordering of those news stories:
news story 𝑡𝑖 is presented in position 𝑠𝑖 .

When news headlines are placed near each other, the user’s
opinion of one may be influenced by the other. Our objective is
twofold: we aim to detect when a news source has cherry-picked the
ordering of its news stories, and to find the ordering that minimizes
this risk of opinion priming.

Tomodel this, we define a pairwise opinion priming (POP) function

𝐶 : t × t → R that takes as input a pair3 of stories (𝑡𝑖 , 𝑡 𝑗 ), where
𝑡𝑖 ≠ 𝑡 𝑗 , and returns a real number in the range [0, 1]. An output of
1 indicates certainty that opinion priming will occur between two
stories if they are in adjacent slots. An output of 0 indicates that
no opinion priming will occur. Note that the likelihood of opinion
priming occurring for a particular individual is impacted by their
own beliefs and mentality and may differ from that of another
individual. Thus, we consider the incidence of opinion priming
over a group of individuals. More precisely, the function 𝐶 reflects
the average pairwise opinion priming over the audience.

The values of𝐶 can be determined in several ways. For example,
a real audience’s perception can be surveyed, an auditing agency
can crowdsource answers to questions on opinion priming between
pairs of news stories, or a domain expert can assign values based
on their own judgment. We use crowdsourcing in our user studies
to estimate the values of 𝐶 , confirming this method’s feasibility
in practice. In this paper, we assume the values of 𝐶 are given as
input. Thus, the problems and solutions proposed in this paper are
agnostic to the choice of technique for determining 𝐶 .

3We could instead use ordered pairs if we wished to model the POP function as being
affected by the order of the two stories, and nearly all the results in this paper would
still hold. More details can be found in the appendix.

We also consider the distance between two stories in an ordering.
As the distance increases, any opinion priming between the pair
of stories will diminish accordingly; the audience will not form as
strong an association if the stories are presented far apart from each
other. We define a decay function 𝐷 : N→ R that takes as input the
distance between two distinct time slots and returns a real number
in the range [0, 1] with 𝐷 (1) = 1 and 𝐷 monotonic.

Using the POP and decay functions, we can now define the
pairwise neutrality of a pair of news stories.

Definition 2.1 (Pairwise Neutrality). Given a set of news stories
t, an ordering s, a POP function 𝐶 , and a decay function 𝐷 , the
pairwise neutrality between distinct news stories 𝑡𝑖 and 𝑡 𝑗 is defined
as 𝑁𝑖, 𝑗 = 1 − 𝐷 ( |𝑠 𝑗 − 𝑠𝑖 |) ·𝐶 (𝑡𝑖 , 𝑡 𝑗 ).

We now give an example to illustrate the concepts discussed so
far. Suppose we have the following decay function.

𝐷 (𝑑) =
{
1 if 𝑑 = 1
0 otherwise

(1)

This function treats pairs of headlines as having no risk of opinion
priming if they are more than one position away from each other.

Example 2.2. Consider a set of news stories t = { 𝑡1, 𝑡2, 𝑡3, 𝑡4 }
with the following POP function 𝐶 .

𝐶 𝑡1 𝑡2 𝑡3
𝑡2 0.1
𝑡3 0.3 0.7
𝑡4 0.2 0.8 1

If we order the stories in t as 𝑡1, 𝑡3, 𝑡4, 𝑡2, then we have the following
values for s.

𝑠1 𝑠2 𝑠3 𝑠4
1 4 2 3

For example, 𝑠3 = 2 because 𝑡3 is placed second in the ordering.
Using Equation 1 for the decay function, the pairwise neutrality

between 𝑡1 and 𝑡2, for example, is

𝑁1,2 = 1 − 𝐷 ( |𝑠2 − 𝑠1 |) ·𝐶 (𝑡1, 𝑡2) = 1 − 0 × 0.1 = 1 .

The pairwise neutrality for all pairs of news stories is given below.

𝑁 𝑡1 𝑡2 𝑡3
𝑡2 1
𝑡3 0.7 1
𝑡4 1 0.2 0

Using the notion of pairwise neutrality, we can now define neu-
trality for a whole news ordering. At a high-level, a news ordering
is neutral if the pairwise neutrality between all pairs of news stories
is “high”. More formally, we use Definition 2.3 to quantify neutrality
in a news ordering. For our purposes, an aggregation function is any
function that takes a set as input and returns a single real number
in [0, 1] as output.

Definition 2.3 (News Ordering Neutrality). Given a set of news
stories t, a POP function𝐶 , a decay function 𝐷 , and an aggregation
function agg, the neutrality of a news ordering s is defined as

Neutagg (s) = agg
1≤𝑖< 𝑗≤𝑛

𝑁𝑖, 𝑗 ,

where 𝑁𝑖, 𝑗 is the pairwise neutrality between 𝑡𝑖 and 𝑡 𝑗 .
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Table 1: Table of Notations

Notation Description

𝑛 The cardinality of the set t
𝑡𝑖 A news story in the set t
𝑠𝑖 The slot assigned to 𝑡𝑖 in the ordering s
𝐶 The pairwise opinion priming function
𝐷 The decay function
𝑁𝑖,𝑗 The pairwise neutrality between 𝑡𝑖 and 𝑡 𝑗

Neutagg (s) The neutrality of the ordering s under the aggregation
function “agg”

Analogously, for any aggregation function agg, we will denote
the optimization problem of finding the ordering s that maximizes
Neutagg by Neutralityagg.

We now define two aggregation functions that we will use
throughout the paper.

Definition 2.4 (Conditional Average Aggregation). Given the pair-
wise neutrality values 𝑁𝑖, 𝑗 for a set of news stories, an ordering
s, and a decay function 𝐷 , the conditional average is defined as
the average of the pairwise neutrality values over the support of
𝐷 . I.e., if 𝐷+ is the set of pairs (𝑖, 𝑗) where 𝐷 ( |𝑠 𝑗 − 𝑠𝑖 |) > 0, then
the conditional average is the average of the neutrality values 𝑁𝑖, 𝑗

over all (𝑖, 𝑗) ∈ 𝐷+. If 𝐷 > 0 for all inputs, then this is just a simple
average. For brevity, we will refer to this function by “avg”.

Definition 2.5 (Minimum Aggregation). The minimum aggrega-
tion function simply returns the minimum element in a set. We will
refer to this function by “min”.

Example 2.6. Consider the same set of news stories t, ordering
s, POP function 𝐶 , and decay function 𝐷 from Example 2.2. Using
avg as the aggregation function, we have

Neutavg (s) = (0.7 + 0.2 + 0)/3 = 0.3 .

Similarly, the neutrality of s under min aggregation is

Neutmin (s) = min𝑁𝑖, 𝑗 = 0 .

Having defined the notion of neutrality in news ordering, we
will begin by studying how to detect cherry-picked news orderings
in §3. Our main objective in this paper is to find news orderings
that maximize neutrality, which we shall do in §4 and §5. While the
techniques proposed in §3 are agnostic to the choice of decay func-
tion, in §4 and §5, we will restrict ourselves to the decay function
given in Equation 1. This allows us to model the problem using the
language of graph theory. Analyzing more complex decay functions
is an important direction for future work.

We define a graph representation of the problem as follows. For
each news story 𝑡𝑖 , we include a vertex 𝑣𝑖 . For each pair of distinct
stories 𝑡𝑖 and 𝑡 𝑗 , we include an edge between 𝑣𝑖 and 𝑣 𝑗 with weight
𝑁𝑖, 𝑗 . For brevity, henceforth in this paper, assume all graphs are
simple, complete, undirected, weighted, and have nonnegative edge
weights unless otherwise specified. The requirement that the graphs
are simple and complete is equivalent to stating that every pair of
distinct vertices is joined by exactly one edge.

We define some graph theory terms that are used in the paper.

Definition 2.7 (Hamiltonian cycle). In a graph𝐺 = (𝑉 , 𝐸), aHamil-

tonian cycle is a simple cycle that includes all vertices in 𝑉 .

Definition 2.8 (Hamiltonian path). In a graph𝐺 = (𝑉 , 𝐸), aHamil-

tonian path is a simple path that includes all vertices in 𝑉 .

Definition 2.9 (HamPath). Given a graph 𝐺 , HamPath is the prob-
lem of determining if there exists a Hamiltonian path in 𝐺 .

With the restriction of the decay function to Equation 1, the
problem of finding an ordering of news stories that maximizes
Neut is equivalent to finding a Hamiltonian path that maximizes
Neut. But first, in §3 we propose our algorithm for detecting cherry-
picking in an ordering (with any decay function).

3 DETECTING CHERRY-PICKED ORDERINGS

We begin by illustrating how to detect cherry-picked news order-
ings. Suppose we have a set of news stories t, a POP function 𝐶 , a
decay function 𝐷 , and an aggregation function agg. Then, given a
news ordering s, we can deduce that it was likely cherry-picked if
Neutagg (s) differs significantly from the average neutrality over all
possible orderings of t. If Neutagg (s) is significantly lower than the
average, then we have successfully detected bias in the ordering.
On the other hand, if Neutagg (s) is significantly higher than the
average, then we can determine that the specified ordering was
deliberately chosen in the interest of fairness.

If we knew the population mean and standard deviation, we
could use Chebyshev’s inequality to obtain an upper bound on
the deviation from the mean. However, the number of possible
orderings is combinatorially large (𝑛!), so we cannot compute the
neutrality for all of them. If we instead generate a sample of 𝑟
random orderings using Fisher-Yates shuffles [36, 42], we can use
the Saw-Yang-Mo inequality [80], which only requires the sample

mean and standard deviation, to obtain an upper bound on deviation
from the sample mean. For convenience, we use a simplified (and
slightly looser) form of Kabán’s variant of the inequality [58]:

Pr

(��𝑋 − 𝑌 �� ≥ 𝜆𝜎√︂𝑟 + 1
𝑟

)
≤ 1
𝜆2
+ 1
𝑟
, (2)

where 𝑌 is the sample mean, 𝜎 is the unbiased sample standard
deviation,4 and the value for 𝜆 is set such that the difference between
the neutrality of the given ordering and 𝑌 is 𝜆𝜎

√︁
(𝑟 + 1)/𝑟 .

Example 3.1. If we use, say, 𝑟 = 50 samples with 𝜆 = 5, then
using Equation 2, we have the following.

Pr

(��𝑋 − 𝑌 �� ≥ 5𝜎
√︂

51
50

)
≤ 1

52
+ 1
50

=
3
50

The probability that the neutrality of a truly random ordering is
greater than 5

√︁
51/50 ≈ 5.05 sample standard deviations from the

sample mean is less than 6%. Thus, if the neutrality of our given
ordering is that far from the sample mean, it is highly likely that it
was cherry-picked.

Users can select the value for parameter 𝑟 based on their problem
size, aggregation function’s complexity, access to computational
resources, and error tolerance. We suggest 𝑟 = 300 as a reasonable
starting point.

4Usually 𝜎 is used for population deviation and 𝑠 for sample deviation, but we chose
to avoid the use of 𝑠 to avoid confusion with our notation s for news orderings.
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Now, we analyze the time complexity of the detection procedure.
We can compute 𝑟 random permutations in𝑂 (𝑟𝑛) time using Fisher-
Yates shuffles. We can compute the neutrality of the 𝑟 orderings in
𝑂 (𝑟𝑛2) time. Computing the sample mean and standard deviation
of the 𝑟 values takes𝑂 (𝑟 ) time and evaluating the test statistic takes
𝑂 (1) time. Thus, overall, the algorithm takes 𝑂 (𝑟𝑛2) time.

Furthermore, if we make certain assumptions, we can obtain
a running time linear in 𝑛. If we use the decay function given by
Equation 1 alongwith an aggregation function that can be computed
in linear time (e.g., avg or min), we can compute the neutrality of
the 𝑟 orderings in𝑂 (𝑟𝑛) time for an overall running time of𝑂 (𝑟𝑛).

4 MAXIMIZING NEUTRALITY UNDER

AVERAGE AGGREGATION

In the previous section, we considered the problem of detecting
cherry-picked news orderings. Now, we move on to the main focus
of our paper: finding news orderings with maximum neutrality.

Before beginning the technical content, we stop to emphasize
the importance of computational approaches to this problem. Due
to the combinatorially large number of possible orderings, the task
is infeasible for a human with even a very small number of news
headlines. For example, with only 10 headlines, there are 3,628,800

potential orderings to consider. Thus, even in contexts where few
stories are presented (e.g., a television broadcast), computational
approaches are important. Furthermore, there are contexts in which
the number of stories grows much larger (e.g., scrolling through a
social media feed), where computational approaches are critical.

First, we consider the scenario where our aggregation function
is the avg function. This is a natural aggregation function to use;
if we are equally invested in the pairwise neutrality of each pair
of stories, it makes sense to maximize the average (mean) value.
Note that this is exactly equivalent to maximizing the sum of the
pairwise neutrality of each pair but with the added benefit that the
neutrality will always be a value in the range [0, 1], so it is easier
to make intuitive judgments about whether it is “high” or “low”.

In the graph theory representation, the problem is now equiva-
lent to finding a Hamiltonian path with maximum weight. To the
best of our knowledge, we are the first to study this problem.We will
call this problem the “path maximum traveling salesman problem”,
or PathMaxTSP.

Definition 4.1 (PathMaxTSP). Given a graph𝐺 , PathMaxTSP is the
problem of finding a Hamiltonian path with maximum total weight.

Theorem 4.2. PathMaxTSP is NP-hard.
5

Corollary 4.3. Neutralityavg is NP-hard.

Given the above hardness results, in the rest of the section, we
design approximation algorithms to solve PathMaxTSP.

Between our algorithms ApproxMat and ApproxCC, ApproxCC
has improved efficiency with the same approximation factor, so we
advocate for its use over ApproxMat in all cases. We include Approx-
Mat in our exposition for its comparative simplicity and in the hope
that it inspires future work in this area. Our algorithm Approx3CC
achieves the best approximation factor but has an unreasonably
slow running time.
5Proofs of all theorems stated in this section can be found in the appendix.

4.1 Approximation via Iterated Matching

The first algorithm,ApproxMat (pseudocode in the appendix), works
by making a connection to the well-known max-weight matching
problem, where in a weighted graph, the goal is to find a set of
disjoint edges with maximum total weight [62].

In each iteration 𝑘 , the algorithm constructs a graph𝐺𝑘+1 used in
the next iteration. To do so, it first finds a max-weight matching in
the graph𝐺𝑘 . Then, for every pair in the matching, it adds a “super
node” to 𝐺𝑘+1. The super node represents a path in the original
graph𝐺 . To perform this merge, the algorithm joins the represented
paths by the pair of endpoints with maximum edge weight. If |𝑉𝑘 | is
odd, one of nodes in𝐺𝑘 remains unmatched and gets added to𝐺𝑘+1
as is. The weight of the edge between each pair of nodes in𝐺𝑘+1 is
the maximum edge weight between the ends of their represented
paths. The algorithm continues this process until there is only one
super node left. The path represented by the final super node is a
Hamiltonian path in the original graph.

Example 4.4. Consider a set of stories t = { 𝑡1, . . . , 𝑡6 } with pair-
wise neutrality values as shown in the graph of Figure 1a (for visual
clarity, we omit four edges with weight zero). ApproxMat starts
by finding the max-weight matching {(𝑡1, 𝑡3), (𝑡2, 𝑡4), (𝑡5, 𝑡6)}, as
highlighted in the figure. Next, the algorithm replaces the pairs in
the matching with super nodes: ⟨𝑡1, 𝑡3⟩, ⟨𝑡2, 𝑡4⟩, and ⟨𝑡5, 𝑡6⟩. In the
second iteration, the algorithm selects edge (𝑡4, 𝑡5) with weight 1 to
join the super nodes ⟨𝑡2, 𝑡4⟩ and ⟨𝑡5, 𝑡6⟩ (Figure 1b). In the final itera-
tion, the algorithm matches ⟨𝑡2, 𝑡4, 𝑡5, 𝑡6⟩ to ⟨𝑡1, 𝑡3⟩, via edge (𝑡1, 𝑡2),
creating the final super node, ⟨𝑡3, 𝑡1, 𝑡2, 𝑡4, 𝑡5, 𝑡6⟩. The neutrality of
the resulting ordering under avg aggregation is 4.1/5 = 0.82.

Theorem 4.5. ApproxMat returns a 1/2-approximation for Path-

MaxTSP.

We have not yet explicitly specified a subroutine to compute a
max-weight matching. Classically, this can be done in 𝑂

(
𝑛4

)
time

using Edmonds’ blossom algorithm [37]. Alternatively, it can be
done in 𝑂

(
𝑛2𝜀−1 log 𝜀−1

)
time for any fixed error 𝜀 [33]. Properly

implemented, the runtime of each iteration of the loop is dominated
by the cost of the matching. If we use Edmonds’ blossom algorithm,
then each iteration takes𝑂

(
|𝑉𝑘 |4

)
time. By the master theorem [23],

the overall runtime is then𝑂
(
𝑛4

)
.While polynomial,ApproxMat has

a high time complexity. Therefore, next we propose our algorithm
ApproxCC that, while maintaining the same approximation ratio,
reduces time complexity by a factor of 𝑛.

4.2 Approximation via Iterated Cycle Cover

The second algorithm, ApproxCC (pseudocode in Algorithm 1), finds
a max-weight cycle cover, defined as a set of cycles6 of maximum
total weight such that every vertex is included in exactly one cycle.
Then, it removes themin-weight edge from each cycle. The resulting
paths are treated as super nodes (as in ApproxMat) and the process
is repeated until there is only one super node remaining. The final
super node implicitly gives a Hamiltonian path in the original
graph.

6Here, cycles of length 2 are allowed.
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(a) First iteration
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(b) Second iteration

𝑡1 𝑡2
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𝑡6
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0.3

0

0
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1
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(c) Third (final) iteration

Figure 1: (Example 4.4) ApproxMat returns the ordering ⟨𝑡3, 𝑡1, 𝑡2, 𝑡4, 𝑡5, 𝑡6⟩

Algorithm 1 Approximating PathMaxTSP via iterated cycle cover

1: procedure ApproxCC(𝐺 = (𝑉 , 𝐸))
2: 𝑘 ← 0; 𝐺𝑘 ← 𝐺 ; 𝑠𝑖𝑧𝑒 ← 𝑛

3: while 𝑠𝑖𝑧𝑒 > 1 do
4: Compute a max-weight cycle cover 𝐶 in 𝐺𝑘 .
5: Construct a graph 𝐺𝑘+1 = (𝑉𝑘+1, 𝐸𝑘+1) as follows.
6: 𝑉𝑘+1 ← { }
7: for all 𝑐 ∈ 𝐶 do

8: Remove the min-weight edge, and let (𝑝1), . . . , (𝑝𝑎)
be the resulting path.

9: 𝑝 ← 𝑝1
10: for all 𝑖 ∈ [2, 𝑎] do
11: Let 𝑢1, . . . , 𝑢𝑏 be the path denoted by 𝑝 and

𝑣1, . . . , 𝑣𝑑 be the path denoted by 𝑝𝑖 .
12: if 𝑤 (𝑢𝑏 , 𝑣1) > 𝑤 (𝑢𝑏 , 𝑣𝑑 ) then 𝑝 ← 𝑝, 𝑣1, . . . , 𝑣𝑑
13: else 𝑝 ← 𝑝, 𝑣𝑑 , . . . , 𝑣1
14: Add (𝑝) to 𝑉𝑘+1.
15: for all pairs (𝑢1, . . . , 𝑢𝑎), (𝑣1, . . . , 𝑣𝑏 ) in 𝑉𝑘+1 do
16: Add the edge ((𝑢1, . . . , 𝑢𝑎), (𝑣1, . . . , 𝑣𝑏 )) to 𝐸𝑘+1

with weight𝑤 (𝑢𝑎, 𝑣1).
17: 𝑠𝑖𝑧𝑒 ← |𝑉𝑘+1 |; 𝑘 ← 𝑘 + 1
18: return the Hamiltonian path 𝑣1, . . . , 𝑣𝑛 in 𝐺 where

(𝑣1, . . . , 𝑣𝑛) is the sole vertex in 𝑉𝑘 .

In this algorithm, we reduce the problem of computing a cycle
cover to that of computing a bipartite matching. The original reduc-
tion is due to Tutte [90]; an accessible presentation of the specific
case we are interested in is given by Nikolaev and Kozlova [73].

Example 4.6. Consider a set of stories t = { 𝑡1, . . . , 𝑡6 } with pair-
wise neutrality values as shown in the graph of Figure 2a (for visual
clarity, we omit four edges with weight zero). ApproxCC starts
by finding the max-weight cycle cover {(𝑡1, 𝑡2, 𝑡3), (𝑡4, 𝑡5, 𝑡6)}, as
highlighted in the figure. Then, it removes the min-weight edge
from each cycle (Figure 2b). Next, the algorithm replaces these
paths with super nodes: ⟨𝑡1, 𝑡2, 𝑡3⟩ and ⟨𝑡4, 𝑡5, 𝑡6⟩. In the second it-
eration, the algorithm joins the two super nodes to form the cycle
(𝑡3, 𝑡2, 𝑡1, 𝑡4, 𝑡5, 𝑡6) and removes the edge (𝑡6, 𝑡3) to create the final
super node (Figure 2c). The neutrality of the resulting ordering
under avg aggregation is 4.1/5 = 0.82.

Theorem 4.7. ApproxCC returns a 1/2-approximation for Path--

MaxTSP.

We can compute a max-weight bipartite matching in𝑂
(
𝑛3

)
time

using the Hungarianmethod [38, 88]. It can also be done in expected
time𝑂

(
𝑛2 log𝑛

)
if the edge weights are i.i.d. random variables [60].

Again, we can use the linear-time approximation algorithm for
general max-weight matching instead. Properly implemented, the
runtime of each iteration of the loop is dominated by the cost of
the bipartite matching. If we use the Hungarian method, then each
iteration takes 𝑂

(
|𝑉𝑘 |3

)
time. By the master theorem, the overall

runtime is then 𝑂
(
𝑛3

)
.

4.3 Approximation via 3-Cycle Cover

So far, both algorithms proposed are 1/2-approximation algorithms.
Our third algorithm, Approx3CC (pseudocode in the appendix) im-
proves the approximation factor to 2/3, but at a high computation
cost. It finds a max-weight 3-cycle cover, defined as a set of cycles of
maximum total weight such that every vertex is included in exactly
one cycle and every cycle has length at least 3. It then removes the
min-weight edge from each cycle and arbitrarily joins the resulting
paths to form a Hamiltonian path.

We reduce the problem of computing a max-weight 3-cycle cover
to that of computing a max-weight matching on a more complex
graph. A thorough presentation of the reduction is given by Epp-
stein [39]. The original reduction was a generalization of this argu-
ment given by Tutte [90].

We have not yet explicitly specified a subroutine to compute a
max-weight matching. We can use Edmonds’ blossom algorithm
or the linear time approximation algorithm for max-weight match-
ing. The time to compute the matching dominates the rest of the
computation, so the overall time complexity of Approx3CC is the
time complexity of running the preferred algorithm on a graph
with |𝑉 | = 2𝑛2 − 4𝑛 and |𝐸 | = 𝑛3 − 3.5𝑛2 + 2.5𝑛. With the blossom
algorithm, this leads to a overall runtime of 𝑂

(
𝑛7

)
. As such, this

algorithm is not practical (we do not use it in our experiments), but
it is of theoretical interest, as evidenced by the following theorem.

Theorem 4.8. Approx3CC returns a 2/3-approximation for Path-

MaxTSP.

5 MAXIMIZING NEUTRALITY UNDER MIN

AGGREGATION

Now, we consider the scenario where our aggregation function 𝑓 is
the min function: it returns the smallest element in a totally ordered
set. This is another well motivated aggregation function; if we are
okay with many imperfect pairs but just want to make sure that
no pair is too bad, then it makes sense to maximize the neutrality
of the most biased pair. In the graph representation, the problem
is now equivalent to finding a Hamiltonian path with maximum
min-weight edge. This problem was first studied by Arkin et al. [6].
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(c) Second iteration (after transforming cycle to path)

Figure 2: (Example 4.6) ApproxCC returns the ordering ⟨𝑡3, 𝑡2, 𝑡1, 𝑡4, 𝑡5, 𝑡6⟩

We will refer to it as the “path maximum scatter traveling salesman
problem”, or PathMaxScatterTSP.

Definition 5.1 (PathMaxScatterTSP). Given a graph 𝐺 , PathMax-

ScatterTSP is the problem of finding a Hamiltonian path with mini-
mum edge weight maximized.

The cycle variant has been successfully addressed with heuristic
methods [92], but there are no published results on algorithms
for PathMaxScatterTSP. Unfortunately, we will have to rely on
heuristic methods, as we have the following inapproximability
result by Arkin et al. [6].

Theorem 5.2. There is no polynomial-time constant-factor ap-

proximation algorithm for PathMaxScatterTSP unless P = NP.

Corollary 5.3. There is no polynomial-time constant-factor ap-

proximation algorithm for Neutralitymin unless P = NP.

We now adapt the BottleneckATSP heuristic algorithm of LaRu-
sic and Punnen [64] and design the first heuristic algorithm for the
PathMaxScatterTSP problem.

Given a graph 𝐺 = (𝑉 , 𝐸) and parameter 𝛿 , we define the graph
𝐺 ′ = (𝑉 , 𝐸′) with edge set defined as follows. For each edge (𝑢, 𝑣) ∈
𝐸 with weight at least 𝛿 , we have an edge (𝑢, 𝑣) ∈ 𝐸′ with weight 0.
For each edge (𝑢, 𝑣) ∈ 𝐸 with weight𝑤 less than 𝛿 , we have an edge
(𝑢, 𝑣) ∈ 𝐸′ with weight 𝛿 −𝑤 . Then, there is a Hamiltonian cycle
in 𝐺 with minimum edge weight at least 𝛿 if and only if there is a
cycle in𝐺 ′ with total weight 0. We use any heuristic solver for TSP
to predict whether such a cycle exists in 𝐺 ′; we will use 2-opt [24],
a simple but effective local search algorithm. One useful property
of 2-opt is that it is an anytime algorithm. The user can choose to
terminate it before convergence and obtain a slightly sub-optimal
solution to save time if computational resources are scarce.

If we perform a binary search over all possible edge weights
𝛿 , we can estimate the maximum value of 𝛿 such that there is a
Hamiltonian cycle in𝐺 with minimum edge weight at least 𝛿 . If we
then remove themin-weight edge from that cycle, the resulting path
is an approximate solution to the instance of PathMaxScatterTSP.
The full pseudocode is shown in Algorithm 2.

6 EXPERIMENTS

Now that we have finished introducing all the algorithms, we
present our experiments. First, we describe the data collection and
generation process, then we discuss hardware and implementation
details, and finally, we report the results of the experiments. Our
implementations and data are freely available online [1].

Algorithm 2 Heuristic for PathMaxScatterTSP

1: procedure IsFeasible(𝐺 = (𝑉 , 𝐸), 𝛿)
2: Define the graph 𝐺 ′ = (𝑉 , 𝐸′) such that for each edge

(𝑢, 𝑣) ∈ 𝐸 with weight𝑤 , we have an edge (𝑢, 𝑣) ∈ 𝐸′ with
weight max(𝛿 −𝑤, 0).

3: 𝐶′ ← 2-opt(𝐺 ′)
4: Let 𝐶 be the corresponding cycle in 𝐺 and 𝑊 the total

weight of 𝐶′.
5: if𝑊 = 0 then return 𝐶, True
6: else return 𝐶, False

7: procedure BinarySearch(𝐺, 𝑙, 𝑟 )
8: 𝑚 ← ⌈(𝑙 + 𝑟 )/2⌉
9: 𝐶,𝑋 ← IsFeasible(𝐺,𝑚)
10: if 𝑙 = 𝑟 then return 𝐶

11: if 𝑋 then return BinarySearch(𝐺,𝑚, 𝑟 )
12: return BinarySearch(𝐺, 𝑙,𝑚 − 1)
13: procedure PathMaxScatterTSP(𝐺)
14: Consider the sorted list of all edge weights.
15: Let 𝑙 and 𝑟 be the minimum and maximum, respectively.
16: 𝐶 ← BinarySearch(𝐺, 𝑙, 𝑟 )
17: Remove the min-weight edge from 𝐶 to construct a path 𝑃 .
18: return 𝑃

6.1 Data

To measure the empirical performance of our algorithms, we tested
them on real, semi-synthetic, and synthetic data.
Real Data. We selected two news sources based in the United
States: American Thinker and The Federalist. On July 24, 2022,
we collected the first 11 headlines from each homepage. Within
each source, every possible pair of headlines was labeled by 3 out
of 6 total annotators according to whether or not they thought it
may lead to significant opinion priming. The following prompt was
given to all annotators.

Suppose an average adult residing in the United States is viewing

news headlines.

If the subject views headline A and headline B together, will their

impression of either story likely be different from what it would

have been if the subject had viewed them individually?

I.e., would viewing the headline of one story influence their opinion

on the veracity of the content of the other story or the causes, effects,

or benefits of the events discussed within?

Every annotator was given 55 headline pairs; for each pair, the
possible answers were “yes”, “no”, and “maybe”, corresponding to
pairwise neutrality values of 0, 1, and 0.5, respectively. For 35.5%
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of the pairs, all annotators agreed. For 85.5%, the majority agreed.
The 15.5% of cases where there was no consensus confirm our
expectation that opinion priming can be specific to each individual.

After collecting the labels, we took the average value for each pair
of headlines and used these values to define the POP function. These
values serve as loose estimates of average audience perceptions.
Semi-Synthetic Data. To show that our algorithms scale to larger
data, we created a dataset larger than we were able to collect labels
for. We considered several common probability distributions, and
for each one, we computed both the parameters that best fit our
data and the likelihood of the data given that distribution with those
parameters. We then chose the distribution with greatest likelihood.
In short, we found the distribution that best fit the labeled data. For
our data, the best fit was a beta distribution.

To generate the semi-synthetic data, we create a complete graph,
and for each edge, we sample a value from the chosen distribution
for the weight. In this way, we are able to generate a graph corre-
sponding to a dataset of any size that has edge weights matching
the distribution of weights in the real data.
Synthetic Data. In addition to the semi-synthetic data, we also
generated graphs with edge weights not drawn independently. In-
tuitively, if𝐶 (𝑢,𝑤) and𝐶 (𝑣,𝑤) are high, then𝐶 (𝑢, 𝑣) is likely to be
high as well, so in this setting, we draw edge weights from the orig-
inal beta distribution, but then enforce that there are no triangles
in the graph where only two edges have “high” POP values. Adding
a second distribution also served as a way to test the robustness of
our algorithms to changes in the data distribution.

6.2 Implementation

Hardware. All experiments were run on a machine with an In-
tel(R) Core(TM) i5-8265U CPU @ 1.80 GHz and 16.0 GB of memory
running Windows 11 Pro.
Software. All methods were implemented using Python 3.10.2.
The NetworkX package [50] (version 2.6.3) was used for the graph
representations and several graph algorithms. The SciPy library [93]
(version 1.8.0) was used in the implementation of the statistical test
and for the fitting of and sampling from probability distributions.
Implementation Details. The NetworkX method used for max-
weight matching relies on a blossom-type algorithm [37]. For max-
weight bipartite matching, we used the algorithm of Karp [60].

When evaluating the algorithms for maximizing neutrality, the
methods were run on 4 random graphs with edge weights sampled
from the same distribution, and the neutrality values obtained were
averaged; this helps account for the randomness in the data. In
addition, for each graph, the methods were run 3 times and the
minimum execution time was recorded to account for any unrelated
changes in processor utilization affecting the speed of computation.

When evaluating the algorithm for detecting cherry-picked or-
derings, the methods were run 5 times and the minimum execution
time was recorded; the relative efficiency of the detection methods
allows us to run them a higher number of times.

6.3 Results

Detection. To illustrate the process of detecting cherry-picked
orderings, we run our algorithmwith varying values of 𝑟 . Recall that
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𝑟 represents the number of random permutations sampled for the
statistical test. Thus, higher values of 𝑟 lead to more accurate testing
but slower computation. The values of 𝑟 used in the experiments
are { 100, 200, . . . , 2000 }. The data in Figure 3 confirms that the
probabilities converge as 𝑟 grows.

For a conclusive test, in order to detect evidence of cherry-
picking in the real dataset, we ran the detection algorithm with a
much larger value of 50000 for 𝑟 to get the tightest bounds.

Under avg aggregation, we did not discover any significant evi-
dence of cherry-picking by either source. Under min aggregation,
on the other hand, we found evidence of potential cherry-picking

for both sources. For American Thinker, we found that the proba-
bility that a random ordering would have neutrality as far from
the mean as that of the true ordering is bounded above by 46.49%.
Likewise, for The Federalist, we obtained an upper bound of 59.91%.
This does not prove that the orderings were cherry-picked, or if
they were, give proof of malicious intent, but it does give evidence
that cherry-picking may have occurred, especially in the case of
American Thinker.

In both cases, the computed neutrality of the ordering was zero
under min aggregation. We computed the maximum possible neu-
trality via the brute force method for comparison: 0.67 for American
Thinker7 and 0.83 for The Federalist.

The following is an example of a headline pair with neutrality
zero from American Thinker:
• “The Merriam-Webster’s online dictionary redefines ‘female’”
• “Crayola has joined the woke brigade with a vengeance”
In this case, viewing the second headline may prime the viewer to
consider Merriam-Webster’s actions to be “woke”, a term that is
often used as a pejorative. If they had viewed the first headline indi-
vidually, they would be more likely to form their own (potentially
less biased) opinion on the story.
Maximizing Neutrality. We used the algorithms from §4 and §5
to find orderings with high neutrality for the semi-synthetic and
synthetic data. For the semi-synthetic data, the results for avg aggre-
gation are shown in Figure 4 and the results for min aggregation in

7Our heuristic method also found an optimal solution — in 0.02 seconds, instead of 8
minutes.
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Figure 6. For the synthetic data, the results for avg aggregation are
shown in Figure 5 and the results for min aggregation in Figure 7.

The values of𝑛 used for testing are based on the sizes expected of
real-life datasets. It would be unlikely for a reader to view a contigu-
ous list of over 200 news headlines. Furthermore, given the compu-
tational complexity of the problem, few algorithms would be able to
perform well far beyond that point. The values of 𝑛 used in our ex-
periments are { 6, 7, 8, 9, 15, 20, 30, 40, 50, 70, 100, 120, 150, 180 }. For
min aggregation, we stop at 𝑛 = 70.

We also tested a “sampling” baseline that computes the neutral-
ity of many random orderings and selects the best one. To enable
a fair comparison, under avg aggregation, we set it to run for ap-
proximately the amount of time that ApproxMat takes, and under
min aggregation, the amount of time that the heuristic method
takes. We can see that our algorithms perform significantly better
than the sampling baseline. Next, the execution times confirm that
ApproxCC is significantly faster than ApproxMat (𝑂

(
𝑛3

)
vs. 𝑂

(
𝑛4

)
).

Finally, we can see just how slow the brute-force method is — it is
infeasible to run it for 𝑛 > 9 in the experiments.

In addition to confirming the theoretical time complexities, we
learn from the results that ApproxCC performs slightly better than
ApproxMat. It is unclear why this is the case, but it seems to consis-
tently compute slightly better orderings. We can also see that our
algorithms are at or near optimal for small 𝑛. We cannot make any
conclusions about their optimality for larger 𝑛 since we are unable
to compute the solution by brute force for larger 𝑛, but we expect
that they are near optimal.

The experimental results also show that our algorithms are ro-
bust to changes in the data distribution. Neither the neutrality or
execution time changes significantly as a result of the change in
distribution (whereas the sampling baseline performs much worse
on the synthetic data).
Early Stopping. Finally, we measured the effect of early stopping
on the heuristic method. As mentioned earlier, the 2-opt subroutine
has the “anytime property”: it can be terminated at any time and still
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return a solution. For the other experiments, we simply ran 2-opt
until it converged, but for this experiment, we ran it for a specified
number of iterations (or terminated it if it converged early).

Using a fixed value of 𝑛 = 60, for 1 ≤ 𝑡 ≤ 6, we ran the heuristic
method but always terminated the 2-opt subroutine after at most 𝑡
iterations. The results are shown in Figures 8 and 9. The neutrality
increases as the number of allowed iterations increases, but plateaus
after about 3 or 4 iterations. However, the neutrality is still relatively
high after just 2 iterations, with the benefit of a significant reduction
in computation time.

6.4 Existence of Priming (User Study)

The occurrence of priming has been well studied and has been ana-
lyzed in many related settings, including news consumption [14],
social networks [2], job interviews [82], crowdsourcing [31], and
annotation [25]. To verify that priming does indeed occur in our
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setting of viewing news headlines, we ran a user study (n=59).
We presented a test group and a control group (formed via con-

venience sampling) with a set of 9 fictional news headlines, and
afterwards, we asked them their opinions of several people involved
in the stories (“very negative”, “negative”, “positive”, or “very posi-
tive”). The full set of headlines and images of the survey interface
can be found in the appendix. The test group had the following pair
of headlines placed next to each other in the ordering (|𝑠 𝑗 − 𝑠𝑖 | = 1);
the control group had them separated (|𝑠 𝑗 − 𝑠𝑖 | = 5).
• “City’s high school graduation rates at lowest in decades”
• “High school principal celebrates 10 years”
When surveyed at the end, after removing 6 responses that failed at-
tention checks, 39% of the participants in the test group had formed
a negative impression of the principal, compared to 16% in the
control group. This difference is statistically significant (Boschloo’s
exact test, p = 0.0337).

7 RELATEDWORK

To the best of our knowledge, this paper is the first to study the
effect of bias in news ordering. However, there are several areas of
related work that we discuss next.
Media Bias. Neutrality in the ordering of news headlines is the
focus of this paper. This is only one aspect of media bias, a large
socio-technical problem with many dimensions [51]. Among many
other facets, a well-recognized component of media bias is selection
bias [18, 57, 63, 65]. In general, selection bias happens when the data
selection process does not involve proper randomization [56, 81, 94].
A study by Bourgeois et al. [18] uses the predictability of the news
coverage to measure selection bias.

Diversifying search results [3, 32] has been considered in efforts
to reduce media bias [47, 61, 69, 87]. In particular, content spread
in online social networks is affected by social bubbles and echo
chambers [19, 21, 34, 74, 91], which significantly bias the spread of
information. Diversifying news recommendations [13, 27, 46, 61,
69, 87] has been an effective technique for breaking echo chambers.
Computational Fact Checking. Whereas our work emphasizes
the importance of the ordering of news stories, prior work in
the literature focuses on the veracity of the content of said sto-
ries [49, 72, 99]. There have been remarkable advancements in fake
news detection in the past decade [10, 22, 52–55, 95, 96]. Early fake
news detection efforts include manual methods based on expert
domain knowledge and crowdsourcing [52, 53]. Computational
fact checking has since emerged, enabling automatic evaluation
of claims [49, 72, 99]. These techniques heavily rely on natural
language processing [67, 68], information retrieval [28], and graph
theory [22]. Related work includes knowledge extraction from dif-
ferent data sources [29, 48, 75], data integration [4, 70, 84], and
credibility evaluation [30, 40]. A bulk of the recent techniques used
in fake news detection are based in supervised learning [59, 76, 78].
An increasing number of approaches are putting emphasis on the
role of structured data [5, 11, 20, 79, 85, 89], as reflected in a special
issue of the Data Engineering Bulletin [66].
Fair Ranking. Ranking news stories has been studied in the litera-
ture [26, 71, 86], but to the best of our knowledge, none of the exist-
ing work considers bias and neutrality in news ordering. Fair rank-

ing is a recent line of work that studies ordering a set of items or indi-
viduals to satisfy some fairness constraints [9, 16, 77, 83]. At a high
level, existing work is divided into score-based ranking [7–9, 97]
and learning-to-rank and recommender systems [15, 43, 45, 98].
Despite the similarity in name, none of the existing work in this
area can map onto our formulation of news ordering neutrality and
is thus not useful in solving the problem proposed in this paper.
Traveling Salesman Problem. The (cycle) maximum traveling
salesman problem has been studied since at least 1979 [41]. A survey
on the maximum traveling salesman problem is given by Barvinok
et al. [12], and the current state-of-the-art solution for it has a
constant factor of 4/5 [35]. On the other hand, the path maximum
traveling salesman problem, which we introduce in this paper to
model avg aggregation, is not present in the literature to the best
of our knowledge.

8 FINAL REMARKS

As this paper is opening up a new line of research in the fight
against misinformation, there are numerous directions to explore.
Data Collection. A major challenge when evaluating news order-
ing neutrality is the collection of labels for each pair of news stories
for constructing the POP function. One straightforward way is to
survey the perceptions of the audience itself. However, it is not
always possible to gain access to the audience’s beliefs. The two
main alternatives are crowdsourcing the labeling or having a do-
main expert provide the labels. The former is easy to scale but may
result in inaccurate labels, while the latter results in accurate labels
but is difficult to scale to large datasets. One promising potential
approach to alleviate the difficulties of the data collection process
is to train large language models to classify pairs of news stories.
Introducing Utility. While maximizing neutrality is important,
a corporation’s main goal is to maximize profits. It would be an
interesting research direction to introduce a notion of utility and
attempt simultaneous maximization of neutrality and utility.
Maximizing Neutrality. In this work, we restricted ourselves to
a simple decay function to represent the problem in the form of a
graph. One natural extension is to study the problem with more
complex decay functions. For example, in layouts with multiple
pages, it would be plausible to have a decay function with value 1
if two headlines are on the same page and 0 otherwise.

Another challenge is to try to find adversarial examples for
the proposed algorithms. While we have proved approximation
guarantees, we have not shown that they are tight. If adversarial
examples are found, these bounds will be shown to be tight.

Finally, most of the algorithms for maximizing neutrality do not
make any assumptions on the distribution of the data. It would be in-
teresting to see if better guarantees or algorithms can be discovered
for specific data distributions.
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A DIRECTIONALITY

If we model the POP function as being sensitive to the order of the
two stories taken as input, all but one of the results in this paper
still hold. Approx3CC cannot be adapted for the directed setting
because it relies on finding a max-weight 3-cycle cover and doing
this is NP-hard in a directed graph [44, GT13]. Fortunately, this
algorithm is of theoretical interest only, and all other algorithms
can be easily adapted, as-is, for the directed setting.

B PSEUDOCODE

The pseudocode for approximately solving PathMaxTSP via iterated
matching is shown below.
1: procedure ApproxMat(𝐺 = (𝑉 , 𝐸))
2: 𝑘 ← 0; 𝐺𝑘 ← 𝐺 ; 𝑠𝑖𝑧𝑒 ← 𝑛

3: while 𝑠𝑖𝑧𝑒 > 1 do
4: Compute a max-weight matching𝑀 in 𝐺𝑘 .
5: Construct a graph 𝐺𝑘+1 = (𝑉𝑘+1, 𝐸𝑘+1) as follows.
6: for all ((𝑢1, . . . , 𝑢𝑎), (𝑣1, . . . , 𝑣𝑏 )) ∈ 𝑀 do

7: Consider the edge 𝑒 in 𝐸 with highest weight from
the set { (𝑢1, 𝑣1), (𝑢1, 𝑣𝑏 ), (𝑢𝑎, 𝑣1), (𝑢𝑎, 𝑣𝑏 ) }.

8: if 𝑒 = (𝑢1, 𝑣1): Add (𝑢𝑎, . . . , 𝑢1, 𝑣1, . . . , 𝑣𝑏 ) to 𝑉𝑘+1.
9: if 𝑒 = (𝑢1, 𝑣𝑏 ): Add (𝑢𝑎, . . . , 𝑢1, 𝑣𝑏 , . . . , 𝑣1) to 𝑉𝑘+1.
10: if 𝑒 = (𝑢𝑎, 𝑣1): Add (𝑢1, . . . , 𝑢𝑎, 𝑣1, . . . , 𝑣𝑏 ) to 𝑉𝑘+1.
11: if 𝑒 = (𝑢𝑎, 𝑣𝑏 ): Add (𝑢1, . . . , 𝑢𝑎, 𝑣𝑏 , . . . , 𝑣1) to 𝑉𝑘+1.
12: If |𝑉𝑘 | is odd, add the remaining vertex in 𝑉𝑘 to 𝑉𝑘+1.
13: for all pairs (𝑢1, . . . , 𝑢𝑎), (𝑣1, . . . , 𝑣𝑏 ) in 𝑉𝑘+1 do
14: Let 𝑤 be the weight of the edge in

𝐸 with highest weight from the set
{ (𝑢1, 𝑣1), (𝑢1, 𝑣𝑏 ), (𝑢𝑎, 𝑣1), (𝑢𝑎, 𝑣𝑏 ) }.

15: Add the edge ((𝑢1, . . . , 𝑢𝑎), (𝑣1, . . . , 𝑣𝑏 )) to 𝐸𝑘+1
with weight𝑤 .

16: 𝑠𝑖𝑧𝑒 ← |𝑉𝑘+1 |; 𝑘 ← 𝑘 + 1
17: return the Hamiltonian path 𝑣1, . . . , 𝑣𝑛 in 𝐺 where

(𝑣1, . . . , 𝑣𝑛) is the sole vertex in 𝑉𝑘 .

The pseudocode for approximately solving PathMaxTSP via 3-
cycle cover is shown below.
1: procedure Approx3CC(𝐺 = (𝑉 , 𝐸))
2: Construct a graph 𝐺 ′ = (𝑉 ′, 𝐸′) as follows.
3: Let𝑤max be the weight of the edge with max weight in 𝐸.
4: For each vertex 𝑣 ∈ 𝑉 , add a complete bipartite graph

𝐺𝑣 = 𝐾𝑛−1,𝑛−3 to 𝐺 ′ with each edge having weight𝑤max.
5: Let𝐺𝑣,𝑅 denote the side of the bipartition with𝑛−1 vertices.
6: For each edge (𝑢, 𝑣) ∈ 𝐸 with weight𝑤 , add an edge with

weight 𝑤 between a pair of vertices from 𝐺𝑢,𝑅 and 𝐺𝑣,𝑅

such that for all 𝑥 ∈ 𝑉 , each vertex in 𝐺𝑥,𝑅 has degree
exactly 𝑛 − 2.

7: Compute a max-weight matching in 𝐺 ′. Let 𝐶 be the corre-
sponding 3-cycle cover in 𝐺 .

8: For each cycle 𝑐 ∈ 𝐶 , remove the min-weight edge.
9: Arbitrarily join the paths together.
10: return the resulting Hamiltonian path.

C BINARY AVERAGE AGGREGATION

If we add the condition that the POP function, 𝐶 , takes values in
{ 0, 1 }, we can prove additional results. This can be interpreted as

assuming that any pair of stories has either zero risk of giving rise
to opinion priming or is absolutely certain to do so.

Definition C.1 (PathMaxTSP(0,1)). Given a graph 𝐺 such that all
edges have binary weight, PathMaxTSP(0,1) is the problem of finding
a Hamiltonian path with maximum total weight.

We also introduce the cycle variant, a problem not yet addressed
in the literature:

Definition C.2 (MaxTSP(0,1)). Given a graph𝐺 such that all edges
have binary weight, MaxTSP(0,1) is the problem of finding a Hamil-
tonian cycle with maximum total weight.

Lemma C.3. PathMaxTSP(0,1) is NP-hard.

Proof. Consider a graph 𝐺 = (𝑉 , 𝐸) with the property that
all edges have binary weight. Then, define 𝐺 ′ = (𝑉 , 𝐸′) to be the
unweighted graph with the same vertex set and an edge between
any two vertices 𝑢 and 𝑣 if and only if (𝑢, 𝑣) has weight 1 in 𝐸.

If a solution to PathMaxTSP(0,1) in𝐺 has weight 𝑛− 1, then there
must exist a Hamiltonian path in𝐺 ′. If a solution to PathMaxTSP(0,1)
in𝐺 hasweight less than𝑛−1, then there cannot exist a Hamiltonian
path in 𝐺 ′. Given a solution to PathMaxTSP(0,1), we can decide
HamPath in constant time.

Suppose for contradiction that PathMaxTSP(0,1) is not NP-hard.
Then, by our previous claim, HamPath is not NP-hard. This is a
contradiction, since HamPath is known to be NP-hard. Therefore,
PathMaxTSP(0,1) must be NP-hard. □

Proof of Theorem 4.2. Path MaxTSP(0,1) is a special case of
PathMaxTSP. Thus, PathMaxTSP is also NP-hard. □

Since PathMaxTSP(0,1) is NP-hard, we seek an approximation
algorithm for the problem. The simplest approach is to reduce it
to another problem that already has a solution. The cycle variant
of this problem, MaxTSP(0,1), which we introduced in this paper,
has not yet been studied, but its generalization, MaxTSP, has been
addressed in the literature; the current state-of-the-art algorithm
has an approximation factor of 4/5 [35].

Theorem C.4. Given an 𝛼-approximation for MaxTSP(0,1), we can

compute an 𝛼-approximation for PathMaxTSP(0,1) in 𝑂 (𝑛) time.

Proof. Given a cycle that is an 𝛼-approximation forMaxTSP(0,1),
remove the min-weight edge. If it has weight 1, the cycle has weight
𝑛 and the resulting path has weight 𝑛 − 1, which is the maximum
weight possible for a path of length 𝑛 − 1, so it must be an optimal
solution. Henceforth, assume that the min-weight edge has weight
0. Let 𝐶 be the weight of the cycle and 𝑃 = 𝐶 the weight of the
resulting path.

Let𝐶∗ be the weight of an optimal solution to MaxTSP(0,1). If we
remove an edge, we have a path of weight at most 𝐶∗. If there was
a path with greater weight, we could join the endpoints to form a
cycle with weight greater than𝐶∗, so the first path must be optimal.
Let 𝑃∗ be its weight. Then, we have 𝑃

𝑃∗ =
𝐶
𝑃∗ >=

𝐶
𝐶∗ >= 𝛼 .

Thus, the path we have constructed gives an 𝛼-approximation
for PathMaxTSP(0,1).

It takes 𝑂 (𝑛) time to find and remove the min-weight edge, so
we have constructed the approximation in 𝑂 (𝑛) time. □
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Corollary C.5. There is a 4/5-approximation algorithm for Path

MaxTSP(0,1).

Proof. There is a 4/5-approximation algorithm for MaxTSP(0,1).
Thus, by Theorem C.4, we can construct a 4/5-approximation for
PathMaxTSP(0,1). □

D AVERAGE AGGREGATION PROOFS

Proof of Theorem 4.5. We will show that the first iteration
of ApproxMat gives us a 1/2-approximation. All future iterations
cannot worsen the approximation, so we do not have to consider
their effects. Let 𝑒1, 𝑒2, . . . , 𝑒𝑛−1 be the sequence of edges in some
solution to an instance of PathMaxTSP. Let𝑊 be the total weight
of the path. The following sets of edges are matchings in the graph:

{ 𝑒1, 𝑒3, . . . }, { 𝑒2, 𝑒4, . . . }
Consider the matching of greater total weight (breaking a tie arbi-
trarily). It must have weight at least𝑊 /2. Thus, the max-weight
matching in the graph must have weight at least𝑊 /2. Finally, if
we arbitrarily patch the edges together to form a Hamiltonian path,
the resulting path also has weight at least𝑊 /2. This gives us a
1/2-approximation. □

Proof of Theorem 4.7. We show that the first iteration of Ap-
proxCC gives us a 1/2-approximation. All future iterations cannot
worsen the approximation, so we do not have to consider their
effects. Let𝑊 be the weight of a max-weight Hamiltonian path
in 𝐺 . First, note that a max-weight Hamiltonian cycle must have
weight at least𝑊 . Next, a Hamiltonian cycle is a cycle cover with 1
cycle, so the max-weight cycle cover constructed in the algorithm
must have weight at least𝑊 .

Each cycle, by definition, has at least 2 edges. If we remove the
min-weight edge from each cycle, we are removing at most half of
the weight of each cycle. The resulting set of paths has total weight
at least𝑊 /2. Accordingly, the constructed Hamiltonian path has
weight at least𝑊 /2. This gives us a 1/2-approximation. □

Proof of Theorem 4.8. Assume 𝑛 ≥ 3 (it is trivial to solve
Neutralityavg if 𝑛 < 3). Let𝑊 be the weight of a max-weight
Hamiltonian path in 𝐺 . First, note that a max-weight Hamiltonian
cycle must have weight at least𝑊 . Next, a Hamiltonian cycle is a 3-
cycle cover with 1 cycle, so the max-weight cycle cover constructed
in Approx3CC must have weight at least𝑊 .

Each cycle, by construction, has at least 3 edges. If we remove
the min-weight edge from each cycle, we are removing at most one
third of the weight of each cycle. The resulting set of paths has total
weight at least 2𝑊 /3. Accordingly, the constructed Hamiltonian
path has weight at least 2𝑊 /3. This gives us a 2/3-approximation.

□

E USER STUDY HEADLINES

• “Mayor accused of mishandling city funds”
• “Library temporarily closing doors for renovations”
• “Navy veteran receives Silver Star Medal”
• “City’s high school graduation rates at lowest in decades”
• “Residents urged to stay in their homes as temperatures reach
-20s”
• “Local artist’s work featured in popular downtown bar”
• “New bus routes added to accommodate increase in commuters”
• “Man charged with DUI after crashing into restaurant”
• “High school principal celebrates 10 years”

F USER STUDY INTERFACE

Figure 10: Consent page of the user study

Figure 11: Instructions for the user study

Figure 12: Example of a headline from the user study

Figure 13: Prompt from the user study
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