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ABSTRACT
Ranking interfaces are everywhere in online platforms. There is

thus an ever growing interest in their Off-Policy Evaluation (OPE),

aiming towards an accurate performance evaluation of ranking

policies using logged data. A de-facto approach for OPE is Inverse
Propensity Scoring (IPS), which provides an unbiased and consistent

value estimate. However, it becomes extremely inaccurate in the

ranking setup due to its high variance under large action spaces. To

deal with this problem, previous studies assume either independent

or cascade user behavior, resulting in some ranking versions of

IPS. While these estimators are somewhat effective in reducing the

variance, all existing estimators apply a single universal assumption

to every user, causing excessive bias and variance. Therefore, this

work explores a far more general formulation where user behavior

is diverse and can vary depending on the user context.We show that

the resulting estimator, whichwe callAdaptive IPS (AIPS), can be un-
biased under any complex user behavior. Moreover, AIPS achieves

the minimum variance among all unbiased estimators based on IPS.

We further develop a procedure to identify the appropriate user

behavior model to minimize the mean squared error (MSE) of AIPS

in a data-driven fashion. Extensive experiments demonstrate that

the empirical accuracy improvement can be significant, enabling

effective OPE of ranking systems even under diverse user behavior.

CCS CONCEPTS
• Information systems→Retrieval models and ranking; Eval-
uation of retrieval results.
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1 INTRODUCTION
Ranking interfaces serve as a crucial component in many real-world

search and recommender systems, where rankings (as actions) are

often optimized through contextual bandit processes [8, 19, 24]. As

these ranking policies interact with the environment, they collect

logged data valuable for Off-Policy Evaluation (OPE) [27, 28]. The

goal of OPE is to accurately evaluate the performance of new poli-

cies using only the logged data without deploying them in the field,

providing a safe alternative to online A/B testing [11, 18].

A popular approach for OPE is Inverse Propensity Scoring (IPS) [25,
34], which provides an unbiased estimate of policy performance.

Although several estimators are developed on top of IPS in standard

OPE [35, 40], they can severely degrade in large action spaces [29].

In particular, IPS becomes vulnerable when applied to ranking poli-

cies where the number of actions grows exponentially [22, 24]. An

existing popular approach to deal with this variance issue is to

make some assumptions about user behavior and define the cor-

responding IPS estimators [19, 22, 24]. For instance, Independent
IPS (IIPS) [22] assumes that a user interacts with the items in a

ranking completely independently. In contrast, Reward interaction
IPS (RIPS) [24] assumes that a user interacts with the items se-

quentially from top to bottom, namely the cascade assumption [12].

These estimators provide some variance reduction, while remaining

unbiased when the corresponding assumption is satisfied.

Although this approach has been shown to improve IPS in some

ranking applications [19, 24], a critical limitation is that all existing

estimators model every user’s behavior based on a single, universal

assumption (such as independence and cascade). However, it is

widely acknowledged that real user behavior can be much more

diverse [23, 41, 43] and heterogeneous [42]. With such diverse user

behavior, the existing approach can suffer from significant bias and

variance. For instance, consider a scenario with two groups of users,

one following independent user behavior and the other following

a cascade model. In this situation, IIPS is no longer unbiased, and

RIPS is sub-optimal in terms of variance. An ideal strategy would

arguably be to apply IIPS and RIPS to each group adaptively.

We thus explore a much more general formulation assuming

that user behavior is sampled from a distribution conditional on

the user context to capture possibly diverse behavior. On top of our

general formulation, we propose a new estimator called Adaptive
IPS (AIPS), which applies different importance weighting schemes
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to different users based on their behavior, namely adaptive impor-
tance weighting. We show that AIPS is unbiased for virtually any

distribution of user behavior and that AIPS achieves the minimum

variance among all unbiased IPS estimators. We also analyze the

bias-variance tradeoff of AIPS in the case of unknown user be-

havior, which interestingly implies that the true behavior model

may not result in an optimal OPE. Thus, we develop a strategy to

optimize the behavior model from the logged data in a way that

minimizes the MSE of AIPS rather than merely trying to estimate

the true behavior model. Experiments on synthetic and real-world

data demonstrate that AIPS provides a significant gain in MSE over

existing methods particularly when the user behavior is diverse.

Our contributions can be summarized as follows.

• We propose a novel formulation and estimator for OPE of

ranking policies capturing diverse user behavior.

• We show that AIPS is unbiased for any distributions of user

behavior and that it achieves the minimum variance.

• We develop a non-parametric procedure to minimize the

MSE of AIPS through optimizing (rather than estimating)

the behavior model from the logged data.

• We empirically demonstrate that AIPS enables much more

accurate OPE particularly under diverse user behavior.

2 PRELIMINARIES
This section formulates OPE of ranking policies.

2.1 Off-Policy Evaluation of Ranking Policies
We use 𝒙 ∈ X ⊆ R𝑑 to denote a context vector (e.g., user demo-

graphics) and A to denote a finite set of discrete actions. Let then

𝒂 = (𝑎1, 𝑎2, . . . , 𝑎𝑘 , . . . , 𝑎𝐾 ) denote a ranking action vector of length
𝐾 (e.g., a ranked list of songs). We call a function 𝜋 : X → Δ(A𝐾 )
a factored policy. Given context 𝒙 , it chooses an action at each

position (𝑎𝑘 ) independently, where 𝜋 (𝒂 | 𝒙) =
∏𝐾
𝑘=1

𝜋 (𝑎𝑘 | 𝒙) is
the probability of choosing a specific ranking action 𝒂. In contrast,

we call 𝜋 : X → Δ(Π𝐾 (A)) a non-factored policy, where Π𝐾 (A)
is a set of 𝐾-permutation of A. Note that a factored policy may

choose the same action more than once in a ranking, whereas a non-
factored policy selects a ranking action without replacement (i.e.,

∀1 ≤ 𝑘 < 𝑙 ≤ 𝐾, 𝑎𝑘 ≠ 𝑎𝑙 ). In addition, let 𝒓 = (𝑟1, 𝑟2, . . . , 𝑟𝑘 , . . . , 𝑟𝐾 )
denote a reward vector with 𝑟𝑘 being a random reward observed at

the 𝑘-th position (e.g., clicks, conversions, dwell time).

In OPE of ranking policies, we are interested in estimating the

following policy value of evaluation policy 𝜋 as a measure of its

effectiveness [19, 24]:

𝑉 (𝜋) : = E𝑝 (𝒙 )𝜋 (𝒂 |𝒙 )

[
𝐾∑︁
𝑘=1

𝛼𝑘𝑞𝑘 (𝒙, 𝒂)
]

=

𝐾∑︁
𝑘=1

𝛼𝑘 E𝑝 (𝒙 )𝜋 (𝒂 |𝒙 ) [𝑞𝑘 (𝒙, 𝒂)]︸                       ︷︷                       ︸
𝑉𝑘 (𝜋 )

, (1)

where 𝑞𝑘 (𝒙, 𝒂) := E[𝑟𝑘 | 𝒙, 𝒂] is the position-wise expected reward

function given context 𝒙 and ranking action 𝒂.𝑉𝑘 (𝜋) is the position-
wise policy value and 𝛼𝑘 is a non-negative weight assigned to

position 𝑘 . Our definition of the policy value in Eq. (1) captures a

wide variety of information retrieval metrics. For example, when

𝛼𝑘 := 1/log
2
(𝑘 + 1), 𝑉 (𝜋) becomes identical to the discounted

cumulative gain (DCG) [14] under policy 𝜋 . Throughout this paper,

we focus on estimating the position-wise policy value 𝑉𝑘 (·), as
estimating 𝑉 (·) is straightforward given an estimate of 𝑉𝑘 (·).

For performing an OPE, we can leverage logged bandit data

collected under the logging policy 𝜋0, i.e., D := {(𝒙𝑖 , 𝒂𝑖 , 𝒓𝑖 )}𝑛𝑖=1
where 𝒂𝑖 is a vector of discrete variables that indicate which ranking
action is chosen by 𝜋0 for individual 𝑖 . 𝒙𝑖 and 𝒓𝑖 denote the context
and reward vectors observed for 𝑖 . To sum, a logged bandit dataset

is generated in the following process:

{(𝒙𝑖 , 𝒂𝑖 , 𝒓𝑖 )}𝑛𝑖=1 ∼
𝑛∏
𝑖=1

𝑝 (𝒙𝑖 )𝜋0 (𝒂𝑖 | 𝒙𝑖 )𝑝 (𝒓𝑖 | 𝒙𝑖 , 𝒂𝑖 ) .

Note that we assume that the logging policy provides full support

over the ranking action space. The accuracy of an estimator 𝑉 is

measured by its MSE, i.e., MSE(𝑉 ) := ED [(𝑉 (𝜋) − 𝑉 (𝜋 ;D))2],
which can be decomposed into squared bias and variance of 𝑉 .

2.2 Existing Estimators
Here, we summarize some notable existing estimators for OPE in

the ranking setup and their statistical properties.

Inverse Propensity Scoring. IPS uses the ranking-wise importance

weight to provide an unbiased and consistent estimate as follows.

𝑉 IPS

𝑘
(𝜋 ;D) := 1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝒂𝑖 | 𝒙𝑖 )
𝜋0 (𝒂𝑖 | 𝒙𝑖 )

𝑟𝑖,𝑘 .

IPS does not impose any particular user behavior model, and thus it

is generally unbiased and consistent under standard identification

assumptions. However, it suffers from extremely high variance

when the action space (|A𝐾 | or |Π𝐾 (A)|) is large [29], which is

particularly problematic in the ranking setup [19, 22, 24, 36].

Independent IPS. IIPS assumes that a user interacts with the ac-

tions in a ranking independently, which is known as the inde-

pendence assumption or item-position model [22]. This assump-

tion posits that the reward observed at each position depends

solely on the action chosen at that particular position, not on

the other actions presented in the same ranking. Under this in-

dependence assumption, it is sufficient to condition only on 𝑎𝑘 to

characterize the corresponding position-wise expected reward, i.e.,

𝑞𝑘 (𝒙, 𝒂) = E[𝑟𝑘 | 𝒙, 𝑎𝑘 ]. Based on this assumption, IIPS defines the

position-wise importance weight as follows.

𝑉 IIPS

𝑘
(𝜋 ;D) := 1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝑎𝑖,𝑘 | 𝒙𝑖 )
𝜋0 (𝑎𝑖,𝑘 | 𝒙𝑖 )

𝑟𝑖,𝑘 .

where 𝜋 (𝑎𝑘 | 𝒙) :=
∑
𝒂′ 𝜋 (𝒂′ | 𝒙) I{𝑎′𝑘 = 𝑎𝑘 } is the marginal action

choice probability at position 𝑘 under policy 𝜋 . IIPS substantially

reduces the variance of IPS while remaining unbiased under the

independence assumption. However, since the independence as-

sumption is overly restrictive to describe real user behavior, IIPS

often suffers from severe bias [19, 24].

Reward interaction IPS. RIPS leverages a weaker assumption

called the cascade assumption, which assumes that a user interacts

with the actions in a ranking sequentially from top to bottom [12].

Hence, the reward observed at each position (𝑟𝑘 ) is influenced only

by the actions observed at higher positions (𝒂
1:𝑘 ). Since the cascade
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Table 1: Correspondence among user behavior assumptions,
estimators, and relevant set of actions.

assumption estimator relevant actions Φ𝑘 (𝒂, 𝒄)

no assumption IPS 𝒂
cascade RIPS 𝒂

1:𝑘

independence IIPS 𝑎𝑘

adaptive AIPS (ours) Φ𝑘 (𝒂, 𝒄), 𝒄 ∼ 𝑝 (·|𝒙)

model assumes that 𝑟𝑘 is independent of lower positions, it is suf-

ficient to condition on 𝒂
1:𝑘 to identify the position-wise expected

reward, i.e., 𝑞𝑘 (𝒙, 𝒂) = E[𝑟𝑘 | 𝒙, 𝒂1:𝑘 ]. Based on this assumption,

RIPS applies the top-k importance weight as

𝑉 RIPS

𝑘
(𝜋 ;D) := 1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝒂𝑖,1:𝑘 | 𝒙𝑖 )
𝜋0 (𝒂𝑖,1:𝑘 | 𝒙𝑖 )

𝑟𝑖,𝑘 .

where 𝒂𝑖,𝑘1:𝑘2 := (𝑎𝑖,𝑘1 , 𝑎𝑖,𝑘1+1, . . . , 𝑎𝑖,𝑘2 ). RIPS is unbiased under

the cascade assumption, while reducing the variance of IPS [24].

However, when the cascade assumption does not hold true, it may

produce a large bias. Furthermore, RIPS can suffer from high vari-

ance when the ranking size is large [19].

Limitation of the existing estimators. We have so far seen

that existing estimators have tried to control the bias-variance trade-

off by leveraging some assumptions on user behavior – a stronger

assumption reduces the variance more but introduces a larger bias.

Although this approach has shown some success, a critical limita-

tion is that existing estimators apply a single universal assumption

to the entire population, while real user behavior can often be

much more diverse and heterogeneous [23, 41–43]. In such real-

istic scenarios, imposing a single assumption can result in highly

sub-optimal estimations. For example, a strong assumption (e.g.,

independence) produces a large bias in a subpopulation following

more complex behavior models, while a weak assumption (e.g.,

cascade) produces unnecessary variance in another subpopulation

following simpler behavior models. This limitation motivates the

development of a new estimator that can better exploit the po-

tentially diverse and heterogeneous user behavior to substantially

improve OPE of ranking policies.

3 THE ADAPTIVE IPS ESTIMATOR
Our key idea in deriving a new estimator is to take into account

various user behaviors by refining the typical formulation of OPE

of ranking systems. More specifically, here we introduce an action-
reward interaction matrix denoted by 𝒄 ∈ {0, 1}𝐾×𝐾 whose (𝑘, 𝑙)
element (𝑐𝑘,𝑙 ) indicates whether 𝑟𝑘 is affected by 𝑎𝑙 . Given 𝒄 , the
position-wise expected reward can be expressed as follows.

𝑞𝑘 (𝒙, 𝒂, 𝒄) = E[𝑟𝑘 | 𝒙,Φ𝑘 (𝒂, 𝒄)],

where Φ𝑘 (𝒂, 𝒄) := {𝑎𝑙 ∈ A | 𝑐𝑘,𝑙 = 1} is a set of relevant or suffi-
cient actions needed to identify the expected reward function at the

𝑘-th position. The elements of the matrix are considered to be sam-

pled from some unknown probability distribution 𝑝 (𝒄 | 𝒙), which is

conditioned on the context 𝒙 to capture potentially diverse and het-

erogeneous user behavior. Table 1 describes how our formulation

generalizes the assumptions used by existing estimators.

Leveraging the action-reward interaction matrix, our Adaptive
IPS (AIPS) estimator is defined as

𝑉AIPS

𝑘
(𝜋 ;D) := 1

𝑛

𝑛∑︁
𝑖=1

𝜋 (Φ𝑘 (𝒂𝑖 , 𝒄𝑖 ) | 𝒙𝑖 )
𝜋0 (Φ𝑘 (𝒂𝑖 , 𝒄𝑖 ) | 𝒙𝑖 )

𝑟𝑖,𝑘 .

At a high level, AIPS applies adaptive importance weighting based

on the context-aware behavior model 𝒄 . Specifically, when esti-

mating the position-wise policy value at the 𝑘-th position, AIPS

considers only the actions that affect the reward observed at that

particular position (Φ𝑘 (𝒂𝑖 , 𝒄𝑖 )) to define the importance weight. In

this way, AIPS is able not only to deal with potential bias due to

diverse user behavior but also to avoid producing unnecessary vari-

ance. The following sections show how AIPS enables a much more

effective OPE of ranking policies compared to existing estimators.

3.1 Theoretical Analysis
This section provides some key statistical properties of AIPS assum-

ing that the user behavior model 𝒄 is observable. Then, we analyze
the bias of AIPS when using an estimated user behavior model 𝒄 .
Finally, we present an algorithm to optimize the behavior model in

a way that minimizes the MSE of the resulting estimator. Note that

all proofs omitted from the main text are provided in Appendix B.

First, we show that AIPS can be unbiased under any (context-

dependent) distribution of user behavior 𝑝 (𝒄 | 𝒙).

Proposition 3.1. If the user behavior model 𝒄 is observed, AIPS
is unbiased, i.e., ED [𝑉AIPS

𝑘
(𝜋 ;D)] = 𝑉𝑘 (𝜋) for any 𝜋 and 𝑝 (𝒄 | 𝒙).

Proposition 3.1 suggests that AIPS is unbiased in a far more

general situation about user behavior compared to that of existing

work, which relies on a particular behavior model. Next, we show

that the variance reduction of AIPS from IPS can be substantial.

Theorem 3.2. (Variance Reduction of AIPS over IPS) Compared to
IPS, AIPS reduces the variance by the following amount.

𝑛

(
VD (𝑉 IPS

𝑘
(𝜋 ;D)) − VD (𝑉AIPS

𝑘
(𝜋 ;D))

)
= E

[ (
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

)
2

VΦ𝑐
𝑘
(𝒂,𝒄 )

(
𝜋 (Φ𝑐

𝑘
(𝒂, 𝒄) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝜋0 (Φ𝑐𝑘 (𝒂, 𝒄) | 𝒙,Φ𝑘 (𝒂, 𝒄))

)
· E

[
𝑟2
𝑘
| 𝒙,Φ𝑘 (𝒂, 𝒄)

] ]
,

where the outer expectation is taken over 𝑝 (𝒙)𝑝 (𝒄 |𝒙)𝜋0 (Φ𝑘 (𝒂, 𝒄) |𝒙),
and Φ𝑐

𝑘
(𝒂, 𝒄) is the complement of Φ𝑘 (𝒂, 𝒄).

Theorem 3.2 ensures that AIPS always provides a non-negative

variance reduction over IPS. Moreover, Theorem 3.2 suggests that

variance reduction becomes substantial when 𝒄 is sparse and the

importance weight about irrelevant actions (Φ𝑐
𝑘
(𝒂, 𝒄)) is large.

The following also shows that AIPS achieves the minimum vari-

ance among all IPS-based unbiased estimators.

Theorem 3.3. (Variance Optimality of AIPS) Let

𝑉𝑘 (𝜋 ;D, 𝒄̃) :=
1

𝑛

𝑛∑︁
𝑖=1

𝜋 (Φ𝑘 (𝒂𝑖 , 𝒄̃) | 𝒙𝑖 )
𝜋0 (Φ𝑘 (𝒂𝑖 , 𝒄̃) | 𝒙𝑖 )

𝑟𝑖,𝑘 ,
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Table 2: A toy example illustrating the possible benefit of strategic variance reduction with an incorrect behavior model. AIPS
with an incorrect (but optimized) behavior model produces much smaller variance while introducing some small bias, resulting
in a smaller MSE than AIPS with the true behavior model.

bias variance MSE (= bias
2
+ variance)

AIPS with the true behavior model 𝒄 0.0 0.5 0.50 (= (0.0)2 + 0.5 )
AIPS with an incorrect (but optimized) behavior model 𝒄 0.1 0.3 0.31 (= (0.1)2 + 0.3)

so that E[𝑉𝑘 (𝜋 ;D, 𝒄̃)] = 𝑉𝑘 (𝜋). Then, for any 𝒄̃ (s.t. 𝒄 ⊆ 𝒄̃) and 𝜋 ,
we have

VD
(
𝑉AIPS

𝑘
(𝜋 ;D)

)
≤ VD

(
𝑉𝑘 (𝜋 ;D, 𝒄̃)

)
.

Theorem 3.3 ensures that AIPS guarantees theminimumvariance

among all unbiased IPS estimators under any distribution of user

behavior, suggesting that AIPS is the optimal unbiased estimator.
1

Although we have shown above that AIPS can exhibit favorable

statistical properties under general user behavior, it should be noted

that we currently assume that the true user behavior 𝒄 is observable.
Since this is generally not the case, the following investigates the

bias of AIPS when given is an estimated user behavior 𝒄 .

Theorem 3.4. (Bias of AIPS with an estimated user behavior)
When an estimated user behavior 𝒄 is used, AIPS has the following
bias.

Bias(𝑉AIPS

𝑘
; 𝒄) = E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋 (𝒂 |𝒙 ) [(Δ𝑤𝑘 (𝒂, 𝒄, 𝒄) − 1) 𝑞𝑘 (𝒙, 𝒂, 𝒄)] ,

where

Δ𝑤𝑘 (𝒂, 𝒄, 𝒄) :=
𝜋0 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄) | 𝒙,Φ𝑘 (𝒂, 𝒄))
𝜋 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄) | 𝒙,Φ𝑘 (𝒂, 𝒄))

.

Theorem 3.4 suggests that AIPS remains unbiased when the true

model is a subset of the estimated model (𝒄 ⊆ 𝒄). Furthermore,

we can see that the bias of AIPS is characterized by the overlap

between the true 𝒄 and estimated user behavior 𝒄 , i.e., when there is

a large overlap between 𝒄 and 𝒄 , the cardinality ofΦ𝑘 (𝒂, 𝒄)\Φ𝑘 (𝒂, 𝒄)
becomes small, resulting in a smaller bias for AIPS.

Controlling the bias-variance tradeoff. Theorems 3.2 and 3.4

suggest that the bias-variance tradeoff of AIPS is mainly character-

ized by 𝒄 .2 When 𝒄 is dense, the bias of the resulting AIPS estimator

will be very small, but the variance can be high. On the other hand,

a sparse 𝒄 can substantially reduce the variance of AIPS while in-

troducing some bias. This suggests that true user behavior 𝒄 may

not necessarily minimize the MSE of AIPS, and that there exists

an interesting strategy to intentionally utilize an incorrect model

𝒄 to further improve the accuracy of the downstream estimation.

Table 2 provides a toy example illustrating a situation where AIPS

with an incorrect behavior model can achieve a lower MSE than

that with the true behavior model. In this example, the minimum

variance among all unbiased estimators is 0.5, which is achieved by

the true behavior model as per Theorem 3.3. However, a lower MSE

can be realized by intentionally using an incorrect (overly sparse)

model. This is because we can gain a large variance reduction (-0.2)

1
Note that AIPS may not be optimal if we also take some biased estimators into

consideration. This motivates our idea of intentionally leveraging an incorrect behavior

model to further improve the MSE, which is the sum of the squared bias and variance.

2
Note that the variance of AIPS with an estimated behavior model can immediately be

obtained by replacing 𝒄 with 𝒄̂ in Theorem 3.2.
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Figure 1: Tree-based optimization of user behavior model,
which optimizes the partition in the context space and assign-
ments of the user behavior model of each subgroup (from #1
to # 4) so the resulting MSE of AIPS is minimized.

by allowing only a small squared bias (+0.01), and hence using the

true user behavior model does not result in the optimal MSE of

AIPS. Therefore, instead of discussing how to estimate the true user
behavior, the following section describes a data-driven approach to

optimize 𝒄 in a way that minimizes the MSE of AIPS.

3.2 Optimizing the User Behavior Model
Our goal here is to optimize the context-aware user behavior model

𝒄 (𝒙) to minimize the MSE of AIPS, rather than merely identifying

the true model. We achieve this by optimizing the behavior model at

a subgroup level, inspired by the subgroup identification techniques

proposed in treatment effect estimation [1, 17].

Due to its flexibility in handling even non-differentiable objec-

tives, we employ a non-parametric tree-based model to optimize the

partition in the context space (user subgroups) and the assignments

of user behavior models to each subgroup simultaneously. Specifi-

cally, we recursively partition the feature space (X) and assign an

appropriate behavior model to each node in a way that minimizes

the MSE of AIPS. This means that we follow the classification and

regression tree (CART) algorithm [2] and set the MSE of AIPS as its

objective function. More specifically, we first define a candidate set

of user behavior models C := {𝒄0, . . . , 𝒄𝑚}.3 Then, at each parent

3
In general, set of candidate models C should be as large as possible, but a larger C
might be infeasible due to intensive computation. In experiments, we show that AIPS

remains effective even when C is not large if we include a diverse set of models so

that the tree model can find an appropriate behavior model for each user subgroup.
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node 𝑙 ⊆ X, the tree partitions it into child nodes (𝑙 (𝑙∗ ) , 𝑙 (𝑟 ∗ ) ⊆ 𝑙
where 𝑙 (𝑙∗ )

⋃
𝑙 (𝑟 ∗ ) = 𝑙 and 𝑙 (𝑙∗ )

⋂
𝑙 (𝑟 ∗ ) = ∅) and assigns behavior

models (𝒄 (𝑙∗ ) , 𝒄 (𝑟 ∗ ) ∈ C) to these nodes by the following criterion.

(𝑙 (𝑙∗ ) , 𝑙 (𝑟 ∗ ) , 𝒄 (𝑙∗ ) , 𝒄 (𝑟 ∗ ) ) := argmin

(𝑙 (𝑙 ) ,𝑙 (𝑟 ) ,𝒄̂ (𝑙 ) ,𝒄̂ (𝑟 ) )
�𝑀𝑆𝐸 (𝒄 (𝑙 ) , 𝒄 (𝑟 ) ; 𝑙 (𝑙 ) , 𝑙 (𝑟 ) )

(2)

where 𝒄 (𝑙 ) ∈ C is a candidate behavior model assigned to node 𝑙 ,

and �𝑀𝑆𝐸 (𝒄 (𝑙 ) , 𝒄 (𝑟 ) ; 𝑙 (𝑙 ) , 𝑙 (𝑟 ) ) is an estimated MSE when 𝒄 (𝑙 ) , 𝒄 (𝑟 ) ∈
C are assigned to the left and right nodes, respectively. Algorithm 1

in the appendix provides the complete optimization procedure.

Compared to existing subgroup identification procedures [1, 17],

our algorithm is unique in that it directly optimizes the MSE in OPE

rather than minimizing some prediction loss for treatment effect

estimation. It is important to note that our algorithm is agnostic to

the method used for estimating the MSE. For example, we can esti-

mate the MSE by following existing methods from [35] or [37]. We

thus consider the MSE estimation task as an independent research

topic and do not propose specific approaches to estimate the MSE

from the logged data. Instead, our experiments will demonstrate

that AIPS with our data-driven procedure for behavior model opti-

mization performs reasonably well across a variety of experiment

settings, even with a noisy MSE estimate and with an MSE esti-

mated via an existing method from Udagawa et al. [37] that uses

only the observed logged data.

4 SYNTHETIC EXPERIMENTS
This section empirically compares the proposed estimator with

existing estimators (IPS, IIPS, and RIPS) on synthetic ranking data.

Our experiment is implemented on top of OpenBanditPipeline [27]4,
a modular Python package for OPE. Our experiment code is avail-

able at https://github.com/aiueola/kdd2023-aips. Other experiment

details and additional results are provided in Appendix A.

4.1 Setup
Basic setting. To generate synthetic data, we randomly sample

five-dimensional context (𝑑 = 5) from the standard normal distri-

bution. Then, for each position 𝑘 , we sample continuous rewards

from a normal distribution as 𝑟𝑘 ∼ N(𝑞𝑘 (𝒙, 𝒂, 𝒄), 𝜎2), where we
use 𝜎 = 0.5. The following describes how to define the expected

reward function 𝑞𝑘 (𝒙, 𝒂, 𝒄) and user behavior distribution 𝑝 (𝒄 | 𝒙).

Position-wise expected reward function. Following Kiyohara

et al. [19], we first define the following position-wise base reward
function 𝑞𝑘 (𝒙, 𝑎𝑘 ), which depends only on the action presented at

the corresponding position (𝑎𝑘 ) rather than the entire ranking.

𝑞𝑘 (𝒙, 𝑎𝑘 ) = 𝜃⊤𝑎𝑘𝒙 + 𝑏𝑎𝑘 ,

where 𝜃𝑎𝑘 is a parameter vector sampled from the standard normal

distribution, and 𝑏𝑎𝑘 is a bias term that corresponds to action 𝑎𝑘 .

Then, we define the position-wise expected reward function

given a particular user behavior model 𝒄 as follows.

𝑞𝑘 (𝒙, 𝒂, 𝒄) = 𝑐𝑘,𝑘 𝑞𝑘 (𝒙, 𝑎𝑘 ) +
∑︁
𝑙≠𝑘

𝑐𝑘,𝑙 W(𝑎𝑘 , 𝑎𝑙 )

4
https://github.com/st-tech/zr-obp

where 𝑐𝑘,𝑙 ∈ {0, 1} is the (𝑘, 𝑙) element of 𝒄 , which indicates whether
𝑎𝑙 affects 𝑟𝑘 .W is a |A| × |A| matrix whose elements are sampled

from a uniform distribution with range [0, 1]. This matrix defines

how the co-occurrence of a pair of actions affects 𝑞𝑘 (𝒙, 𝒂, 𝒄).

Distribution of user behavior. Next, the following defines the

three basic user behavior models used in existing work [19, 24].

• standard (S): 𝒄𝑆 (𝑘, 𝑙) = 1,∀𝑙 ∈ [𝐾] .
• cascade (C): 𝒄𝐶 (𝑘, 𝑙) = 1,∀𝑙 ≤ 𝑘, and 𝒄𝐶 (𝑘, 𝑙) = 0, otherwise.

• independence (I): 𝒄𝐼 (𝑘, 𝑘) = 1and 𝒄𝐼 (𝑘, 𝑙) = 0, otherwise.

for each 𝑘 ∈ [𝐾]. To introduce more diverse behaviors beyond the

above basic models, we define the following h-neighbor perturbation:

𝑐neighbor,ℎ (𝑘, 𝑙) = 1,∀|𝑙 − 𝑘 | ≤ ℎ,
and 𝑐neighbor,ℎ (𝑘, 𝑙) = 0, otherwise.

where ℎ is the number of neighboring items that perturb the basic

model. By applying this perturbation to the basic models, we define

the following more complex behavior models.

• C1: 𝒄𝐶1 (𝑘, 𝑙) = 𝒄𝐶 (𝑘, 𝑙) + 𝑐neighbor,1 (𝑘, 𝑙)
• C2: 𝒄𝐶2 (𝑘, 𝑙) = 𝒄𝐶 (𝑘, 𝑙) + 𝑐neighbor,2 (𝑘, 𝑙)
• I1: 𝒄𝐼1 (𝑘, 𝑙) = 𝒄𝐼 (𝑘, 𝑙) + 𝑐neighbor,1 (𝑘, 𝑙)

We also define two additional user behaviors by applying random
perturbation to the independence model as follows.

• R3: 𝒄𝑅3 (𝑘, 𝑙) = 𝒄𝐼 (𝑘, 𝑙) + 𝑐random,3 (𝑘, 𝑙)I{𝑘 ≠ 𝑙}
• R6: 𝒄𝑅6 (𝑘, 𝑙) = 𝒄𝐼 (𝑘, 𝑙) + 𝑐random,6 (𝑘, 𝑙)I{𝑘 ≠ 𝑙}

where 𝑐random,ℎ (𝑘, ·) = 1 only for randomly chosen ℎ positions for

each 𝑘 ∈ [𝐾].
To study how the estimators work under diverse and heteroge-

neous user behaviors, we use {S, R6, R3, C2, C1, I1} and sample

them from the following distribution given a user context:

𝑝 (𝒄𝑧 | 𝒙) := softmax(𝜆𝑧 · |𝜃⊤𝑧 𝒙 |) =
exp(𝜆𝑧 · |𝜃⊤𝑧 𝒙 |)∑
𝑧′ exp(𝜆𝑧′ · |𝜃⊤𝑧′𝒙 |)

,

where 𝑧 ∈ {S, R6, R3,C2,C1, I1} is the index of each user behav-

ior. 𝜃𝑧 is a parameter vector sampled from the standard uniform

distribution, and 𝜆𝑧 is some weight parameter. By assigning dif-

ferent values of 𝜆𝑧 to different user behaviors, we can control the

distribution of user behavior. In particular, we define 𝜆𝑧 as follows.

𝜆𝑧 := exp((2𝛿 − 1) · 𝛾𝑧),

where 𝛾𝑧 is some coefficient value defined for each user behavior

as {𝛾S, 𝛾R6, 𝛾R3, 𝛾C2, 𝛾C1, 𝛾I1} = {1.5, 0.9, 0.3,−0.3,−0.9,−1.5}, and
𝛿 ∈ [0, 1] is an experiment parameter called the “user behavior

distribution parameter”, which controls the entropy of the behav-

ior distribution. For example, all user behavior will be uniformly

distributed when 𝛿 = 0.5, as 𝛾𝑧 = 0,∀𝑧. In contrast, 𝛿 < 0.5 samples

user behaviors having negative values of 𝛾𝑧 more frequently, while

𝛿 > 0.5 prioritizes those having positive values of 𝛾𝑧 . In particular,

under our definition of {𝛾𝑧 }, a smaller value of 𝛿 leads to simpler

user behavior, while a larger value leads to more complex behavior

in general.
5

5
Figures 6 and 7 in Appendix A show how changes in the value of distribution param-

eters (𝛿 and 𝜆) control the distribution of user behavior 𝑝 (𝒄𝑧 | 𝒙 ) .

https://github.com/aiueola/kdd2023-aips
https://github.com/st-tech/zr-obp
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Logging and evaluation policies. We define a factored logging

policy to generate synthetic logged data as follows.

𝜋0 (𝒂 | 𝒙) =
𝐾∏
𝑘=1

𝜋0 (𝑎𝑘 | 𝒙) =
𝐾∏
𝑘=1

exp(𝑓0 (𝒙, 𝑎𝑘 ))∑
𝑎′∈A exp(𝑓0 (𝒙, 𝑎′))

,

where 𝑓0 (𝒙, 𝑎) = 𝜃⊤𝑎 𝒙 +𝑏𝑎 . We sample 𝜃𝑎 and 𝑏𝑎 from the standard

uniform distribution. Then, we define the evaluation policy by

applying the following transformation to the logging policy.

𝜋 (𝒂 | 𝒙) =
𝐾∏
𝑘=1

(
(1 − 𝜖) I

{
𝑎𝑘 = argmin

𝑎′∈A
𝑓0 (𝒙, 𝑎′)

}
+ 𝜖/|A|

)
, (3)

where 𝜖 ∈ [0, 1] is an experiment parameter that determines the

stochasticity of 𝜋 . Specifically, a small value of 𝜖 leads to a near-

deterministic policy, while a large value leads to a near-uniform

policy. We use 𝜖 = 0.3 throughout our synthetic experiment.

Compared estimators. We compare AIPS against IPS, RIPS, and

IIPS. We also report the results of AIPS (true), which uses the true

user behavior 𝒄 and thus is infeasible in practice. However, this

provides a useful reference to investigate the effectiveness of our

strategic variance reduction method from Section 3.2.

Note that AIPS uses the following surrogate MSE as the objective

function when performing user behavior optimization.�𝑀𝑆𝐸 (
𝑉AIPS

𝑘
(𝜋 ;D, 𝒄̃)

)
= 𝐵𝑖𝑎𝑠

(
𝑉AIPS

𝑘
(𝜋 ;D, 𝒄̃)

)
2 + ˆV

(
𝑉AIPS

𝑘
(𝜋 ;D, 𝒄̃)

)
,

where
ˆV(·) is the sample variance. To control the accuracy of the

bias estimation, we use its noisy estimate 𝐵𝑖𝑎𝑠 . Specifically, we first

estimate the bias based on an on-policy estimate of the policy value,

which is denoted as 𝐵𝑖𝑎𝑠on (·), and then add some Gaussian noise

as 𝐵𝑖𝑎𝑠 ∼ N(𝐵𝑖𝑎𝑠on, 𝜎2Δ) where 𝜎Δ = 0.3 × |𝐵𝑖𝑎𝑠on |. By doing so,

we can simulate a practical situation where AIPS relies on some

noisy estimate of MSE. This procedure also enables us to evaluate

the robustness of AIPS to the varying accuracies of MSE estimation,

as demonstrated in Appendix A.

4.2 Results and Discussion
We run the OPE simulations 1000 times with different random seeds.

We report the MSE, bias, and variance of the estimators normalized

by the true policy value 𝑉 (𝜋). Note that we use 𝑛 = 8k, 𝐾 = 8, and

𝛿 = 0.6 as default experiment parameters.
6
In all figures, the solid

lines indicate the performance metrics averaged over the simulation

runs and the shaded regions show their 95% confidence intervals.

RQ (1): How do the estimators perform with varying data
sizes? Figure 2 compares the estimators’ MSEs (normalized by the

true value 𝑉 (𝜋)) with varying data sizes. The result clearly sug-

gests that AIPS (ours) achieves the best (lowest) MSE in a range

of logged data sizes, while the existing estimators fail drastically

in some specific cases. First, we observe that IIPS and RIPS fail

to improve their MSE even with increasing logged data sizes. We

attribute this to their high bias due to the mismatch between their

behavior assumption (independence or cascade) and the true user

6
We use 1k, 2k, . . . to denote 1000, 2000, . . ..

behavior (which is diverse and context-dependent in our experi-

ment). Second, we can see that IPS enables an unbiased estimation,
7

however, it suffers from extreme variance, particularly when the

data size is small. This is because IPS often applies unnecessarily

large importance weights regardless of the true user behavior.

In contrast, AIPS (true) deals with the bias-variance issues of the

existing estimators by leveraging adaptive importance weighting

based on prior knowledge about the true user behavior (which is

unavailable in practice). Specifically, Figure 2 demonstrates that

AIPS (true) is unbiased and thus performs better than IIPS and RIPS

when the data size is large where AIPS (true) becomes increasingly

accurate with a reduced variance while IIPS and RIPS remain highly

biased. Moreover, AIPS (true) has a much lower variance than IPS by

applying importance weighting to only the relevant set of actions

for each given context. However, it should be noted that the variance

of AIPS (true) can still be high, particularly when the data size is

extremely small. In particular, AIPS (true) exhibits a worse MSE

than RIPS when 𝑛 ≤ 2k, which interestingly implies that naive use

of true user behavior when performing importance weighting is

not optimal in terms of MSE.

Our AIPS estimator performs much better than all existing es-

timators and even overcomes the limitations of AIPS (true) by

optimizing the user behavior model rather than merely exploiting

the true model. More specifically, AIPS further improves the MSE

of AIPS (true) by greatly reducing the variance at the cost of intro-

ducing only a small amount of bias. Note here that this is achieved

even though we impose some estimation error in the MSE estima-

tion, suggesting that the subgroup optimization procedure from

Section 3.2 is robust to the estimation error of the MSE.
8
These

empirical results demonstrate that AIPS is able to adaptively opti-

mize the user behavior model in a way that improves the MSE and

thus enables a more reliable OPE in a range of logged data sizes

particularly under diverse user behavior and even without the true

knowledge of the behavior model.

RQ (2): How do the estimators perform with varying lengths
of ranking? Next, we compare the performance of the estimators

with varying lengths of ranking (𝐾 ) in Figure 3. The overall trend

and qualitative comparison are similar to the previous arguments

made in RQ (1) – AIPS (ours) works stably well across a range of

settings, while the existing estimators fail for some specific values of

𝐾 . Specifically, when𝐾 ≥ 10, IPS and AIPS (true) produce extremely

high variance due to excessive importance weights, while IIPS and

RIPS produce substantial bias due to their strong assumption about

user behavior. In contrast, AIPS (ours) leads to a much better bias-

variance tradeoff by optimizing the user behavior. In particular, we

observe that AIPS (ours) prioritizes reducing bias when 𝐾 ≤ 8,

while it puts more priority on variance reduction when 𝐾 ≥ 10,

resulting in its superior performance against existing methods as

well as AIPS (true) in a range of ranking sizes.

RQ (3): How do the estimators perform with various user
behavior distributions? Figure 4 shows how the accuracy of the

7
Note that the squared bias of IPS is not exactly zero even though this estimator is

always theoretically unbiased. This is due to the fact that we estimate the squared bias

based on the simulation results where there is some small variance.

8
We also observe the similar results and superior behavior of AIPS with varying

amounts of noise on the MSE estimate, which is reported in Appendix A.
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Figure 2: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying data sizes (𝑛)

Figure 3: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying lengths of ranking (𝐾)

Figure 4: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying behavior distributions (𝛿)

estimators changes as the user behavior distribution shifts from

a simple user behavior (𝛿 = 0.0) to a more realistic, complex one

(𝛿 = 1.0). First, the result demonstrates that IPS produces inaccu-

rate OPE across various behavior distributions, as its variance is

consistently high. In contrast, IIPS and RIPS are accurate when user

behavior is simple (𝛿 = 0.0). However, as user behavior gradually

becomes more complex, IIPS and RIPS produce larger bias because

their assumptions become increasingly incorrect. Similarly, AIPS

(true) enables an accurate estimation, particularly when the user

behavior is simple, but its MSE gradually becomes worse as the

user behavior becomes more complex. Specifically, AIPS (true) is

accurate when 𝛿 ≤ 0.4 due to its optimal variance, however, it suf-

fers from extremely high variance due to large importance weights

and shows substantial accuracy deterioration in the presence of

complex user behaviors. Finally, we observe that AIPS (ours) consis-

tently achieves a much more accurate estimation compared to IPS,

IIPS, and RIPS across various behavior distributions, particularly

under the challenging cases of complex user behaviors (𝛿 ≥ 0.6).

Moreover, AIPS (ours) is even better than AIPS (true) when 𝛿 ≥ 0.6,

because AIPS (ours) optimizes the user behavior model and thus

avoids the excessive variance of AIPS (true) as long as this strategic

variance reduction does not introduce considerable bias. In the

case of simple behaviors (𝛿 ≤ 0.4), it becomes more important to

reduce the bias by leveraging the true behavior model, and thus

AIPS (true) performs the best in these cases. However, the results

clearly demonstrate the benefit of AIPS against existing methods
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Figure 5: Estimators’ performance comparison in the real-world experiment: (Left) Cumulative distribution function
(CDF) of the estimators’ squared error (relative to that of AIPS). (Right) Conditional Value at Risk (CVaR) of the estimators’
squared error with varying values of 𝛼 .

(IPS, IIPS, RIPS) and that of the idea of behavior model optimization

in practical situations where the user behavior is highly complex.

5 REAL-WORLD EXPERIMENT
This section demonstrates the effectiveness of AIPS using the logged

data collected on a real-world ranking system.

Setup. To evaluate and compare the estimators in a more prac-

tical situation, we collect some logged bandit data by running an

A/B test of two (factored) ranking policies 𝜋𝐴 and 𝜋𝐵 on a real

e-commerce platform whose aim is to optimize a ranking of mod-

ules (which showcase a set of products inside) to maximize the

number of clicks. Our A/B test produces two sets of logged data

D𝐴 and D𝐵 where |D𝐴 | = 1, 979 and |D𝐵 | = 1, 954. Note that, in

this application, 𝒙 is a five-dimensional user context, 𝒂 is a ranking

of modules where |A| = 2, 𝐾 = 6, and 𝑟𝑘 is a binary click indicator.

To perform an OPE experiment, we regard 𝜋𝐴 as a logging policy

and 𝜋𝐵 as an evaluation policy. We useD𝐴 to estimate the value of

𝜋𝐵 by estimators, while we useD𝐵 to approximate the ground truth

value of 𝜋𝐵 by on-policy estimation. Then, we calculate the squared

error (SE) of an estimator as SE(𝑉 ) := (𝑉on (𝜋𝐵 ;D𝐵)−𝑉 (𝜋𝐵 ;D𝐴))2.
We run the experiment 100 times using different bootstrapped

samples of D𝐴 and report the cumulative distribution function

(CDF) of SE of IPS, IIPS, RIPS, and AIPS, relative to that of AIPS.

To evaluate the worst case performance of the estimators, we also

report the conditional value at risk (CVaR) of SE, which measures

the average performance of the worst 𝛼 × 100% trials for each

estimator. AIPS uses C = {𝒄𝑆 , 𝒄𝐶 , 𝒄𝐼 , 𝒄′, 𝒄′′} as the candidate set of
behavior models where 𝒄𝑆 , 𝒄𝐶 , and 𝒄𝐼 are defined in Section 4, and 𝒄

′

and 𝒄′′ are defined in Appendix A. When performing user behavior

optimization of AIPS, its MSE is estimated by PAS-IF [37] using only

the observable logged data. Note that we cannot implement AIPS

(true) in this section, since we do not know the true user behavior

in the real-world dataset.

Result. Figure 5 (Left) shows the estimators’ CDF of relative SE

and demonstrates that AIPS performs the best in 76% of the trials.

Moreover, in Figure 5 (Right), we observe that AIPS improves the

CVaR of SE more than 30% compared to RIPS for a range of 𝛼 . These

results suggest that AIPS enables a more accurate and stable OPE

than previous estimators in the real-world situation.

Summary of empirical findings. In summary, AIPS achieves

far more accurate OPE than all existing estimators (IPS, IIPS, and

RIPS) in both synthetic and real-world experiments via leveraging

adaptive importance weighting with an optimized user behavior

model. Specifically, AIPS has a much lower bias than IIPS and

RIPS by identifying more appropriate behavior models that have

a sufficient overlap with the true user behavior. Moreover, AIPS

substantially reduces the variance of IPS by avoiding unnecessarily

large importance weights. As a result, AIPS shows a superior per-

formance particularly in realistic situations where the ranking size

is large and user behavior is diverse and complex.
9
Moreover, we

observe that AIPS performs even better than AIPS (true) in many

cases, implying that strategically leveraging an incorrect behavior

model can lead to a better MSE. We thus conclude that AIPS en-

ables a more effective OPE of ranking systems and that we should

consider optimizing the behavior model to improve the MSE rather

than being overly sensitive to its correct estimation.

6 RELATEDWORK
Off-Policy Evaluation. OPE is of great practical relevance in

search and recommender systems, as it enables the performance

evaluation of counterfactual policies without interacting with the

actual users [18, 20, 28, 32]. In particular, OPE in the single action

setting has been studied extensively, producing many estimators

with good theoretical guarantees [11, 16, 21, 29]. Among them,

IPS is often considered a benchmark estimator [25], which uses

the importance sampling technique to correct the distribution shift

between different policies. IPS is unbiased under some identification

assumptions such as full support and unconfoundedness, but it often

suffers from high variance [9]. Doubly Robust (DR) [9] reduces the

variance of IPS by using an estimated reward function as a control

variate. However, DR can still struggle with high variance when the

action space is extremely large [29] such as in the ranking setup.

Beyond the standard OPE, there has also been a growing interest

in OPE of ranking systems due to its much practical relevance. In

the ranking setting where a policy chooses a ranked list of items

to present to the users, OPE faces the critical variance issue due to

9
Appendix A provides additional experiment results demonstrating that AIPS is more

robust to reward noise and changes in user behavior distribution compared to baseline

estimators (IPS, IIPS, and RIPS).
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combinatorial action spaces. To address this variance issue, existing

work has introduced some assumptions about user behavior. In

particular, IIPS [22] assumes that a user interacts with the actions

independently across positions. Under this assumption, the reward

observed at each position depends only on the action presented

at the same position, leading to a significant variance reduction

compared to IPS. Although IIPS is unbiased when the independence

assumption holds true, it can have a large bias when users follow a

more complicated behavior [19, 24]. RIPS [24] assumes a more rea-

sonable assumption, called the cascade assumption, which requires

that a user interacts with the actions sequentially from top to bot-

tom [12]. Therefore, the reward observed at each position depends

only on the actions presented at higher positions. Leveraging the

cascade assumption, RIPS can somewhat reduce the variance of IPS

while being unbiased in more realistic cases compared to IIPS. To

further improve the variance of RIPS, Kiyohara et al. [19] propose

the Cascade-DR estimator, leveraging the recursive structure of

the cascade assumption and a control variate. Although the above

approach has shown some empirical success, the critical issue is

that all the above estimators rely on a single assumption (indepen-

dence or cascade) applied to every user, which can cause large bias

and unnecessary variance. Therefore, we were based on a more

general formulation by assuming that user behavior is sampled

from some unknown context-dependent distribution. As a result,

AIPS provides an unbiased estimation even under arbitrarily di-

verse user behavior and achieves the minimum variance among the

class of IPS estimators that are unbiased. Moreover, we developed a

method to optimize the user behavior model rather than accurately

estimating it given the theoretical observations that the true user

behavior is not optimal in terms of MSE.

Note that there is another estimator called the Pseudo Inverse

(PI) estimator [35, 36, 38] in the slate recommendation setting. This

estimator considers a situation where only the slate-wise reward is

observed (i.e., the position-wise rewards are unobservable). Since PI

is not able to leverage position-wise rewards, it is often highly sub-

optimal in our setup where position-wise rewards are observable,

as empirically verified in McInerney et al. [24].

Click Models. The click models aim to formulate how users

interact with a list of documents [3, 5, 10, 12, 15, 26, 30, 33, 39], and

it has typically been studied based on the following examination
hypothesis: 𝑝 (𝑐𝑘 = 1 | 𝒙, 𝒂) = 𝑝 (𝑜𝑘 = 1 | 𝒙, 𝒂) · 𝑝 (𝑟𝑘 = 1 | 𝒙, 𝑎𝑘 ),
where 𝑐𝑘 is a click indicator while 𝑟𝑘 is a relevance indicator of the

document presented at the 𝑘-th position. 𝑝 (𝑜𝑘 | 𝒙, 𝒂) is the proba-
bility that a user examines the 𝑘-th document in a ranking. When

the user examines the document (i.e., 𝑜𝑘 = 1), the click probability

is assumed identical to the probability of relevance. Much research

has been done to better parameterize the examination probability

to explain finer details of the real-world examination behavior. For

example, the Position-based model assumes that the examination

probability depends only on the position in a ranking, while the

Cascade model [6, 12] assumes that the examination probability

at the 𝑘-th position depends on the relevance of the documents

shown at higher positions.

In contrast, the user behavior models utilized in OPE focus more

on modeling the dependencies among actions and rewards rather

than modeling the examination probability [19, 24]. As already

discussed, the critical drawback of the previous methods is that

only a single assumption is assumed to model every user’s behavior.

In the information retrieval literature, Chen et al. [4] considered

context-dependent click models, which assume that the examina-

tion behavior may change depending on the search query. Moreover,

several studies have indicated the need to incorporate some con-

text information in building and estimating click models such as

devices [23], user browsing history [7], and user intention [13].

In this work, we deal with potentially diverse user behaviors by

formulating them via a context-dependent distribution for the first

time in OPE of ranking policies. Note, however, that our motivation

is substantially different from that of the click modeling literature.

That is, we aim to develop an accurate OPE estimator in terms of

MSE while click modeling aims to estimate the true user behavior

as accurately as possible. This difference motivates our unique strat-

egy to intentionally rely on an incorrect behavior model to further

improve the MSE of our estimator as discussed in Section 3.2.

7 CONCLUSION AND FUTUREWORK
This paper studied OPE of ranking systems under diverse user

behavior.When the user behavior is diverse and depends on the user

context, all existing estimators can be highly sub-optimal because

they apply a single assumption to the entire population. To achieve

an effective OPE even under much more diverse user behavior, we

propose the Adaptive IPS estimator based on a new formulation

where the user behavior is assumed to be sampled from a context-
dependent distribution. We began by theoretically characterizing

the bias and variance of AIPS assuming known user behaviors,

showing that it can be unbiased under any distribution of user

behavior and that it achieves the optimal variance among unbiased

IPS estimators. Interestingly, though, our analysis also indicates

that myopically using the true user behavior in OPE might not

be optimal in terms of MSE. Therefore, we provided a data-driven

procedure to optimize the user behavior model to minimize the MSE

of the resulting AIPS estimator rather than trying to estimate the
true behavior, which tends to be sub-optimal in OPE. Experiments

demonstrate that AIPS provides a substantial gain in MSE against

existing methods in a range of OPE situations.

Our work also raises several intriguing research questions for

future studies. First, it would be valuable to develop an accurate

way to estimate the MSE of an OPE estimator beyond existing

methods [35, 37] to better optimize the user behavior model to

further improve AIPS. Second, OPE of ranking policies can still

become extremely difficult when the number of unique actions

(|A|) is large. Therefore, it would be interesting to leverage the

recent action embedding approach [29, 31] to overcome this critical

limitation in the ranking setup. Besides, as a practical, yet simple

extension, adding a control variate to AIPS is expected to further

improve its variance and outperform Cascade-DR of Kiyohara et al.

[19], which assumes the cascade assumption. Finally, this work

only studied the statistical problem of estimating the value of a

fixed new policy, so it would be interesting to use our estimator to

enable more efficient off-policy learning in ranking systems.
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Figure 6: User behavior distribution with varying values of 𝛿

Figure 7: User behavior distribution with varying values of 𝜆

Figure 8: This figure illustrates a ranking of modules in the e-commerce platform used in our real-world experiment where each
"Module" corresponds to an action indicating a category of products, such as "Recommended items" or "Campaign information".

A ADDITIONAL EXPERIMENT DETAILS AND RESULTS
A.1 Experimental Details

Distributions of user behavior in the synthetic experiment. In the synthetic experiment, we control the distribution of user behavior

by varying the values of 𝛿 (user behavior distribution parameter) – a small value of 𝛿 increases the probability of observing simple user

behaviors, while a large value of 𝛿 increases the probability of observing complex user behaviors. Figure 6 demonstrates how different values

of 𝛿 control the distribution of user behavior, which we estimate with randomly sampled 10,000 user contexts.

Platform’s ranking interface in the real-world experiment. Figure 8 illustrates the ranking interface of the e-commerce platform

used in the real-world experiment. The two factored policies, 𝜋𝐴 and 𝜋𝐵 , choose which module as an action to present at each position in a

ranking to maximize the sum of observed clicks during the data collection experiment.

The candidate set of behavior models for AIPS in the real-world experiment. In the real-world experiment, AIPS uses C =

{𝒄𝑆 , 𝒄𝐶 , 𝒄𝐼 , 𝒄′, 𝒄′′} as the candidate set of behavior models when performing user behavior optimization. 𝒄𝑆 , 𝒄𝐶 , and 𝒄𝐼 are defined in Section 4.

𝒄′ and 𝒄′′ are defined specifically as

• 𝒄′: 𝒄′ (𝑘, 1) = 𝒄′ (𝑘, 2) = 𝒄′ (𝑘, 𝑘) = 1, otherwise, 𝒄′ (𝑘, 𝑙) = 0, ∀𝑙 ∈ [𝐾]
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Figure 9: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying reward noise levels (𝜎)

Figure 10: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying evaluation policies (𝜖)

Figure 11: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying behavior distributions (𝜆)

• 𝒄′′: 𝒄′′ (𝑘, 𝑙) = 1 if 𝑙 ≤ 𝑘 , otherwise, 𝒄′′ (𝑘, 𝑙) = 0, ∀𝑙 ∈ [𝐾]

for each position 𝑘 ∈ [𝐾].

A.2 Additional Results on Synthetic Data
This section explores four additional research questions regarding: (A1) reward noise level (𝜎), (A2) evaluation policy (𝜖), (A3) identifiability

of user behavior (𝜆), and (A4) estimation error in the bias estimate (𝜎Δ) used in AIPS. Note that we set 𝑛 = 8k (data size), 𝐾 = 8 (length of

ranking), 𝜎 = 0.5 (reward noise level), 𝜖 = 0.3 (evaluation policy parameter), 𝛿 = 0.6 (user behavior setting), and 𝜎Δ = 0.3 (error level in bias

estimate) as default, and run OPE simulations over 300 different logged data replicated with different random seeds. The following reports

and discusses the MSE, squared bias, and variance of the estimators normalized by the true policy value of the evaluation policy 𝑉 (𝜋).
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Figure 12: Comparison of AIPS’s performance with varying data sizes (𝑛) and estimation error (𝜎Δ)

Figure 13: Comparison of AIPS’s performance with varying lengths of ranking (𝐾) and estimation error (𝜎Δ)

Figure 14: Comparison of AIPS’s performance with varying user behavior distributions (𝛿) and estimation error (𝜎Δ)

RQ (A1): How do the estimators perform with varying reward noise levels? Figure 9 compares estimators’ performance with varying

reward noise levels 𝜎 ∈ {0.0, 0.2, · · · , 1.0}.We observe that IPS and AIPS (true) suffer from increasingly high variance as the noise level

becomes higher. In contrast, our AIPS demonstrates its clear robustness to the increase in reward noise.

RQ (A2): How do the estimators perform with varying evaluation policies? Next, Figure 10 compares the estimators with various

evaluation policies 𝜖 ∈ {0.0, 0.2, · · · , 1.0}. The figure indicates that AIPS (true) and IPS are quite accurate when the evaluation policy is

near-uniform and does not deviate from the logging policy greatly (𝜖 = 0.8, 1.0). This is because AIPS (true) and IPS are unbiased and do not

suffer from high variance when the evaluation policy is highly stochastic. However, under more practical situations where the evaluation

policy is more deterministic, AIPS becomes superior due to its favorable variance property while IPS performs the worst due to its extreme

variance. Note that AIPS (true) also works well for a range of evaluation policies in the default setting (i.e., 𝑛 = 8k, 𝐾 = 8). However, it may
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Figure 15: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying data sizes (𝑛) when 𝜎Δ =

0.1 × |𝐵𝑖𝑎𝑠on |

Figure 16: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying lengths of ranking (𝐾) when
𝜎Δ = 0.1 × |𝐵𝑖𝑎𝑠on |

Figure 17: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying user behavior distributions
(𝛿) when 𝜎Δ = 0.1 × |𝐵𝑖𝑎𝑠on |

suffer from a higher variance when the ranking size is larger (𝐾 > 8) and the evaluation policy is more deterministic (𝜖 = 0.0, 0.2), as already

shown in Figure 3.

RQ (A3): How do the estimators perform under different levels of identifiability of user behavior? Here, we investigate how the

estimators perform with varying levels of identifiability of user behavior. Specifically, we control the identifiability of user behavior by

varying the values of 𝜆𝑧 . Recall here that we sample user behavior from the following conditional distribution.

𝑝 (𝒄𝑧 | 𝒙) := softmax(𝜆𝑧 · |𝜃⊤𝑧 𝒙 |) =
exp(𝜆𝑧 · |𝜃⊤𝑧 𝒙 |)∑
𝑧′ exp(𝜆𝑧′ · |𝜃⊤𝑧′𝒙 |)

.
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Figure 18: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying data sizes (𝑛) and 𝜎Δ =

0.5 × |𝐵𝑖𝑎𝑠on |

Figure 19: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying lengths of ranking (𝐾) and
𝜎Δ = 0.5 × |𝐵𝑖𝑎𝑠on |

Figure 20: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying user behavior distributions
(𝛿) and 𝜎Δ = 0.5 × |𝐵𝑖𝑎𝑠on |

Thus, by definition, when we set 𝜆𝑧 = 𝜆,∀𝑧 (constant value), user behavior will be uniformally distributed. We can increase identifiability

of user behavior by using a large value of 𝜆 where user behavior becomes near-deterministic and easily identifiable from the context. By

contrast, when we use a small value of 𝜆, user behavior will be almost context-independent and may not be easily identifiable from the

observed user context. We thus vary 𝜆 ∈ {0.0, 1.0, 2.0, · · · , 16.0} to see how the estimators’ performance changes with different levels of

identifiability of user behavior (Figure 7 illustrates the distributions of user behavior with varying values of 𝜆).

Somewhat surprisingly, we observe in Figure 11 that identifiability of user behavior has almost no impact on the estimators’ performances.

We conjuncture that AIPS is robust to the change in the level of identifiability because it does not aim to precisely estimate user behavior,
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Table 3: Runtime comparison between AIPS and IPS with varying data sizes (𝑛)

data size (𝑛) 1,000 2,000 4,000 8,000 16,000 32,000

IPS 0.6022 (± 0.008) 1.198 (± 0.021) 2.379 (± 0.041) 4.752 (± 0.072) 9.505 (± 0.149) 18.98 (± 0.251)

AIPS 23.43 (± 0.534) 44.22 (± 0.9206) 85.24 (± 1.502) 167.2 (± 2.556) 329.6 (± 4.162) 653.5 (± 7.611)

(relative) 38.90 36.98 35.83 35.18 34.68 34.42

Note: We report mean (± std) of the runtime (sec) of IPS and AIPS in the synthetic experiment over 100 random seeds. (relative) reports the runtime

of AIPS divided by that of IPS.

Table 4: Runtime comparison between AIPS and IPS with varying lengths of ranking (𝐾)

length of ranking (𝐾 ) 4 6 8 10 12 14

IPS 2.313 (± 0.021) 3.390 (± 0.025) 4.690 (± 0.037) 6.192 (± 0.039) 7.924 (± 0.066) 9.878 (± 0.068)

AIPS 68.89 (± 0.977) 114.3 (± 1.212) 166.2 (± 1.822) 221.5 (± 2.384) 284.2 (± 3.136) 351.5 (± 3.059)

(relative) 29.78 33.70 35.44 35.76 35.87 35.59

Note: We report mean (± std) of the runtime (sec) of IPS and AIPS in the synthetic experiment over 100 random seeds. (relative) reports the runtime

of AIPS divided by that of IPS.

but it rather aims to choose the most suitable user behavior model to minimize its MSE given the logged data. This observation provides a

further argument for the applicability and robustness of the user behavior optimization procedure of AIPS.

RQ (A4): How does AIPS perform with varying estimation errors in the bias estimate? Finally, we evaluate how robust AIPS is to the

estimation error in the bias estimate by varying the values of 𝜎Δ ∈ {0.1, 0.3, 0.5} ×|𝐵𝑖𝑎𝑠on |. More specifically, we compare AIPS’ performance

with the three different values of 𝜎Δ across varying data sizes 𝑛 ∈ {1k, 2k, · · · , 32k} (Figure 12), lengths of ranking 𝐾 ∈ {4, 6, · · · , 14}
(Figure 13), and user behavior distribution parameters 𝛿 ∈ {0.0, 0.2, · · · , 1.0} (Figure 14) as done in RQs (1)-(3) in the main text. We also

compare AIPS against IPS, IIPS, and RIPS with 𝜎Δ = 0.1 × |𝐵𝑖𝑎𝑠on | in Figures 15-17 and with 𝜎Δ = 0.5 × |𝐵𝑖𝑎𝑠on | in Figures 18-20.

Overall, the results indicate that AIPS is robust to the estimation error in the bias estimate. In particular, the trends observed in Figures 15-17

and Figures 18-20 are quite similar to those observed in Figures 2-4 in the main text, suggesting that AIPS effectively balances the bias-variance

tradeoff even in the presence of severe estimation error in the bias estimate. Interestingly, we also observe that a larger estimation error in

the bias estimate does not necessarily lead to a larger MSE. Specifically, in Figure 12 and Figure 13, the accuracy of AIPS only becomes worse

with larger estimation error (𝜎Δ) when the data size is large (𝑛 = 16k, 32k) and the ranking size is small (𝐾 = 4, 6). This implies that the

estimation error of the bias estimate may be slightly problematic only when the bias is dominant in the MSE.

Runtime analysis. One potential concern of AIPS is the additional computation overhead introduced by its user behavior optimization

procedure. Tables 3 and 4 compare the computation time of AIPS against that of IPS with varying data sizes (𝑛) and lengths of ranking (𝐾 ).

The result shows that the whole estimation process ends only in 653 seconds (< 11mins) even in the largest sample size. Moreover, we can

see that the relative computation time of AIPS compared to IPS does not grow with the sample size and lengths of ranking.
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B OMITTED PROOFS
B.1 Proof of Proposition 3.1

Proof. For any given 𝒙 ∼ 𝑝 (𝒙) and 𝒄 ∼ 𝑝 (𝒄 | 𝒙), we have

E𝜋0 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 )

[
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑟𝑘

]
=

∑︁
𝒂

𝜋0 (𝒂 | 𝒙)
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑞𝑘 (𝒙, 𝒂, 𝒄)

=
∑︁

Φ𝑘 (𝒂,𝒄 )

∑︁
Φ𝑐
𝑘
(𝒂,𝒄 )

𝜋0 (𝒂 | 𝒙)
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑞𝑘 (𝒙, 𝒂, 𝒄)

=
∑︁

Φ𝑘 (𝒂,𝒄 )

𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑞𝑘 (𝒙,Φ𝑘 (𝒂, 𝒄))
∑︁

Φ𝑐
𝑘
(𝒂,𝒄 )

𝜋0 (𝒂 | 𝒙)

=
∑︁

Φ𝑘 (𝒂,𝒄 )

𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑞𝑘 (𝒙,Φ𝑘 (𝒂, 𝒄))
∑︁

Φ𝑐
𝑘
(𝒂,𝒄 )

𝜋0 (Φ𝑘 (𝒂, 𝒄) ∪ Φ𝑐𝑘 (𝒂, 𝒄) | 𝒙)︸                                       ︷︷                                       ︸
=𝜋0 (Φ𝑘 (𝒂,𝒄 ) | 𝒙 )

=
∑︁

Φ𝑘 (𝒂,𝒄 )
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)𝑞𝑘 (𝒙,Φ𝑘 (𝒂, 𝒄))

=
∑︁

Φ𝑘 (𝒂,𝒄 )
𝑞𝑘 (𝒙,Φ𝑘 (𝒂, 𝒄))

∑︁
Φ𝑐
𝑘
(𝒂,𝒄 )

𝜋 (Φ𝑘 (𝒂, 𝒄) ∪ Φ𝑐𝑘 (𝒂, 𝒄) | 𝒙)

=
∑︁
𝒂

𝜋 (𝒂 | 𝒙)𝑞𝑘 (𝒙, 𝒂, 𝒄)

= E𝜋 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 ) [𝑟𝑘 ] (4)

where 𝑞𝑘 (𝒙,Φ𝑘 (𝒂, 𝒄)) := E𝑝 (𝒓 |𝒙,Φ𝑘 (𝒂,𝒄 ) ) [𝑟𝑘 ], 𝑞𝑘 (𝒙, 𝒂, 𝒄) := E𝑝 (𝒓 |𝒙,𝒂,𝒄 ) [𝑟𝑘 ], and 𝑞𝑘 (𝒙, 𝒂, 𝒄) = 𝑞𝑘 (𝒙,Φ𝑘 (𝒂, 𝒄)).
Then, we have

ED
[
𝑉AIPS

𝑘
(𝜋 ;D)

]
= ED

[
1

𝑛

𝑛∑︁
𝑖=1

𝜋 (Φ𝑘 (𝒂𝑖 , 𝒄𝑖 ) | 𝒙𝑖 )
𝜋0 (Φ𝑘 (𝒂𝑖 , 𝒄𝑖 ) | 𝒙𝑖 )

𝑟𝑖,𝑘

]
= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋0 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 )

[
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑟𝑘

]
= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )

[
E𝜋0 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 )

[
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑟𝑘

] ]
= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )

[
E𝜋 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 ) [𝑟𝑘 ]

]
∵ Eq. (4)

= 𝑉𝑘 (𝜋)

□

B.2 Proof of Theorems 3.2 and 3.3
Proof. To prove Theorems 3.2 and 3.3, we quantify the difference between the variance of AIPS (𝑉AIPS

𝑘
(𝜋 ;D)) and that of an arbitrary

unbiased estimator (𝑉𝑘 (𝜋 ;D, 𝒄̃)) defined in Theorem 3.3. For brevity of exposition, the following uses Φ𝑑
𝑘
(𝒂, 𝒄, 𝒄̃) := Φ𝑘 (𝒂, 𝒄̃) \ Φ𝑘 (𝒂, 𝒄). We

will also use the fact that 𝒄 ⊆ 𝒄̃ always holds true for any 𝒄̃ when 𝑉𝑘 (𝜋 ;D, 𝒄̃) is unbiased. This directly follows from Theorem 3.4, which is
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later proved in Appendix B.3

𝑛

(
VD (𝑉𝑘 (𝜋 ;D, 𝒄̃)) − VD (𝑉AIPS

𝑘
(𝜋 ;D))

)
= 𝑛

(
VD

(
𝜋 (Φ𝑘 (𝒂, 𝒄̃) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄̃) | 𝒙)

𝑟𝑘

)
− VD

(
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑟𝑘

))
= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋0 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 )

[(
𝜋 (Φ𝑘 (𝒂, 𝒄̃) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄̃) | 𝒙)

𝑟𝑘

)
2

]
−

(
E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋0 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 )

[
𝜋 (Φ𝑘 (𝒂, 𝒄̃) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄̃) | 𝒙)

𝑟𝑘

]
︸                                                             ︷︷                                                             ︸

=𝑉𝑘 (𝜋 )

)
2

−
(
E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋0 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 )

[(
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑟𝑘

)
2

]
−

(
E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋0 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 )

[
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑟𝑘

]
︸                                                             ︷︷                                                             ︸

=𝑉𝑘 (𝜋 )

)
2

)

= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋0 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 )

[((
𝜋 (Φ𝑘 (𝒂, 𝒄̃) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄̃) | 𝒙)

)
2

−
(
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

)
2

)
𝑟2
𝑘

]
= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋0 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 )

[(
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

)
2

((
𝜋 (Φ𝑘 (𝒂, 𝒄̃) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄̃) | 𝒙)

𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

)
2

− 1
)
𝑟2
𝑘

]
= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋0 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 )


(
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

)
2 ©­«

(
𝜋 (Φ𝑑

𝑘
(𝒂, 𝒄, 𝒄̃)) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝜋0 (Φ𝑑𝑘 (𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

)
2

− 1ª®¬ 𝑟2𝑘


= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋0 (𝒂 |𝒙 )

[(
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

)
2

((
𝜋 (Φ𝑑

𝑘
(𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝜋0 (Φ𝑑𝑘 (𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

)
2

− 1
)
E𝑝 (𝒓 |𝒙,Φ𝑘 (𝒂,𝒄 ) )

[
𝑟2
𝑘

] ]
= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋0 (Φ𝑘 (𝒂,𝒄 ) |𝒙 )

[(
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

)
2

E
𝜋0 (Φ𝑑

𝑘
(𝒂,𝒄,𝒄̃ ) | 𝒙,Φ𝑘 (𝒂,𝒄 ) )

[(
𝜋 (Φ𝑑

𝑘
(𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝜋0 (Φ𝑑𝑘 (𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

)
2

− 1
]
E𝑝 (𝒓 |𝒙,Φ𝑘 (𝒂,𝒄 ) )

[
𝑟2
𝑘

] ]
= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋0 (Φ𝑘 (𝒂,𝒄 ) |𝒙 )

[(
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

)
2

V
𝜋0 (Φ𝑑

𝑘
(𝒂,𝒄,𝒄̃ ) | 𝒙,Φ𝑘 (𝒂,𝒄 ) )

[
𝜋 (Φ𝑑

𝑘
(𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝜋0 (Φ𝑑𝑘 (𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

]
E𝑝 (𝒓 |𝒙,Φ𝑘 (𝒂,𝒄 ) )

[
𝑟2
𝑘

] ]
, (5)

where we use
𝜋 (Φ𝑘 (𝒂,𝒄̃ ) | 𝒙 )
𝜋 (Φ𝑘 (𝒂,𝒄 ) | 𝒙 ) = 𝜋 (Φ

𝑑
𝑘
(𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄)) and 𝜋0 (𝒂 | 𝒙) = 𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)𝜋0 (Φ𝑑𝑘 (𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄)). Moreover, in Eq. (5), we

use the following trick:

E
𝜋0 (Φ𝑑

𝑘
(𝒂,𝒄,𝒄̃ ) | 𝒙,Φ𝑘 (𝒂,𝒄 ) )

[(
𝜋 (Φ𝑑

𝑘
(𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝜋0 (Φ𝑑𝑘 (𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

)
2

− 1
]

= E
𝜋0 (Φ𝑑

𝑘
(𝒂,𝒄,𝒄̃ ) | 𝒙,Φ𝑘 (𝒂,𝒄 ) )

[(
𝜋 (Φ𝑑

𝑘
(𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝜋0 (Φ𝑑𝑘 (𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

)
2
]
−

(
E
𝜋0 (Φ𝑑

𝑘
(𝒂,𝒄,𝒄̃ ) | 𝒙,Φ𝑘 (𝒂,𝒄 ) )

[
𝜋 (Φ𝑑

𝑘
(𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝜋0 (Φ𝑑𝑘 (𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

]
︸                                                                    ︷︷                                                                    ︸

=1

)
2

= V
𝜋0 (Φ𝑑

𝑘
(𝒂,𝒄,𝒄̃ ) | 𝒙,Φ𝑘 (𝒂,𝒄 ) )

[
𝜋 (Φ𝑑

𝑘
(𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝜋0 (Φ𝑑𝑘 (𝒂, 𝒄, 𝒄̃) | 𝒙,Φ𝑘 (𝒂, 𝒄))

]

We can see that Eq. (5) is always non-negative, which means that the variance of AIPS is never larger than that of any unbiased IPS estimator

defined by 𝑉𝑘 (𝜋 ;D, 𝒄̃) with 𝒄 ⊆ 𝒄̃ . Hence, Theorem 3.3 is proved. Furthermore, we can derive Theorem 3.2 by replacing Φ𝑘 (𝒂, 𝒄̃) with 𝒂 (in

this case, Φ𝑑
𝑘
(𝒂, 𝒄, 𝒄̃) = Φ𝑐

𝑘
(𝒂, 𝒄)). □

B.3 Proof of Theorem 3.4
Proof. First, we calculate the bias of AIPS with an estimated user behavior 𝒄 below.
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For any given 𝒙 ∼ 𝑝 (𝒙) and 𝒄 ∼ 𝑝 (𝒄 | 𝒙), we have

E𝜋0 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 )

[
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑟𝑘

]
=

∑︁
𝒂

𝜋0 (𝒂 | 𝒙)
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑞𝑘 (𝒙, 𝒂, 𝒄)

=
∑︁

Φ𝑘 (𝒂,𝒄 )∪Φ𝑘 (𝒂,𝒄̂ )

∑︁
Φ𝑐
𝑘
(𝒂,𝒄 )∩Φ𝑐

𝑘
(𝒂,𝒄̂ )

𝜋0 (𝒂 | 𝒙)
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑞𝑘 (𝒙, 𝒂, 𝒄)

=
∑︁

Φ𝑘 (𝒂,𝒄 )∪Φ𝑘 (𝒂,𝒄̂ )

𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑞𝑘 (𝒙,Φ𝑘 (𝒂, 𝒄))
∑︁

Φ𝑐
𝑘
(𝒂,𝒄 )∩Φ𝑐

𝑘
(𝒂,𝒄̂ )

𝜋0 (𝒂 | 𝒙)

=
∑︁

Φ𝑘 (𝒂,𝒄 )∪Φ𝑘 (𝒂,𝒄̂ )

𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑞𝑘 (𝒙,Φ𝑘 (𝒂, 𝒄))
∑︁

Φ𝑐
𝑘
(𝒂,𝒄 )∩Φ𝑐

𝑘
(𝒂,𝒄̂ )

𝜋0 (
(
Φ𝑘 (𝒂, 𝒄) ∪ Φ𝑘 (𝒂, 𝒄)

)
∪

(
Φ𝑐
𝑘
(𝒂, 𝒄) ∩ Φ𝑐

𝑘
(𝒂, 𝒄)

)
| 𝒙)

︸                                                                                       ︷︷                                                                                       ︸
=𝜋0 (Φ𝑘 (𝒂,𝒄 )∪Φ𝑘 (𝒂,𝒄̂ ) | 𝒙 )

=
∑︁

Φ𝑘 (𝒂,𝒄 )∪Φ𝑘 (𝒂,𝒄̂ )

𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑞𝑘 (𝒙,Φ𝑘 (𝒂, 𝒄))
𝜋0 (Φ𝑘 (𝒂, 𝒄) ∪ Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋 (Φ𝑘 (𝒂, 𝒄) ∪ Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝜋 (Φ𝑘 (𝒂, 𝒄) ∪ Φ𝑘 (𝒂, 𝒄) | 𝒙)

=
∑︁

Φ𝑘 (𝒂,𝒄 )∪Φ𝑘 (𝒂,𝒄̂ )

𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑞𝑘 (𝒙,Φ𝑘 (𝒂, 𝒄))
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)𝜋0 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)𝜋 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝜋 (Φ𝑘 (𝒂, 𝒄) ∪ Φ𝑘 (𝒂, 𝒄) | 𝒙)

=
∑︁

Φ𝑘 (𝒂,𝒄 )∪Φ𝑘 (𝒂,𝒄̂ )

𝜋0 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))
𝜋 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝑞𝑘 (𝒙,Φ𝑘 (𝒂, 𝒄))𝜋 (Φ𝑘 (𝒂, 𝒄) ∪ Φ𝑘 (𝒂, 𝒄) | 𝒙)

=
∑︁

Φ𝑘 (𝒂,𝒄 )∪Φ𝑘 (𝒂,𝒄̂ )

𝜋0 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))
𝜋 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝑞𝑘 (𝒙,Φ𝑘 (𝒂, 𝒄))
∑︁

Φ𝑐
𝑘
(𝒂,𝒄 )∩Φ𝑐

𝑘
(𝒂,𝒄̂ )

𝜋 (
(
Φ𝑘 (𝒂, 𝒄) ∪ Φ𝑘 (𝒂, 𝒄)

)
∪

(
Φ𝑐
𝑘
(𝒂, 𝒄) ∩ Φ𝑐

𝑘
(𝒂, 𝒄)

)
| 𝒙)

=
∑︁
𝒂

𝜋 (𝒂 | 𝒙) 𝜋0 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))
𝜋 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝑞𝑘 (𝒙, 𝒂, 𝒄)

= E𝜋 (𝒂 |𝒙 )

[
𝜋0 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))
𝜋 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝑞𝑘 (𝒙, 𝒂, 𝒄)
]

(6)

Therefore, we have

Bias(𝑉AIPS

𝑘
; 𝒄) = ED

[
1

𝑛

𝑛∑︁
𝑖=1

𝜋 (Φ𝑘 (𝒂𝑖 , 𝒄𝑖 ) | 𝒙𝑖 )
𝜋0 (Φ𝑘 (𝒂𝑖 , 𝒄𝑖 ) | 𝒙𝑖 )

𝑟𝑖,𝑘

]
−𝑉𝑘 (𝜋)

= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋0 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 )

[
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑟𝑘

]
− E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 ) [𝑟𝑘 ]

= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )

[
E𝜋0 (𝒂 |𝒙 )𝑝 (𝒓 |𝒙,𝒂,𝒄 )

[
𝜋 (Φ𝑘 (𝒂, 𝒄) | 𝒙)
𝜋0 (Φ𝑘 (𝒂, 𝒄) | 𝒙)

𝑟𝑘

] ]
− E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋 (𝒂 |𝒙 ) [𝑞𝑘 (𝒙, 𝒂, 𝒄)]

= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋 (𝒂 |𝒙 )

[
𝜋0 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))
𝜋 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))

𝑞𝑘 (𝒙, 𝒂, 𝒄)
]
− E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋 (𝒂 |𝒙 ) [𝑞𝑘 (𝒙, 𝒂, 𝒄)] ∵ Eq. (6)

= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋 (𝒂 |𝒙 )

[(
𝜋0 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))
𝜋 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄)) | 𝒙,Φ𝑘 (𝒂, 𝒄))

− 1
)
𝑞𝑘 (𝒙, 𝒂, 𝒄)

]
= E𝑝 (𝒙 )𝑝 (𝒄 |𝒙 )𝜋 (𝒂 |𝒙 ) [(Δ𝑤𝑘 (𝒂, 𝒄, 𝒄) − 1) 𝑞𝑘 (𝒙, 𝒂, 𝒄)]

where

Δ𝑤𝑘 (𝒂, 𝒄, 𝒄) :=
𝜋0 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄) | 𝒙,Φ𝑘 (𝒂, 𝒄))
𝜋 (Φ𝑘 (𝒂, 𝒄) \ Φ𝑘 (𝒂, 𝒄) | 𝒙,Φ𝑘 (𝒂, 𝒄))

.

□
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Algorithm 1 The procedure to optimize user behavior assignments in AIPS (detailed in Section 3.2)

Input: logged data D, a loss function to minimize MSE L(·), a set of candidate user behavior models C =

{𝒄0, · · · , 𝒄𝑚}, the base user behavior model 𝒄𝑏𝑎𝑠𝑒 , a set of random states S
Output: dictionary containing 𝒄 for each partition C
1: Initialize node sets to partition L← {D} and dictionary containing 𝒄 for each partition C← ∅
2: Initialize the number of user partition 𝑔← 0

3: while L ≠ ∅ do
4: Remove node 𝑙 from L as L← L \ {𝑙} and set 𝑙 as the parent node

5: Initialize the minimum loss �𝑀𝑆𝐸 (−) ←�𝑀𝑆𝐸 (𝒄 (𝑙 ) ; 𝑙) where 𝒄 (𝑙 ) := argmin𝒄̂
�𝑀𝑆𝐸 (𝒄 ; 𝑙)

6: Initialize the best subset (𝑐 (𝑙 (𝑙 ) ) , 𝑐 (𝑙 (𝑟 ) ) ,D(𝑙 (𝑙 ) ) ,D(𝑙 (𝑟 ) ) ) ← ∅
7: for 𝑠 ∈ S do
8: Randomly generate partitions in the feature space (X) and create two subsets of the data (D(𝑙∗ ) ,D(𝑟 ∗ ) )

(e.g., data that satisfy | |𝒙 | |2 ≤ 1 are deemed as the subset indicating the left node (D(𝑙∗ ) ), while
others

as the subset of the right node (D(𝑟 ∗ ) ))
9: Identify the best behavior model for each subset as

(𝒄 (𝑙∗ ) , 𝒄 (𝑟 ∗ ) ) := argmin(𝒄̂ (𝑙 ) ,𝒄̂ (𝑟 ) )
�𝑀𝑆𝐸 (𝒄 (𝑙 ) , 𝒄 (𝑟 ) ; 𝑙∗, 𝑟∗)

10: if �𝑀𝑆𝐸 (−) > �𝑀𝑆𝐸 (𝒄 (𝑙∗ ) , 𝒄 (𝑟 ∗ ) ; 𝑙∗, 𝑟∗) then
11: Update the best partition as�𝑀𝑆𝐸 (−) ←�𝑀𝑆𝐸 (𝒄 (𝑙∗ ) , 𝒄 (𝑟 ∗ ) ; 𝑙∗, 𝑟∗)

(𝑐 (𝑙 (𝑙 ) ) , 𝑐 (𝑙 (𝑟 ) ) ,D(𝑙 (𝑙 ) ) ,D(𝑙 (𝑟 ) ) ) ← (𝑐 (𝑙∗ ) , 𝑐 (𝑟 ∗ ) ,D(𝑙∗ ) ,D(𝑟 ∗ ) )
12: end if
13: end for
14: if (D (𝑙 (𝑙 ) ) ,D (𝑙 (𝑟 ) ) ) = ∅ then
15: // end of the optimization procedure

16: Add the parent partition and the corresponding user behavior model to C as

C[𝑔] ← (D(𝑙 ) , 𝒄 (𝑙 ) , 𝑙), 𝑔← 𝑔 + 1
17: else
18: // continue the optimization procedure

19: Add children nodes to the tree as L← L⋃{D(𝑙 (𝑙 ) ) ,D(𝑙 (𝑟 ) ) }
20: end if
21: end while
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