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ABSTRACT
Multimodal entity linking (MEL) task, which aims at resolving am-
biguous mentions to a multimodal knowledge graph, has attracted
wide attention in recent years. Though large efforts have been made
to explore the complementary effect among multiple modalities,
however, they may fail to fully absorb the comprehensive expres-
sion of abbreviated textual context and implicit visual indication.
Even worse, the inevitable noisy data may cause inconsistency of
different modalities during the learning process, which severely
degenerates the performance. To address the above issues, in this
paper, we propose a novel Multi-GraIned Multimodal InteraCtion
Network (MIMIC) framework for solving the MEL task. Specifi-
cally, the unified inputs of mentions and entities are first encoded
by textual/visual encoders separately, to extract global descriptive
features and local detailed features. Then, to derive the similarity
matching score for each mention-entity pair, we device three inter-
action units to comprehensively explore the intra-modal interaction
and inter-modal fusion among features of entities and mentions. In
particular, three modules, namely the Text-based Global-Local inter-
action Unit (TGLU), Vision-basedDuaL interaction Unit (VDLU) and
Cross-Modal Fusion-based interaction Unit (CMFU) are designed
to capture and integrate the fine-grained representation lying in
abbreviated text and implicit visual cues. Afterwards, we introduce
a unit-consistency objective function via contrastive learning to
avoid inconsistency and model degradation. Experimental results
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on three public benchmark datasets demonstrate that our solution
outperforms various state-of-the-art baselines, and ablation studies
verify the effectiveness of designed modules 1.
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1 INTRODUCTION
Entity linking (EL), also known as entity disambiguation, plays a
fundamental but imperative role to connect a wide and diverse va-
riety of web content to referent entities of a knowledge graph (KG),
which supports numerous downstream applications such as search
engines [8, 16], question answering [24, 39], dialog systems [2, 22]
and so on. Over the past years, large efforts have been dedicated
to text-based entity linking. However, in the surge of multimodal
information, images along with text have become the most widely-
seen medium to publishing and understanding web information,
which also brings challenges to the comprehension of complex
multimodal content. Thereby, multimodal entity linking (MEL), re-
solving the visual and textual mentions into their corresponding
entities of a multimodal knowledge graph (MMKG), is desperately
desired. For instance, as shown in Figure 1, the short sentence
contains an affiliated image to complement the textual context of
1Our code is available at https://github.com/pengfei-luo/MIMIC
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Figure 1: Examples of multimodal entity linking. Left: two
multimodal mentions. Right: multimodal knowledge graph.

mention. In this case, it is challenging for text-based EL methods to
determine which entity is related to the entity Leonardo in Figure 1.
Differently, visual information, e.g., the character portraits, brings
valuable content and alleviates ambiguity of textual modality. Thus,
it is intuitive to integrate visual information with textual contexts
when linking the multimodal mentions to heterogeneous MMKG
entities.

Along this line, prior arts attempted to solve the MEL task via
exploring complementary effects of different modalities by leverag-
ing concatenation operation [1], additive attention [26], and cross-
attention mechanism [35] on public benchmark datasets such as
TwitterMEL [1], WikiMEL [35]. Although these studies for MEL
have shown promising progress compared with text-based EL meth-
ods, MEL is still not a trivial task due to the following reasons:
(1) Short and abbreviated textual context. The sentence of men-

tion contexts contains limited information due to text length
or the known topic, which is commonly seen in social media
platforms. Therefore, it is necessary to capture the fine-grained
clues lay in the textual context.

(2) Implicit visual indication. Due to the “semantic gap” between
low-level visual information and high-level semantic cues, it
might be difficult to capture the implicit indications that corre-
spond to the category or description of entities. For example,
the portrait could imply occupation and gender of one person,
which may not be extracted via simple detection or matching
tools. In this case, it is necessary to design one specific module
to capture the implicit multimodal cues from explicit visual
features.

(3) Modality Consistency. Recent studies [6, 7] have revealed that
joint learning of multiple modalities may cause contradiction
or degeneration when optimization due to the inevitable noisy
data, or excessive influence of a specific modality. Therefore, it
is necessary to model consistency and enhance the cooperative
effect among modalities.
To deal with these issues, in this paper, we propose a novelMulti-

GraIned Multimodal InteraCtion network (MIMIC) for MEL task,
which consists of two layers, namely an input and feature encod-
ing layer, as well as a multi-grained multimodal interaction layer.
Specifically, in the input and feature encoding layer, we design a uni-
fied input format for both multimodal mention and MMKG entities.
Then, the encoder extracts both local and global features of textual

and visual inputs for obtaining global descriptive semantics, while
reserving fine-grained details in words or image patches. Also, in
the multi-grained multimodal interaction layer, we devise three par-
allel interaction units to fully explore multimodal schemata. First,
to capture the clues that lie in the abbreviated text, we propose a
Text-based Global-Local interaction Unit (TGLU), which not only
considers lexical coherence from a global view but also mines fine-
grained semantics by utilizing attention mechanism. Afterwards, to
address the challenge of visual indication, we design a Vision-based
DuaL interaction Unit (VDLU) and a Cross-Modal Fusion-based
interaction Unit (CMFU), for explicit and implicit indications, re-
spectively. In detail, the tailored VDLU introduces a dual-gated
mechanism to amplify the explicit visual evidence within features
as well as enhance robustness against noisy images from the Inter-
net. Meanwhile, different from utilizing concatenation or attention,
the CMFU module first projects extracted global textual features
and local visual features into a vector space, and then fuse them
with a gated operation, which could effectively mine the implicit se-
mantic relevance of multiple modalities to complement each other.
Moreover, to attain the consistency of different modalities and units,
we introduce a unit-consistent loss function based on contrastive
training to improve intra-modal and inter-modal learning for mul-
tiple interaction units. To the best of our knowledge, technical
contributions of this paper can be summarized as follows:
● We propose a multi-grained multimodal interaction network for
solving multimodal entity linking task, which could universally
extract features for both multimodal mentions and entities. And
the proposed network could be easily extended by adding new
interaction units.
● We devise three interaction units to sufficiently explore and ex-
tract diverse multimodal interactions and patterns for entity
linking. Moreover, we introduce the unit-consistent loss func-
tion to enhance the intra-modal and inter-modal representation
learning.
● We perform extensive experiments on three public multimodal
entity linking datasets. Experimental results illustrate that our
methods outperform various competitive baselines. The ablation
study also validates the effectiveness of each designed module.

2 RELATEDWORK
The related methods can be categorized into text-based entity link-
ing and multimodal entity linking based on the modalities they use.
We elaborate on them one after the other.

2.1 Text-based Entity Linking
This line of research links mentions to a known knowledge graph
via utilizing textual information of context and entities. According
to the granularity of different methods, we roughly divide the ex-
isting studies into two groups: local-level methods and global-level
methods. The former approaches primarily perform entity linking
by mapping mention along with its surrounding words or sentence
for similarity calculation. Early research leveraged word2vec and
convolutional neural networks (CNN) to capture the correlation
between mention context and entity information [5, 14, 31, 40].
Thereafter, Eshel et al. [12] integrated entity embedding into the re-
current neural network (RNN) with attentionmechanism in order to
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exploit the sequential nature of the noisy and short context. To mine
the diverse entity-side external information, Gupta et al. [17] fur-
ther explored the fusion among entity description and fine-grained
entity type for robust andmeaningful representations. Motivated by
the popularity of Transformer [32], Peters et al. [28] designed a pro-
jection layer over mention spans, and recontextualized these spans
with cross-attention to link entity as well as integrate knowledge
into BERT [9]. In addition, Wu et al. [38] developed a two-stage
linking algorithm towards the zero-shot scenario. They employed
BERT to encode entities and mention context separately and then
utilized a Transformer layer for detailed context-candidate scoring.
By contrast, De Cao et al. [3] modeled entity linking in an auto-
regressive manner by using BART [20] architecture to generate the
unique names of different entities.

The latter stream mainly tries to disambiguate several entity
occurrences from a document-global view and takes into consid-
eration semantic consistency as well as entity coherence, which
also leads to high computation complexity. As one of the repre-
sentative studies, Le and Titov [19] proposed to encode relations
among different mentions as latent variables, and induced them
with a multi-relational neural model. Based on the assumption that
previously identified entities bring cues for the subsequent linking,
Fang et al. [13] treated entity linking as the sequential decision
problem and resolved it with reinforcement learning. At the same
period, Yang et al. [41] extended this paradigm by accumulating
attributes from the previously linked entities to enhance the decod-
ing procedure. Another thread of this line constructs all mentions
as nodes of a graph and uses the similarity of different nodes as
edges. Thereinto, Cao et al. [4] employed graph convolution net-
work (GCN) to integrate features and global coherence. Besides,
Wu et al. [37] proposed a dynamic GCN architecture to alleviate
the insufficiency of structural information.

Although text-based methods have achieved significant progress,
they usually ignore the critical and abundant visual information of
vivid images, which results in the failure to integrate visual cues.

2.2 Multimodal Entity Linking
Since social media and news posts are in the form of texts and
images, combining both textual and visual information for entity
linking is crucial and practical. As one of the pioneering research,
Moon et al. [26] introduced images to assist entity linking due to
the polysemous and incomplete mentions from social media posts.
Beyond that, Adjali et al. [1] utilized unigram and bigram embed-
dings as textual features and pretrained Inception [30] to extract
visual features. After the extraction, a concatenation operation was
applied to fuse the features and the model was optimized with the
triple loss. They also constructed a MEL dataset of social media
posts from Twitter. Wang et al. [35] further explored inter-modal
correlations via a text and vision cross-attention, where a gated
hierarchical structure is incorporated. To remove the negative effect
caused by noisy and irrelevant images, Zhang et al. [42] considered
the correlation between the category information of images and
the semantic information of text mentions, in which the images
were filtered by a predefined threshold. Gan et al. [15] constructed a
dataset that contains long movie reviews with various related enti-
ties and images. A recent research [43] incorporated scene graphs of

images to obtain object-level encoding towards detailed semantics
of visual cues.

Although these research studies have shown that visual infor-
mation is beneficial to the performance of entity linking to some
extent, the utilization of visual information in conjunction with
textual context remains largely underdeveloped.

3 METHODOLOGY
In this section, we first formulate the task of multimodal entity
linking, and then go through the details of the proposed framework.

3.1 Problem Formulation
First, we define related mathematical notations as follows. Typically,
a multimodal knowledge base is constructed by a set of entities ℰ =
{E𝑖}𝑁𝑖=1, and each entity is denoted as E𝑖 = (e𝑛𝑖 , e𝑣𝑖 , e𝑑𝑖 , e𝑎𝑖 ), where
the elements of E𝑖 represent entity name, entity images, entity
description, and entity attributes, respectively. Since our research
concentrates on local-level entity linking, the textual inputs are in
the format of sentences instead of documents. Here, a mention and
its context are denoted asM𝑗 = (m𝑤𝑗 ,m𝑠 𝑗 ,m𝑣𝑗 ), where m𝑤𝑗 ,m𝑠 𝑗

and m𝑣𝑗 indicate the words of mention, the sentence in which the
mention is located, and the corresponding image, respectively. The
related entity of the mentionM𝑗 in the knowledge base is E𝑖 .

Along this line, given amentionM𝑗 , the task ofmultimodal entity
linking targets to retrieve the ground truth entity E𝑖 from the entity
set ℰ of knowledge base. This task can be obtained by maximizing
the log-likelihood over the training set 𝒟 while optimizing the
model parameters 𝜃 , i.e.,

𝜃
∗ = max

𝜃
∑

(M𝑗 ,E𝑖)∈𝒟
log𝑝𝜃 (E𝑖 ⋃︀M𝑗 ,ℰ) , (1)

where 𝜃∗ indicates the final parameters. Afterwards, we resolve
𝑝𝜃 (E𝑖 ⋃︀M𝑗 ,ℰ) via calculating the similarity between the mention
and each entity of the given knowledge base.

3.2 Input and Encoding Layer
In this layer, we design a unified input format, which allows men-
tions and entities to share the same visual/textual encoder. We
introduce the input format and encoding process in the following
subsections.

3.2.1 Visual Feature Encoding. To capture the expressive fea-
tures of images, we employ the pre-trained Vision Transformer
(ViT) [10] as the visual encoder backbone. Given the image e𝑣𝑖 of
an entity E𝑖 , we first rescale each image into 𝐶 × 𝐻 ×𝑊 pixels
and reshape it into 𝑛 = 𝐻 ×𝑊 ⇑𝑃2 flattened 2D patches, where 𝐶
is the number of channels, 𝐻 ×𝑊 is the image resolution and 𝑃
represents the patch size. After that, the patches go through the
projection layer and multi-layer transformer of the standard ViT.
We add a fully connected layer to convert the dimension of output
hidden status into 𝑑𝑣 . Thus the hidden status of entity image are
denoted as VE𝑖 = [︀v

0
[CLS];v

1
E𝑖 ; . . . ;v

𝑛
E𝑖 ⌉︀ ∈ R

(𝑛+1)×𝑑𝑣 . We take the
corresponding hidden state of the special token [CLS] as global
feature v𝐺E𝑖 ∈ R

𝑑𝑣 and the whole hidden states as local features
V𝐿E𝑖 ∈ R

(𝑛+1)×𝑑𝑣 . Similarly, for the image of mentionMj, we obtain
v𝐺M𝑗

as global visual feature and V𝐿M𝑗
as local visual features.
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Textual features
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Legend

Figure 2: An overview ofMIMIC. The bottom part is the input
layer. The middle part is the encoding layer. The upper part
is the multi-grained multimodal interaction layer.

3.2.2 Textual Feature Encoding. To extract meaningful word
embeddings, we utilize a pre-trained BERT [9] as the textual encoder.
We construct the input of an entity by concatenating the entity
name with its attributes, i.e.,

IE𝑖 = [CLS]e𝑛𝑖 [SEP]e𝑎𝑖 [SEP], (2)

where 𝑒𝑎𝑖 is a set of entity attributes collected from the knowledge
base including entity type, occupation, gender, and so on. Different
attributes are separated by a period. Then we feed the tokenized
sequence IE𝑖 into BERT and the hidden states are denoted as TEi =
[︀t0[CLS]; t

1
E𝑖 ; . . . ; t

𝑙𝑒
E𝑖 ⌉︀ ∈ R

(𝑙𝑒+1)×𝑑𝑡 , where 𝑑𝑇 is the dimension of
textual output features, and 𝑙𝑒 is the length. We also regard the
hidden state of [CLS] as global textual feature t𝐺E𝑖 and the entire
hidden states TE𝑖 as local textual features T

𝐿
E𝑖 .

As for the mentionM𝑗 , we use the concatenation of the words of
mention and the sentence where the mention is located to compose
the input sequence. This can be illustrated as,

IM𝑗
= [CLS]m𝑤𝑗 [SEP]m𝑠 𝑗 [SEP]. (3)

Similarly, following the procedure that we process entity, we also
obtain t𝐺M𝑗

and T𝐿M𝑗
as local textual features and global textual

features of the mention M𝑗 respectively. Notably, in the following
subsection, we drop the subscript 𝑖 of entity and 𝑗 of mention for
mathematical conciseness.

3.3 Multi-Grained Multimodal Interaction
Layer

To derive similarity matching scores for each mention-entity pair,
we devise three interaction units by fully exploring the intra-modal
and inter-modal clues in different granularities. As illustrated in
Figure 3, the interaction layer consists of three parallel units: (1)

Text-based Global-Local interaction Unit (TGLU) is dedicated
to capturing lexical information among abbreviated text in both
whole and partial views; (2) Vision-based DuaL interaction Unit
(VDLU) concentrates on revealing the explicit visual correlation be-
tweenmention images and entity images; (3)Cross-Modal Fusion-
based interaction Unit (CMFU) focuses on capturing fine-grained
implicit semantics to supplement the interaction of different modali-
ties. Each unit takes features from an entity and a mention as inputs
and then calculates a score as:

𝒮𝑇 = 𝒰𝑇 (M,E) = (𝒮𝐺2𝐺
𝑇 + 𝒮𝐺2𝐿

𝑇 )⇑2, (4)

𝒮𝑉 = 𝒰𝑉 (M,E) = (𝒮𝐸2𝑀
𝑉 + 𝒮𝑀2𝐸

𝑉 )⇑2, (5)
𝒮𝐶 = 𝒰𝐶 (M,E) , (6)

𝒮 = 𝒰 (M,E) = (𝒮𝑉 + 𝒮𝑇 + 𝒮𝐶)⇑3, (7)

where 𝒮𝑇 , 𝒮𝑉 , and 𝒮𝐶 are the scores calculated by TGLU, VDLU,
and CMFU respectively. The final score is defined as the average
of the three scores. In the following subsections, we elaborate on
them in detail one by one.

3.3.1 Text-based Global-Local interaction Unit. Text is the ba-
sic but imperative information for entity linking. Previous methods
utilized the hidden status of [CLS] as global features [38] while los-
ing the local features, or integrated Conv1D to measure character
level similarity whereas ignoring the global coherence. To measure
global consistency, we use the dot product of two normalized global
features as the global-to-global score, mathematically formulated
as,

𝒮𝐺2𝐺
𝑇 = t𝐺E ⋅ t𝐺M . (8)

Based on the designed unified textual input, Equation 8 directly
measures the global correlation of text input of mention and en-
tity. Then we make further efforts to discover fine-grained clues
among local features. Specifically, we utilize the attention mech-
anism to capture the context of different local features, and the
representation is calculated as follows:

𝑄,𝐾,𝑉 = T𝐿E𝑾𝑡𝑞,T𝐿M𝑾𝑡𝑘 ,T
𝐿
M𝑾𝑡𝑣,

𝐻𝑡 = softmax(𝑄𝐾
𝑇

⌋︂
𝑑𝑇

)𝑉 ,
(9)

where𝑾𝑡𝑞 ,𝑾𝑡𝑘 ,𝑾𝑡𝑣 ∈ R𝑑𝑇×𝑑𝑡 are learnable matrices, and 𝑑𝑡 rep-
resents the dimension inside TGLU. Then we adopt mean pooling
and layer norm over 𝐻𝑡 to get the context vector, and further mea-
sure the global-to-local score between the vector and the projected
t𝐿E as follows:

ℎ𝑡 = LayerNorm (MeanPooling (𝐻𝑡 )) ,

S𝐺2𝐿
𝑇 = FC (t𝐺E ) ⋅ ℎ𝑡 ,

(10)

where the fully connected (FC) layer consists of𝑾𝑡1 ∈ R𝑑𝑇×𝑑𝑡 and
𝒃𝑡1 ∈ R𝑑𝑡 . Afterwards, the matching score of TGLU is defined as
the average of 𝒮𝐺2𝐺

𝑇 and 𝒮𝐺2𝐿
𝑇 following Equation 4.

3.3.2 Vision-based DuaL interaction Unit. Visual information
plays an essential role in multimodal entity linking because images
directly depict entities or a scene of the related object, which reflects
explicit indication. However, the noise in images brings difficulties
for MEL and further impairs performance. To overcome this issue,
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Figure 3: The designed multi-grained multimodal interaction layer, which contains three interaction units.

we propose VDLU with a dual-gated mechanism. Different from
threshold filter [42], the dual-gated mechanism considers feature
interaction from both mention’s view and entity’s view to resist
noise, where the gate is designed to control the feature interaction.
From an overview, the VDLU can be formulated as:

𝒮𝐸2𝑀
𝑉 = DUAL𝐸2𝑀 (v𝐺E , v𝐺M,V𝐿M) ,

𝒮𝑀2𝐸
𝑉 = DUAL𝑀2𝐸 (v𝐺M, v𝐺E ,V𝐿E) ,

(11)

where DUAL𝐴2𝐵(v𝐺A , v𝐺B ,V𝐿B) represents the dual-gatedmechanism
by considering the feature interaction from 𝐴 to 𝐵. Without losing
generality, here we use 𝐴 and 𝐵 to represent entity (𝐸) or mention
(𝑀) for illustrating DUAL𝐴2𝐵(⋅, ⋅, ⋅) function. We first utilize mean
pooling and layer norm over V𝐿

B to get the pooled vector ℎ̄𝑝 and
combine it with v𝐺A as follows:

ℎ̄𝑝 = MeanPooling (V𝐿B) ,

ℎ𝑣𝑐 = FC (LayerNorm (ℎ̄𝑝 + v𝐺A)) ,
(12)

where the FC layer contains trainable parameters𝑾 𝑣1R
𝑑𝑣×𝑑𝑣 and

𝒃𝑣1 ∈ R𝑑𝑣 . After that, we obtain the gate value by another FC layer
connected with an activation function, which is applied to control
the feature interaction with the fused feature v𝐺B , i.e.,

ℎ𝑣𝑔 = Tanh (FC (ℎ𝑣𝑐)) ,

ℎ𝑣 = LayerNorm (ℎ𝑣𝑔 ∗ ℎ𝑣𝑐 + v𝐺B ) ,
(13)

where the gate FC layer includes 𝑾 𝑣2 ∈ R𝑑𝑣×1 and 𝒃𝑣2 ∈ R and
converts ℎ𝑣𝑐 into a real number. Thus, three input features are
sufficiently interacted and fused. Afterwards, the score of 𝒮𝐴2𝐵

𝑉 is
calculated by the dot product between ℎ𝑣 and v𝐺A :

𝒮𝐴2𝐵
𝑉 = ℎ𝑣 ⋅ v𝐺A . (14)

According to the above formulas Equation 12 - Equation 14 on the
calculation of DUAL𝐴2𝐵 , similarly, we can obtain 𝒮𝐸2𝑀

𝑉 and 𝒮𝑀2𝐸
𝑉 ,

which lead us to the final score 𝒮𝑉 .

3.3.3 Cross-Modal Fusion-based interaction Unit. As men-
tioned before, the images contain implicit indications which can be
inferred from multiple modalities. To highlight the subtle cues or
signals among different features, the designed CMFU considers the
cross-modal alignment and fusion via a gated function based on
the extracted local and global features. In order to obtain the unit-
related features for the subsequent operations as well as compact
the dimension of features, we convert textual and visual features
via two fully connected layers as follows,

ℎ𝑒𝑡 , ℎ𝑚𝑡 = FC𝑐1 (t𝐺E ) , FC𝑐1 (t𝐺M) ,

𝐻𝑒𝑣, 𝐻𝑚𝑣 = FC𝑐2 (V𝐿E) , FC𝑐2 (V𝐿M) ,
(15)

in which FC𝑐1 is defined by 𝑾𝑐1 ∈ R𝑑𝑇×𝑑𝑐 and 𝒃𝑐1 ∈ R𝑑𝑐 , FC𝑐2
is defined by 𝑾𝑐2 ∈ R𝑑𝑣×𝑑𝑐 and 𝒃𝑐2 ∈ R𝑑𝑐 . After projection, we
introduce a function FUSE(ℎ𝑜𝑡 , 𝐻𝑜𝑣) for the fine-grained fusion of
textual and visual features, where 𝑜 represents entity (𝑒) or mention
(𝑚). Without losing generality, we take the fusion of entity side as
an example. First, the element-wise dot product scores of textual
and visual features are applied to guide the aggregation of image
patch information,

𝛼𝑖 =
exp (ℎ𝑒𝑡 ⋅𝐻 𝑖

𝑒𝑣)
∑𝑛+1
𝑖 exp (ℎ𝑒𝑡 ⋅𝐻 𝑖

𝑒𝑣)
,

ℎ𝑒𝑐 =
𝑛+1
∑
𝑖

𝛼𝑖 ∗𝐻 𝑖
𝑒𝑣, 𝑖 ∈ (︀1, 2, . . . , (𝑛 + 1)⌋︀ .

(16)

Meanwhile, the intensity of textual information is evaluated with a
gate operation,

ℎ𝑒𝑔 = Tanh (FC𝑐3 (ℎ𝑒𝑡 )) , (17)
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where FC𝑐3 is composed of a learnable matrix𝑾𝑐3 ∈ R𝑑𝑐×𝑑𝑐 and a
learnable bias vector 𝒃𝑐3 ∈ R𝑑𝑐 . Based on the gate value, the entity
context is summarized by,

ℎ𝑒 = LayerNorm (ℎ𝑒𝑔 ∗ ℎ𝑒𝑡 + ℎ𝑒𝑐) . (18)

Following the operations Equation 16 - Equation 18 by replacing
inputs ℎ𝑒𝑡 and 𝐻𝑒𝑣 with ℎ𝑚𝑡 and𝐻𝑚𝑣 , we can also get the mention-
side context vector ℎ𝑚 . Then, the score is calculated by the dot
product,

𝒮𝐶 = ℎ𝑒 ⋅ ℎ𝑚 . (19)

3.4 Unit-Consistent Objective Function
Based on the score that we calculate above, we jointly train both
the encoding layer and the interaction layer with a contrastive
training loss function. Hence, the model learns to rate the positive
mention-entity pairs higher and the negative mention-entity pairs
lower. This loss function can be formulated as

ℒ𝑂 = − log
exp (𝒰(M,E))
∑𝑖 exp (𝒰(M,E′𝑖))

, (20)

where E′𝑖 is the negative entity from the knowledge base ℰ and we
use in-batch negative sampling in our implementation. However,
the function 𝒰(M,E) calculates the average scores of three units.
This may result in one of the units taking the dominant position,
causing the whole model to excessively rely on its score. In addi-
tion, inconsistencies in scoring may also occur as different units
consider different perspectives. To this end, we propose to design
independent loss functions for each unit as follows,

ℒ𝑋 = − log
exp (𝒰𝑋 (M,E))
∑𝑖 exp (𝒰𝑋 (M,E′𝑖))

, 𝑋 ∈ {𝑇,𝑉 ,𝐶}, (21)

where 𝑋 represents any interaction units. Eventually, the optimiza-
tion objective function is

ℒ = ℒ𝑂 + ℒ𝑇 + ℒ𝑉 + ℒ𝐶
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

unit-consistent loss function

. (22)

As for the evaluation stage, we use 𝒮 = 𝒰(M,E), i.e., the aver-
age scores of three interaction units, as the evidence for ranking
entities.

4 EXPERIMENTS
In this section, we carried out comprehensive experiments on three
public multimodal entity linking datasets to sufficiently validate the
effectiveness of our proposedMIMIC.We are intended to investigate
the following research questions (RQ):

● RQ1. How does the proposed MIMIC perform compared with
various baselines?
● RQ2. How do the generalization abilities of MIMIC and other
baselines perform in low-resource scenarios?
● RQ3. How do the three proposed interaction units and unit-
consistent objective function affect performance?
● RQ4. How does the model performance change with the param-
eters?

4.1 Experimental Setup
4.1.1 Datasets. In the experiments, we selected three public MEL
datasetsWikiMEL, RichpediaMEL [35] andWikiDiverse [36]
to verify the effectiveness of our proposed method.

WikiMEL [35] is collected from Wikipedia entities pages and
contains more than 22kmultimodal sentences.RichpediaMEL [35]
is obtained form a MMKG Richpedia [34]. The authors of Richpe-
diaMEL first extracted entities form Richpedia and then obtain
multimodal information form Wikidata [33]. The main entity types
of WikiMEL and RichpedaiMEl are person. WikiDiverse [36] is
constructed from Wikinews and covers various topics including
sports, technology, economy and so on. We used Wikidata as our
knowledge base (KB) and removed the mention that we could not
find the corresponding entity in Wikidata. Linking a mention to a
large-scaleMMKG ormultimodal knowledge base is extremely time-
consuming, especially when taking images into consideration. To
fairly conduct experiments, we followed the previous studies [35],
and used a subset KB of Wikidata for each dataset. We used the
original split of the three datasets. For both WikiMEL and Richpe-
diaMEL, 70%, 10% and 20% of the data are divided into training set,
validation set and test set respectively. As for WikiDiverses, the
proportions are 80%, 10% and 10%. Appendix A.1 provides detailed
statistical information about the datasets.

4.1.2 Baselines. We compared our method with various compet-
itive baselines including text-based methods, MEL methods and
Vision-and-Language Pre-training (VLP) models. Specifically, the
text-based methods include BLINK [38], BERT [9],RoBERTa [23].
MEL methods contain DZMNED [26], JMEL [1], VELML [43],
GHMFC [35].Moreover, the VLPmodels includeCLIP [29],ViLT [18],
ALBEF [21],METER [11], and thesemodels are usually pre-trained
with large-scale image-text corpus with image-text matching loss
andmask languagemodeling loss. Detailed descriptions of baselines
are provided in Appendix A.2.

4.1.3 Evaluation Metrics. When evaluating, we calculated the sim-
ilarity between a mention and all entities of KB to measure their
aligning probability. The similarity scores are sorted in descending
order to calculateH@k,MRR andMR. We provide the calculation
methods for each metric in Appendix A.3.

H@k indicates the hit rate of the ground truth entity when only
considering the top-k ranked entities. MRR represents the mean
reciprocal rank of the ground truth entity. MR is the mean rank
of the ground truth entity among all entities. Hence, both H@k
and MRR are the higher the better, but a lower MR indicates better
performance.

4.1.4 Implementation Details. Our model weights are initialized
with pre-trained CLIP-Vit-Base-Patch322, where ViT-B/32 Trans-
former architecture is employed as an image encoder and the patch
size P is 32. All images are rescaled into 224 × 224 resolution and
we used zero padding to handle the mentions and entities without
images. The maximal length of text input is set to 40 and the di-
mension of textual output features, i.e., 𝑑𝑇 is set to 512. As for the
parameters in the interaction layer, 𝑑𝑡 , 𝑑𝑣 and 𝑑𝑐 are set to 96 for all
three datasets. We used the deep learning framework PyTorch [27]

2https://huggingface.co/openai/clip-vit-base-patch32
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Table 1: Performance comparison on three MEL datasets. We run each method three times with different random seeds and
report the mean value of every metric. The best score is highlighted in bold and the second best score is underlined. The symbol
"☆" denotes the p-value of the t-test compared with the second best score is lower than 0.005 and "∗" means the p-value is lower
than 0.01 but higher than 0.005.

Model WikiMEL RichpediaMEL WikiDiverse

H@1↑ H@3↑ H@5↑ MRR↑ MR↓ H@1↑ H@3↑ H@5↑ MRR↑ MR↓ H@1↑ H@3↑ H@5↑ MRR↑ MR↓

BLINK [38] 74.66 86.63 90.57 81.72 51.48 58.47 81.51 88.09 71.39 178.57 57.14 78.04 85.32 69.15 332.03
BERT [9] 74.82 86.79 90.47 81.78 51.23 59.55 81.12 87.16 71.67 278.08 55.77 75.73 83.11 67.38 373.96

RoBERTa [23] 73.75 85.85 89.80 80.86 31.02 61.34 81.56 87.15 72.80 218.16 59.46 78.54 85.08 70.52 405.22

DZMNED [26] 78.82 90.02 92.62 84.97 152.58 68.16 82.94 87.33 76.63 313.85 56.90 75.34 81.41 67.59 563.26
JMEL [1] 64.65 79.99 84.34 73.39 285.14 48.82 66.77 73.99 60.06 470.90 37.38 54.23 61.00 48.19 996.63

VELML [43] 76.62 88.75 91.96 83.42 102.72 67.71 84.57 89.17 77.19 332.85 54.56 74.43 81.15 66.13 463.25
GHMFC [35] 76.55 88.40 92.01 83.36 54.75 72.92 86.85 90.60 80.76 214.64 60.27 79.40 84.74 70.99 628.87

CLIP [29] 83.23 92.10 94.51 88.23 17.60 67.78 85.22 90.04 77.57 107.16 61.21 79.63 85.18 71.69 313.35
ViLT [18] 72.64 84.51 87.86 79.46 220.76 45.85 62.96 69.80 56.63 675.93 34.39 51.07 57.83 45.22 2421.49
ALBEF [21] 78.64 88.93 91.75 84.56 47.95 65.17 82.84 88.28 75.29 122.30 60.59 75.59 81.30 69.93 291.17
METER [11] 72.46 84.41 88.17 79.49 111.90 63.96 82.24 87.08 74.15 376.42 53.14 70.93 77.59 63.71 944.48

MIMIC 87.98☆ 95.07∗ 96.37∗ 91.82☆ 11.02 81.02☆ 91.77☆ 94.38☆ 86.95☆ 55.11☆ 63.51∗ 81.04 86.43∗ 73.44∗ 227.08

to implement our method and trained it on a device equipped with
an Intel(R) Xeon(R) Gold 6248R CPU and a GeForce RTX 3090 GPU.
We trained our MIMIC using AdamW [25] optimizer with a batch
size of 128 to accommodate maximal GPU memory and betas are
set to (0.9, 0.999). The number of epochs and learning rate are well-
tuned to 20 and 1 × 10−5 respectively. All methods are evaluated
on the validation set and the checkpoint with the highest MRR
is selected to evaluate on the test set. As for the baselines, we re-
implemented DZMNED, JMEL, VELML according to the original
literature due to they did not release the code. We ran the official
implementations of the other baselines with their default settings.

4.2 Experimental Results
4.2.1 Overall Comparison (RQ1). We compared our proposedMIMIC
with baselines on three benchmark datasets. As shown in Table
1, average scores of the performance on the test set across three
random runs are reported. Overall, our proposed MIMIC achieves
the best metrics on three datasets, with 3.59%, 6.19%, 1.75% absolute
improvement of MRR on WikiMEL, RichpediaMEL and WikiDi-
verse respectively. This demonstrates the superiority of MIMIC
for solving the MEL task. According to the experimental results of
Table 1, we further have the following observations and analysis.

First, compared with MEL and VLP methods, the text-based ap-
proaches show promising performance. It suggests that textual
information is still the basic but crucial modality for MEL because
the text provides a measurement from the surface. It is noticed that
BLINK slightly underperforms BERT on WikiMEL and Richpedi-
aMEL but outperforms BERT on WikiDiverse. Although BLINK
utilizes two encoders to extract global representations for mentions
and entities separately, similar to BERT, it ignores the local features
in the short and abbreviated text which impairs their performance
Moreover, compared with the state-of-the-art MEL methods, the
text-based approaches still have a gap in performance because they
only rely on textual inputs but ignore visual information, which
brings difficulty to identify vague mentions within the limited text.

Second, different MEL methods have their respective pros and
cons. Benefiting from the hierarchical fine-grained co-attention
mechanism, GHMFC achieves the best result on three datasets
among all MEL baselines. In particular, compared with all other
baselines, GHMFC achieves 72.92% and 80.76% for H@1 andMRR re-
spectively on RichpediaMEL, which is only inferior to our proposed
MIMIC. It indicates that effectively incorporating visual features
into multimodal interaction contributes to improving the perfor-
mance of MEL. Different MEL methods show a large gap. As shown
in Table 1, JMEL underperforms DZMEND, VELML and GHMFC on
three datasets, which may result from the strategy of multimodal
fusion. JMEL utilizes simple concatenation and a fully connected
layer to fuse textual and visual features. In contrast, both DZMEND
and VELML use additional attention mechanism to fuse different
features. It suggests that shallow modality interaction and naive
multimodal fusion bring no improvement even degeneration on
the performance of MEL.

Third, VLP methods also demonstrate competitive evaluation
results comparedwithMEL baselines. CLIP achieves the second best
metrics except for MR on both WikiMEL and WikiDiverse, which
benefits from pre-training with the large-scale image-text corpus.
ALBEF and METER also display similar results with CLIP. We argue
that these methods could be further exploited by considering fine-
grained interaction and delicate designed fusion.

Finally, the experimental results demonstrate the effectiveness
and superiority of our proposed MIMIC. Compared with the sec-
ond best metric, MIMIC gains 4.75%, 8.1% and 2.3% absolute im-
provement of Hit@1 on WikiMEL, RichpediaMEL and WikiDiverse
respectively. We also performed significant tests to further validate
the statistical evidence between MIMIC and other baselines. Specif-
ically, the p-values of MRR on three datasets are 0.002, 0.0001 and
0.009 respectively. All p-values are under 0.01 and show a significant
advantage in statistics.

4.2.2 Low resource setting (RQ2). Collecting and acquiring high-
quality annotated data is extremely laborious and time-consuming.
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Figure 4: Performance comparison of low resource settings on RichpediaMEL andWikiDiverse. Details are zoomed in for better
visualization.

Therefore, it is necessary to investigate the performance of the mod-
els in low-resource scenarios. We conducted experiments using 10%
and 20% of the training data while keeping the validation and test
sets unchanged. Experimental results are shown in Figure 4. In
overview, most of the MEL methods manifest a significant drop
in performance. Except for ViLT, other VLP methods benefit from
large-scale multimodal pre-training and show a slight decrease in
performance, which means that well-trained weights guarantee
a reasonable performance in a low resource setting. With the in-
crease in training data, nearly all methods e.g., DZMNED, JMEL and
VELML, show an obvious improvement, which means sufficient
training data is necessary to improve the performance. Notably,
GHMFC outperforms our proposed MIMIC with 10% training data
on RichpediaMEL but underperforms MIMIC with 10% training
data on WikiDiverse while showing a clear gap. It suggests that
GHMFC does not generalize well on different datasets. When the
proportion comes to 20%, our proposed MIMIC surpasses GHMFC
in every metric on RichpediaMEL and shows an obvious margin.
From 10% to 20%, the absolute improvement of H@1, H@3 andMRR
of MIMIC are 11.2%, 6.6% and 8.11%, respectively. This phenomenon
reveals that detailed inter-modal and intra-modal interaction units
of MIMIC have better adaptability with the increase in training
data. As for WikiDiverse, CLIP slightly underperforms MIMIC on
H@1 and MRR in the 10% setting. With the increase in training
proportion, the gap between MIMIC and CLIP gradually becomes
larger, which validates MIMIC has better capability and potential
in the low resources scenario.

4.2.3 Ablation Study (RQ3). To delve into the effect of three pro-
posed interaction units and unit-consistent loss function, we de-
signed two groups of experiments for the ablation study. In the first
group, we removeℒ𝑇 ,ℒ𝑉 andℒ𝐶 separately from loss function, i.e.,
Equation 22. We denote these variants as w/o ℒ𝑇 , w/o ℒ𝑉 and w/o

ℒ𝐶 respectively. In the second group, we further compare MIMIC
with the following variants: (1) w/o TGLU + ℒ𝑇 : removing the text-
based global-local matching unit and its loss function; (2) w/o VDLU
+ ℒ𝑉 : removing the vision-based dual matching units along with
its loss function; (3) w/o CMFU + ℒ𝐶 : removing the cross-modal
fusion-based matching unit and its loss function. Table 2 illustrates
the experimental results.

Overall, removing any interaction unit or loss function from the
full model results in an evident decline in almost every metric to
varying degrees, which proves the effectiveness of the designed in-
teraction units and unit-consistent loss function. The performance
of w/o ℒ𝑇 and w/o ℒ𝐶 drops marginally on WikiMEL. It is noticed
that w/o ℒ𝑉 outperforms the full model diminutively on H@10
and H@20. However, the model w/o ℒ𝑉 shows an obvious decline
in H@1 and MRR. One possible reason is that ℒ𝑉 improves overall
performance but has a side effect on some hard samples depend-
ing on the dataset. On RichpediaMEL, a significant performance
drop of w/o ℒ𝑇 can be observed. H@1 degrades from 81.02% to
72.82% and MRR drops from 86.95% to 81.61%. This demonstrates
the unit-consistent loss function improves intra-modal and inter-
modal learning because it helps that the ground truth entity could
be retrieved from any single interaction unit. The unit-consistent
loss function also alleviates the modality inconsistency caused by
noisy data. Moreover, excluding any interaction units leads to a
decrease in performance as well. Specifically, the variant w/o VDLU
+ ℒ𝑉 shows the worst H@1 and MRR on WikiMEL. In terms of
RichpediaMEL, the model w/o TGLU + ℒ𝑇 has the worst MRR,
which suggests that the two datasets have different salient modali-
ties and schemata. Hence it is necessary to explore the interaction
and fusion in multimodal and multi-grained ways. The combination
of our proposed interaction matching units gives an effective boost
to most metrics, proving the efficacy of our design.
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Table 2: Experimental results of ablation studies. The best scores are highlighted in bold.

Model WikiMEL RichpediaMEL

H@1↑ H@3↑ H@5↑ H@10↑ H@20↑ MRR↑ H@1↑ H@3↑ H@5↑ H@10↑ H@20↑ MRR↑

MIMIC 87.98 95.07 96.37 97.80 98.73 91.82 81.02 91.77 94.38 96.69 98.04 86.95

w/o ℒ𝑇 86.13 93.69 95.74 97.66 98.57 90.42 72.82 89.05 93.12 96.15 97.61 81.61
w/o ℒ𝑉 86.71 94.43 96.25 98.01 98.80 90.94 78.72 90.23 93.66 96.04 97.61 85.15
w/o ℒ𝐶 86.67 94.04 95.69 97.21 98.18 90.74 79.65 89.89 92.56 94.92 96.94 85.38

w/o TGLU + ℒ𝑇 85.03 92.36 94.35 95.94 97.27 89.18 74.48 85.37 88.71 92.00 94.02 80.74
w/o VDLU + ℒ𝑉 83.46 93.33 95.47 97.23 98.18 88.74 74.12 89.47 92.81 95.82 97.61 82.37
w/o CMFU + ℒ𝐶 84.60 92.90 94.82 96.42 97.35 89.14 76.98 88.29 91.30 94.22 96.15 83.39
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Figure 5: Parameter sensitivity analysis on WikiMEL and RichpediaMEL regarding different values.

4.2.4 Parameter Sensitivity Analysis (RQ4). In this section, we in-
vestigated the sensitivity of parameters on two datasets, WikiMEL
and RichpediaMEL. The experimental results are shown in Figure 5.
First, we analyzed the effect of various dimensions of TGLU, VDLU
and CMFU, namely 𝑑𝑡 , 𝑑𝑣 and 𝑑𝑐 . We can see that the performance
raise up gradually with the increase in dimension and then drops
slowly. It suggests that three interaction units need a proper di-
mension to encode semantics features, but a large dimension may
cause redundancy, leading to a decrease in performance. Second,
we explored the impact of the learning rate. The result shows that
performance benefits from a small and suitable learning rate be-
cause we initialized MIMIC with pre-trained model weights. As
the learning rate gets larger, the performance starts to degenerate
because of converging to a suboptimal solution. We also analyzed
the effect of batch size. Based on the results, a larger batch size
generally improves the performance of MIMIC. The reason is that
MIMIC utilizes in-batch contrastive learning. Hence a large batch
size means more negative samples in a single batch, which could
enhance the representation learning process.

5 CONCLUSION
In this paper, we proposed a novel Multi-Grained Multimodal In-
teraction network (MIMIC) for solving multimodal entity linking

task, which comprehensively explores intra-modal and inter-modal
patterns to extract explicit and implicit clues. Concretely, we first
designed a unified input format to encode both entities and men-
tions into the same vector space, which reduces the feature gap
between entities and mentions. Then, we devised three interaction
units, namely Text-based Global-Local interaction Unit, Vision-
based DuaL interaction Unit and Cross-Modal Fusion-based in-
teraction Unit, to explore the explicit and implicit semantics rele-
vance within extracted multimodal features. Afterwards, we also
introduced a unit-consistent loss function to improve multimodal
learning and enhance the consistency of our model against noisy
data. Extensive experiments on three public datasets have validated
the effectiveness of our MIMIC framework compared with several
state-of-the-art baseline methods.
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Figure 6: Case study for MEL. Each row is a case, which contains mention, ground truth entity, and top three retrieved entities
of three methods, i.e., MIMIC (ours), GHMFC [35], CLIP [29]. The italic and underlined words in mention are mention words.
Each retrieved entity is described with three parts, Wikidata QID, entity name, a short description, and three parts are separated
by "|". A blank square means that the corresponding entity has no image. The symbol "✓ " marks the correct entity.

Table 3: Statistics of three datasets. "Ment." and "sent." denote
mention(s) and sentence(s) respectively.

Statistic WikiMEL RichpediaMEL WikiDiverse
# sentences 22,070 17,724 7,405
# mentions 25,846 17,805 15,093

# img. of ment. 22,136 15,853 6,697
# ment. in train 18,092 12,463 11,351
# ment. in valid 2,585 1,780 1,664
# ment. in test 5,169 3,562 2,078
# entities of KB 109,976 160,935 132,460

# entities with img. 67,195 86,769 67,309
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Figure 7: Distribution of sentence length for three datasets.

A APPENDIX
A.1 Details of datasets
Table 3 shows basic statistics of the three dataset. Figure 7 summa-
rizes distribution of sentence length for the three datasets, which
indicates the balance among different splits.

A.2 Descriptions of Baselines
We compared our proposed MIMIC with three groups of baselines.
The first group of baselines is text-based methods.

● BLINK [38] is a two-stage zero-shot EL method and employs
BERT as the backbone. It first retrieves entities with a bi-encoder
and then re-ranks these candidate entities with a cross-encoder.
● BERT [9] consists of a stack of Transformer encoders and is
pre-trained on a large amount of corpus. BERT has shown the
ability to solve many natural language understanding tasks.
● RoBERTa [23] further improves BERT by removing the next
sentence prediction objective and using a dynamicmask language
model.
The second group of baselines contains MEL method.

● DZMNED [26] is the first method for MEL, which utilizes addi-
tional attention mechanism to fuse visual features, word-level
textual features and char-level features.
● JMEL [1] extracts both unigram and bigram embeddings as tex-
tual features. Different features are fused by concatenation and
a fully connected layer. We replace the textual encoder with a
pre-trained BERT for a fair comparison.
● VELML [43] utilizes VGG-16 network to obtain object-level vi-
sual features. We use pre-trained BERT to replace the original
GRU textual encoder. The two modalities are fused with addi-
tional attention mechanism.
● GHMFC [35] proposes hierarchical cross-attention to capture
the underlying fine-grained correlation among textual and visual
features and uses contrastive learning for optimization.
The third group of baselines includes Vision-and-Language Pre-

training models.
● CLIP [29] employs two Transformer-based encoders to attain
visual and textual representation, which pre-trains on massive
noisy web data with contrastive loss.
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● ViLT [18] proposes to use shallow textual and visual embeddings,
and concentrates on deep modality interaction via a stack of
Transformer layers.
● ALBEF [21] first aligns visual and textual features with image-
text contrastive loss and then fuses them with a multimodal
Transformer encoder. Momentum distillation is further applied
to improve learning from noisy data.
● METER [11] utilizes the co-attention schema to exploit the se-
mantic relation of different modalities, where each layer consists
of a self-attention module, cross-attention module and a feed-
forward network.

A.3 Evaluation Metrics
We first calculate the similarity scores between a mention and all
entities of the KB, then the similarity scores are sorted in descending
order to calculate H@k,MRR andMR, which are defined as:

𝐻@𝑘 = 1
𝑁

𝑁

∑
𝑖

𝐼(𝑟𝑎𝑛𝑘(𝑖) < 𝑘), (23)

𝑀𝑅𝑅 = 1
𝑁

𝑁

∑
𝑖

1
𝑟𝑎𝑛𝑘(𝑖) , (24)

𝑀𝑅 = 1
𝑁

𝑁

∑
𝑖

𝑟𝑎𝑛𝑘(𝑖), (25)

where 𝑁 is the number of total samples, 𝑟𝑎𝑛𝑘(𝑖) means the rank
of the i-th ground truth entity in the rank list of KB entities, 𝐼(⋅)
stands for indicator function which is 1 if the subsequent condition
is satisfied otherwise 0.

A.4 Case Study
For a more illustrative demonstration of the proposed MIMIC, we
provided two cases and compared MIMIC with two strong competi-
tors, i.e., GHMFC [35] and CLIP [29], which is shown in Figure 6.
In the first case, although three methods predict the correct entity
in the top three retrieved entities, MIMIC distinguishes better be-
tween space shuttle and space capsule by capturing the detailed
information within the mention image. In the second case, two
competitors retrieve rock band Bush in the first place. MIMIC not
only considers textual clues Bush from the surface but also takes
the visual scene of politics from the images into account, which
helps to identify the correct entity.
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