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ABSTRACT
We propose a neuralized undirected graphical model called Neural-
Hidden-CRF to solve the weakly-supervised sequence labeling prob-
lem. Under the umbrella of probabilistic undirected graph theory,
the proposed Neural-Hidden-CRF embedded with a hidden CRF
layer models the variables of word sequence, latent ground truth
sequence, and weak label sequence with the global perspective that
undirected graphical models particularly enjoy. In Neural-Hidden-
CRF, we can capitalize on the powerful language model BERT or
other deep models to provide rich contextual semantic knowledge
to the latent ground truth sequence, and use the hidden CRF layer
to capture the internal label dependencies. Neural-Hidden-CRF
is conceptually simple and empirically powerful. It obtains new
state-of-the-art results on one crowdsourcing benchmark and three
weak-supervision benchmarks, including outperforming the recent
advanced model CHMM by 2.80 F1 points and 2.23 F1 points in
average generalization and inference performance, respectively.
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• Mathematics of computing → Probabilistic algorithms; Markov
networks; • Computing methodologies → Information extrac-
tion; Natural language processing.
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1 INTRODUCTION
Deep learning has witnessed the insatiable appetite for humongous
labeled training data. This appetite for data motivated several lines
of work, such as active learning [23], semi-supervised learning [27],
transfer learning [42], and more recently,weak supervision (WS) [44,
45], which is of interest in this paper.

As a time/cost-efficient and easy-to-promote alternative to gold
expert annotation, WS provides practitioners with multiple hetero-
geneous weak supervision sources, such as crowdsourcing annotators
from the Internet, user-defined programs encoded external knowl-
edge bases, patterns/rules, or pre-trained classifiers, etc [28, 44, 45].
As the price of good accessibility and as the name “weak super-
vision” implies, these various weak sources often exhibit varying
error rates, leading to the generation of conflicting and noisy labels
in many instances.

WS has been applied to various tasks, including the fundamental
deep language understanding task—sequence labeling [22], whose
importance has been well recognized in the natural language pro-
cessing community. In this paper, we focus on the problem of se-
quence learning in the context of multiple heterogeneous weak
supervision sources, which can be abbreviated as weakly-supervised
sequence labeling (WSSL). It has been extensively studied as another
main research branch in the whole WS community in addition to
normal independent classification tasks [44, 45], because of the im-
portance of the sequence labeling problem itself and the challenges
associated with the need to consider the internal dependencies
among sequence labels when solving WSSL.

To address the WSSL problem, existing representative methods
fall into three categories in intrinsic methodology:

• The HMM-based graphical models [20, 21, 26, 36, 39] lever-
age the hidden Markov model (HMM) [1] to model the
generation process of latent truth label sequence and ob-
served weak label sequence, and then apply the expecta-
tion maximization (EM) algorithm [25] to infer truth labels.
(Then, these inferred labels, in turn, can be used to train
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a final sequence labeler.) Though principled, these models
fall short in leveraging token semantics and context infor-
mation [18], as they either model input tokens as one-hot
observations [26, 39] or do not model them at all [20, 21, 36].

• The “source-specific perturbation” deep learning models [17,
26, 46], train multiple weak source-specific deep models, ob-
tained by inserting the source-specific perturbation parame-
ters to the unique shared deep model parameters, and perform
test using the assumed optimal classifier obtained by the
shared deep model straightforwardly or a certain combina-
tion of the source-specific deepmodels. With less principle, it
is not clear how interpretable they are in terms of mechanism
design.

• The recently proposed neuralized HMM-based graphical
models [18, 19] construct HMM-based directed graphical
models in which the dependencies among variables of word
sequence, latent ground truth sequences and weak labels
are sophisticatedly modeled, and rich contextual semantic
information is introduced using deep learning techniques
(e.g., the language model BERT [8]).

The neural HMM-based graphical models have the methodolog-
ical advantages of both the first two classes of approaches—i.e.,
the principled modeling of graphical models to model variable de-
pendencies and the rich contextual knowledge that comes from
using deep learning—and have achieved relatively most satisfactory
performance empirically in the recent WS benchmark [45]. How-
ever, these methods internally split all the variables of interest into
multiple local regions and model them separately, and separately
model the conditional probabilities of the ground truth at each time
step (𝑝 (𝑡𝑙 | 𝑡𝑙−1, x)) in the truth sequence. Essentially, this per-state
normalization approach [16] (coming from the per-step modeling)
is the same as that of the MEMM model [24], directly making them
suffer from the well-known thorny label bias problem [16] that
is often mentioned in sequence labeling problems [38, 40, 41]. In
short, this approach of using the local optimization perspective
(coming from repeatedly considering patterns for the scale of a step
instead of holistically considering the entire sequence) causes some
useful information to be erased [12] and leads to some bias. In fact,
mainly because of this reason, the canonical conditional random
field (CRF) [16] was deliberately proposed by scholars in order to
solve the sequence labeling problem with a globalized perspective.

In this paper, we move one step further and explore:when solving
the WSSL problem, how can we capitalize on the graphical model with
principled modeling of variable dependencies and the advanced deep
learning model that can bring rich contextual knowledge, without in-
troducing the label bias problem, in a unified model? To address this
problem, we introduce Neural-Hidden-CRF, a neuralized graphical
model embedded with a hidden CRF layer. Neural-Hidden-CRF is
built on undirected graph theory andmodels three sets of variables—
namely, word sequence, latent ground truth sequence, and weak
label sequence—with a globalized perspective like CRFs instead
of the HMM-based models always considering local knowledge.
Specifically, in Neural-Hidden-CRF, we use deep learning models
(like the language model BERT) to flexibly transfer rich contex-
tual semantic knowledge to the latent truth sequence, and use the
embedded hidden CRF layer to capture the dependencies among

the truth sequences, and use the weak source transition matrices
to model the dependencies between the truth labels and the weak
labels. By doing so, our model benefits both from the expressiveness
and reasonableness of graphical models for capturing sophisticated
dependencies among variables and from the effectiveness of the
deep learning models for obtaining contextual semantic knowledge,
while avoiding the label bias problem caused by the local perspec-
tive. To the best of our knowledge, this is the first work to apply a
neuralized undirected graphical model to solve the WSSL problem.
We conduct extensive evaluations of the proposed Neural-Hidden-
CRF on one crowdsourcing benchmark and three WS benchmarks,
showing that Neural-Hidden-CRF is a robust weakly-supervised
sequence labeler and outperforms the state-of-the-art. 1

1.1 Related Work
WSSL Learning Paradigms. To address the WSSL problem, two
learning paradigms exist [45]: (1) Two-stage paradigm: Researchers
have developed label models [20, 21, 26, 36, 39] (also known as truth
inference models [47]) to aggregate noisy weak labels for each in-
stance, accomplished with an follow-up end model (i.e., classifier)
learning process using the aggregated labels; (2) Joint paradigm:
Later researchers also explored learning the classifier of interest
directly from weak supervision labels through ad hoc joint mod-
els in an end-to-end manner. As presented above, we categorize
representative methods from the intrinsic methodological perspec-
tive, where each method mentioned in their original work is either
emphasized for its truth inference capability [20, 21, 36, 39] or
generalization performance [17] or, better yet, both [26, 46].

Other WSSL Works. All WSSL methods can be divided into
probabilistic graphical model approach, deep learning model ap-
proach, and neuralized graphical model approach. (1) In probabilis-
tic graphical model approach (and in addition to the HMM-based
models [20, 21, 26, 36, 39]), Rodrigues et al. [32] in early 2014 used
a partially directed graph containing a CRF for modeling to solve
the truth inference from crowdsourcing labels; (2) In deep learning
model approach (and in addition to the “source-specific perturba-
tion” methods [17, 26, 46]), other methods [17, 33–35] are either
based on the end-to-end deep neural architecture [33], or the cus-
tomized optimization objective along with coordinate ascent opti-
mization technology [34, 35], or the iterative solving framework
similar to expectation–maximization algorithm [4]. However, all
these methods do not have the advantages of the recently proposed
neuralized HMM-based graphical models [18, 19] and our Neural-
Hidden-CRF in principled modeling for variants of interest and
in harnessing the context information that provided by advanced
deep learning models. Additionally, it is worth mentioning the pres-
ence of numerous established WS methods that address the normal
independent classification scenario [3, 5, 43–45].

2 NEURAL-HIDDEN-CRF
2.1 Problem Formulation and Preliminaries

Problem Formulation of WSSL. We are given i.i.d. training data
D = {x(𝑖 ) , y(𝑖 ) }𝐼

𝑖=1, where x(𝑖 ) = {𝑥 (𝑖 )
𝑙

}𝐿
𝑙=1 ∈ X is an observed

word sequencewith𝐿-length tokens, y(𝑖 ) = {𝑦 (𝑖, 𝑗 )
𝑙

} 𝑗∈J (𝑖 ) ,𝑙∈ (1,2,...,𝐿)

1The code is available at: https://github.com/junchenzhi/Neural-Hidden-CRF.

https://github.com/junchenzhi/Neural-Hidden-CRF
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Figure 1: Probabilistic graphical representation of Neural-Hidden-CRF.

are the noisy weak labels attached to 𝑖th sentence, and J (𝑖 ) repre-
sents the set of weak sources that labeled the 𝑖𝑡ℎ sentence among
all 𝐽 sources. For each sentence x(𝑖 ) , there is a latent ground truth
sequence t(𝑖 ) = {𝑡 (𝑖 )

𝑙
}𝐿
𝑙=1 ∈ T unobserved to us; 𝑡 (𝑖 )

𝑙
∈ {1, 2, . . . , 𝐾},

where 𝐾 denotes number of categories. (In addition, we use 𝑦 (𝑖, 𝑗 )
𝑙

=

0 to denote that source 𝑗𝑡ℎ has not annotated sentence x(𝑖 ) .) Our
goal is to learn from the weak supervision data D = {x(𝑖 ) , y(𝑖 ) }𝐼

𝑖=1
to obtain a sequence labeler 𝑓 : X ↦→ T with strong generalization.

Preliminaries on Undirected Graphical Models. Here we give the
most fundamental overview of the underlying theory (as an optional
reading part). (1) The set of nodes in an undirected graph, where
edges connect any two nodes, is denoted as a cluster; if a cluster
cannot be added to any node to make it a larger cluster, it is denoted
as a maximum cluster [15]. (2) Under the undirected graphical
model theory, the probability distribution over all nodes is factored
as the normalized product of potential functions of all maximum
clusters [15]:

𝑝 (𝑋 ) = 1
𝑍

∏
𝑐 𝜙𝑐 (𝑋𝑐 )

𝑍 =
∑
𝑋

∏
𝑐 𝜙𝑐 (𝑋𝑐 ) ,

(1)

where 𝑋𝑐 is the set of nodes in a maximum cluster 𝑐 , 𝜙𝑐 (·) is an
arbitrary non-negative real-valued function, called the potential
function (acting as a scoring role), and 𝑍 is the normalization factor.

2.2 Model
We first formally introduce our model Neural-Hidden-CRF in Sec-
tions 2.2.1- 2.2.3, and briefly explain Neural-Hidden-CRF from an-
other simpler vision in Section 2.2.4. The graphical representation
of Neural-Hidden-CRF is shown in Figure 1. Note that in Figure 1
and the presentation (except for the derivation in the Appendix A.1)
that follows, we tacitly assume that each instance owns annotations
from all weak supervision sources.

2.2.1 Model. In order to present in a more understandable way, we
first introduce the base version of the model Neural-Hidden-CRF
and then introduce the process of its neuralization in Section 2.2.3
to obtain the eventual neuralized version, i.e., the model we refer to
by default. Previously, the CRF [16] was upgraded to its neuralized
version (e.g., BiLSTM-CRF [13] or BERT-CRF [45]) by the same
neuralization process.

Similar to the original CRF theory [16] and corresponding to
Figure 1, we define the probability of weak label sequence y(𝑖 )

along with ground truth sequence t(𝑖 ) given observation sequence
x(𝑖 ) to be a normalized product of three kinds of pseudo-potential
function2 (which can undergo some simple adaptions to form the
strictly potential functions, as mentioned in Seciton 2.1), i.e.,

exp

(∑︁
𝑎

𝜆𝑎state𝑎 (𝑡 (𝑖 )𝑙 , x(𝑖 ) , 𝑙)
)
, (2)

exp

(∑︁
𝑏

𝜇𝑏 transition𝑏 (𝑡
(𝑖 )
𝑙−1, 𝑡

(𝑖 )
𝑙
, 𝑙)

)
, (3)

exp ©«
∑︁
𝑐,𝑗

𝜂𝑐,𝑗 source𝑐,𝑗 (𝑦 (𝑖, 𝑗 )𝑙
, 𝑡

(𝑖 )
𝑙
, 𝑙)ª®¬ , (4)

where 𝑙 ∈ (1, 2, . . . , 𝐿) denotes the time step. For now, it is sufficient
to note that: (1) Within these pseudo-potential functions, each of
the feature functions state𝑎 (·), transition𝑏 (·), source𝑐,𝑗 (·)—aiming
at extracting features—can be the pre-defined indicator function
that takes the value 1 when the internal declaration is satisfied, and
0 otherwise; the corresponding weights 𝜆𝑎, 𝜇𝑏 , 𝜂𝑐,𝑗 ∈ (−∞, +∞)
are model’s parameters to be estimated; (2) These exponential
pseudo-potential functions play the role of scoring (for a specific
instantiated value of x(𝑖 ) , t(𝑖 ) , y(𝑖 ) on every time step) and will be
non-negative. In other words, the internal feature functions along
with their weights play the role of scoring; (3) Intuitively, the three
types of feature functions, state𝑎 (·), transition𝑏 (·), source𝑐,𝑗 (·)—
corresponding to purple lines, blue lines, and green lines in Fig-
ure 1—act between the token sequence x(𝑖 ) and the truth t(𝑖 ) , be-
tween the interior of the truth sequence t(𝑖 ) , and between the truth
t(𝑖 ) and the weak labels y(𝑖 ) , respectively. Specifically, we will walk
through more details about features functions in Section 2.2.2.

For simplicity, we denote the above three feature functions and
the corresponding weights by the general notations:

𝑓𝑤 (y(𝑖 )
𝑙
, 𝑡

(𝑖 )
𝑙−1, 𝑡

(𝑖 )
𝑙
, x(𝑖 ) , 𝑙) =

state𝑎 (𝑡 (𝑖 )𝑙 , x(𝑖 ) , 𝑙) if𝑤 = 1, .., 𝐴
transition𝑏 (𝑡

(𝑖 )
𝑙−1, 𝑡

(𝑖 )
𝑙
, 𝑙) if𝑤 = 𝐴 + 1, .., 𝐴 + 𝐵

source𝑐,𝑗 (𝑦 (𝑖, 𝑗 )𝑙
, 𝑡

(𝑖 )
𝑙
, 𝑙) if𝑤 = 𝐴 + 𝐵 + 1, .., 𝐴 + 𝐵 + ∑

𝑗 𝐶 𝑗 ,

(5)

2Note that for the sake of clarity, here we do not start with the construction of our
potential functions in the strict sense, as mentioned in Section 2.1. Instead, we create
and define the “pseudo-potential function”, which is similar to the strict potential
function, but its role is not equivalent to that of a strictly defined one.
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along with

𝜃𝑤 =


𝜆𝑎 if𝑤 = 1, .., 𝐴
𝜇𝑏 if𝑤 = 𝐴 + 1, ..., 𝐴 + 𝐵
𝜂𝑐,𝑗 if𝑤 = 𝐴 + 𝐵 + 1, ..., 𝐴 + 𝐵 + ∑

𝑗 𝐶 𝑗 ,

(6)

where 𝐴, 𝐵, and
∑
𝑗 𝐶 𝑗 denote the specific number of a certain type

of feature function, respectively.
Thus, our conditional model can be expressed as:

𝑝 (y(𝑖 ) , t(𝑖 ) | x(𝑖 ) ;Θ)

=
1

𝒁 (x(𝑖 ) ;Θ)
exp

(∑︁
𝑙

∑︁
𝑤

𝜃𝑤 · 𝑓𝑤 (y(𝑖 )
𝑙
, 𝑡

(𝑖 )
𝑙−1, 𝑡

(𝑖 )
𝑙
, x(𝑖 ) , 𝑙)

)
,

(7)

where 𝒁 (x(𝑖 ) ;Θ) is the instance-specific normalization factor (also
called partition function in the CRF [16]) defined as:

𝒁 (x(𝑖 ) ;Θ) =
∑︁
y(𝑖 )

∑︁
t(𝑖 )

exp

(∑︁
𝑙

∑︁
𝑤

𝜃𝑤 · 𝑓𝑤 (y(𝑖 )
𝑙
, 𝑡

(𝑖 )
𝑙−1, 𝑡

(𝑖 )
𝑙
, x(𝑖 ) , 𝑙)

)
.

(8)
More intuitively, if exp

(∑
𝑙

∑
𝑤 𝜃𝑤 · 𝑓𝑤 (y(𝑖 )

𝑙
, 𝑡

(𝑖 )
𝑙−1, 𝑡

(𝑖 )
𝑙
, x(𝑖 ) , 𝑙)

)
, rep-

resenting getting the score for a specific instantiation of (y(𝑖 ) , t(𝑖 ) ,
x(𝑖 ) ), abbreviated with Φ(y(𝑖 ) , t(𝑖 ) , x(𝑖 ) ), then Equation 7 can be
rewritten as:

𝑝 (y(𝑖 ) , t(𝑖 ) | x(𝑖 ) ;Θ) = Φ(y(𝑖 ) , t(𝑖 ) , x(𝑖 ) )∑
y(𝑖 )

∑
t(𝑖 ) Φ

(
y(𝑖 ) , t(𝑖 ) , x(𝑖 ) ) . (9)

Essentially, our model given by Equation 7 or Equation 9 is inher-
ently aligns with the underlying theory mentioned in Section 2.1.3

The Embodiment of the Global Optimization Perspective. We can
notice that the our pseudo-potential functions and feature functions
in Equations 2-3 do not have a direct probabilistic interpretation,
but instead represent constraints or scores on the configurations
of the random variable. As a result, the model expressed by Equa-
tion 7 yields a global normalized score for 𝑝 (y(𝑖 ) , t(𝑖 ) | x(𝑖 ) ;Θ).
This global normalization approach is unlike all HMMs, where
(y(𝑖 ) , t(𝑖 ) ) is split into multiple uni-directional dependent random
variables (i.e., a set consisting of many (𝑦 (𝑖, 𝑗 )

𝑙
, 𝑡

(𝑖 )
𝑙

)) based on some
strict independence assumptions and each conditional probability
distribution between random variables is normalized (e.g., local
normalization for per-step in Li et al. [18, 19]) to further obtain the
probability of the joint distribution (y(𝑖 ) , t(𝑖 ) ). Simply put, our ap-
proach models/trains holistically (the learned knowledge is global),
while the HMMs [18, 19] decompose the modeling into multiple
uni-directional dependent local regions and model the patterns
for the scale of a step (the learned knowledge is local). As a result
of the holistic undirected graphical modeling, our method can re-
sult in model parameters that are not constrained by probabilistic
forms, thus enjoying more flexible scoring. As for the label bias
problem, our model circumvents this by adopting the global normal-
ization rather than the local normalization in Li et al. [18, 19], just
as the CRF model does with respect to the MEMM model [12, 16].
Please refer to Hannun [12] for more information on the label bias
problem.

3Referring to more material on CRFs and our tutorial (https://github.com/
junchenzhi/Neural-Hidden-CRF) would help to enhance the comprehension of our
model.

2.2.2 Feature Functions. (1) For feature function state𝑎 (·), like the
original CRF theory, we can define the following example:

state𝑎 (𝑡 (𝑖 )𝑙 , x(𝑖 ) , 𝑙 ) =
{

1 if 𝑡 (𝑖 )
𝑙

= PERSON and 𝑥 (𝑖 )
𝑙

= John

0 otherwise.
(10)

If the corresponding weight 𝜆𝑎 is a relatively large value, when-
ever the internal declaration in state𝑎 (·) is true, it increases the
probability of the sequence t(𝑖 ) . Intuitively, the model would prefer
the tag PERSON for the word John. Formally, whenever the internal
declaration in state𝑎 (·) is satisfied, this feature function along with
its weights 𝜆𝑎 will contribute factor exp(𝜆𝑎 · 1) to the numerator
in Equation 7.

(2) For feature function transition𝑏 (·), we can define the follow-
ing example:

transition𝑏 (𝑡 (𝑖 )𝑙−1, 𝑡
(𝑖 )
𝑙
, 𝑙 ) =

{
1 if 𝑡 (𝑖 )

𝑙−1 = OTHER and 𝑡 (𝑖 )
𝑙

= PERSON

0 otherwise.
(11)

Also, whenever the internal declaration in transition𝑏 (·) is satis-
fied, this feature function along with its weights 𝜇𝑏 will contribute
factor exp(𝜇𝑏 · 1) to the numerator in Equation 7. Since the number
of categories is𝐾 , naturally we can define all𝐾2 feature functions of
transition𝑏 (·). The set of parameters concerning transition𝑏 (·) can
referred to as the CRF transition matrix (with size of 𝐾 × 𝐾 ), which
essentially captures the dependence within the label sequence.

(3) For feature function source𝑐,𝑗 (·), we can define the following
example:

source𝑐,𝑗 (𝑦 (𝑖,𝑗 )
𝑙

, 𝑡
(𝑖 )
𝑙
, 𝑙 ) =

{
1 if 𝑦 (𝑖,𝑗 )

𝑙
= PERSON and 𝑡 (𝑖 )

𝑙
= PERSON

0 otherwise.
(12)

Similar to feature function transition𝑏 (·), we can define all 𝐾2

feature functions of source𝑐,𝑗 (·) for weak source 𝑗𝑡ℎ . For the par-
ticular 𝑗 th source, weights {𝜂𝑐,𝑗 }𝐾

2

𝑐=1 naturally form a 𝐾 × 𝐾 matrix
that can represents the behavior pattern of this source. Thus, the
higher the ability of a source, the larger the value of the diagonal
elements of its matrix relative to the value of the non-diagonal
elements. Similar to the CRF transition matrix, we can refer to this
matrix as weak source transition matrix.

2.2.3 Eventually Neuralized Model. Here we introduce a deep se-
quence network, such as the language model BERT without the last
softmax layer, between sequence x and sequence t to complete the
model’s neuralization. Thus: (i) In the basic version of the model
described above, for the time step 𝑙 in the sentence x(𝑖 ) , the fea-
ture function state𝑎 (·) along with it’s weight 𝜆𝑎 provide the factor
exp(𝜆𝑎 · state𝑎 (𝑡 (𝑖 )𝑙 , x(𝑖 ) , 𝑙))—which represents the degree of sup-

port of the model for (x(𝑖 )
𝑙
, 𝑡

(𝑖 )
𝑙

)—for the numerator in Equation 7;
(ii) In the current neuralized model, we use

extract
𝑙,𝑡

(𝑖 )
𝑙

(𝜎𝐵𝐸𝑅𝑇 (x(𝑖 ) )), (13)

which also represents the degree of support of themodel for (x(𝑖 )
𝑙
, 𝑡

(𝑖 )
𝑙

),
as the factor provided to the numerator in Equation 7. In Equa-
tion 13, 𝜎𝐵𝐸𝑅𝑇 (·) is the output logits of BERT, and extract

𝑙,𝑡
(𝑖 )
𝑙

(·)

extracts the probability mass of the category 𝑡 (𝑖 )
𝑙

in the 𝑙-step ele-
ment of the input.

https://github.com/junchenzhi/Neural-Hidden-CRF
https://github.com/junchenzhi/Neural-Hidden-CRF
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2.2.4 Understanding Our Model from a Simpler Perspective. Our
Neural-Hidden-CRF, for weakly-supervised sequence labeling learn-
ing, shares similarities with CRFs (e.g., BERT-CRF), for supervised
sequence labeling learning. We show the graphical representation
of CRF vs. Neural-Hidden-CRF in Appendix A.2. (1) First, BERT-
CRF is a discriminative model concerning the label sequence t(𝑖 )

given the sentence x(𝑖 ) :

𝑝 (t(𝑖 ) | x(𝑖 ) ;Θ) = exp(scoreΘ (t(𝑖 ) , x(𝑖 ) ))∑
t(𝑖 ) exp(scoreΘ (t(𝑖 ) , x(𝑖 ) ))

, (14)

scoreΘ (t(𝑖 ) , x(𝑖 ) ) =
𝐿∑︁
𝑙=1

(Emission
𝑙,𝑡

(𝑖 )
𝑙

+ CrfTransition
𝑡
(𝑖 )
𝑙−1,𝑡

(𝑖 )
𝑙

),

(15)
where Emission ∈ R𝐿×𝐾 is the emission score matrix coming from
the logit outputs of BERT (Emission = 𝑓ΘBERT (x(𝑖 ) )), and CrfTran-
sition ∈ R𝐾×𝐾 is the CRF transition matrix. Model parameters are
Θ = {ΘBERT,CrfTransition}. (2) Similarly, our proposed Neural-
Hidden-CRF is also a exponential discriminative model, concerning
the weak label sequence y(𝑖 ) and label sequence t(𝑖 ) given the
sentence x(𝑖 ) :

𝑝 (y(𝑖 ) , t(𝑖 ) | x(𝑖 ) ;Θ) = exp(scoreΘ (y(𝑖 ) , t(𝑖 ) , x(𝑖 ) ))∑
y(𝑖 )

∑
t(𝑖 ) exp(scoreΘ (y(𝑖 ) , t(𝑖 ) , x(𝑖 ) ))

,

(16)

scoreΘ (y(𝑖 ) , t(𝑖 ) , x(𝑖 ) ) =
𝐿∑︁
𝑙=1

(Emission
𝑙,𝑡

(𝑖 )
𝑙

+ CrfTransition
𝑡
(𝑖 )
𝑙−1,𝑡

(𝑖 )
𝑙

+

WeskSourceTransition#1
𝑡
(𝑖 )
𝑙
,𝑦

(𝑖,1)
𝑙

+ ... +WeskSourceTransition#J
𝑡
(𝑖 )
𝑙
,𝑦

(𝑖,𝐽 )
𝑙

),
(17)

where Emission, CrfTransition have the same meaning as those
in model BERT-CRF above, and each WeakSourceTransition ∈
R𝐾×𝐾 refers to the weak source transition matrix introduced in
Section 2.2.2. Model parameters are Θ = {ΘBERT,CrfTransition,
WeakSourceTransition#1, ...,WeakSourceTransition#J}.

2.3 Learning
Given the weak supervision dataD = {x(𝑖 ) , y(𝑖 ) }𝐼

𝑖=1 and the model
constructed above, we estimate the parameters of the model by max-
imizing the conditional log-likelihood involving the latent ground
truth variable:

L(Θ) =
∑︁
𝑖

log 𝑝 (y(𝑖 ) | x(𝑖 ) ;Θ). (18)

Further,
log𝑝 (y(𝑖 ) | x(𝑖 ) ;Θ)

= log
∑︁
t(𝑖 )

𝑝 (y(𝑖 ) , t(𝑖 ) | x(𝑖 ) ;Θ)

= log
1

𝒁 (x(𝑖 ) ;Θ)

∑︁
t(𝑖 )

exp

(∑︁
𝑙

∑︁
𝑤

𝜃𝑤 · 𝑓𝑤 (y(𝑖 )
𝑙
, 𝑡

(𝑖 )
𝑙−1, 𝑡

(𝑖 )
𝑙
, x(𝑖 ) , 𝑙 )

)
,

(19)

where instance-specific normalization factor 𝒁 (x(𝑖 ) ;Θ) defined
before is

𝒁 (x(𝑖 ) ;Θ) =
∑︁
y(𝑖 )

∑︁
t(𝑖 )

exp

(∑︁
𝑙

∑︁
𝑤

𝜃𝑤 · 𝑓𝑤 (y(𝑖 )
𝑙
, 𝑡

(𝑖 )
𝑙−1, 𝑡

(𝑖 )
𝑙
, x(𝑖 ) , 𝑙)

)
.

(20)

Calculation of log
∑

t(𝑖 ) exp
(∑

𝑙

∑
𝑤 𝜃𝑤 · 𝑓𝑤 (y(𝑖 )

𝑙
, 𝑡

(𝑖 )
𝑙−1, 𝑡

(𝑖 )
𝑙
, x(𝑖 ) , 𝑙)

)
and log𝒁 (x(𝑖 ) ;Θ)—similar to the corresponding calculation of the
CRF—can be efficiently solved by dynamic programming algorithm.
The detail derivations are shown in Appendix A.1.

The above L(Θ) provides a unified objective function for opti-
mization in Neural-Hidden-CRF, which can be done with standard
stochastic optimization techniques, such as SGD [11] or Adam [14].

2.4 Inference
At the test phase, given a new test sequence x, we want to infer the
most probable ground truth sequence t∗ = argmaxt∗ 𝑝 (t∗ | x;Θ).
Here we can ignore the parameters of the weak source transition
matrix part and use the classifier (e.g., BERT-CRF or BiLSTM-CRF)
within Neural-Hidden-CRF to make the inference. Like the CRFs,
this inference problem can be solved efficiently with the canonical
Viterbi algorithm [9], which applies the dynamic programming.

2.5 Implementation Details
Parameter initialization. In ourmodel, similar to the initialization

in weak supervision model MAX-MIG [2], we can initialize the
parameters of the weak sources (i.e., the weak source transition
matrix, denoted as Π( 𝑗 ) ) as:

𝜋
( 𝑗 )
𝑚𝑛 = 𝜌 ·

∑𝐼
𝑖=1

∑𝐿
𝑙=1 I(𝑡

(𝑖 )
𝑙

=𝑚)I(𝑦 (𝑖, 𝑗 )
𝑙

= 𝑛)∑𝐼
𝑖=1

∑𝐿
𝑙=1 I(𝑡

(𝑖 )
𝑙

=𝑚)I(𝑦 (𝑖, 𝑗 )
𝑙

≠ 0)
, (21)

where 𝜌 is a hyper-parameter and 𝑡 (𝑖 )
𝑙

can be easily obtained by
majority voting method. In addition, for the parameters of the
classifier part (i.e., parameters in Neural-Hidden-CRF other than
the weak source transition matrices), we can easily pre-train the
classifier using the labels inferred by majority voting to obtain a
better parameter initialization for the model.

2.6 Others: Computational Complexity
The computational complexities of our method and some repre-
sentative methods are shown in Table 1, which contains the com-
plexities of (1) performing the probability calculation on likeli-
hood/objective during learning and (2) performing inference. In
summary, our method has the same complexities as many existing
methods.

Table 1: Computational Complexity. 𝐿/𝐾/𝐽 : sequence length/#
categories/# weak sources.

Method Probability calculation Inference

MV + BERT-CRF§ 𝑂 (𝐿𝐾2) 𝑂 (𝐿𝐾2)
LSTM-Crowd [26]∗, LSTM-Crowd-cat [26]∗

𝑂 (𝐽𝐿𝐾2) 𝑂 (𝐿𝐾2)CONNET [17]∗, Zhang et al. [46]∗

Ours∗ 𝑂 (𝐽𝐿𝐾2) 𝑂 (𝐿𝐾2)
1 §: When we use the labels inferred from a truth inference method and perform supervised training, e.g.,
MV+BERT-CRF, the complexities of MV+BERT-CRF are the same as CRF [6].

2 ∗: Our method has the same complexities as the “source-specific perturbation” methods LSTM-Crowd [26],
LSTM-Crowd-cat [26], CONNET [17] and Zhang et al. [46]. This is because: (i) For the probability
calculation complexity, since the “source-specific perturbation” methods require to learn 𝐽 source-specific
models, their complexities (𝑂 ( 𝐽 𝐿𝐾2 )) are 𝐽 times the corresponding complexity of CRF (𝑂 (𝐿𝐾2 )). Also,
when our method utilizes the dynamic programming algorithm to compute our Equation A.3 (the most
significant consumers of computing) in the Appendix A.1, its complexity is also𝑂 ( 𝐽 𝐿𝐾2 ) ; (ii) For the
inference complexity, each Viterbi decoding process required by these methods is the same as for the
CRF, and therefore the complexities are all𝑂 (𝐿𝐾2 ) .

3 Note that here we consider the complexities on one instance, and by the general convention, we do not
consider the complexity arising from the deep neural backbone, which has an equivalent effect for all
methods.
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3 EXPERIMENTS
3.1 Setup
3.1.1 Datasets. We evaluate the proposed Neural-Hidden-CRF on
four widely-used, publicly available WS datasets, including the
CoNLL-03 (MTurk) dataset [32, 33] contributed by crowdsourc-
ing workers from Amazon Mechanical Turk (MTurk)4, and three
datasets [45] (CoNLL-03 (WS), WikiGold (WS), MIT-Restaurant
(WS)) labeled from artificially pre-defined label functions. Table 2
shows the main statistics. Specifically: (1) CoNLL-03 (MTurk) [32,
33] is constructed on the well-established CoNLL-03 dataset [37]
through introducing additional crowdsourcing annotations. The
goal is to recognize named entities (person, location, organization,
miscellaneous) together with their different parts (begin, inside) in
the sentence. We shuffled and divided the original 3250 test samples
in Rodrigues et al. [32] into a validation set and a test set containing
2000/1250 samples, respectively; (2) CoNLL-03 (WS), WikiGold
(WS) and MIT-Restaurant (WS) are utilized and open-sourced
in the recently proposed WS benchmark called Wrench [33, 45].
These three datasets cover three different domains, and detailed
information about them is provided in Zhang et al. [45].

Table 2: Statistics of all datasets.

Dataset Domain #Data(train/val/test) #Entities #Source

CoNLL (MTurk) News 5,985/2,000/1,250 4 47
CoNLL (WS) News 14,041/3,250/3,453 4 16
WikiGold (WS) Web Text 1,355/169/170 4 16
MIT-Rest. (WS) Review 7,159/500/1,521 8 16

3.1.2 Compared Methods. (1) On CoNLL-03 (MTurk).We con-
sider the following methods: (i) MV-BiLSTM/MV-BiLSTM-CRF:
They are the two-stage learning baselines, which first estimate
the ground truth from weak labels by MV (Majority Voting), and
then train the LSTM/LSTM-CRF; (ii) CL (VW), CL (VW+B) and
CL (MW): They are three variants of the representative WSSL
method Crowd-Layer [33], where “VW”, “VW+B” and “MW” re-
fer to three different ways of parameterizing weak source relia-
bility; (iii) LSTM-Crowd [26], LSTM-Crowd-cat [26], Zhang et al.
[46], and CONNET [17]: These four methods, which apply the
“source-specific perturbation” mentioned in Section 1, dominate
the deep learning-based WSSL methods and show the competitive
results [17]; (iv) OptSLA [34] and AggSLC [35]: They both follow
the approach of constructing an optimization objective containing
weak source weights, classifier parameters, latent ground truth,
and iteratively updating them using a coordinate ascent algorithm;
(v) CRF-MA [31]: This is a partial directed graphical model where
the ground truth sequence is also modeled as a latent variable and
each weak source’s behavior pattern is modeled by a specific scalar;
(vi) HMM-Crowd [26] and BSC-seq [39]: They belong to the HMM-
based graphical models mentioned in Section 1, where the latter
is a Bayesian version of the former; (vii) Finally, we consider Gold,
denoting the classifier (BiLSTM-CRF) trained in the ideal case when
true labels are known. (2) On CoNLL-03 (WS), WikiGold (WS)
andMIT-Restaurant (WS).We compared many methods by using

4https://www.mturk.com/

the results reported from benchmarkWrench [45]. Specifically, they
involves the advanced CONNET [17], CHMM [18], the HMM-based
graphical model called HMM [21], and the label models (WMV [45],
DS [7], DP [30], MeTal [29], FS [10]) for classification task with
certain adaptations.

3.1.3 Configurations. The hyper-parameter settings are shown
in Appendix A.3. (Also, note that some suggestions for setting
hyper-parameters are provided in Appendix A.4.) Further: (1) On
CoNLL-03 (MTurk). We applied the canonical BiLSTM-CRF [22]5
as the classifier backbone of our model and comparison methods.
(2) On CoNLL-03 (WS), WikiGold (WS) and MIT-Restaurant
(WS). Our experiments on these datasets build on the recent great
benchmark Wrench [45], where we adhered rigorously to their
various settings and used their open-source code as the founda-
tion for implementing our method. We used the more advanced
language model BERT of the two available choices (BiLSTM and
BERT) provided by Wrench as the backbone.

3.2 Results and Analysis
3.2.1 Main Results. Tables 3 and 4—concerning the CoNLL-03
(MTurk) dataset and the other three WS datasets, respectively—
show the prediction performance of all methods on the test data
and the inference performance on the training/test data, i.e., the
performance of inferring the latent ground truth.6 First,we find that
our model Neural-Hidden-CRF substantially outperforms all the com-
parison methods by a large margin on the most important average F1
metric on dataset CoNLL-03 (MTurk) and the other three datasets. The
more robust performance demonstrated by our Neural-Hidden-CRF
relative to the SOTA neuralized HMM-based CHMM [18] largely
showcases the effectiveness of our model in leveraging the global
optimization perspective offered by the undirected graphical model.
Further and more specifically, on the average F1 metric, Neural-
Hidden-CRF outperforms the recently proposed AggSLC [35] by
4.81 points on CoNLL-03 (MTurk), and exceeds the SOTA method
CHMM [18] by 2.80/2.23 points on the three WS datasets. It is
also worth noting that the comparison methods [17, 26, 35, 46] on
CoNLL-03 (MTurk) dataset, apply either the same backbone (i.e., the
GloVe 100-dimensional word embeddings along with BiLSMT-CRF
in Nguyen et al. [26]) as ours, or more advanced backbones (i.e.,
BERT-BiLSTM-CRF in Zhang et al. [46], Efficient ELMO along with
BiLSTM-CRF in Lan et al. [17], BERT in AggSLC [35]) than ours.

Compared with the inference metrics, we are more interested
in prediction metrics, because in general, our ultimate objective
revolves around developing a robust sequence labeler endowedwith
strong generalization. For the prediction metric, we find that our
Neural-Hidden-CRF outperforms all comparison methods across
all datasets, often with considerable margins. In terms of inference
performance, in addition to achieving the second-best result on
the MIT-Restaurant (WS) dataset, Neural-Hidden-CRF still often
maintains a significant lead on the remaining three datasets and
outperforms the second-best by 1.49/4.77/0.80 points.

5We used the publicly available implementation: https://github.com/ZubinGou/
NER-BiLSTM-CRF-PyTorch.

6It is worth noting that, unlike the metrics of “inference on train data” in Table 3
and consistent with the approach in the WS benchmark [45], we report in Table 4
the inference performance of all methods on the test data, where weak labels are also
available.

https://www.mturk.com/
https://github.com/ZubinGou/NER-BiLSTM-CRF-PyTorch
https://github.com/ZubinGou/NER-BiLSTM-CRF-PyTorch
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Table 3: Performance (%) on CoNLL-03 (MTurk) dataset. Results are averaged over 20 runs. The best results under the F1 metric
of most interest are marked in bold.

Prediction on test data§ Inference on train data∗

Paradigm Method Precision Recall F1 Precision Recall F1 Avg. F1

Two-stage WSSL MV + BiLSTM-CRF 87.19(±1.19) 65.00(±3.28) 74.41(±2.11) 86.27(±1.08) 66.06(±2.3) 74.79(±1.38) 74.60
MV + BiLSTM 82.21(±1.46) 61.30(±2.57) 70.20(±1.69) 80.62(±1.01) 61.82(±2.36) 69.96(±1.64) 70.08

One-stage WSSL

CL (VW) [33] 83.93(±0.83) 61.50(±2.07) 70.96(±1.46) 82.90(±0.71) 64.02(±1.76) 72.24(±1.29) 71.60
CL (VW+B) [33] 81.93(±1.57) 61.00(±2.89) 69.87(±1.62) 80.31(±1.38) 61.70(±2.65) 69.75(±1.73) 69.81
CL (MW) [33] 83.93(±0.89) 61.33(±1.65) 70.86(±1.65) 82.24(±0.55) 62.91(±1.26) 71.27(±0.88) 71.07
LSTM-Crowd [26]† 82.38 62.10 70.82 - - - -
LSTM-Crowd-cat [26]† 79.61 62.87 70.26 - - - -
Zhang et al. [46]† 78.84 75.67 77.95 - - - -
CONNET [17]† 87.77(±0.25) 72.79(±0.04) 79.99(±0.08) - - - -
AggSLC [35]† 70.95 77.16 73.93 83.02 78.69 80.79 77.36
CRF-MA [32]† 49.4 85.6 62.6 86.0 65.6 74.4 68.5

Neural-Hidden-CRF 82.25(±1.05) 80.93(±1.05) 82.06(±0.63) 84.41(±1.04) 80.28(±0.74) 82.28(±0.49) 82.17

Truth Inference

MV - - - 79.12(±0.00) 58.50(±0.00) 67.27(±0.00) -
OptSLA [34]† - - - 79.42 77.59 78.49 -
HMM-Crowd [26]† - - - 77.40 72.29 74.76 -
BSC-seq [39]† - - - 80.3 74.8 77.4 -

- Gold (Upper Bound) 91.94(±0.66) 91.49(±0.87) 91.71(±0.75) 100 100 100 95.86
1 §/∗: Learn from weak supervision labels on the train data and predict on the test data/learn from weak supervision labels on the train data and infer the latent ground truth labels.
2 †: Results are reported from the original works. Note that there are some blanks in these results, as most of these methods reported one of two metrics in their original works.

Table 4: Performance (%) on WS benchmark datasets from Zhang et al. [45]. Our results are averaged over 20 runs. The best
results are marked in bold. Each table cell contains F1 score with standard deviation and (Precision, Recall) in the bracket.

Prediction on test data§ Inference on test data∗

Paradigm Method CoNLL-03 WikiGold MIT-Rest. CoNLL-03 WikiGold MIT-Rest. Avg.F1(P/I)

Two-stage WSSL

MV + BERT-CRF [45]† 66.63(±0.85) 62.09(±1.06) 42.95(±0.43) 60.36(±0.00) 52.24(±0.00) 48.71(±0.00) 57.22/53.77
(67.68/65.62) (61.89/62.29) (63.18/32.54) (59.06/61.72) (48.95/56.00) (74.25/36.24) -

WMV + BERT-CRF [45]† 64.38(±1.09) 59.96(±1.08) 42.62(±0.23) 60.26(±0.00) 52.87(±0.00) 48.19(±0.00) 55.65/53.77
(66.55/62.35) (60.33/59.73) (63.56/32.06) (59.03/61.54) (50.74/55.20) (73.73/35.80) -

DS + BERT-CRF [7]† 53.89(±1.42) 48.89(±1.59) 42.26(±0.78) 46.76(±0.00) 42.17(±0.00) 46.81(±0.00) 48.35/42.25
(54.10/53.68) (46.80/51.20) (62.65/31.89) (45.29/48.32) (40.05/44.53) (71.71/34.75) -

DP + BERT-CRF [30]† 65.48(±0.37) 61.09(±1.53) 42.27(±0.53) 62.43(±0.22) 54.81(±0.13) 47.92(±0.00) 56.28/55.05
(66.76/64.28) (61.07/61.12) (62.81/31.86) (61.62/63.26) (53.10/56.64) (73.24/35.61) -

MeTal + BERT-CRF [29]† 65.11(±0.69) 58.94(±3.22) 42.26(±0.49) 60.32(±0.08) 52.09(±0.23) 47.66(±0.00) 55.44/53.37
(66.87/63.45) (61.53/56.75) (62.82/31.84) (59.07/61.63) (50.31/54.03) (73.40/35.29) -

FS + BERT-CRF [10]† 67.34(±0.75) 66.44(±1.40) 13.80(±0.23) 62.49(±0.00) 58.29(±0.00) 13.86(±0.00) 49.19/44.88
(70.05/64.83) (72.86/61.17) (72.63/7.62) (63.25/61.76) (62.77/54.40) (84.20/7.55) -

HMM + BERT-CRF [21]† 67.49(±0.89) 63.31(±1.02) 39.51(±0.72) 62.18(±0.00) 56.36(±0.00) 42.65(±0.00) 56.77/53.73
(71.26/64.14) (70.95/57.33) (62.49/28.90) (66.42/58.45) (61.51/52.00) (71.44/30.40) -

CHMM + BERT-CRF [18]† 66.72(±0.41) 63.06(±1.91) 42.79(±0.22) 63.22(±0.26) 58.89(±0.97) 47.34(±0.57) 57.52/56.48
(67.17/66.27) (62.12/64.11) (63.19/32.35) (61.93/64.56) (55.71/62.45) (73.05/35.02) -

One-stage WSSL
CONNET [17]† 67.83(±0.62) 64.18(±1.71) 42.37(±0.72) - - - 58.13/-

(69.37/66.40) (72.17/57.92) (62.88/31.95) - - - -

Neural-Hidden-CRF 69.16(±0.92) 66.87(±1.79) 44.94(±0.99) 67.99(±0.58) 59.69(±0.68) 48.44(±0.86) 60.32/58.71
(73.13/65.64) (73.00/61.87) (58.27/36.66) (73.12/63.55) (71.23/51.44) (68.17/37.85) -

- Gold + BERT-CRF† 87.38(±0.34) 86.78(±0.84) 78.83(±0.44) 100.00(±0.00) 100.00(±0.00) 100.00(±0.00) 84.33/100.00
(87.70/87.06) (87.27/86.29) (79.14/78.53) (100.00/100.00) (100.00/100.00) (100.00/100.00) -

1 §/∗: Learn from weak supervision labels on the train data and predict on the test data/directly learn from weak supervision labels available on the test data and infer the ground truth labels.
2 †: Results are reported from Zhang et al. [45].



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zhijun Chen, et al.

Othe
rs

B-LO
C

B-PE
R

B-ORG
I-P

ER
I-O

RG
B-M

ISC
I-M

ISC I-LO
C

Others

B-LOC

B-PER

B-ORG

I-PER

I-ORG

B-MISC

I-MISC

I-LOC

1.00

0.36

0.51

0.50

0.00

0.55

0.39

0.62

0.69

0.00

0.64

0.00

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.49

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.46

0.00

0.00

0.03

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.45

0.00

0.07

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.56

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.31

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.31

Real

Othe
rs

B-LO
C

B-PE
R

B-ORG
I-P

ER
I-O

RG
B-M

ISC
I-M

ISC I-LO
C

Others

B-LOC

B-PER

B-ORG

I-PER

I-ORG

B-MISC

I-MISC

I-LOC

1.00

0.31

0.08

0.03

0.00

0.29

0.19

0.28

0.62

0.00

0.69

0.00

0.12

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.90

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.82

0.00

0.05

0.00

0.00

0.00

0.00

0.00

0.02

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.67

0.00

0.11

0.00

0.00

0.00

0.00

0.03

0.00

0.00

0.81

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.61

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.38

Estimated by our (1)

Othe
rs

B-LO
C

B-PE
R

B-ORG
I-P

ER
I-O

RG
B-M

ISC
I-M

ISC I-LO
C

Others

B-LOC

B-PER

B-ORG

I-PER

I-ORG

B-MISC

I-MISC

I-LOC

0.53

0.14

0.08

0.08

0.06

0.14

0.11

0.14

0.27

0.06

0.31

0.07

0.09

0.06

0.08

0.07

0.08

0.08

0.06

0.08

0.43

0.07

0.06

0.08

0.07

0.08

0.08

0.06

0.08

0.07

0.38

0.06

0.09

0.07

0.08

0.08

0.06

0.08

0.07

0.07

0.48

0.08

0.07

0.08

0.08

0.06

0.08

0.07

0.07

0.06

0.30

0.07

0.10

0.08

0.06

0.08

0.07

0.08

0.06

0.08

0.37

0.08

0.08

0.06

0.08

0.07

0.07

0.06

0.08

0.07

0.27

0.08

0.06

0.08

0.07

0.07

0.06

0.08

0.07

0.08

0.17

Estimated by our (2)

(a) Dataset ConNLL-03 (MTurk)

Real vs. Our (1) Real vs. Our (2)
0.0

0.2

0.4

0.6

0.8

C
or

re
la

tio
n 

co
ef

fic
ie

nt

0.886 0.847

(b) Dataset ConNLL-03 (MTurk)

Othe
rs

B-PE
R

I-P
ER

B-LO
C

I-LO
C

B-ORG
I-O

RG
B-M

ISC
I-M

ISC

Others

B-PER

I-PER

B-LOC

I-LOC

B-ORG

I-ORG

B-MISC

I-MISC

1.00

0.19

0.17

0.21

0.51

0.48

0.71

0.69

0.90

0.00

0.74

0.03

0.04

0.01

0.08

0.01

0.03

0.00

0.00

0.03

0.77

0.00

0.02

0.00

0.03

0.00

0.01

0.00

0.01

0.00

0.61

0.02

0.13

0.03

0.15

0.02

0.00

0.00

0.01

0.01

0.30

0.00

0.05

0.00

0.01

0.00

0.03

0.00

0.13

0.02

0.30

0.03

0.12

0.01

0.00

0.00

0.01

0.00

0.12

0.00

0.16

0.00

0.06

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Real

Othe
rs

B-PE
R

I-P
ER

B-LO
C

I-LO
C

B-ORG
I-O

RG
B-M

ISC
I-M

ISC

Others

B-PER

I-PER

B-LOC

I-LOC

B-ORG

I-ORG

B-MISC

I-MISC

1.00

0.17

0.25

0.33

0.60

0.51

0.78

0.78

1.00

0.00

0.83

0.00

0.00

0.00

0.06

0.00

0.00

0.00

0.00

0.00

0.75

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.55

0.00

0.05

0.00

0.17

0.00

0.00

0.00

0.00

0.00

0.30

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.12

0.00

0.37

0.02

0.04

0.00

0.00

0.00

0.00

0.00

0.10

0.00

0.20

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Estimated by our (1)

Othe
rs

B-PE
R

I-P
ER

B-LO
C

I-LO
C

B-ORG
I-O

RG
B-M

ISC
I-M

ISC

Others

B-PER

I-PER

B-LOC

I-LOC

B-ORG

I-ORG

B-MISC

I-MISC

0.54

0.10

0.12

0.16

0.27

0.25

0.36

0.40

0.48

0.06

0.40

0.07

0.08

0.08

0.09

0.07

0.07

0.06

0.06

0.07

0.36

0.08

0.08

0.08

0.07

0.07

0.06

0.06

0.07

0.07

0.28

0.08

0.09

0.07

0.10

0.06

0.06

0.07

0.07

0.08

0.15

0.08

0.07

0.07

0.06

0.06

0.07

0.07

0.10

0.08

0.18

0.08

0.08

0.06

0.06

0.07

0.07

0.08

0.10

0.08

0.11

0.07

0.06

0.06

0.07

0.07

0.08

0.08

0.08

0.07

0.07

0.06

0.06

0.07

0.07

0.08

0.08

0.08

0.07

0.07

0.06

Estimated by our (2)

(c) Dataset ConNLL-03 (WS)

Real vs. Our (1) Real vs. Our (2)
0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n 

co
ef

fic
ie

nt

0.992 0.963

(d) Dataset ConNLL-03 (WS)
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(f) Dataset WikiGold (WS)
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Figure 2: Comparison between the real weak source transition matrix and the two weak source transition matrices estimated by
Neural-Hidden-CRF on the four datasets. (i) Real: it denotes the probabilistic confusion matrix that we compute by using the
truth labels and weak labels in the dataset (in fact, we cannot obtain the real matrix under the theory of our model); (ii) Our (1):
it is obtained by setting all non-positive elements of the weak source transition matrix to 0 and normalizing the elements on
each row; (iii) Our (2): it is obtained by exponentiating all elements of the weak source transition matrix and normalizing the
elements on each row; (iv) In each sub-figure on correlation coefficient, we calculate the element-level values.

3.2.2 Weak Source Parameter Estimation and Interpretability. Ben-
efiting from our use of the interpretable weak source transition
matrices in the neuralized undirected graphical model rather than
hard-to-interpret neural network parameters to model weak source
behavior patterns, we can now conduct a post-hoc study for the
estimated matrices. Methodologically, for each specific weak super-
vision source, its parameters can form a matrix of size 𝐾 ×𝐾 . These
parameters possess interpretability on the behavioral pattern of the
source. That is, the matrix’s element at position (𝑖, 𝑗) denotes scor-
ing information for the case when the truth is 𝑖 and the weak label
is 𝑗 , where a larger value reflects a greater likelihood. Empirically,
Figure 2 shows the results for the respective first weak source on the
four datasets. These results substantiate the accuracy of estimating
the weak source transition matrices, and validate that the weak

source transition matrices we model do have the interpretability in
expressing the label transition patterns of weak sources (similar
to the CRF transition matrix in the CRF model [16]). Also, such
a result further demonstrates the effectiveness of Neural-Hidden-
CRF from another side. In additin, the parameters of the weak
source transition matrices estimated in Figure 2 are unrestricted
(i.e., each parameter takes the value space of (−∞, +∞)), without
satisfying probabilistic statutes (as in the HMMs). Also, our CRF
transition matrix is similar. For example, the elements in the first
row of our estimated CRF transition matrix on CoNLL-03 (MTurk)
are [0.24, 2.94, 2.57, 1.69,−3.18,−4.29, 1.11,−3.57,−3.09]. These il-
lustrate the resulting flexible scoring comes from the mechanism
of holistic undirected graphical modeling and holistic parameter
configuration.
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Table 5: Performance (F1, %) on ablation study. Results are averaged over 10 runs.

Method CoNLL-03(MTurk) (P/I)§ CoNLL-03(WS) (P/I/I)∗ WikiGold(WS) (P/I/I)∗ MIT-Restaurant(WS) (P/I/I)∗ Avg.(P/I/I)∗

W/o-weak-transition 74.41(±2.11)/74.79(±1.38) 66.63(±0.85)/68.61(±0.72)/65.43(±0.51) 62.09(±1.06)/60.82(±1.76)/52.32(±0.26) 42.95(±0.43)/45.00(±0.71)/48.01(±0.73) 61.52/62.31/55.25
W/o-crf-transition 80.79(±0.73)/80.96(±0.23) 68.73(±0.71)/70.35(±0.40)/66.78(±0.67) 63.89(±1.59)/62.26(±2.14)/58.67(±1.15) 40.94(±0.86)/42.72(±1.01)/40.24(±4.13) 63.59/64.08/55.23
Small-crf-transition 81.95(±0.70)/82.25(±0.39) 69.05(±0.63)/71.25(±0.76)/67.79(±1.13) 65.71(±1.68)/64.54(±1.12)/59.38(±1.20) 42.20(±1.77)/44.19(±1.22)/47.79(±0.62) 64.73/65.56/58.32
Small-emission 68.27(±4.93)/71.20(±4.40) 65.99(±1.11)/69.52(±1.53)/64.62(±2.05) 61.47(±4.16)/60.57(±2.90)/58.45(±2.78) 43.48(±1.84)/45.95(±0.64)/47.09(±1.71) 59.80/61.81/56.72
Other-classifier-init 82.43(±0.64)/82.18(±0.45) 69.01(±0.67)/71.66(±0.57)/67.07(±0.84) 63.70(±2.99)/63.15(±3.30)/53.61(±0.87) 42.81(±1.13)/43.95(±1.09)/27.61(±5.63) 64.49/65.24/49.43
Other-worker-init 55.15(±10.82)/54.51(±11.35) 66.53(±0.74)/68.96(±0.48)/65.42(±0.96) 62.40(±1.59)/60.68(±1.47)/53.12(±1.00) 41.57(±0.64)/45.04(±1.00)/39.96(±8.15) 56.41/57.30/52.83
Other-both-init 43.00(±13.07)/40.51(±11.60) 66.40(±1.18)/68.85(±0.97)/65.86(±1.04) 63.43(±1.26)/61.88(±1.35)/52.95(±0.81) 40.55(±0.88)/43.81(±0.89)/36.91(±8.85) 53.35/53.76/51.91
Freeze-source 79.75(±1.09)/80.63(±0.26) 67.58(±0.80)/70.29(±0.74)/67.46(±0.47) 65.70(±1.87)/65.34(±2.08)/58.03(±1.81) 44.54(±0.35)/46.19(±0.36)/47.04(±0.84) 64.39/65.61/57.51

Neural-Hidden-CRF 82.06(±0.63)/82.28(±0.49) 69.16(±0.92)/71.89(±0.55)/67.99(±0.58) 66.87(±1.79)/65.55(±1.33)/59.69(±0.68) 44.94(±0.99)/46.61(±0.91)/48.44(±0.86) 65.76/66.58/58.71
1 §: “I” denotes we learn from weak supervision labels on the train data and infer the latent ground truth labels.
2 ∗: “I/I” denote we learn from weak supervision labels on train/test data and infer the latent ground truth labels on the train/test data, respectively. Note that the latter three datasets are different from
dataset ConLL-03 (MTurk), because they also contain weak supervision labels on the test data.

3.2.3 Equipped with Other Backbones. The deep model in our
model assumes a backbone role as a feature extractor for sen-
tence sequences. Theoretically, a more powerful deep model would
be more conducive to extracting more useful contextual seman-
tic information and delivering more accurate prediction informa-
tion about the truth sequences, thus having more potential to
improve the final performance. Here we conducted a small-scale
study on partial datasets, where the obtained results align with the
above analysis. That is, for the prediction task on datasets CoNLL-
03 (WS) and WikiGold (WS), our Neural-Hidden-CRF yields sub-
optimal F1 performance relative to the original BERT-based one
when we apply the relatively weaker deep model BiLSTM (pro-
vided by the benchmarkWrench [45])—BiLSTM-based/BERT-based:
67.63(±1.08)/69.16(±0.92), 65.21(±1.45)/66.87(±1.79). (Settings of
Batch/Lr/Lr_weak/𝜌 : 64/0.005/0.0001/3.0, 32/0.001/0.0001/3.0.)

3.2.4 Ablation Study. Here we consider an extensive array of possi-
ble variants, involving the ablation of different components (variants
i-iv), the use of different parameter initialization (variants v-vii),
and the freezing of model parameters (variant viii). Specifically: (i)
W/o-weak-transition: We ablate the weak source transition matrix,
wherewe use the results inferred by theMV (Majority Voting) to rep-
resent the latent truth sequence and perform supervised learning,
so that the dependencies between the truth sequence t and the weak
label sequence y are not taken into account; (ii) W/o-crf-transition
and (iii) Small-crf-transition7: We ablate/deduce the CRF transition
matrix. W/o-crf-transition denotes we do not consider the CRF tran-
sition matrix at all during training and prediction/inference; Small-
crf-transition denotes we proceed normally during training as usual,
but use 0.5 times the value of the CRF transition matrix during pre-
diction/inference; (iv) Small-emission7: We deduce the emission
values, where we also proceed normally during training, but use
0.5 times the value of the emission values (e.g., the BERT’s outputs)
during prediction/inference; 8 (v) Other-clasifier-init: We perform
the possibly inadequate learning of the parameters of the classifier
part during initialization in an attempt to obtain a weaker initial-
ization (50 back-propagations on the CoNLL-03 (MTurk) dataset
and one epoch learning on the other three datasets); (vi) Other-
worker-init: We initialize the diagonal/non-diagonal elements of
the weak source transition matrix to 1/𝑐𝑙𝑎𝑠𝑠𝑒𝑠/0, respectively; (vii)

7Note that w.r.t. variants iii and iv, we investigate the performance of the variants
under more ratios in the Appendix A.5.

8Note that it is not feasible to completely ablate emission values in the prediction,
because we need to take sentence sequence x to predict truth sequence t.

Other-both-init: We use both of the parameter initialization ways
above; (viii) Freeze-source: We freeze the learning of the weak
source parameters in the training phase.

In Table 5, we see that: (i) The method shows substantial perfor-
mance degradation when either the weak source transition matrix
or CRF transition matrix are ablated, or emission values are attenu-
ated; these results directly indicate the indispensable role of all three
modules (i.e., the weak source transition matrix, the CRF transi-
tion matrix, and the emission value) and the most significant of
the weak source transition matrix; (ii) Further, smaller emission
values relative to a smaller CRF transition matrix produce a more
pronounced performance degradation, illustrating the more dra-
matic sensitivity for emission values of our method; (iii) On most
of the datasets, our initialization of the classifier part and the weak
source part is effective; a suitable parameter initialization allows
our model to achieve better performance; (iv) Further learning of
the weak source parameters is necessary for the learning process
of Neural-Hidden-CRF; (v) In addition, we find that the vairant
Other-classifier-init outperforms Neural-Hidden-CRF in prediction
on CoNLL-03 (MTurk). This is not surprising because we do not
perform detailed tuning of our method, and the seemingly weaker
parameter initialization happens to have stronger performance
when combined with other hyperparameters.

4 CONCLUSION
This paper presents Neural-Hidden-CRF, the first neuralized undi-
rected graphical model, for learning from weak-supervised se-
quence labels. Neural-Hidden-CRF embedded with a hidden CRF
layer models the variables of word sequence, latent ground truth se-
quence, and weak label sequence, where truth sequence is provided
with rich contextual semantic information by the deep learning
model. Our method, therefore, benefits both from the principled
modeling of graphical models and from contextual knowledge of
deep learning models, while avoiding the label bias problem caused
by the local optimization perspective. Our empirical evaluations
on multiple benchmarks demonstrate that Neural-Hidden-CRF sig-
nificantly improves state-of-the-art and provides a new solution to
weakly-supervised sequence labeling.
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A APPENDIX
A.1 Calculation of the Likelihood
First, we have the likelihood:

log𝑝 (y(𝑖 ) | x(𝑖 ) ;Θ)

= log
∑︁
t(𝑖 )
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1
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(A.1)

where we use Ψ(y(𝑖 ) , t(𝑖 ) , x(𝑖 ) ) to implement the abbreviation. We present the detail calculations of log
∑

t(𝑖 ) exp(Ψ(y(𝑖 ) , t(𝑖 ) , x(𝑖 ) )) and
log

∑
y(𝑖 )

∑
t(𝑖 ) exp(Ψ(y(𝑖 ) , t(𝑖 ) , x(𝑖 ) )) in the following.

A.1.1 Calculation of log
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used to express the logarithm of the cumulative sum of the scores after the exponential operation for each path that satisfies “the state of t(𝑖 )

at time step 𝑙 is 𝑘”; here the path is considered only from the beginning to the time step 𝑙 .
Then, we have:
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(A.2)

Thus, we transform the original objective of calculating log
∑

t(𝑖 ) exp(Ψ(y(𝑖 ) , t(𝑖 ) , x(𝑖 ) )) into the calculating the “log_sum_exp” (i.e., the
successive operations of exp(·), cumulative calculation and log(·)) of vector 𝜶 (𝑖 )

𝐿−1,:.
Now we use dynamic programming to calculate 𝜶 (𝑖 ) . The recursive calculation of 𝜶 (𝑖 ) is as follows:
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(A.3)

where𝑊
𝑘,y(𝑖 )

𝑙

=
∑
𝑗∈J (𝑖 ) 𝜋

( 𝑗 )
𝑘,𝑦

(𝑖,𝑗 )
𝑙

, and 𝐸 (𝑖 )
𝑘,𝑙

, 𝑇𝑘 ′,𝑘 ,𝑊𝑘,y(𝑖 )
𝑙

denote the emission score, the CRF transition score, and the weak source transition

score, which originate from the three kind of feature functions.
The boundary case of 𝜶 (𝑖 ) is:

𝜶 (𝑖 )
0,𝑘 =


0︸︷︷︸

obtained from log(1)

if 𝑘 = BEGIN

−10000︸  ︷︷  ︸
replace log(0) = −∞

otherwise. (A.4)
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A.1.2 Calculation of log
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Similar to the derivation in Equation A.2, we can do the following derivation for log
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The recursive calculation of 𝜷 (𝑖 ) is:
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(A.6)

where the meanings of 𝐸 (𝑖 )
𝑘,𝑙

, 𝑇𝑘 ′,𝑘 ,𝑊𝑘,y(𝑖 )
𝑙

are the same as those of the corresponding symbols in Equation A.3. Also, the boundary case is:

𝜷 (𝑖 )
0,𝑘 =


0︸︷︷︸

obtained from log(1)

if 𝑘 = BEGIN

−10000︸  ︷︷  ︸
replace log(0) = −∞

otherwise. (A.7)

Specifically, in Equation A.6, we can also use dynamic programming to calculate log
∑

y(𝑖 )
𝑙

exp(𝑊
𝑘,y(𝑖 )

𝑙

).

A.2 Probabilistic Graphical Representation
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Figure A.1: Probabilistic graphical representation of CRF (left) vs. Neural-Hidden-CRF (right).
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A.3 Experimental Configurations

Table A.1: Configurations on CoNLL-03 (MTurk).

Batch§ Lr∗ Lr_weak† 𝜌†

MV + BiLSTM-CRF 32 0.1 - -
MV + BiLSTM 1 0.01 - -
CL (VW) 32 0.1 - -
CL (VW-B) 128 0.001 - -
CL (MW) 32 0.1 - -
Neural-Hidden-CRF 64 0.1 0.0001 2.0
Gold + BiLSTM-CRF 1 0.01 - -
1 §: The search space of batch size is: (1, 32, 64, 128).
2 ∗: The search space of learning rate is: (0.1, 0.01, 0.001).
3 †: The search spaces for our specific hyper-parameters
are: Lr_weak: (0.001, 0.0001), 𝜌 : (2.0).

Table A.2: Configurations of Neural-Hidden-CRF on
CoNLL-03 (WS), WikiGold (WS) and MIT-Restaurant
(WS).

Batch§ Lr§ Lr_crf§ Lr_weak∗ 𝜌∗

Conll (P) 32 2e-5 0.001 0.001 2.0
Conll (I) 32 2e-5 0.01 0.001 2.0
Wikigold (P) 16 2e-5 0.005 0.001 2.0
Wikigold (I) 32 3e-5 0.001 0.001 2.0
Mit-Rest. (P) 32 2e-5 0.001 0.01 6.0
Mit-Rest. (I) 16 2e-5 0.01 0.2 5.0
1 §: The search spaces are consistent with benchmark [45].
2 ∗: The search spaces for our specific hyper-parameters on
Mit-Rest are: Lr_weak=(0.2,0.1,0.01), 𝜌=(5.0, 6.0). On other
datasets, our model more easily yields satisfactory results,
and we always set them (0.001, 2.0).

A.4 Suggestions for Setting Hyperparameters
When applying our Neural-Hidden-CRF to other datasets, in most cases, we recommend considering the following suggestions for setting
hyperparameters.

• For Batch (batch size): Our suggested finding space is {8, 16, 32, 64, ...}, and batch size should not be set to 1 (which would not be
conducive to the challenging multi-source weak supervision learning context);

• For Lr_weak (learning rate of weak source transition matrix): We suggest that Lr_weak be set equal to or less than the learning rate
of the CRF layer (i.e., Lr_crf);

• For 𝜌 (in Equation 21): Our suggested finding space is {2.0, 3.0, 4.0, 5.0, 6.0} for most cases;
• For the pre-train of the classifier part of the model (mentioned in Section 2.5): We suggest using better super-parameters (e.g., batch
size, learning rates, etc.) for pre-training to get a better parameter initialization.

A.5 Performance of More Variants
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Figure A.2: Performance of more variants for supplementary ablation study. Results are averaged over 20 runs.
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