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ABSTRACT

Finding multiple temporal relationships among locations can ben-
efit a bunch of urban applications, such as dynamic offline adver-
tising and smart public transport planning. While some efforts
have been made on finding static relationships among locations,
little attention is focused on studying time-aware location rela-
tionships. Indeed, abundant location-based human activities are
time-varying and the availability of these data enables a new par-
adigm for understanding the dynamic relationships in a period
among connective locations. To this end, we propose to study a
new problem, namely multi-Temporal relationship inference among
locations (Trial for short), where the major challenge is how to inte-
grate dynamic and geographical influence under the relationship
sparsity constraint. Specifically, we propose a solution to Trial with
a graph learning scheme, which includes a spatially evolving graph
neural network (SEENet) with two collaborative components: spa-
tially evolving graph convolution module (SEConv) and spatially
evolving self-supervised learning strategy (SE-SSL). SEConv per-
forms the intra-time aggregation and inter-time propagation to
capture the multifaceted spatially evolving contexts from the view
of location message passing. In addition, SE-SSL designs time-aware
self-supervised learning tasks in a global-local manner with addi-
tional evolving constraint to enhance the location representation
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learning and further handle the relationship sparsity. Finally, ex-
periments on four real-world datasets demonstrate the superiority
of our method over several state-of-the-art approaches.
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1 INTRODUCTION

With the widespread availability of human mobility data, discover-
ing location relationships in urban areas has received significant
research interest in recent years [3, 13, 20, 28, 48]. Finding the loca-
tion relationship can help to reveal urban patterns, which definitely
benefits intelligent urban management [37] and finally promotes
the urban business economy [20]. However, most existing works fo-
cus on analyzing static relationships among locations from a spatial
perspective, and few known methods study time-aware location
relationships from a temporal perspective. Whereas, the human
mobility data is always time-correlated [6, 14, 45, 49], e.g., visiting
restaurants at noon and visiting bars at night. Hence, here we present
to investigate a new paradigm for understanding such dynamic
multiple relationships between locations in a period, which has
been largely overlooked in previous studies.

To this end, we propose to study a problem of multi-Temporal
relationship inference among locations (we call Trial for short),
which is of great importance in many urban application scenarios.
The goal of Trial is to recover plenty of missing relationships across
multiple time segments from the constructed location graph in an
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Figure 1: An illustration of multi-temporal relationships

around the fast-food restaurant location 𝑣1. The pair (𝑣1, 𝑣2)
with complementary relationships tend to be visited by com-

mon users at night, while another pair (𝑣1, 𝑣3) with competi-
tive relationships provide similar service at the specific time.
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(a) Relationship distribution over time
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(b) Relationship distribution over spatial distance (Km)
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Figure 2: Characteristics of multi-temporal relationships.

urban area. In other words, we aim at mining location connections
at different time segments (e.g., morning or evening). Solving Trial
can facilitate urban intelligence in many application domains, such
as dynamic business advertisements[46], urban resource planning
[5, 19], and knowledge-enhanced location recommendation [22, 31].

Here we further present two examples to demonstrate our moti-
vation for Trial. At first, given a target region location (e.g., a resi-
dential district), the most relevant regions for this district may be
different from morning to evening. After inferring multi-temporal
relationships for this district, the urban manager can adaptively
plan public transport at different times in a day. Second, let us con-
sider another scenario of urban business as illustrated in Figure
1. On the one hand, the relationship in an urban area may only
exist at specific times due to the evolving daily activities of users
[45]. In this case, focusing on time-specific correlated locations can
help business owners to dynamically optimize their advertisement
strategy [23] at different times. On the other hand, we find the
relationship can be diverse in a day. Taking Figure 1 as an example,
the cafe 𝑣1 (i.e., Starbucks) is competitive with the restaurant 𝑣2
(i.e., Taco Bell) since both provide breakfast in the morning, while
they become complementary at midday due to different services.
Therefore, the user experience can be also improved with the dis-
covered multi-temporal location pairs to enhance the time-aware
location recommendation [2, 15, 32]. Hence, it is critical to effec-
tively understand multi-temporal relationships among locations.

Existing methods for relationship mining cannot handle Trial
problem effectively since the temporal and geographical factors are
rarely considered in a unified manner. Extensive studies have been
conducted for relationship mining in other domains, e.g., business
analysis [13, 47] or e-commerce relationship inference [18, 21, 24].
These methods usually cannot be directly used for location relation-
ship mining. Recently, remarkable advancements in graph neural
networks (GNNs) [8, 29, 36] have shown the powerful capacity for
relationship graph learning and achieved promising results. These
GNN-based relationship prediction studies attempt to extend the

effective graph message-passing procedure by learning relational
correlations [18, 21] or spatial dependencies [13] for location con-
text understanding. The most recent method [3] further adopts
attentive aggregation to handle multiple relationships in the urban
area. However, all previous works do not fully consider unique at-
tributes of our Trial, which fail to examine two research challenges
in modeling multi-temporal location relationships as follows.

Challenge 1: How to capture the relational dynamics under
temporal and geographical contexts? According to the statistical
analysis in Figure 2(a), the distribution of the location relationship
varies in a day, indicating the dynamic influence plays a crucial
role. Moreover, further investigation in Figure 2(b) shows that the
relational dynamics is correlated with geography information in
the urban area. The geographical context may have different influ-
ences on locations at different times. Although some dynamic GNNs
[25, 44] for link prediction are designed for multi-temporal graph
structures, they fail to incorporate the relational and spatial evolv-
ing patterns. How to communicate the dynamic correlations with
geographical factors in an effective way remains a unique research
challenge. Note that spatial-temporal GNN focusing on graph-based
time series analysis (e.g., traffic forecasting) is another substantially
different research problem [27, 33], which is not applicable to the
linking problem of Trial focusing on dynamic relationships.

Challenge 2: How to deal with the relationship sparsity with
spatial and dynamic influences? Since the precious relationship
between locations is derived from limited and conditional user be-
havior data, the multi-temporal relationship is more scarce [18].
Therefore, the learning process of GNN suffers from data sparsity
with insufficient context information in aggregation. Most exist-
ing graph self-supervised learning methods [11, 30, 50] only pay
attention to learning from the augmented graph structures without
considering spatial and dynamic influences for relational modeling,
thus leading to suboptimal performance. How to take advantage of
sparse relationships in the urban area is another notable challenge.

In this paper, we propose a Spatially Evolving graph nEural
Network (SEENet) tailored for inferring multi-temporal relation-
ships among locations. To address the above challenges, we design
the framework from two perspectives: spatially evolving graph
convolution (SEConv) for message passing-level modeling, and 2)
spatially evolving self-supervised learning (SE-SSL) for training-
level modeling. Firstly, aiming at the first challenge, the proposed
graph learning procedure SEConv is equipped with intra-time ag-
gregation and inter-time propagation. The key idea is to identify the
spatial and evolving influence frommultifaceted locations with con-
sidering non-local and cross-time neighbors. Specifically, the intra-
time learning process performs the second-order aggregation to
preserve non-local geographical and relational dependencies at each
specific time. On the other hand, the inter-time learning process
further propagates the multi-temporal information to capture the
spatially evolving context across adjacent time segments. Moreover,
SE-SSL is devised to deal with the second challenge of relationship
sparsity, which adopts the spatial information maximum strategy
from a global regional view and the additional evolving constraint
from a local relational view. By this means, SEENet can enhance the
representation learning for locations with incorporating both spa-
tial distribution and dynamic patterns in a self-supervised manner.
The major contributions of this paper are summarized as follows.
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• To the best of our knowledge, this is the first work to investigate
the problem of multi-temporal relationship inference among loca-
tions for various valuable scenarios, which studies time-specific
relationships in urban areas at a fine-grained level.

• We propose a novel spatially evolving graph neural network
named SEENet with collaborative designs for relationship learn-
ing among locations, which can capture the geographical and
dynamic influence through an intra-time and inter-time spatially
evolving graph convolution as well as an effective evolutionary
self-supervised learning task.

• We conduct extensive experiments on four real-world datasets,
which demonstrates the superiority of SEENet.

2 RELATEDWORK

In this section, we review the previous literature from two perspec-
tives: topic-related relationship mining and inference, and closely
technology-related graph neural networks.

Relationship Mining and Inference. Mining valuable rela-
tionships has attracted increasing attention from both academia
and industry [24, 35]. In the early stage, most of the previous works
aim at inferring the precious relationship from content information
[28] (e.g., textual reviews and descriptions on the web), while expert
knowledge is required to design linguistic rules [7, 10] or graphical
analysis models [43]. Another line of work seeks to apply deep
learning-based techniques to analyze various relationships. Some
explore applying the linked auto-encoder [26] and graphlet mining
[34, 48] for product-oriented or competitor-oriented applications.
Considering the natural inadequacy in learning relational graph
structures of these domain-specific methods, some recent works
further propose to develop powerful graph learning approaches
for relationship discovery. From the perspective of relational de-
pendency learning, DecGCN [21] designs the graph structural inte-
gration mechanism for decoupled representation learning, which
can detect the mutual influence between different relationships.
The recent IRGNN [18] further incorporates the multi-hop com-
plex relationships to alleviate the sparsity issue. However, spatial
dependencies between nodes are omitted which encourages re-
searchers to propose geography-based graph methods. Therefore,
from the perspective of spatial context modeling in urban area, the
fine-grained distance distribution is captured in DeepR [13] with
spatial adaptive graph convolutions. More recently, PRIM [3] com-
bines self-attentive spatial context extractor for multiple relation
types. However, the important relational dynamics is neglected all
along. In this paper, we focus on the challenging multi-temporal
relationship inference among locations to fill the research gap.

Graph Neural Networks. Recent years have witnessed the
rapid growth of graph neural networks (GNNs), which exhibit a
strong ability in learning structural relationships [12, 13, 16, 21,
38, 39]. According to the unique challenging properties of location
relationships as introduced before, the technically corresponding
GNNmodels fall into three mainstreams. Firstly, a number of GNNs
perform diverse message-passing schemes to capture rich context
information from graph structures, such as considering edge types
for multiple relational semantics [29] and spatial attributes [3, 13].
Moreover, some efforts have been devoted to studying expressive
high-order GNNmethods, including mixing neighboring features at

various distances in Mixhop [1], distinguishing non-local topologi-
cal structures with the random walk [4] or attention-guided sorting
[17]. Secondly, graph self-supervised learning methods focus on
designing augmented strategies to tackle data scarcity, which uti-
lizes contrastive learning [50] or meaningful tasks [30] on graphs.
The most recent RGRL [9] also leverages the relationship informa-
tion with preserving global and local similarity. Nevertheless, these
methods tend to lose effectiveness without considering the spatial
and evolving characteristics of relationships. Finally, integrating
relational dynamics is also important for snapshot-based graph
learning. Along this line, EvolveGCN [25] is proposed to recurrently
updates the GNN weights for dynamic link prediction. Although
the recent ROLAND [44] takes a further step to involve hierarchical
states over time, one-sided dynamic information is still not suffi-
cient. It is noteworthy that the irrelevant spatial-temporal GNNs
can not be applied in location relationship learning for comparison.
Because most of them are basically designed for time series fore-
casting with specific sequential values (e.g., traffic flow or weather
conditions) [33], which is intrinsically different from our target of
multi-time link prediction. Therefore, we aim to develop an adap-
tive graph neural network to preserve both spatial and dynamic
dependencies simultaneously for location relationship inference.

3 PRELIMINARIES

In this section, we first present the concept of the dynamic location
graph, and then formalize the problem of multi-temporal relation-
ship inference among locations (Trial for short).

Definition 3.1. (Time-specific Location Relationship). As
stated above, relationships between locations are dynamic in a
day. Thus, the complex location relationships should be naturally
decomposed into multi-temporal segments to meet the unique daily
dynamic characteristic of locations. Formally, the pre-defined set
of time segments is denoted as T = {𝑡1, 𝑡2, ..., 𝑡𝑇 }, where all 𝑇 time
segments form a whole day. Accordingly, the location relationship
set R contains multiple time-specific relationships among locations.
In the following sections, the mentioned relationship also stands for
location relationship. We use 𝑡 ∈ T to generally represent a certain
time, while 𝑟 ∈ R refers to a given relationship.

Definition 3.2. (Dynamic Location Graph). In this work, the
multi-temporal relationships are organized as a fine-grained dy-
namic location graph G = {𝐺 (𝑡 ) |𝐺 (𝑡 ) = (V, E (𝑡 ) , L), 𝑡 ∈ T}, where
V = {𝑣1, 𝑣2, ..., 𝑣𝑁 } is the set of location nodes with the spatial
coordinates L ∈ R2×𝑁 . The dynamic graph G is composed of 𝑇
time-specific graphs and contains different relationship edges at
different time segments, which is denoted as E = E (𝑡1 ) ∪ ...∪E (𝑡𝑇 ) .
The relational edge 𝑒 (𝑡 )

𝑖, 𝑗,𝑟
= (𝑣𝑖 , 𝑣 𝑗 , 𝑟 , 𝑡) represents there exists the

relationship 𝑟 ∈ R between 𝑣𝑖 and 𝑣 𝑗 at time 𝑡 .

Since the relational location graph G is usually sparse and most
valuable relationships are absent, our target is to learn from G and
discover all meaningful relationships at different time segments.
We formally define the problem as below:

Definition 3.3. (Multi-Temporal Relationship Inference). For
the dynamic location graphG = {𝐺 (𝑡1 ) , · · · ,𝐺 (𝑡𝑇 ) } associated with
spatial locations L, the problem of Trial aims to jointly learn a
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Figure 3: Illustration of the proposed SEENet framework for dynamic location graphs.

model F ({𝐺 (𝑡1 ) , · · · ,𝐺 (𝑡𝑇 ) }) to map the location node set V into
multiple embeddings {z(𝑡1 ) , · · · , z(𝑡𝑇 ) } at multi-temporal segments.
Then, given a location pair (𝑣𝑖 , 𝑣 𝑗 ) ∈ V ×V at the time 𝑡 ∈ T, the
possibility score for each relationship 𝑟 can be estimated by the
prediction function 𝑝 (𝑡 )𝑟 (z(𝑡 )

𝑖
, z(𝑡 )
𝑗

). Therefore, we can discover all
potential location relationships at multiple times.

4 MODEL FRAMEWORK

In this section, we present the Spatially Evolving graph nEural
Network (SEENet) model, which learns from multi-temporal dy-
namic and geographical correlations in an end-to-end manner. As
illustrated in Figure 3, the overall framework first takes the dynamic
location graph G in the temporal format as input. Our proposed
SEENet is equipped with a spatially evolving graph convolution
module (SEConv) to incorporate the evolving context along with
the comprehensive spatial influence. After obtaining the representa-
tions of locations by SEConv, the spatially evolving self-supervised
learning module (SE-SSL) is devised to enhance the model’s capabil-
ity of learning dynamic relational patterns through well-designed
training tasks on sparse location graphs. Finally, we utilize the
pre-trained model after SE-SSL for our problem of Trial.

4.1 Spatially Evolving Graph Convolution

The intrinsic evolving correlations associated with spatial contexts
are critical to time-specific location representation learning. In past
years, GNNs [8] have shown the superiority on processing rela-
tional graph structures for Points-of-Interest [3, 13] or items [18, 21].
These GNN methods mainly focus on topological structures with
learning spatial dependencies or relational semantics on the single
static graph, which fails to deal with multi-temporal relations.

To this end, we develop the SpatiallyEvolving graphConvolution
(SEConv) to capture both spatial location context and dynamic cor-
relations across time. The key idea of SEConv derives from two
perspectives for complex context modeling: intra-time non-local
relational interactions and inter-time spatially evolving interactions.

Since the geography information plays a crucial role in location
relationship, before introducing the main components of SEConv,
we first manage to project the scalar distances into informative spa-
tial representations. In view of the varying spatial distribution of

different datasets or cities, we adopt the Adaptive Distance Encoder
(ADE) with distribution-aware embedding mechanism [40]. We first
calculate all distances based on location’s coordinate matrix L in the
relational graph G, then the statistical distance distribution 𝑃 (𝑥) is
obtained in Figure 3(c). Since the scalar distance value only has lim-
ited one-dimension information without learning ability, we build
the embedding layer to extract the discrete representations. As illus-
trated in Figure 3(c), the 𝑃 (𝑥) distribution is uniformly decomposed
into 𝑁𝑏 consistent distance-space bins with the constraint of the
equal area size under each bin’s curve. The boundary list 𝑩(𝑁𝑏 )
for distance bins is calculated as:

𝑩(𝑁𝑏 ) = [𝑏1, 𝑏2, ..., 𝑏𝑁𝑏 ] s.t.
∫ 𝑏𝑘

0
P(𝑥) 𝑑𝑥 =

𝑘

𝑁𝑏
, (1)

Given a pair of locations (𝑣𝑖 , 𝑣 𝑗 ), we further map the distance
| |L𝑖 − L𝑗 | | to the bin index 𝑘 based on the uniform distance bound-
aries. The discrete representation d𝑖, 𝑗 with the bin index 𝑘 is ob-
tained through the embedding layer:

d𝑖, 𝑗 = Embedding(𝑘) s.t. 𝑏𝑘 ≤ ||L𝑖 − L𝑗 | | < 𝑏𝑘+1, (2)

where L𝑖 is the location coordinate for 𝑣𝑖 . The generated distribution-
aware distance representations can adaptively imply the overall
spatial context from the view of statistical analysis.

After that, the spatial distance embedding is integrated into
the Relational Spatial AGGregation (RS-AGG) for time-specific non-
local dependencies modeling and the Spatially Evolving contextual
Propagation (SE-Prop) for multifaceted context modeling, which
will be introduced later. As shown in Figure 3(a), the overall intra-
and inter-time convolutional process at time 𝑡 is defined as:

h(𝑡 )
𝑖,𝑖𝑛𝑡𝑟𝑎

= AGG𝑡
({
(h𝑗 , h𝑘 , d𝑖,𝑘 )

�� ∀𝑣 𝑗 ∈ N (𝑡 )
𝑖

, 𝑣𝑘 ∈ N (𝑡 )
𝑗

})
,

h(𝑡 )
𝑖,𝑖𝑛𝑡𝑒𝑟

= Prop𝑡
({
(h(𝜏 )
𝑗,𝑖𝑛𝑡𝑟𝑎

, d𝑖, 𝑗 )
�� ∀𝑣 𝑗 ∈ N (𝜏 )

𝑖
, 𝜏 ∈ 𝑇 (𝑡)

})
,

(3)

where h𝑖 is the input location embedding, h(𝑡 )
𝑖,𝑖𝑛𝑡𝑟𝑎

and h(𝑡 )
𝑖,𝑖𝑛𝑡𝑒𝑟

are
the intra- and inter-time embeddings for location 𝑣𝑖 , AGG𝑡 and
Prop𝑡 are the aggregation and propagation functions at the time
𝑡 for RS-AGG and SE-Prop, respectively. N (𝑡 )

𝑖
is the neighboring

set of 𝑣𝑖 at time 𝑡 . 𝑇 (𝑡) represents multiple adjacent time segments
(from 𝑇𝑡1 to 𝑇𝑡2 ) around 𝑡 for the inter-time propagation process.
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4.1.1 Intra-time Interaction: Relational Spatial Aggregation
(RS-AGG). In the scenario of location relationships, the abundant
second-order dependency can potentially imply the undiscovered
relationships. To meet the needs of such unique location graph
learning, the proposed RS-AGG adopts the second-order message
passing architecture with considering the non-local environment
in the first stage of intra-time interaction modeling. Different from
previous GNN-based relationship learning methods aggregating
information from 1-hop local neighbors, the basic intuition of RS-
AGG derives from both spatial and relational views.

From the spatial view. As shown in Figure 4(a), although the
2-hop neighboring locations are not directly connected with the tar-
get location 𝑣𝑖 , they may be geographically close to 𝑣𝑖 . As we have
investigated in Figure 2(b), the stronger geographical connection
(i.e., closer distance) indicates the higher possibility of relationship
existence. However, the ordinary 1-hop message passing process
can only deliver the spatial distance between neighboring locations.
If we simply stack two GNN layers with propagating distance infor-
mation (𝑑𝑖 𝑗 , 𝑑 𝑗𝑘 ), the model can not capture the real 2-hop distance
𝑑𝑖𝑘 in the geographical space (usually 𝑑𝑖 𝑗 + 𝑑 𝑗𝑘 ≠ 𝑑𝑖𝑘 unless three
nodes (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑙 ) are spatially collinear).

From the relational view. The 2-hop relational path can re-
flect the meaningful relationship patterns, which is denoted as

𝑣𝑖
𝑅𝑖,𝑗−→ 𝑣 𝑗

𝑅 𝑗,𝑘−→ 𝑣𝑘 . As shown in Figure 4(b), different types of re-
lational combinations can imply different potential relationships,
where the relational dependence 𝑅𝑖, 𝑗 → 𝑅 𝑗,𝑘 is helpful to reveal the
relationship 𝑅𝑖,𝑘 . Distinguishing such path semantics can greatly
improve the model’s ability to discover more hidden relationships.

To utilize the above two characteristics among locations, we
incorporate the spatial influence and relational dependence into a
unified aggregation network RS-AGG. We first define the second-
order neighbors with the mixed relational division strategy:

N2
𝑡 (𝑣𝑖 , 𝑟1 → 𝑟2) =

{
(𝑣 𝑗 , 𝑣𝑘 )

�� 𝑣𝑖 𝑅𝑖,𝑗→ 𝑣 𝑗
𝑅 𝑗,𝑘→ 𝑣𝑘 |= 𝑟1 → 𝑟2︸                             ︷︷                             ︸

Relational path constraint

}
, (4)

where 𝑟1 and 𝑟2 denote a certain relation pair, |= means that the
relational path determined by the triple nodes (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ) satisfy the
2-hop relational pattern 𝑟1 → 𝑟2 (i.e., 𝑅𝑖, 𝑗 = 𝑟1 and 𝑅 𝑗,𝑘 = 𝑟2). The
neighboring setN2

𝑡 (𝑣𝑖 , 𝑟1 → 𝑟2) defines the associated location pair
(𝑣 𝑗 , 𝑣𝑘 ) within the second-order range, where the 2-hop neighbor
𝑣𝑘 is reachable via the middle 1-hop neighbor 𝑣 𝑗 on the graph at
time 𝑡 . Only the pairs connected by at least two different relational
paths are included for efficiency. In this way, we can provide the
most crucial evidence for inferring relationships.

Then, we further propose the geography-aware relational graph
convolutions to preserve multiple dependencies from the complex

intra-time connections. This non-local learning scheme is devised
to handle the second-order correlations for each pattern, which can
simultaneously aggregate the 1-hop and 2-hop interaction features
with the spatial gating mechanism. In general, the path-specific
location representation for 𝑣𝑖 is generated as follows:

h(𝑡 )
𝑖,𝑟1→𝑟2 =

∑︁
(𝑣𝑗 ,𝑣𝑘 ) ∈ (𝑟1→𝑟2 )

(
W(𝑡 )
𝑟1→𝑟2h

(𝑡 )
𝑗

+ Φ𝑡 (𝑖, 𝑗, 𝑘 ) · W(𝑡 )
𝑟1→𝑟2h

(𝑡 )
𝑘

)
, (5)

where (𝑟1 → 𝑟2) is simply short for the constructed second-
order neighboring set N2

𝑡 (𝑣𝑖 , 𝑟1 → 𝑟2), h(𝑡 )𝑗 and h(𝑡 )
𝑘

are the input
embeddings of 1-hop neighbor 𝑣 𝑗 and 2-hop neighbor 𝑣𝑘 respec-
tively, W(𝑡 )

𝑟1→𝑟2 is the weight matrix for the specific relational path
pattern 𝑟1 → 𝑟2 at time 𝑡 . The proposed operator Φ𝑡 represents the
spatial gating function to determine the distinctive influence of the
second-order information, which is formulated as:

Φ𝑡 (𝑖, 𝑗, 𝑘) = sigmoid
(
a𝑇𝑡,𝑟1,𝑟2 · (s

𝑠𝑝𝑎
𝑡,𝑟1,𝑟2

+ s𝑟𝑒𝑙𝑡,𝑟1,𝑟2 )
)
, (6)

where a𝑇𝑡,𝑟1,𝑟2 is the trainable parameter for importance weight
calculation. Here we take the 1-hop relation semantics and 2-hop
geographical impact into account. Since the calculated gating score
is devised to reflect the relative significance between 1-hop and
2-hop information, it combines the pairwise relational-based vector
s𝑟𝑒𝑙𝑡,𝑟1,𝑟2 and spatial-based vector s𝑠𝑝𝑎𝑡,𝑟1,𝑟2 from two domain spaces:

s𝑠𝑝𝑎𝑡,𝑟1,𝑟2 = W𝑠𝑝𝑎
𝑡,𝑟1,𝑟2

[
G𝑡,𝑟1,𝑟2d𝑖, 𝑗 ⊕ W(𝑡 )

𝑟1→𝑟2h
(𝑡 )
𝑘

]
, (7)

s𝑟𝑒𝑙𝑡,𝑟1,𝑟2 = W𝑟𝑒𝑙
𝑡,𝑟1,𝑟2

[
W(𝑡 )
𝑟1→𝑟2h

(𝑡 )
𝑗

⊕ W(𝑡 )
𝑟1→𝑟2h

(𝑡 )
𝑘

]
, (8)

where W𝑠𝑝𝑎
𝑡,𝑟1,𝑟2

, W𝑟𝑒𝑙
𝑡,𝑟1,𝑟2

, and G𝑡,𝑟1,𝑟2 denote learnable weighted ma-
trices, ⊕ represent the concatenation operation. G𝑡,𝑟1,𝑟2 transforms
the spatial distance representation d𝑖, 𝑗 in the relational path-specific
latent space. Under the guidance of dual-factor gated mechanism,
the informative second-order aggregation process involves both
relational and spatial signals.

After the relational spatial graph convolution scheme is per-
formed for all hybrid paired patterns (𝑟1, 𝑟2), we combine all path-
specific location representations obtained from Eq. (5) with mean
pooling to strengthen the intra-time dependency learning.

h(𝑡 )
𝑖,𝑖𝑛𝑡𝑟𝑎

=
∑︁

(𝑟1,𝑟2 ) ∈R×R

1
|R × R| · h

(𝑡 )
𝑖,𝑟1→𝑟2

, (9)

where R is the relationship set, |R × R| is the number of paths.

4.1.2 Inter-time Interaction: Spatially Evolving Contextual
Propagation (SE-Prop). The diversified correlations between lo-
cations are also heavily dependent on inter-time interactions. We
further propose the spatially evolving propagation layer to capture
complex contextual messages, which complements the intra-time
spatial aggregation from a dynamic perspective. After updating
the location embedding via the inter-time fusion layer, the well-
designed SE-Prop explores to integrate the spatially evolving context
among multi-temporal location neighbors for better location rela-
tionship learning, since the spatial dynamics at different times can
play a great role in relationship mining as introduced before.

Specifically, for each location in dynamic graphs, the semantics
of embedding at different segments are distinct. Location embed-
dings at adjacent time segments 𝑇 (𝑡) can provide the sequential
latent information, which has the potential effect on the current
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Figure 5: An illustrated example of spatially evolving context

construction with random temporal sampling in SE-Prop.

location relationship at 𝑡 due to the time continuity. Thus, the inter-
time fusion layer over multiple times is first adopted to update the
temporal-enhanced location representation :

h̃(𝑡 )
𝑖

=
∑︁

𝜏∈[𝑇𝑡1 ,𝑇𝑡2 ]

1
𝑇𝑡2 −𝑇𝑡1

·W𝑡h
(𝜏 )
𝑖,𝑖𝑛𝑡𝑟𝑎

, 𝑇𝑡1 ≤ 𝑡 ≤ 𝑇𝑡2 , (10)

whereW𝑡 is the time-specific transformation matrix, the prior time
𝑇𝑡1 and the later time 𝑇𝑡2 define the duration of aggregated time
segments 𝑇 (𝑡) (we set 𝑇𝑡1 and 𝑇𝑡2 as 𝑡 − 1 and 𝑡 + 1 in practice).

Then we further simultaneously leverage the spatial and evolv-
ing characteristics among locations in the propagation. As illus-
trated in Figure 5, different from the classic message passing scheme
focusing on pairwise local interactions, the SE-Prop additionally
considers the spatially evolving context when performing the prop-
agation from each neighboring location 𝑣 𝑗 to the target 𝑣𝑖 . The
relationship structure is evolving over time, and a location in the
time-specific graph may contain limited connections. Supplying
cross-time neighboring nodes can enrich the relational environ-
ment in the propagation of 𝑣 𝑗 → 𝑣𝑖 . Therefore, we first utilize the
temporal sampling strategy to gather abundant neighbors, which
provides the critical evolving information for the message 𝑣 𝑗 → 𝑣𝑖 :

N𝐾 (𝑣𝑖 , 𝑣 𝑗 ) = {𝑣𝑖1 , ..., 𝑣𝑖𝐾 | 𝑣𝑘 = Sampling(∪𝑇𝑡2
𝑇𝑡1

N (𝑡 )
𝑖

\{𝑣 𝑗 })}, (11)

where Sampling stands for the random sampling process across
time segments. The set N𝐾 collects 𝐾-size nearby neighbors of 𝑣𝑖
with the repeated sampling frommulti-temporal neighboring views,
which builds the bridge between temporal-correlated locations from
time 𝑇𝑡1 to 𝑇𝑡2 for evolving context construction (e.g., picking up
{𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3 } from 𝑡1 to 𝑡3 in Figure 5).

Moreover, the sampled locations are spatially distributed around
the target interactive pair 𝑣 𝑗 → 𝑣𝑖 . The geographical knowledge
under the evolving influence can offer multifaceted contexts from
a comprehensive view. We introduce an informative vector C(𝑡 )

𝑖, 𝑗

to extract such spatially evolving context among the edge 𝑣 𝑗 → 𝑣𝑖
with considering the geographical distribution:

C
(𝑡 )
𝑖, 𝑗 = Pooling

(
{G(𝑡 )d𝑗,𝑘 ⊙ h̃(𝑡 )

𝑘
, 𝑣𝑘 ∈ N𝐾 (𝑣𝑖 , 𝑣 𝑗 )}

)
, (12)

where G(𝑡 ) is the matrix for distance transformation, d𝑗,𝑘 denotes
the internal spatial embedding between two neighbors 𝑣 𝑗 and 𝑣𝑘 ,
⊙ is the Hadamard product for element-wise multiplication. In
practice, we utilize the mean pooling with the all-round distance

integration to enable the model to comprehend how far other neigh-
bors inN𝐾 away from the interacted pair 𝑣 𝑗 → 𝑣𝑖 . As a result, every
message from the neighbor 𝑣 𝑗 to 𝑣𝑖 can carry the evolving context
in N𝐾 together with the spatial context (d𝑖, 𝑗 , d𝑗,𝑖1 , ..., d𝑗,𝑖𝐾 ), rather
than only the partial pairwise d𝑖, 𝑗 .

Finally, we present the contextual propagation module to com-
bine each local neighboring location with the spatially evolving
context. This procedure both considers a series of dynamic graph
structures and the detailed contexts, which could be formulated in
an interactive manner between adjacent time segments:

h(𝑡 )
𝑖,𝑖𝑛𝑡𝑒𝑟

=
∑︁

𝜏∈[𝑇𝑡1 ,𝑇𝑡2 ]

∑︁
𝑣𝑗 ∈N (𝜏 )

𝑖

W(𝑡 )
Prop

[ (
G(𝑡 )d𝑖, 𝑗 ⊙ h̃(𝜏 )

𝑗

)
⊕C

(𝑡 )
𝑖, 𝑗

]
, (13)

whereW(𝑡 )
Prop is shared learning matrix for contextual propagation.

4.2 Spatially Evolving Self-Supervised Learning

With the proposed two components RS-AGG and SE-Prop, we finally
obtain themulti-temporal location embeddings {h(𝑡1 )

𝑖,𝑖𝑛𝑡𝑒𝑟
, ..., h(𝑡𝑇 )

𝑖,𝑖𝑛𝑡𝑒𝑟
}.

In the following sections, we use symbols {z(𝑡1 )
𝑖

, ..., z(𝑡𝑇 )
𝑖

} to repre-
sent these time-specific embeddings for simplicity.

As depicted in Figure 3(b), we intend to design two essential
self-supervised learning tasks to deal with the issue of the sparse
relationship labels between locations, which enhances the represen-
tation learning process of SEConv beyond spatially intra-time and
dynamically inter-time structure modeling. Although it has been
proved that applying the graph Self-Supervised Learning (SSL) strat-
egy is effective for the general issue of scarce labeled data [9, 30, 50],
current SSL frameworks always fail to capture the complicated
evolving patterns among locations under the spatially distributed
environment. To this end, the learning procedure component, i.e.,
SE-SSL, is proposed for multi-temporal location relationships in a
self-supervised manner, which contains the global spatial informa-
tion maximumL𝑔𝑙𝑜𝑏𝑎𝑙 with the additional local evolving constraint
L𝑙𝑜𝑐𝑎𝑙 . As a whole, we have the joint learning objective:

L𝑠𝑠𝑙 = 𝜆1L𝑔𝑙𝑜𝑏𝑎𝑙 + 𝜆2L𝑙𝑜𝑐𝑎𝑙 + ||Θ| |22, (14)

where 𝜆1 and 𝜆2 are the hyper-parameters to balance the contribu-
tions of local-global loss functions, | |Θ| |22 is the L2 regularization.

4.2.1 Global Spatial Information Maximum. Inspired by the
success of Deep Graph Infomax (DGI) [30], we first develop the
spatial information maximum objective to capture the global evolv-
ing patterns with preserving the gridding spatial dynamics. For
time-evolving location graphs, the latent semantics of individual
nodes do not stay unchanged over time segments. It is reasonable
to treat the relational evolution as a generally smooth process since
the human behaviors are gradually varying between adjacent times,
indicating that the global surroundings around locations remain
partially similar and complementary at the next time segment.

In practical scenarios, the location graph of a city can be parti-
tioned into multiple urban grids [13]. Each urban grid 𝑢 gathers a
cluster of spatially correlated location nodes {𝑣𝑖 |𝑣𝑖 ∈ 𝑢} and pro-
vides the global surrounding information. All nodes located in an
urban grid tend to share the similar spatial environment, which
motivates us to introduce such knowledge into the model training.
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Different from DGI designed for a single graph, we perform
the contrastive learning across the successive time-varying graph
structures to fuse the global evolving information into the location
representation. Specifically, we first utilize the grid-level pooling
function to summarize the location representations to obtain the
gridding vector s(𝑡 )𝑢 = 1

𝑁𝑢

∑
𝑣𝑖 ∈𝑢 z

(𝑡 )
𝑖

, where 𝑁𝑢 is the number of
locations in grid𝑢. After that, the goal is to maximize the cross-time
mutual information between location-level representations and
urban grid-level representations with the following loss function:

L𝑔𝑙𝑜𝑏𝑎𝑙 =
∑︁
𝑡 ∈T

( ∑︁
𝑣𝑖 ∈V

(
E𝑝𝑜𝑠 [logD(z(𝑡 )

𝑖
, s(𝑡−1)
𝑢 (𝑖 ) )]

+ 1
|S𝑖 |

∑︁
𝑣𝑗 ∈S𝑖

E𝑛𝑒𝑔 [log(1 − D(z(𝑡 )
𝑗
, s(𝑡−1)
𝑢 (𝑖 ) ))]

) )
,

(15)

where 𝑢 (𝑖) denotes the urban grid where the location 𝑣𝑖 belongs
to, the bilinear function D(·, ·) is the discriminator to calculate the
probability scores which estimates whether 𝑣𝑖 is located in the grid
𝑢. Note that the natural positive sample (z(𝑡 )

𝑖
, s(𝑡−1)
𝑢 (𝑖 ) ) is extracted

from temporal views, while the negative pairs are generated from
the gridding sampler S𝑖 . In particular, the location 𝑣𝑖 at the 𝑡-th
time segment and the corresponding urban grid 𝑢 (𝑖) at the last
segment 𝑡 − 1 are regarded as a positive pair. The heuristic sampler
aims to distinguish effective negative pairs based on geographical
information rather than random sampling.

S𝑖 = {𝑣 𝑗 |𝑑1 < 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛𝐷𝑖𝑠𝑡
[
𝑢 (𝑖), 𝑢 ( 𝑗)

]
< 𝑑2}, (16)

where the function𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛𝐷𝑖𝑠𝑡 [·, ·] over the gridding city map
returns the Manhattan distance between the two urban grids 𝑢 (𝑖)
and 𝑢 ( 𝑗). For the sake of avoiding inadequate locations which are
too close or too far away, we use 𝑑1 and 𝑑2 to define the appropriate
sampling scope of spatial areas (we empirically set 𝑑1 and 𝑑2 as 2
and 6 in practice) for high-quality negative samples generation.

4.2.2 Local Relational Evolving Constraint. Besides the global
evolving correlations, the relevance among time-specific relation-
ships is also evolutionary from a local perspective. We further
introduce the edge-level relational evolving constraint to comple-
ment the global grid-level evolution in SE-SSL. The key idea of this
constraint is to explore if the relation 𝑟𝑖 𝑗 ∈ R between 𝑣𝑖 and 𝑣 𝑗
still remains at time 𝑡 when this relation exists at the last 𝑡 − 1
time segment. We observe some specific short-term relations would
disappear at the subsequent segment 𝑡 , while a bundle of long-term
influential relations would continue to survive. Therefore, consider-
ing the complex evolving pattern is of great importance due to the
potential time continuity for location relationships. We first acquire
the relational edge representation e(𝑡 )

𝑖 𝑗
= h(𝑡 )

𝑖
⊙ h(𝑡 )

𝑗
. To further

explicitly preserve the relation-aware evolving patterns between
adjacent times, we define the following local objective:

L𝑙𝑜𝑐𝑎𝑙 =
∑︁
𝑡 ∈T

∑︁
𝑒𝑖 𝑗 ∈E (𝑡 )

(
𝛿 (𝑟 (𝑡 )

𝑖 𝑗
, 𝑟

(𝑡−1)
𝑖 𝑗

) log[𝜑 (e(𝑡 )
𝑖 𝑗
, e(𝑡−1)
𝑖 𝑗

) ]

+
(
1 − 𝛿 (𝑟 (𝑡 )

𝑖 𝑗
, 𝑟

(𝑡−1)
𝑖 𝑗

)
)
log[1 − 𝜑 (e(𝑡 )

𝑖 𝑗
, e(𝑡−1)
𝑖 𝑗

) ]
)
,

(17)

where E (𝑡 ) is the relational edge set at the 𝑡-th time segment, the
Kronecker delta function 𝛿 (·, ·) outputs 1 only if the relationship
𝑟𝑖 𝑗 remains the same from time 𝑡 − 1 to 𝑡 , the MLP function 𝜑 (·, ·)
is adopted to calculate the evolving probability.

4.3 Time-aware Relationship Inference

After training the proposed SEConv through the spatially evolv-
ing self-supervised learning stage, we then take advantage of the
well-trained model to predict the time-aware location relationships.
Given a pair of locations (𝑣𝑖 , 𝑣 𝑗 ), the model can learn the pairwise
multi-slot location embeddings {(z(𝑡 )

𝑖
, z(𝑡 )
𝑗

) |𝑡 ∈ T} over the whole
time segments T. Finally, we adopt the time-specific DistMult fac-
torization [41] as the scoring function for prediction at each time.

𝑦̂
(𝑡 )
𝑖 𝑗,𝑟

= 𝜎
(
z(𝑡 )

𝑇

𝑖
W(𝑡 )
𝑟 z(𝑡 )

𝑗

)
, (18)

where the time-aware diagonal matrix W(𝑡 )
𝑟 is the learnable pa-

rameter for relationship 𝑟 , 𝜎 stands for the sigmoid function. Then
the cross entropy loss function between the predicted probability
𝑦
(𝑡 )
𝑖 𝑗,𝑟

and the label 𝑦 (𝑡 )
𝑖 𝑗,𝑟

is used to jointly optimize the model under
a time aggregated multi-task learning manner:

L𝑟𝑒𝑙 =
∑︁
𝑡 ∈T

∑︁
(𝑣𝑖 ,𝑟 ,𝑣𝑗 ) ∈Y𝑡𝑟𝑛

(
𝑦
(𝑡 )
𝑖 𝑗,𝑟

log𝑦̂ (𝑡 )
𝑖 𝑗,𝑟

+ (1 − 𝑦 (𝑡 )
𝑖 𝑗,𝑟

) log(1 − 𝑦̂ (𝑡 )
𝑖 𝑗,𝑟

)
)
, (19)

where Y𝑡𝑟𝑛 is the training edge set, 𝑦 (𝑡 )
𝑖 𝑗,𝑟

indicates whether there
exists the relationship 𝑟 between 𝑣𝑖 and 𝑣 𝑗 at the time segment 𝑡 .

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the
proposed SEENet compared against the state-of-the-art methods.
The code of SEENet is available at https://github.com/PaddlePaddle/
PaddleSpatial/tree/main/research/SEENet.

5.1 Experiment Settings

5.1.1 Datasets. Our experiments are conducted on four real-world
citywide datasets from two distinct relationship learning domains.
The first two urban business-based datasets (Beijing and Tokyo)
are derived from commercial behaviors of users, while the other
two (New York and Chicago) are urban mobility-based datasets
constructed from trajectory data to ensure the data diversity.
• Business-based Relational Data. (Business-RD for short) In
the scene of urban business, it has been studied that there are two
significant behavior-driven relationships among locations [3, 13],
i.e., competitive and complementary relationships, which could
be generated from session-based location query data or check-in
data. Therefore, we follow previous works [3, 13, 21] to con-
struct the Business-RD (Beijing and Tokyo) from query dataset
QueryBJ and check-in dataset Foursquare [42] respectively.

• Mobility-based Relational Data. (Mobi-RD for short) Since
urban mobility is another important aspect to reflect the dynamic
location correlations, we further extend the relationship in the
mobile trajectory domain. In specific, we utilize the taxi and bike
trajectory datasets NYCTaxi 1 and DivvyBike2 to generate the
Mobi-RD (New York and Chicago), which includes high-flow
and low-flow relationships according to the flowing degree.

As aforementioned, the special location relationships are influenced
by time in reality since the above user behaviors and trajectories are
dependent on different time periods in a day (e.g., two restaurants
tend to be competitive at midday instead of midnight) [45]. Thus,

1https://nyc.gov/site/tlc/about/tlc-trip-record-data.page
2https://ride.divvybikes.com/system-data

https://github.com/PaddlePaddle/PaddleSpatial/tree/main/research/SEENet
https://github.com/PaddlePaddle/PaddleSpatial/tree/main/research/SEENet
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Table 1: Overall performance on Business-RD (Beijing and Tokyo) and Mobi-RD (New York and Chicago). We conduct

experiments with five random seeds and report the average performance together with the standard deviation.

Method Beijing Tokyo New York Chicago
MRR@10 HR@10 MRR@10 HR@10 MRR@10 HR@10 MRR@10 HR@10

GCN 0.1278±0.005 0.2873±0.010 0.1386±0.003 0.3034±0.012 0.1213±0.005 0.3184±0.012 0.1052±0.002 0.3467±0.008
PathGCN 0.1311±0.006 0.3191±0.015 0.1380±0.004 0.3387±0.014 0.1375±0.005 0.3478±0.012 0.1056±0.006 0.3471±0.025
CompGCN 0.1637±0.001 0.4482±0.005 0.1394±0.004 0.3590±0.005 0.1423±0.012 0.3772±0.021 0.0923±0.002 0.3305±0.002
MixHop 0.1703±0.001 0.4582±0.006 0.1412±0.003 0.3618±0.006 0.1488±0.014 0.3528±0.026 0.1094±0.006 0.3491±0.011
NL-GNN 0.1811±0.004 0.4233±0.009 0.1639±0.003 0.4134±0.009 0.1785±0.006 0.4021±0.009 0.1107±0.001 0.3695±0.008

GCA 0.1561±0.016 0.3416±0.035 0.1650±0.003 0.4010±0.012 0.1188±0.002 0.3449±0.006 0.1116±0.002 0.3736±0.005
DGI 0.1776±0.007 0.3893±0.012 0.1738±0.001 0.3976±0.004 0.1538±0.006 0.3985±0.023 0.1098±0.002 0.3587±0.010
RGRL 0.1952±0.006 0.4216±0.015 0.1775±0.007 0.4253±0.016 0.1624±0.001 0.3939±0.006 0.1107±0.002 0.3676±0.005

EvolveGCN 0.2123±0.003 0.4870±0.001 0.1634±0.003 0.4070±0.010 0.2054±0.002 0.4518±0.010 0.0976±0.001 0.3290±0.001
ROLAND 0.2127±0.013 0.4966±0.030 0.1607±0.004 0.4133±0.006 0.1980±0.004 0.4571±0.009 0.1237±0.002 0.3859±0.008

DecGCN 0.1758±0.001 0.4175±0.002 0.1552±0.000 0.3686±0.007 0.1700±0.002 0.4142±0.005 0.1112±0.002 0.3466±0.001
IRGNN 0.1807±0.012 0.4176±0.025 0.1299±0.001 0.3136±0.010 0.1638±0.005 0.3843±0.006 0.1123±0.003 0.3408±0.005
DeepR 0.2184±0.002 0.5257±0.006 0.1662±0.001 0.3902±0.005 0.1988±0.001 0.4496±0.003 0.1058±0.004 0.3628±0.010
PRIM 0.1973±0.001 0.4992±0.002 0.1454±0.003 0.3990±0.006 0.2229±0.007 0.5008±0.002 0.1021±0.001 0.3634±0.003

SEENet 0.2545±0.003 0.5524±0.007 0.2314±0.003 0.4880±0.009 0.2526±0.003 0.5376±0.009 0.1506±0.002 0.4338±0.012

Table 2: Statistics of four real-world datasets.

Dataset Beijing Tokyo New York Chicago

Relation Type Business Business Mobility Mobility
Relation Source Map Query Check-in By Taxi By Bike

# Nodes 30,114 3,013 1,587 483
# Relations at 𝑡1 3,270 1,820 647 1,059
# Relations at 𝑡2 96,233 3,991 7,016 5,894
# Relations at 𝑡3 97,829 9,419 7,909 6,275
# Relations at 𝑡4 4,155 1,446 4,523 1,322

we reasonably detail the relationships with time-aware refinements.
In practice, as suggested by the literature [14] with considering
the real-life experience and data analysis, we evenly split a day
into four segments 𝑡1~𝑡4, i.e., morning, midday, night, and midnight.
We construct the above four datasets at each time according to
timestamps, and finally obtain the multi-temporal Business-RD

and Mobi-RD in Table 2. The details of relationship construction
are included in Appendix A.1.
5.1.2 Setup. Following the previous relationship-based works
[13, 18], we randomly sample 10% of relational edges for testing
and 10% of edges as the validation set at each time segment, while
the remaining 80% of relations are utilized to construct the dynamic
location graph for training. We also replace the destination node of
each edge with other random locations for negative sampling.
5.1.3 Baselines and Evaluation Metrics. We compare SEENet
with a variety of advanced GNN methods for dynamic location
relationship inference: (i) The relational-based GNNs (GCN [8],
PathGCN [4], CompGCN [29], MixHop [1], and NL-GNN [17])
are typical graph structure learning models considering node cor-
relations and contexts. (ii, iii) We also select recent graph self-
supervised learning models (DGI [30], GCA [50], and RGRL [9])
and snapshot-based dynamic GNNs for link prediction (EvolveGCN
[25] and ROLAND [44]). (iv) Moreover, SEENet is compared with
state-of-the-art relationship prediction methods (DecGCN [21],
IRGNN [18], DeepR [13], and PRIM [3]) which are designed for
learning relational and spatial dependencies. We conduct time-
specific link prediction experiments to rank candidate locations
at each time. As introduced in [21] for relationship inference, we

adopt Mean Reciprocal Ranking (MRR@k) and Hit Rate (HR@k) as
evaluation metrics. The baseline descriptions, parameter settings,
and more experimental details are introduced in Appendix A.2.

5.2 Overall Performance Comparison

We first compare the overall experimental results on four real-world
relationship datasets, where the evaluation metrics are calculated
over all time periods to reflect the general prediction performance.
As presented in Table 1, we report the metrics MRR@10 and HR@10
in the relationship prediction results following the previous work
[21]. The values in boldface indicate the best results, while the
underlined values signify the second-best results. On the whole, it
is observed that our SEENet consistently outperforms all different
baseline methods by an obvious margin on each dataset. In specific,
compared with the second-best model on four datasets, SEENet im-
proves the MRR@10 by 16.5%, 30.4%, 13.3%, and 21.7% respectively.
We further have the following observations and findings.

As we can see, the relational-based GNNs roughly performworse
than other types of baselines since they only leverage the graph
topological structures with learning node relations. It is not sur-
prising that the recently proposed PathGCN just achieves compa-
rable results with GCN because the learned spatial operators with
random paths are uncertain and sometimes may go against the
relationship prediction. Moreover, CompGCN performs slightly
better because of the ability to distinguish multiple relations, while
the non-local message-passing models (Mixhop and NL-GNN) can
explicitly learn multi-hop relational contexts and further improve
the performance. In general, the above GNNs are not ideal without
spatial and dynamic learning schemes, which verifies that simply
aggregating relational edges is not adequate for complex dynamic
location graphs. As to self-supervised learning methods, RGRL out-
performs the other two baselines, as it can enable Self-Supervised
Learning (SSL) with capturing the augmentation-invariant relation-
ship at the same time. Note that although both DGI and RGRL adopt
the global-local SSL architecture on graphs, our SEENet incorpo-
rates the spatial distribution and evolving pattern into SSL beyond
the traditional framework and performs much better.
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Table 3: Ablation studies with the metric MRR@10.

Variants Beijing Tokyo New York Chicago

SEENet-SEC 0.1780 0.1636 0.1548 0.1218
SEENet-RS 0.1792 0.1901 0.1744 0.1323
SEENet-LD 0.2149 0.169 0.1951 0.1193
SEENet-C 0.2469 0.1718 0.2169 0.1215

SEENet-SSL 0.2321 0.2042 0.1937 0.1371
SEENet-L 0.2466 0.2157 0.2116 0.1441
SEENet-G 0.2463 0.2215 0.2493 0.1429

SEENet 0.2545 0.2314 0.2526 0.1506

From the perspective of dynamic relationship modeling, since
EvolveGCN and ROLAND can take advantage of dynamic propaga-
tion cross times to preserve time-aware relational characteristics,
these models exhibit considerable improvement over classic GNNs.
Furthermore, we can see that the latest ROLAND can not always
outperform EvolveGCN due to the failure of recurrent designs on
some datasets, indicating dynamic GNNs are still not powerful
enough in the domain of location graph learning. From the per-
spective of special relationship prediction approaches, we notice
that spatial-oriented models (DeepR and PRIM) tend to perform
better than DecGCN and IRGNN as a result of considering essential
geographical information and adapting the relationship learning in
the scenario of location graphs. One exception is on the Chicago
dataset with the fewest relations. The potential reason is that DeepR
and PRIM requiring enough neighbors lose their effectiveness when
learning spatial contexts on small graphs. By contrast, our model
can fully capture both spatial correlations and evolving dynamics
with graph convolution-level and SSL-level enhancements. There-
fore, SEENet is much more effective for multi-temporal relationship
inference among locations.

5.3 Impact of Spatial and Dynamic Designs

5.3.1 How SEENet Architecture Design Helps (Model Analysis). To
investigate the contribution of each component in our designed
multi-slot spatial graph convolutions SEConv, we compare SEENet
with the following variants on four datasets in Table 3.
• SEENet-SEC replace the whole SEConv with a classic GCN.
• SEENet-RS removes spatial RS-AGG for intra-time learning.
• SEENet-LD removes dynamic SE-Prop for inter-time learning.
• SEENet-C drops the evolving context of SE-Prop in Eq. (13).
It is obvious that other variants of SEENet outperform SEENet-SEC
and the performance generally decreases when we gradually re-
move the graph learning components. In particular, if we replace the
time-aware contextual aggregation with a simple GCN-style func-
tion when performing inter-time interactions, we find that SEENet-
C gets worse, which confirms that it is beneficial to integrate the
spatially evolving context for Trial. Furthermore, SEENet-LD per-
forms better than SEENet-RS on Beijing and New York datasets
while the converse is observed on the other two datasets, prov-
ing both spatial and dynamic modeling can play significant roles
across different scenarios. In summary, the results highlight the im-
portance of designing synergistic SEENet architecture to combine
geographical factors and dynamic relationships.

5.3.2 How Self-Supervised Learning Design Helps (SE-SSL analysis).

We also conduct essential experiments to validate the effectiveness
of the well-designed SE-SSL with removing different objectives.
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Figure 6: Parameter analysis on four citywide datasets.

• SEENet-SSL w/o pre-training, i.e., removing the whole SE-SSL.
• SEENet-L w/o the loss of local relational evolving constraint.
• SEENet-G w/o the loss of global spatial information maximum.
As we can see in Table 3, there is a consistent performance degra-
dation when excluding either global-view loss or local-view loss.
SEENet-SSL performs even worse than SEENet-G and SEENet-L
when dropping global and local learning objectives at once, show-
ing both of them can contribute to model training. The observation
verifies that considering global spatial distribution as well as local
evolving relationship patterns in a self-supervised learning manner
is critical for location relationship inference.

We further explore the influence of various important parameters
in SEENet. More experimental results are in Appendix A.3.3.
5.3.3 Coefficients of global and local loss functions. As depicted
in Figure 6(a) and 6(b), we first study the weight of global loss 𝜆1
and local loss 𝜆2 respectively. When increasing the coefficient for
each loss, the results slightly get better and keep stable in general,
with the exception that the performance on New York increases
rapidly in the beginning and then remains at high scores. This
indicates integrating more local evolving relationship information
is necessary for some scenarios. Overall, our collaborative global-
local learning makes the model training more expressive and stable.
5.3.4 Scales of spatially evolving context. We also investigate the
number of sampled neighbors𝐾 for capturing critical multi-temporal
spatial factors in SE-Prop. Figure 6(c) shows that the performance of
SEENet gradually improves at first and then declines with neigh-
bors growing, which achieves the best at 𝐾 = 5. The reason is that
communicating more location neighbors in SE-Prop can provide
more informative spatial contexts, while sampling excessive neigh-
bors may lead to unexpected homogenization of the propagation.
To conclude, moderate fine-grained contextual information can
help to outperform all baselines in our problem Trial.

6 CONCLUSION

In this paper, we provided a new multi-temporal perspective to
understand the location relationship, which is significant in ur-
ban intelligence. In detail, we proposed a spatially evolving GNN
framework, named SEENet, to effectively discover multi-temporal
location relationships in urban areas. The designed spatially evolv-
ing convolution can capture intra- and inter-time spatial contexts
with dynamic influence. To overcome the issue of data sparsity, we
also devised essential self-supervised learning tasks to integrate
evolving patterns. Extensive experiments were conducted on four
datasets to verify the effectiveness of the proposed model.
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A APPENDIX

A.1 Dataset Introduction

• Business-basedRelationships.Wefirst use theQueryBJ dataset
collected fromBaiduMaps, which containsmillions ofmap search
query logs from January 2019 to August 2019 in Beijing. Each
query log provides the user’s query session with timestamps.
Following the works [3, 21], the two types of relations between
locations 𝑣𝑖 and 𝑣 𝑗 are defined as:
(1) Users viewed 𝑣𝑖 also viewed 𝑣 𝑗 within a query session;
(2) Users viewed 𝑣𝑖 then viewed 𝑣 𝑗 across different sessions.
As for the public Foursquare dataset [42], we collect the check-
in data from April 2012 to February 2013 in Tokyo. All visited
locations of a user are classified into several categorical trips (e.g.,
all restaurants visited in a day form a categorical trip). Similarly,
following [13], we have the two kinds of relationships as follows:
(3) Users visited 𝑣𝑖 also visited 𝑣 𝑗 within a categorical trip;
(4) Users visited 𝑣𝑖 then visited 𝑣 𝑗 across different categories.
According to these relationship studies [3, 13, 24], we refer to (1)
and (3) as competitive relationships while the other (2) and (4)
are known as complementary relationships.

• Mobility-based Relationships. For the taxi driving data, the
public NYCTaxi includes the order records traveling throughout
New York from January 2015 to June 2015, while the dataset
DivvyBike collects bike riding orders from January 2017 to June
2017 in Chicago. In this scene, the location can be a bike station
or a region. Each trajectory by taxi or bike includes the pick-up
and drop-off locations with timestamps, which connects a pair
of locations. After counting the overall records for mobile-based
relevancy, we label the two meaningful relationships between
location pairs, namely high-flow (top 25% high) and low-flow (top
50% high) relationships according to the mobility degree.

A.2 Experiment Details

A.2.1 Implementation and setup. We train the model on 24 Intel
CPUs and a group of Tesla P40 GPUs. The unified input location
features are initialized with one-hot embedding for generalized
representation learning. For data splitting, we guarantee that the
testing and validation sets Y𝑝𝑟𝑒𝑑 are absolutely independent of the
training set Y𝑡𝑟𝑛 across all times, meaning that every relational
edge inY𝑝𝑟𝑒𝑑 at a certain time will not appear inY𝑡𝑟𝑛 at any time .

A.2.2 Evaluation Metrics. In inferring location relationships, the
model should be able to accurately rank the relational locations
instead of only predicting whether the relationships exist or not.
Thus, it is important that relevant locations are ranked higher
than irrelevant ones with the ranking metrics MRR and HR. Given
the test set 𝑇 , we follow these steps for evaluation at each time
segment: (1) For each relational pair (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ), we first calculate all
pairwise scores for relation 𝑟 between 𝑣𝑖 and the 𝑁 locations in
the candidate set 𝑆 using the relational-specific prediction function
𝑓𝑟 . (2) We sort these 𝑁 locations in descending order and obtain
the ranked list. The ranking index of node 𝑣 𝑗 is denoted as 𝑟𝑎𝑛𝑘 𝑗
(i.e., a certain position in the list). (3) If 𝑟𝑎𝑛𝑘 𝑗 ≤ 𝑘 , we consider it
a hit (successfully discovering the target location 𝑣 𝑗 from the top-
K locations), otherwise, we consider it a miss. The HR@k metric
is defined as the average of total hits over the entire test set 𝑇 ,

which is denoted as 𝐻𝑅@𝑘 =
∑
𝑟𝑎𝑛𝑘 𝑗 ≤𝑘

1
|𝑇 | . (4) To calculate the

MRR@k metric, we first compute the reciprocal rank, denoted as
1

𝑟𝑎𝑛𝑘 𝑗
. Note that the reciprocal rank is 0 when getting a miss (i.e.,

𝑟𝑎𝑛𝑘 𝑗 > 𝑘). Thus, the MRR@k metric is defined as the average of
total reciprocal ranks over the entire test set𝑇 , which is denoted as
𝑀𝑅𝑅@𝑘 = 1

|𝑇 |
∑
𝑟𝑎𝑛𝑘 𝑗 ≤𝑘

1
𝑟𝑎𝑛𝑘 𝑗

.

A.2.3 Parameter Settings. For all models, we set the dimension
of embedding and hidden layers to 64 with the two-layer GNN
architecture. Since some baselines are not proposed for relationship
discovery, the DistMult function [41] is also adopted as the final
prediction layer for these models. In our proposed SEENet, the
model is trained by Adam optimizer with an initial learning rate
of 0.01. The number of negative samplers is set to 5. For the GNN
framework of SEConv, we set the number of distance bins to 40,
and the size of multi-temporal neighbors to 5 for spatial context
learning. For the self-supervised learning of SE-SSL, the related
parameters of balancing weights (i.e., 𝜆1 and 𝜆2) and grdding size in
the global loss are set according to the experimental results on the
validation set (The certain range is shown in Figure 6 and Figure 7).

For baseline models, the number of random walk and the path
length are both set to 5 in pathGCN, while the composition operator
of subtraction is used with the dropout rate of 0.2 in CompGCN.
For high-order graph learning methods, the set of integer adjacency
powers in MixHop is defined as 𝑃 = {0, 1, 2}, and the kernel size in
NL-GNN is set to 5 for effective non-local context learning. As to
graph self-supervised learning methods, we also use the bilinear
scoring function as the discriminator for DGI. The degree centrality
function with the dropping probabilities of 0.3 and 0.2 is employed
for graph augmentation in GCA. The balancing coefficient for rela-
tional self-supervised learning is set to 0.9 in RGRL. For dynamic
GNN models, the MLP and GRU modules are adopted for recurrent
updater in EvolveGCN and ROLAND. For relationship learning
methods (DecGCN and IRGNN), we stack two convolutional layers
with two 3-layer MLP functions for complex relational dependen-
cies. For DeepR, The grid size of buckets and the number of sectors
are set to 100 (meters) and 4, respectively. The number of attentive
heads is set to 2 with the scaling factor of 2 in PRIM.

A.2.4 Baseline Method Description. We compare SEENet with the
following methods for multi-temporal relationship inference:
• GCN [8] is a well-known graph neural network, which aggre-
gates nodes with topological weights for relational modeling.

• PathGCN [4] adopts the point-wise graph convolutions to learn
the complex spatial operator from random paths for improving
relationship prediction performance.

• CompGCN [29] extends the GCN architecture to jointly embeds
both nodes and relationships in the graph. It can incorporate
multi-relational information with composition operations.

• MixHop [1] is a kind of higher-order message passing network,
where nodes receive abundant and distant information with mix-
ing feature representations of neighbors at various distances.

• NL-GNN [17] is a recent non-local aggregation framework with
an attentive sorting to capture global relational structures.

• DGI [30] leverages the mutual information maximization for
graph self-supervised learning (SSL) through a local-global scheme.
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Table 4: Time-specific performance evaluation (MRR@10)

over times on two datasets of Business-RD and Mobi-RD.

Dataset Method Morning Midday Night Midnight

Beijing

NL-GNN 0.2302 0.1803 0.1821 0.1340
RGRL 0.2232 0.1901 0.2018 0.1352

EvolveGCN 0.2718 0.2072 0.2169 0.1760
ROLAND 0.2402 0.2080 0.2187 0.1567
DeepR 0.2152 0.2247 0.2159 0.1334
PRIM 0.2114 0.2005 0.1962 0.1409
SEENet 0.3206 0.2442 0.2621 0.2602

New York

NL-GNN 0.1386 0.2042 0.2029 0.1532
RGRL 0.1778 0.1419 0.1607 0.1850

EvolveGCN 0.1463 0.2185 0.2259 0.1576
ROLAND 0.1799 0.2027 0.2129 0.1993
DeepR 0.1838 0.2122 0.2080 0.1734
PRIM 0.2072 0.2276 0.2420 0.1976
SEENet 0.2722 0.2367 0.2714 0.2415

• GCA [50] develops the graph contrastive SSL with advanced
adaptive augmentations to enhance representation learning.

• RGRL [9] is a recent relational-aware SSL framework to alleviate
the data scarcity issue by considering the relationship among
nodes in both global and local perspectives.

• EvolveGCN [25] employs an RNNmodule to dynamically update
weights of internal GNNs for dynamic link predictions.

• ROLAND [25] is the latest snapshot-based GNNmodel to further
generalize the relational GNN to a dynamic setting, which can
enable the prediction of multi-time relations.

• DecGCN [21] generates node embeddings in separated relationship-
specific spaces, which can capture the mutual inference between
structural and semantic information for relationship discovery.

• IRGNN [18] is proposed to discover multiple relationships by
incorporating multi-hop relational information on sparse graphs.

• DeepR [13] introduces spatial adaptive GNN model to handle
the unique spatial attribute of location graphs and achieves great
performance for static relationship inference.

• PRIM [3] is the current state-of-the-art GNN model for location
relationship inference. Boht the weighted relational convolution
and self-attentive spatial context extraction improve the results.

A.3 Additional Experimental Results

A.3.1 Time-specific Performance Analysis. Table 4 exhibits
the multi-temporal relationship prediction results over all times
in a day. The proposed SEENet provides stable performance gains
over major competitive baselines at all time periods, which con-
sistently verifies the superiority of our multi-slot spatial learning
framework in time-aware predictions. We also observe that most
baselines perform worse at midnight due to the sparsity of location
relationships. We observe that the graph at midnight with fewer
people activities only contains limited environmental information
for location relationship inference. Moreover, we find that dynamic
GNNs (EvolveGCN and ROLAND) can partly alleviate the above
issue thanks to the capability of involving the relational knowledge
from the previous time, which agrees with the fact that considering
dynamic relationships is essential and valuable. However, the per-
formance is still unsatisfactory. By contrast, our model can achieve
stable and accurate prediction results at any time, demonstrating
the exhaustive effectiveness of SEENet.

Table 5: The efficiency studies on Beijing dataset.

Method Training (s/epoch) Inference (s/rank)

RGRL 1.4464 0.1212
ROLAND 2.8150 0.1540
DeepR 2.3462 0.2340
PRIM 1.8416 0.2058
SEENet 2.1631 0.2517
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Figure 7: More parameter analysis on four citywide datasets.

A.3.2 Efficiency Analysis. We also conduct the efficiency evalua-
tion for the training and inference time.We compare ourmodel with
several most competitive baselines on the largest Beijing dataset in
Table 5. The results show that SEENet can be comparably efficient
with other models and will not sacrifice much computation and
training time to trade for performance. It is worth noting that the
“inference (s/rank)” refers to the total time of ranking all nodes on
the graph for a specific location. When we use SEENet to discover
location relationships, inferring the ranking list for one location on
a large graph (over 30,000 nodes) takes only 0.25s on average.

A.3.3 Additional Parameters Analysis. As shown in Figure 7,
we first present the influence of urban gridding size in the global
spatial information maximum loss, which determines the spatial
granularity for global region pooling. With the growth of the grid-
ding size (e.g., the larger region area), the performance of our model
first increases and then tends to decrease. The reason is that SEENet
needs a suitable splitting scale for higher-level aggregation accord-
ing to different citywide application domains. While the larger
region grid can contain more informative spatial locations, addi-
tional redundancies may be introduced for relationship learning.
Moreover, we change the another important parameter of SE-SSL,
i.e., geographical sampling size in 𝑆𝑖 , to investigate the affect of
heuristic negative sampler in Figure 7(b). The performance im-
proves slightly at first and then keep relatively stable as the number
of negative samples grows, verifying that more grid-based negative
samples can enhance the global spatial self-supervised learning.
Finally, Figure 7(c) presents the effect of the size of distance-space
bins 𝑁𝑏 . We can observe that our model can stably perform well
with changing distance bins due to the adaptive ability to learn
spatial distances in SEENet.
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