
On Structural Expressive Power of Graph Transformers
Wenhao Zhu

wenhaozhu@pku.edu.cn

National Key Laboratory of General

Artificial Intelligence, School of

Intelligence Science and Technology,

Peking University

Beijing, China

Tianyu Wen

tianyuwen@pku.edu.cn

Yuanpei College, Peking University

Beijing, China

Guojie Song

gjsong@pku.edu.cn

National Key Laboratory of General

Artificial Intelligence, School of

Intelligence Science and Technology,

Peking University

Beijing, China

Liang Wang

liangbo.wl@alibaba-inc.com

Alibaba Group

China

Bo Zheng

bozheng@alibaba-inc.com

Alibaba Group

China

Abstract
Graph Transformer has recently received wide attention in the re-

search community with its outstanding performance, yet its struc-

tural expressive power has not been well analyzed. Inspired by the

connections between Weisfeiler-Lehman (WL) graph isomorphism

test and graph neural network (GNN), we introduce SEG-WL test
(Structural Encoding enhanced GlobalWeisfeiler-Lehman test), a

generalized graph isomorphism test algorithm as a powerful the-

oretical tool for exploring the structural discriminative power of

graph Transformers. We theoretically prove that the SEG-WL test

is an expressivity upper bound on a wide range of graph Trans-

formers, and the representational power of SEG-WL test can be

approximated by a simple Transformer network arbitrarily under

certain conditions. With the SEG-WL test, we show how graph

Transformers’ expressive power is determined by the design of

structural encodings, and present conditions that make the expres-

sivity of graph Transformers beyond WL test and GNNs. More-

over, motivated by the popular shortest path distance encoding,

we follow the theory-oriented principles and develop a provably

stronger structural encoding method, Shortest Path Induced Sub-

graph (SPIS) encoding. Our theoretical findings provide a novel and
practical paradigm for investigating the expressive power of graph

Transformers, and extensive synthetic and real-world experiments

empirically verify the strengths of our proposed methods.

ACM Reference Format:
Wenhao Zhu, Tianyu Wen, Guojie Song, Liang Wang, and Bo Zheng. 2018.

On Structural Expressive Power of Graph Transformers. InWoodstock ’18:
ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY .
ACM,NewYork, NY, USA, 21 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

1 Introduction
In the last decade, graph neural network (GNN) [19, 40] has become

the prevalent neural architecture for deep learning on graph data.

Following the message-passing scheme, GNNs learn the vector

representation of node 𝑣 by iteratively aggregating and transform-

ing features of its neighborhood nodes. Recent studies [47] have

proved that Weisfeiler-Lehman (WL) graph isomorphism test can

measure the theoretical expressive power of message-passing GNNs

in distinguishing graph structures [42].

While in the last few years, the Transformer architecture [39]

has achieved broad success in various machine learning tasks. On

graph representation learning, though with higher complexity than

GNNs, recent works [20, 48] have proved that graph Transformers

can successfully model large-scale graph data and deliver state-of-

the-art performance on real-world benchmarks. However, despite

advances in empirical benchmark results, the theoretical expressive

power of graph Transformers has not been deeply explored. Com-

pared with GNN’s message-passing strategy, which only includes

neighborhood aggregation, most graph Transformers represent

nodes by considering all pair-wise interactions in the input graph,

meaning that every node has a global receptive field at each layer.

Besides, since vanilla self-attention is ignorant of node ordering,

like positional encodings in language models, graph Transformers

must design various structural encodings as a soft inductive bias
to leverage graph structural information. Therefore, previous meth-

ods like WL test can no longer be used to analyze the expressivity

of graph Transformers, considering the substantial differences be-

tween two model architectures. The natural questions arise: How to
characterize the structural expressive power of graph Transformers?
How to build expressive graph Transformers that can outperform the
WL test and GNNs?

Our key to answering the questions above is SEG-WL test
(Structural Encoding enhanced Global Weisfeiler-Lehman test),

a generalized graph isomorphism test algorithm designed to char-

acterize the expressivity of graph Transformer, as illustrated in

Figure 1. Specifically, SEG-WL test represents a family of graph

isomorphism test algorithms whose label update strategy is shaped

by predefined structural encodings. For every input graph, SEG-WL

test first inserts absolute structural encodings to the initial node

labels. Then during each iteration, unlike WL test which updates

ar
X

iv
:2

30
5.

13
98

7v
1

 [
cs

.L
G

]
 2

3
M

ay
 2

02
3

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Wenhao Zhu, Tianyu Wen, Guojie Song, Liang Wang, and Bo Zheng

(a) WL Test (b) SEG-WL Test

Figure 1: An illustration of the node label update strategies of WL test and SEG-WL test.

the node label of 𝑣 by hashing the multiset of its neighborhood

node labels {{ℎ(𝑢) : 𝑢 ∈ N (𝑣)}}, SEG-WL test globally hashes

{{(ℎ(𝑢), RSE(𝑢, 𝑣)) : 𝑢 ∈ 𝑉 }}, the collection of all node labels to-

gether with relative structural encodings to the central node. We

theoretically prove that SEG-WL test is an expressivity upper bound

on any graph neural model that learns structural information via

structural encodings, including most graph Transformers (Theorem

1). Moreover, with the universal approximation theorem of Trans-

formers [50], we show under certain assumptions, the expressivity

of SEG-WL test can be approximated at any precision by a simple

Transformer network which incorporates relative structural encod-

ings as attention biases (Theorem 2). These conclusions guarantee

that SEG-WL test can be a solid theoretical tool for our deeper

investigation into the expressivity of graph Transformers.

Since the label update strategy of SEG-WL test is driven by struc-

tural encoding, we next develop general theories to understand the

characteristics of structural encodings better. Our central result

shows that one can compare the expressivity and convergence rate

of SEG-WL tests by looking into the relationship between their

structural encodings (Theorem 3), which provides us with a simple

and powerful solution to analyze the representational capacity of

SEG-WL test and graph Transformers. We show WL test can be

viewed as a nested case of SEG-WL test (Theorem 4), and theoret-

ically characterize how to design structural encodings that make

graph Transformers more expressive than WL test and GNNs. We

demonstrate that graph Transformers with the shortest path dis-

tance (SPD) structural encodings (like Graphormer [48]) are strictly

more powerful than the WL test (Theorem 5), and they have dis-

tinctive expressive power that differs from encodings that focus

on local information (Proposition 1). Based on SPD encodings, we

follow the theoretical guidelines and design SPIS, a provably more

powerful structural encoding (Theorem 6) with profound represen-

tational capabilities (Proposition 2-3). Our synthetic experiments

verify that SPIS has remarkable expressive power in distinguishing

graph structures, and the performances of existing graph Trans-

formers can be consistently improved when equipped with the

proposed SPIS.

Contributions. We summarize the main contributions of this

work as follows:

• We introduce the SEG-WL test algorithm and prove it well

characterizes the expressive power of various graph Trans-

formers (Section 4, Theorem 1-2).

• Using the SEG-WL test, we develop a generalized theoreti-

cal framework on structural encodings that determines the

expressivity of graph Transformers, and show how to make

graph Transformers more expressive thanWL test and GNNs

(Section 5, Theorem 3-4).

• We conduct in-depth investigation into the expressivity of

the existing SPD structural encoding, and propose a provably

more powerful encoding method SPIS (Section 6, Theorem

5-6).

• Synthetic and real-world experiments demonstrate that SPIS
has strong expressive power in distinguishing graph struc-

tures, and performances of benchmark graph Transformers

are dominated by the theoretically more powerful SPIS en-
coding (Section 7).

Overall, we build a general theoretical framework for analyzing

the expressive power of graph Transformers, and propose the SPIS
structural encoding to push the boundaries of both expressivity

and performance of graph Transformers.

2 Related Work
2.1 WL Test and GNNs

Weisfeiler-Lehman Graph Isomorphism Test. The Weisfeiler-

Lehman test is a hierarchy of graph isomorphism tests [12, 42], and

the 1-WL test is know to be an upper bound on the expressivity

of message-passing GNNs [47]. Note that in this paper, without

further notations, we will use the term WL to refer to 1-WL test.

Formally, the definition of WL test is presented as

Definition 2.1 (WL test). Let the input be a labeled graph 𝐺 =

(𝑉 , 𝐸) with label map ℎ0 : 𝑉 → X. WL test iteratively updates node
labels of 𝐺 , where at the 𝑡-th iteration, the updated node label map
𝑤𝑡 : 𝑉 → X is computed as

𝑤𝑡 (𝑣) = Φ (𝑤𝑡−1 (𝑣), {{𝑤𝑡−1 (𝑢) : 𝑢 ∈ N (𝑣)}}) , (1)

where𝑤0 = ℎ0 and Φ is a function that injectively maps the collection
of all possible tuples in the r.h.s. of Equation 1 to X. We say two
graphs𝐺1,𝐺2 are distinguished as non-isomorphic byWL test if after 𝑡
iterations, the WL test generates {{𝑤𝑡 (𝑣) |𝑣 ∈ 𝑉1}} ≠ {{𝑤𝑡 (𝑣) |𝑣 ∈ 𝑉2}}
for some 𝑡 .

GNNs beyond the Expressivity of 1-WL. Since standard GNNs

(like GCN [19], GAT [40] and GIN [47]) have expressive power

bounded by the 1-WL, many works have proposed to improve the

expressivity of GNNs beyond the 1-WL. High-order GNNs including

[2, 24, 27, 28] build graph neural networks inspired from k-WL

with 𝑘 > 3 to acquire the stronger expressive power, yet they

mostly have high computational costs and complex network designs.

Some works have proposed to use pre-computed topological node

On Structural Expressive Power of Graph Transformers Woodstock ’18, June 03–05, 2018, Woodstock, NY

features to enhance the expressive power of GNNs, including [4,

21, 25]. These additional features may contain the number of the

appearance of certain substructures like triangles, rings and circles.

And recent works like [36, 41, 43, 49] show that the expressivity

of GNNs can also be enhanced using random node identifiers or

improved message-passing schemes.

2.2 Graph Transformer
The Transformer Architecture. Transformer is first proposed

in [39] to model sequence-to-sequence functions on text data, and

now has become the prevalent neural architecture for natural lan-

guage processing [7]. A Transformer layer mainly consists of a

multi-head self-attention (MHA) module and a position-wise feed-

forward network (FFN) with residual connections. For queries

𝑸 ∈ R𝑛𝑞×𝑑 , keys 𝑲 ∈ R𝑛𝑘×𝑑 and values 𝑽 ∈ R𝑛𝑘×𝑑 , the scaled
dot-product attention module can be defined as

Attention(𝑸,𝑲 , 𝑽) = softmax(𝑨)𝑽 ,𝑨 =
𝑸𝑲⊤
√
𝑑

, (2)

where 𝑛𝑞, 𝑛𝑘 are number of elements in queries and keys, and 𝑑 is

the hidden dimension. Then, the multi-head attention is calculated

as

MHA(𝑸,𝑲 , 𝑽) = Concat(head1, . . . , headℎ)𝑾𝑂 , (3)

head𝑖 = Attention(𝑸𝑾𝑄

𝑖
,𝑲𝑾𝐾

𝑖 , 𝑽𝑾𝑉
𝑖), for 𝑖 = 1, . . . , ℎ, (4)

where ℎ is number of attention heads,𝑾𝑄

𝑖
∈ R𝑑×𝑑𝑘 ,𝑾𝐾

𝑖
∈ R𝑑×𝑑𝑘 ,

𝑾𝑉
𝑖

∈ R𝑑×𝑑𝑣 and𝑾𝑂 ∈ Rℎ𝑑𝑣×𝑑 are projection parameter matrices,

𝑑, 𝑑𝑘 , 𝑑𝑣 are the dimension of hidden layers, keys and values. In

encoder side of the original Transformer architecture, all queries,

keys and values come from the input sequence embeddings.

After multi-head attention, the position-wise feed-forward net-

work is applied to every element in the sequence individually and

identically. This network is composed of two linear transforma-

tions, an activation function and residual connections in between.

Layer normalization [3] is also performed before the multi-head

self-attention and feed-forward network [46]. A Transformer layer

can be defined as below:

Transformer(𝑸,𝑲 , 𝑽) = FFN(LN(𝑯)) + 𝑯 , (5)

𝑯 = MHA(LN(𝑸,𝑲 , 𝑽)) + 𝑸 . (6)

Graph Transformers. Along with the recent surge of Trans-

former, many prior works have attempted to bring Transformer

architecture to the graph domain, including GT [8], GROVER [34],

Graphormer [48], SAN [20], SAT [5], ANS-GT [51], GraphGPS [32],

GRPE [29], EGT [17] and NodeFormer [44]. These methods gen-

erally treat input graph as a sequence of node features, and apply

various methods to inject structural information into the network.

GT [8] provides a generalization of Transformer architecture for

graphs with modifications like using Laplacian eigenvectors as

positional encodings and adding edge feature representation to

the model. GROVER [34] is a molecular large-scale pretrain model

that applies Transformer to node embeddings calculated by GNN

layers. Graphormer [48] proposes an enhanced Transformer with

centrality, spatial and edge encodings, and achieves state-of-the-art

performance on many molecular graph representation learning

benchmarks. SAN [20] presents a learned positional encoding that

cooperates with full Laplacian spectrum to learn the position of each

node in the graph. Gophormer [53] applies structural-enhanced

Transformer to sampled ego-graphs to improve node classification

performance and scalability. GraphGPS [32] proposes a recipe on

how to build a general, powerful, scalable (GPS) graph Transformer

with linear complexity and state-of-the-art results on real bench-

mark tests. SAT [5] proposes the Structure-Aware Transformer with

its new self-attention mechanism which incorporates structural in-

formation into the original self-attention by extracting a subgraph

representation rooted at each node using GNNs before computing

the attention.

3 Preliminaries
Basic Notations. Let 𝐺 = (𝑉 , 𝐸) be a undirected graph where

𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is the node set that consists of 𝑛 nodes, and

𝐸 ⊂ 𝑉 × 𝑉 is edge set. Let ℎ0 : 𝑉 → X defines the input feature

vector (or label) attached to nodes, where X ⊂ R𝑑 is the feature

space. In this paper, we only consider simple undirected graphs

with node features, and we use G to denote the set of all possible

labeled simple undirected graphs.

Structural Encodings. Generally, structural encoding is a func-

tion that encodes structural information in 𝐺 to numerical vectors

associated with nodes or node tuples of𝑉 . In the scope of this paper,

we mainly use two types of structural encodings: absolute structural
encoding (ASE), which represents absolute structural knowledge

of individual nodes, and relative structural encoding (RSE), which

represents the relative structural relationship between two nodes in

the entire graph context. For a certain graph Transformer model, its

structural encoding scheme consists of both absolute and relative

encodings, and we present the formal definition below:

Definition 3.1 (Structural Encoding). A structural encod-
ing scheme 𝑆 = (𝑓𝐴, 𝑓𝑅) is a pair of functions, where for any graph
𝐺 = (𝑉 , 𝐸), 𝑓𝐴 (𝑣,𝐺) ∈ C is the absolute structural encoding of any
node 𝑣 ∈ 𝑉 , 𝑓𝑅 (𝑣,𝑢,𝐺) ∈ C is the relative structural encoding of
any node pair (𝑣,𝑢) ∈ 𝑉 ×𝑉 , and C is the target space. A structural
encoding scheme is called regular if the relative structural encoding
function satisfies 𝑓𝑅 (𝑣, 𝑣,𝐺) ≠ 𝑓𝑅 (𝑣,𝑢,𝐺) for 𝑢, 𝑣 ∈ 𝑉 and 𝑢 ≠ 𝑣 .

For example, we can use degree as an absolute structural encod-

ing of a node, and use the shortest path distance between two nodes

as the relative structural encoding of a node pair. We will discuss

structural encodings more in the following sections.

4 SEG-WL Test and Graph Transformers
In this section, we mathematically formalize the SEG-WL test algo-

rithm and theoretically prove that SEG-WL test well characterizes

the expressive power of graph Transformers. Note that Appendix

A provides detailed proofs for all theorems and propositions in the

following sections.

4.1 FromWL Test to SEG-WL Test
Generally, previous GNN-based methods represent a node by sum-

marizing and transforming its neighborhood information. This

strategy leverages graph structure in a hard-coded way, where

the structural knowledge is reflected by removing the information

Woodstock ’18, June 03–05, 2018, Woodstock, NY Wenhao Zhu, Tianyu Wen, Guojie Song, Liang Wang, and Bo Zheng

exchange between non-adjacent nodes. WL test is a high-level ab-

straction of this learning paradigm. However, graph Transformers

take a fundamentally different way of learning graph representa-

tions. Without any hard inductive bias, self-attention represents a

node by aggregating its semantic relation between every node in

the graph, and structural encodings guide this aggregation as a soft
inductive bias to reflect the graph structure. The proposed SEG-WL

test then becomes a generalized algorithm for this powerful and

flexible learning scheme by updating node labels based on the en-

tire label set of nodes and their relative structural encoding to the

central node, defined as follows:

Definition 4.1 (SEG-WL Test). Let the input be a labeled graph
𝐺 = (𝑉 , 𝐸) with label map ℎ0 : 𝑉 → X. For structural encoding
scheme 𝑆 = (𝑓𝐴, 𝑓𝑅), its corresponding SEG-WL test algorithm first
computes the initial label mapping𝑔0 : 𝑉 → X by adding the absolute
structural encodings:

𝑔0 (𝑣) = Φ0 (ℎ0 (𝑣), 𝑓𝐴 (𝑣,𝐺)), (7)

where Φ0 is a injective function that maps the tulple to X. Then SEG-
WL test iteratively updates node labels of𝐺 , where at the 𝑡-th iteration,
the updated node label mapping 𝑔𝑡 : 𝑉 → X is computed as

𝑔𝑡 (𝑣) = Φ ({{(𝑔𝑡−1 (𝑢), 𝑓𝑅 (𝑣,𝑢,𝐺)) : 𝑢 ∈ 𝑉 }}) , (8)

whereΦ is a function that injectively maps the collection of all possible
multisets of tuples in the r.h.s. of Equation 8 to X. We say two graphs
𝐺1,𝐺2 are distinguished as non-isomorphic by 𝑆-SEG-WL test if after 𝑡
iterations, 𝑆-SEG-WL generates {{𝑔𝑡 (𝑣) : 𝑣 ∈ 𝑉1}} ≠ {{𝑔𝑡 (𝑣) : 𝑣 ∈ 𝑉2}}
for some 𝑡 .

Note that for structural encoding scheme 𝑆 we use 𝑆-SEG-WL

to denote its corresponding SEG-WL test algorithm. Following its

definition, we will show that SEG-WL test characterizes a wide

range of graph neural models that leverage graph structure as a

soft inductive bias:

Theorem 1. For any structural encoding scheme 𝑆 = (𝑓𝐴, 𝑓𝑅) and
labeled graph 𝐺 = (𝑉 , 𝐸) with label map ℎ0 : 𝑉 → X, if a graph
neural model A : G → R𝑑 satisfies the following conditions:

(1) A computes the initial node embeddings with

𝑙0 (𝑣) = 𝜙 (ℎ0 (𝑣), 𝑓𝐴 (𝑣,𝐺)), (9)

(2) A aggregates and updates node embeddings iteratively with

𝑙𝑡 (𝑣) = 𝜎 ({{(𝑙𝑡−1 (𝑢), 𝑓𝑅 (𝑣,𝑢,𝐺)) : 𝑢 ∈ 𝑉 }}), (10)

where 𝜙 and 𝜎 above are model-specific functions,
(3) The final graph embedding is computed by a global readout

on the multiset of node features {{𝑙𝑡 (𝑣) : 𝑣 ∈ 𝑉 }}.
then for any labeled graphs 𝐺1 and 𝐺2, if A maps them to different
embeddings, 𝑆-SEG-WL also decides 𝐺1 and 𝐺2 are not isomorphic.

In the SEG-WL test framework outlined by Theorem 1, Appendix

C presents examples of characterizing the expressivity of existing

graph Transformer models using certain structural encoding , in-

cluding [5, 8, 20, 48, 53] . Notably, in Appendix A.1 we provide

a more generalized version of Theorem 1 which proves that the

widely adopted virtual node trick [48] has no influence on the

maximum model expressive power.

4.2 Theoretically Powerful Graph Transformers
Though the maximum representational power of most graph Trans-

former models has been well characterized by SEG-WL test, it is still

unknown if there exists a graph Transformer model that can reach

its expressivity upper bound. Transformer layers are composed of

self-attention module and feed-forward network, which drive them

much more complex than standard GNN layers, making it chal-

lenging to analyze the expressive properties of graph Transformers.

Thanks to the universal approximation theorem of Transformers

[50], our next theoretical result demonstrates that under certain

conditions, a simple graph Transformer model which leverages

relative structural encodings as attention biases via learnable em-

bedding layers (named as bias-GT) can arbitrarily approximate the

SEG-WL test iterations for any structural encoding design:

Theorem 2. For any regular structural encoding scheme 𝑆 , graph
order 𝑛, 1 < 𝑝 < ∞ and 𝜖 > 0, let 𝑓𝑡 represent the function of 𝑆-
SEG-WL with 𝑡 iterations. Then 𝑓𝑡 can be approximated by a bias-GT
network 𝑔 with 𝑆 such that d𝑝 (𝑓𝑡 , 𝑔) < 𝜖 if (i) the feature space X is
compact, (ii) Φ can be extended to a continuous function with respect
to node labels.

In Theorem 2 we define 𝑓𝑡 by stacking all labels generated by

SEG-WL test with 𝑡 iterations, and d𝑝 (𝑓𝑡 , 𝑔) is the maximum ℓ𝑝

distance between 𝑓𝑡 and 𝑔 when changing the input graph structure.

Proof for Theorem 2 and the detailed descriptions for 𝑓𝑡 , 𝑔, d𝑝 ,Φ
and the bias-GT network are provided in Appendix A.2.

Under certain conditions, Theorem 2 guarantees that the simple

Transformer network bias-GT is theoretically capable of capturing

structural knowledge introduced as attention biases and arbitrarily

approximating its expressivity upper bound, though a good approx-

imation may require many Transformer layers. Overall, considering

that the simple bias-GT network (which can be viewed as a simpli-

fication of existing graph Transformers like Graphormer [48]) is

one instance among the most theoretically powerful graph Trans-

formers, one can translate the central problem of characterizing

the expressive capacity of graph Transformers into understanding

the expressivity of SEG-WL test, which is determined by the design

of structural encodings.

5 General Discussions on SEG-WL Test and
Structural Encodings

In this section, we develop a unified theoretical framework for ana-

lyzing structural encodings and the expressivity of SEG-WL test.

One can tell that each SEG-WL test iteration has quadratic com-

plexity with respect to the graph size and is more computationally

expensive than WL, yet we will prove in the following text that

SEG-WL test could exhibit extraordinary expressive power and

lower necessary iterations when combined with a variety of struc-

tural encodings. We first present concrete examples and show how

the expressivity of structural encodings can be compared. Based on

these findings, we prove that WL test is a nested case of SEG-WL

test and theoretically characterize how to design structural encod-

ings exceeding the expressivity of WL test. More discussions are

provided in Appendix B.

On Structural Expressive Power of Graph Transformers Woodstock ’18, June 03–05, 2018, Woodstock, NY

5.1 Examples of Structural Encodings
Identical Encoding. The simplest encoding scheme assigns

identical information to every node and non-duplicated node pair.

Formally, let id = (id𝐴, id𝑅) be the identical encoding scheme, then

for 𝐺 = (𝑉 , 𝐸) and 𝑣,𝑢 ∈ 𝑉 , id𝐴 (𝑣,𝐺) = 0, id𝑅 (𝑣,𝑢) = 1, id𝑅 (𝑣, 𝑣) =
0.

Node Degree Absolute Encoding. A common strategy for in-

jecting absolute structural knowledge to node embeddings in the

entire graph context is using the node degree as an additional signal.

For graph 𝐺 = (𝑉 , 𝐸) and 𝑣 ∈ 𝑉 , let Deg𝐴 (𝑣,𝐺) be the degree of
node 𝑣 , then Deg𝐴 is the node degree absolute encoding function.

Neighborhood Relative Encoding. Neighborhood relative en-

coding Neighbor𝑅 is a basic example that encodes edge connections.

For 𝐺 = (𝑉 , 𝐸) and 𝑣,𝑢 ∈ 𝑉 , it is defined as

Neighbor𝑅 (𝑣,𝑢,𝐺) =
{

1, if (𝑣,𝑢) ∈ 𝐸,

2, if (𝑣,𝑢) ∉ 𝐸,
(11)

andNeighbor𝑅 (𝑣, 𝑣,𝐺) = 0.Wealso useNeighbor = (id𝐴,Neighbor𝑅)
to denote the encoding scheme that combines Neighbor𝑅 with iden-

tical absolute encoding. Intuitively, we will show that Neighbor
precisely shapes the expressivity of WL test.

Shortest Path Distance Relative Encoding. First introduced
by [48], shortest path distance (SPD) is a popular choice for repre-

senting relative structural information between two nodes in the

graph. We formulate it as

SPD𝑅 (𝑣,𝑢,𝐺) =


the SPD between 𝑣 and 𝑢 in 𝐺 ,

if 𝑣 and 𝑢 are connected,

∞, if 𝑣 and 𝑢 are not connected,

(12)

where ∞ can be viewed as an element in C and SPD𝑅 (𝑣, 𝑣,𝐺) =

0. We also define the SPD structural encoding scheme as SPD =

(id𝐴, SPD𝑅).

5.2 Structural Encoding Determines the
Expressiveness and Convergence Rate of
SEG-WL test

Our next theoretical result is based on the intuitive idea that if

one can infer the structural information in scheme 𝑆 from another

encoding scheme 𝑆 ′, then 𝑆 ′ should be generally more powerful

and converge faster on graphs as it contains more information.

To formulate this theoretical insight, we start by defining a par-

tial ordering to characterize the relative discriminative power of

structural encodings:

Definition 5.1 (Partial Order Relation on Structural En-

codings). For two structural encoding schemes 𝑆 = (𝑓𝐴, 𝑓𝑅) and
𝑆 ′ = (𝑓 ′

𝐴
, 𝑓 ′
𝑅
), we call 𝑆 ′ ⪰ 𝑆 if there exist mappings 𝑝𝐴, 𝑝𝑅 such that

for any 𝐺 = (𝑉 , 𝐸) and 𝑣,𝑢 ∈ 𝑉 we have

𝑓𝐴 (𝑣,𝐺) = 𝑝𝐴 (𝑓 ′𝐴 (𝑣,𝐺)), (13)

𝑓𝑅 (𝑣,𝑢,𝐺) = 𝑝𝑅 (𝑓 ′𝑅 (𝑣,𝑢,𝐺)) . (14)

With the definition above, we next present the central theorem

that shows structural encoding determines the expressiveness and

convergence rate of SEG-WL test:

Theorem 3. For two structural encoding schemes 𝑆 and 𝑆 ′, if
𝑆 ′ ⪰ 𝑆 , then

(1) 𝑆 ′-SEG-WL is more expressive than 𝑆-SEG-WL in testing
non-isomorphic graphs.1

(2) for a pair of graphs𝐺1 and𝐺2 that 𝑆-SEG-WL distinguishes
as non-isomorphic after 𝑡 iterations, 𝑆 ′-SEG-WL can distin-
guish 𝐺1 and 𝐺2 as non-isomorphic within 𝑡 iterations.

Theorem 3 lays out a critical fact on the relations between SEG-

WL test and structural encodings: if 𝑆 ′ ⪰ 𝑆 , then compared with
𝑆-SEG-WL, 𝑆 ′-SEG-WL is more powerful in graph isomorphism test-
ing and will always converge faster when testing graphs. Through
Theorem 3 , we can distinguish the expressive power of various

structural encodings by comparing them with baseline encodings

defined in Section 5.1. Given existing structural encodings, Theo-

rem 3 shows that more powerful encodings can be developed by

adding extra non-trivial structural information. We will elaborate

on the ideas above in the following text.

5.3 WL as SEG-WL Test
The first application of our theoretical results is to answer the

question: How to design graph Transformers that are more powerful
than the WL test? Since the expressivity of graph Transformers

depends on the corresponding SEG-WL test, we first characterize

WL test as a special case of SEG-WL test:

Theorem 4. Two non-isomorphic graphs can be distinguished by
WL if and only if they are distinguishable by Neighbor-SEG-WL.

Theorem 4 proves that though Neighbor-SEG-WL hashes the

whole set of node labels, its expressivity is still exactly the same

as WL test. Therefore, from a theoretical perspective, graph Trans-

former models with Neighbor encoding have the same expressive

power as WL-GNNs, though they feature the multi-head attention

mechanism and global receptive field for every node. Combined

with Theorem 3, the answer to the question above becomes simple:

To design a graph Transformer that is more powerful than the WL
test, we only need to equip it with structural encoding more expressive
than Neighbor.

Furthermore, considering many GNNs utilize absolute structural

encodings to enhance their expressive power (e.g., [4]), we wonder

how to compare their expressiveness against Transformers. For

any absolute structural encoding 𝑓𝐴 , we can easily infer from Theo-

rem 4 that 𝑓𝐴-WL (WL with additional node features generated by

𝑓𝐴) is equivalent to (𝑓𝐴,Neighbor𝑅)-SEG-WL on expressive power.

Therefore, to develop graph Transformers with expressivity beyond

WL-GNNs, it is necessary to design relative structural encodings

that are more powerful than Neighbor𝑅 .

6 Shortest-Path-Based Relative Structural
Encodings

This section presents an example of utilizing our theory and design-

ing powerful relative structural encodings for graph Transformers.

We start from encodings based on the shortest path between two

nodes, like SPD used in Graphormer [48].

1
For two isomorphic testing algorithms𝐴 and 𝐵, we say𝐴 is more expressive than 𝐵

if any non-isomorphic graphs distinguishable by 𝐵 can be distinguished by𝐴.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Wenhao Zhu, Tianyu Wen, Guojie Song, Liang Wang, and Bo Zheng

6.1 Expressivity of SPD Encoding
Considering that two nodes are adjacent when SPD between them

is 1, we can easily conclude that SPD𝑅 ⪰ Neighbor𝑅 . Therefore, it
can be inferred from Theorem 3 that SPD-SEG-WL is more powerful

thanWL. Besides, we can findmany pairs of non-isomorphic graphs

indistinguishable by WL but not for SPD-SEG-WL. We have

Theorem 5. (1) SPD-SEG-WL is strictlymore expressive than WL
in testing non-isomorphic graphs2;

(2) For𝐺1 and𝐺2 that WL distinguishes as non-isomorphic after 𝑡
iterations, SPD-SEG-WL can distinguish𝐺1 and𝐺2 as non-isomorphic
within 𝑡 iterations.

Proof. We can easily show that SPD-SEG-WL is more powerful

thanNeighbor-SEG-WL using Theorem 3 since two nodes are linked

if there shortest path distance is 1. And according to Theorem 4,

Neighbor-SEG-WL is as powerful as WL, then SPD-SEG-WL is more

powerful than WL.

Figure 5 below shows a pair of graphs that can be distinguished

by SPD-SEG-WL but not WL, which completes the proof. □

Figure 2: Two graphs that can be distinguished by SPD-SEG-
WL but not WL.

Theorem 5 formally proves that SPD-SEG-WL is strictly more

powerful and converges faster than WL in graph isomorphism

testing. In addition to Theorem 5, we want to find out how the

global structural information leveraged by shortest path encodings

affects the discriminative power of SEG-WL test. We introduce the

concept of receptive field of structural encodings, that when 𝑆 has

𝑘-hop receptive field, any structural information encoded by 𝑆 only

depends on the 𝑘-hop neighborhood of the central node. For exam-

ple, Neighbor has 1-hop receptive field because only neighborhood

connections are considered by Neighbor encoding. However, the
receptive field of SPD is not restricted to 𝑘-hop for any 𝑘 , since we

can construct graphs with SPD between two nodes arbitrarily large.

We show this global-aware receptive field brings distinctive power

to SPD that differs from any encodings with local receptive field, in

following Proposition 1:

Proposition 1. For any 𝑘 and any structural encoding scheme 𝑆
with 𝑘-hop receptive field, there exists a pair of graphs that SPD-SEG-
WL can distinguish, but 𝑆-SEG-WL can not.

Proof. Let 𝐶𝑙 denote the cycle graph of length 𝑙 . Then consider

two graphs 𝐺1 and 𝐺2, where 𝐺1 consists of 2𝑘 + 4 identical 𝐶
2𝑘+3

graphs, and𝐺2 consists of 2𝑘 + 3 identical𝐶
2𝑘+4

graphs.𝐺1 and𝐺2

have the same number of nodes, and the induced 𝑘-hop neighbor-

hood of any node in either of the two graphs is simply a path of

length 2𝑘 + 1. As a result, for structural encoding scheme 𝑆 with

𝑘-hop receptive field, 𝑆-SEG-WL generates identical labels for every

2
For two isomorphic testing algorithms𝐴 and 𝐵, we say𝐴 is strictly more expressive

than 𝐵 if 𝐴 is more expressive than 𝐵 in testing non-isomorphic graphs, and there

exist non-isomorphic graphs𝐺1 and𝐺2 such that𝐴 can distinguish𝐺1 and𝐺2 but

not for 𝐵.

node in the two graphs, making 𝐺1 and 𝐺2 indistinguishable for

𝑆-SEG-WL. However, in𝐺2 there exists shortest paths of length 𝑘+2

while 𝐺1 not, so SPD-SEG-WL can distinguish the two graphs. □

Though SPD has its unique expressive power and is more pow-

erful than WL, many low-order non-isomorphic graphs remain to

be indistinguishable by SPD-SEG-WL (see Proof for Theorem 6),

which leads us to find encodings that are more powerful than SPD.
Following Theorem 3, building structural encoding 𝑆 that satisfies

𝑆 ⪰ SPD can be done by adding meaningful information to SPD,
which illustrates the motivation for SPIS we will next introduce.

6.2 SPIS Relative Structural Encoding
From the perspective of graph theory, for two connected nodes

𝑣,𝑢 in the graph, there can be multiple shortest paths connecting 𝑣

and 𝑢, and these shortest paths may be linked or have overlapping

nodes. Since SPD only encodes the length of shortest paths, one

intuitive idea is to enhance it with features characterizing the rich

structural interactions between different shortest paths. Inspired

by concepts like betweenness centrality in network analysis [11],

we propose the concept of shortest path induced subgraph (SPIS)

to characterize the structural relations between nodes on shortest

paths:

Definition 6.1 (Shortest Path Induced Subgraph). For 𝐺 =

(𝑉 , 𝐸) and 𝑣,𝑢 ∈ 𝑉 , SPIS(𝑣,𝑢) = (𝑉SPIS(𝑣,𝑢) , 𝐸SPIS(𝑣,𝑢)), the shortest
path induced subgraph between 𝑣 and 𝑢 is an induced subgraph
of 𝐺 , where

𝑉SPIS(𝑣,𝑢) = {𝑠 : 𝑠 ∈ 𝑉 and SPD𝑅 (𝑣, 𝑠) + SPD𝑅 (𝑠,𝑢) = SPD𝑅 (𝑣,𝑢)}.
(15)

SPIS(𝑣,𝑢) is an induced subgraph of 𝐺 that contains all nodes

on shortest paths between 𝑣 and 𝑢. To encode knowledge in SPIS as

numerical vectors, we propose the relative encoding method SPIS𝑅
by enhancing SPD𝑅 with the total numbers of nodes and edges of

SPIS between nodes, as

SPIS𝑅 (𝑣,𝑢,𝐺) = (SPD𝑅 (𝑣,𝑢,𝐺), |𝑉SPIS(𝑣,𝑢) |, |𝐸SPIS(𝑣,𝑢) |), (16)

and we define the structural encoding scheme SPIS = (id𝐴, SPIS𝑅).

6.3 Analysis on SPIS Encoding
In the following, we will analyze the proposed SPIS encoding and
characterize its mathematical properties, comparing it with SPD
and WL. To start with, as SPIS is constructed by adding information

to SPD, we have SPIS ⪰ SPD and it is be more powerful than SPD-
SEG-WL according to Theorem 3.

Theorem 6. (1) SPIS-SEG-WL is strictly more expressive than
SPD-SEG-WL in testing non-isomorphic graphs.

(2) For𝐺1 and𝐺2 that SPD-SEG-WL distinguishes as non-isomorphic
after 𝑡 iterations, SPIS-SEG-WL can distinguish 𝐺1 and 𝐺2 as non-
isomorphic within 𝑡 iterations.

Proof. Considering SPD𝑅 is the first dimension of SPIS𝑅 , we
have SPIS ⪰ SPD and we can prove SPIS-SEG-WL is more powerful

than SPD-SEG-WL according to Theorem 3.

Figure 6 below shows a pair of graphs that can be distinguished

by SPIS-SEG-WL but not SPD-SEG-WL. It is trivial to verify that SPD-
SEG-WL can not distinguish them. For SPIS-SEG-WL, to understand

On Structural Expressive Power of Graph Transformers Woodstock ’18, June 03–05, 2018, Woodstock, NY

this, Figure 6 colors examples of SPIS between non-adjacent nodes

in the two graphs, where the nodes at two endpoints are colored

as red. In the first graph, every SPIS between non-adjacent nodes

has 3 nodes, but in the second graph there exists SPIS between non-

adjacent nodes that has 4 nodes, so SPIS-SEG-WL can distinguish

them. □

Figure 3: Two graphs that can be distinguished by SPIS-SEG-
WL but not SPD-SEG-WL.

Next, we show that SPIS-SEG-WL exhibits far superior perfor-

mance to WL and SPD-SEG-WL on important graph structures. The

computational complexity of SPIS is discussed in Appendix B.

SPIS-SEG-WL Distinguishes All Low-order Graphs (𝑛 ≤ 8).
On low-order graphs, our synthetic experiments in Table 1 con-

firm that SPIS-SEG-WL distinguishes all non-isomorphic graphs

with order equal to or less than 8, which is much more powerful

than WL with 332 indistinguishable pairs and SPD-SEG-WL with

200 indistinguishable pairs. This strong discriminative power on

low-order graphs shows that SPIS can accurately distinguish local

structures in real-world graphs.

SPIS-SEG-WL Well Distinguishes Strongly Regular Graphs.
A regular graph is a graph parameterized by two parameters 𝑛, 𝑘

which has 𝑛 nodes and each node has the 𝑘 neighbors, denoted

as RG(𝑛, 𝑘). And a strongly regular graph parameterized by four

parameters (𝑛, 𝑘, 𝜆, 𝜇) is a regular graph RG(𝑛, 𝑘) where every adja-
cent pair of nodes has the same number 𝜆 of neighbors in common,

and every non-adjacent pair of nodes has the same number 𝜇 of

neighbors in common, denoted as SRG(𝑛, 𝑘, 𝜆, 𝜇).
Due to their highly symmetric structure, regular graphs are

known to be failure cases for graph isomorphism test algorithms.

For example, WL can not discriminate any regular graphs of the

same parameters, making any pair of strongly regular graphs with

the same𝑛 and 𝑘 indistinguishable to it, even 𝜆 and 𝜇 could be differ-

ent. Yet Proposition 2 guarantees that SPIS-SEG-WL can distinguish

any pair of strongly regular graphs of different parameters:

Proposition 2. SPIS-SEG-WL can distinguish any pair of strongly
regular graphs of different parameters.

Proof. It is trivial to verify that regular graphs with different

parameters can be distinguished by WL, so we focus on strongly

regular graphs with the same 𝑛 and 𝑘 but different 𝜆 and 𝜇. For

SRG(𝑛, 𝑘, 𝜆, 𝜇), since every non-adjacent pair of nodes has 𝜇 neigh-

bors in common, the SPIS between evry non-adjacent pair of nodes

will have 𝜇 + 2 nodes, which implies that SPIS-SEG-WL can dis-

tinguish strongly regular graphs with different 𝑛, 𝑘, 𝜇. Besides, the

four parameters of strongly regular graphs are not independent,

they satisfy

𝜆 = 𝑘 − 1 − 𝜇

𝑘
(𝑛 − 𝑘 − 1), (17)

so SPIS-SEG-WL can distinguish strongly regular graphs with dif-

ferent parameters. □

It is worth mentioning that, for strongly regular graphs with

the same parameters, SPIS also exhibits outstanding discriminative

power, with the number of total failures being far less than WL and

SPD-SEG-WL (See Section 7.1 and Table 1).

SPIS-SEG-WL Distinguishes 3-WL Failure Cases. When com-

pared with 𝑘-order WL tests (𝑘 ≥ 3, SEG-WL test costs only 𝑂 (𝑛2)
time complexity at each iteration, and the flexible choice of struc-

tural encoding method allows it to show a wide range of expressive

capabilities. Here, we show that SPIS-SEG-WL is able to distinguish

a pair of graphs that 3-WL can not distinguish:

Proposition 3. There exists a pair of graphs that SPIS-SEG-WL
can distinguish, but 3-WL can not.

Proof. Figure 7 below shows a pair of graphs that can be dis-

tinguished by SPIS-SEG-WL but not 3-WL. The two graphs, named

as the Shrikhande graph and the Rook’s 4 × 4 graph, are both

SRG(16, 6, 2, 2) and the most popular example for indistinguishabil-

ity with 3-WL [1]. To show they can be distinguished by SPIS-SEG-
WL, Figure 7 also colors examples of SPIS between non-adjacent

nodes, where the nodes at two endpoints are colored as red. In the

second graph (the Shrikhande graph), one can verify that every

SPIS between non-adjacent nodes has 4 nodes and 4 edges, but in

the first graph (the Rook’s 4 × 4 graph) there exists SPIS between

non-adjacent nodes that has 5 edges, making SPIS-SEG-WL capable

of distinguishing them. □

Figure 4: Two graphs (the Shrikhande graph and the Rook’s
4 × 4 graph) that can be distinguished by SPIS-SEG-WL but
not 3-WL.

Computing SPIS. To compute SPIS encoding on a input graph

𝐺 = (𝑉 , 𝐸), we first use the Floyd-Warshall algorithm [10] to com-

pute the lengths of shortest paths between all pairs of vertices in𝐺 ,

which takes 𝑂 (𝑛3) time complexity where 𝑛 = |𝑉 |. Next for every
pair of nodes (𝑣,𝑢), for every node 𝑠 we test if 𝑠 is in SPIS(𝑣,𝑢) by
checking if SPD𝑅 (𝑣, 𝑠)+SPD𝑅 (𝑠,𝑢) = SPD𝑅 (𝑣,𝑢) holds to construct
𝑉
SPIS(𝑣,𝑢) , and this step also has𝑂 (𝑛3) time complexity. Finally, for

every pair of nodes (𝑣,𝑢) we construct 𝐸
SPIS(𝑣,𝑢) by computing

the intersection between 𝑉
SPIS(𝑣,𝑢) × 𝑉

SPIS(𝑣,𝑢) and 𝐸. If we de-

note the average number of nodes of SPISs in the graph as 𝑡 , then

𝑉
SPIS(𝑣,𝑢) × 𝑉

SPIS(𝑣,𝑢) can have 𝑡2
edges in average and thus the

final step costs𝑂 (𝑛2𝑡2) complexity. The overall time complexity for

computing SPIS is then 𝑂 (𝑛3 + 𝑛2𝑡2). As we can reasonably expect

Woodstock ’18, June 03–05, 2018, Woodstock, NY Wenhao Zhu, Tianyu Wen, Guojie Song, Liang Wang, and Bo Zheng

𝑡2 ∼ 𝑛 on most real-world sparse graphs because SPISs should be

small with respect to the entire graph, the complexity of SPIS can
be viewed as 𝑂 (𝑛3). This is quite acceptable because the time com-

plexity for computing SPD via Floyd-Warshall algorithm is already

𝑂 (𝑛3), and SPIS offers a much stronger expressive power.

7 Experiments
In this section, we first perform synthetic isomorphism tests on

low order graphs and strongly regular graphs to evaluate the ex-

pressive power of proposed SPIS encoding against several previous

benchmark methods. Then we show that by replacing SPD encoding

with the provably stronger SPIS, the performance of the well-tested

Graphormer model on a wide range of real-world datasets can be

significantly improved.

7.1 Synthetic Isomorphism Tests
Settings. To evaluate the structural expressive power of WL test

and SEG-WL test with structural encodings described above, we

first perform synthetic isomorphism tests on a collection of con-

nected low-order graphs up to 8 nodes and strongly regular graphs

up to 45 nodes
3
. We run the algorithms above and check how they

can disambiguate non-isomorphic low order graphs with the same

number of nodes and strongly regular graphs with the same param-

eters. The results are shown in Table 1.

Results. For low order graphs, results in Table 1 show that SPD-
SEG-WL can distinguish more non-isomorphic graphs than WL,

but neither can match the effectiveness of SPIS-SEG-WL which dis-

ambiguates any low-order graphs up to 8 nodes. As for the highly

symmetric strongly regular graphs, both WL and SPD-SEG-WL

cannot discriminate any strongly regular graphs with the same

parameters, yet SPIS-SEG-WL only has few indistinguishable pairs.

Compared with WL and SPD-SEG-WL, SPIS-SEG-WL has outstand-

ing structural expressive power. Since many real-world graphs (like

molecular graphs) consist of small motifs with highly symmetrical

structures, it is reasonable to expect that graph Transformers with

SPIS can accurately capture significant graph structures and exhibit

strong discriminative power.

7.2 Graph Representation Learning
Datasets. To test the real-world performance of graph Transform-

ers with proposed structural encodings, we select 8 popular graph

representation learning benchmarks: 5 property regression datasets

(ogb-PCQM4Mv2 [15, 16], ZINC(subset) [9, 18], QM9, QM8, ESOL

[45]) and 4 classification datasets (PTC-MR, MUTAG, COX2, PRO-

TEINS [26]). Statistics of the datasets are summarized the appendix.

ogb-PCQM4Mv2 is a large-scale graph regression dataset with over

3 million graphs. The ZINC dataset from benchmarking-gnn [9]
4
is

a subset of the ZINC chemical database [18] with 12000 molecules,

and the task is to predict the solubility of molecules. We follow

the guidelines and use the predefined split for training, validation

and testing. QM9 and QM8 [30, 31, 35] are two molecular datasets

containing small organic molecules up to 9 and 8 heavy atoms,

and the task is to predict molecular properties calculated with ab

3
We use the database in http://www.maths.gla.ac.uk/~es/srgraphs.php to collect

strongly regular graphs with the same set of parameters.

4
https://github.com/graphdeeplearning/benchmarking-gnns.

initio Density Functional Theory (DFT). We follow the guidelines

in MoleculeNet [45] for choosing regression tasks and metrics. We

perform joint training on 12 tasks for QM9 and 16 tasks for QM8.

ESOL is also a molecular regression dataset in MoleculeNet contain-

ing water solubility data for compounds
5
. PTC-MR, MUTAG, COX2

and PROTEINS are four graph classification datasets collected from

TUDataset [26]
6
. On graph regression datasets, We use random

8:1:1 split for training, validation, and testing except for ZINC, and

report the performance averaged over 3 runs. On graph classifica-

tion datasets, we use 10-fold cross validation with 90% training and

10% testing, and report the mean best accuracy.

Settings and Baselines. To investigate how the expressive power

of structural encodings affects the benchmark performance of real

graph Transformers, we first choose the Graphormer [48] as the

backbone model for testing structural encoding since Graphormer

proposes SPD, which we have characterized and has expressivity

stronger than WL, and the way Graphormer introduces relative

structural encodings can correspond to our Theorem 2 which an-

alyzes a simple Transformer network incorporating relative en-

codings via attention biases. The original Graphormer utilizes a

SPD𝑅 relative structural encoding (discussed in Appendix C), so

we name it as Graphormer-SPD. We build a new Graphormer-

SPIS model by replacing the SPD𝑅 encoding with SPIS𝑅 encoding

as an improved version of Graphormer while keeping other net-

work components unchanged. Similarly, we use Graphormer-id and

Graphormer-Neighbor as less expressive Graphormer variants. We

also include the GraphGPS [32] model and its variants GraphGPS-

SPD and GraphGPS-SPIS into comparison on the large-scale ogbn-

PCQM4Mv2 dataset with over 3 million graphs. The Transformer

module in the basic GraphGPS model does not incorporate struc-

tural encoding, thus it can be considered as including id structural

encoding. We construct versions of the GraphGPS model incorpo-

rating Neighbor, SPD, and SPIS structural encodings via attention
biases to validate the impact of structural encoding expressivity on

performance for large-scale graph tasks.

In addition, we compare the above Graphormer variants against

(i) GNNs including GCN [19], GIN [47], GAT [40], GraphSAGE [13],

GSN [4], PNA [6] and 1-2-3-GNN [28]; (ii) best performances col-

lected by MoleculeNet paper [45]; (iii) graph kernel based methods

including WL subtree kernel [37], RetGK [52], P-WL [33] and FGW

[38]; (iv) graph Transformers including GT [8], SAN [20], SAT [5],

GRPE [29] and EGT [17]. One can find the detailed descriptions of

Graphormer variants, baselines, and training settings in Appendix

D.2.

Results. Table 2 and 3 presents the results of graph representa-

tion learning benchmarks. It can be observed that the performances

of Graphormer variants mostly align with their relative ranking

of expressive power (SPIS ⪰ SPD ⪰ Neighbor ⪰ id), and replacing

the SPD encoding in Graphormer with the proposed stronger SPIS
encoding results in a consistent performance improvement, demon-

strating that real-world performance of graph Transformers can

benefit from theoretically expressive structural encoding designs.

5
QM8, QM9 and ESOL are available at http://moleculenet.ai/datasets-1 (MIT 2.0

license).

6
The four datasets are available at https://chrsmrrs.github.io/datasets/.

http://www.maths.gla.ac.uk/~es/srgraphs.php
https://github.com/graphdeeplearning/benchmarking-gnns
http://moleculenet.ai/datasets-1
https://chrsmrrs.github.io/datasets/

On Structural Expressive Power of Graph Transformers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Low-Order Graphs (Parameter: 𝑛) Strongly Regular Graphs (Parameter: (𝑛, 𝑘, 𝜆, 𝜇))
Parameter 5 6 7 8 (25, 12, 5, 6) (26, 10, 3, 4) (29, 14, 6, 7) (36, 14, 4, 6) (40, 12, 2, 4) (45, 12, 3, 3)
Graphs 21 112 853 11117 15 10 41 180 28 78

Graph Pairs 210 6216 363378 61788286 105 45 820 16110 378 3003

Method # Indistinguishable Graph Pairs

WL 0 3 17 312 105 45 820 16110 378 3003

SPD-SEG-WL 0 2 12 186 105 45 820 16110 378 3003

SPIS-SEG-WL 0 0 0 0 0 0 0 15 3 0

Table 1: Results of synthetic graph isomorphism tests.

Task Regression Classification

Dataset ZINC QM9 QM8 ESOL PTC-MR MUTAG COX2 PROTEINS

Metric MAE↓ Multi-MAE↓ RMSE↓ Accuracy↑
Method Results

GCN 0.469±0.002 1.006±0.020 0.0279±0.0001 0.564±0.015 67.97±6.49 85.76±8.75 80.42±5.23 76.00±3.20
GAT 0.463±0.002 1.112±0.018 0.0317±0.0001 0.552±0.007 67.21±2.50 84.59±6.30 79.36±7.23 71.15±7.12
GIN 0.408±0.008 1.225±0.055 0.0276±0.0001 0.626±0.017 68.27±5.11 89.40±5.40 82.57±4.55 75.90±2.80
GraphSAGE 0.410±0.005 0.855±0.002 0.0275±0.0001 0.601±0.008 60.53±5.24 85.10±7.60 78.07±7.07 75.90±3.20
GSN 0.140±0.006 - - - 67.40±5.70 92.20±7.50 - 74.60±5.00
PNA 0.320±0.032 - - - - - - -

1-2-3-GNN - - - - 60.90 86.10 - 75.50

MoleculeNet - 2.350 0.0150 0.580 - - - -

WL - - - - 59.90±4.30 90.40±5.70 - 75.00±3.10
RetGK - - - - 62.50±1.60 90.30±1.10 80.10±0.90 76.20±0.50
P-WL - - - - 64.02±0.82 90.51±1.34 - 75.31±0.73
FGW - - - - 65.31±7.90 88.42±5.67 77.23±4.86 74.55±2.74

GT 0.226±0.01 - - - - - - -

SAN 0.139±0.01 - - - - - - -

SAT 0.135 - - - - - - -

Graphormer-id 0.668±0.003 3.176±0.005 0.0144±0.0003 0.612±0.002 66.39±5.18 85.49±8.51 77.60±7.69 77.19±4.07
Graphormer-Neighbor 0.531±0.004 1.799±0.002 0.0141±0.0002 0.639±0.034 68.13±6.82 90.35±7.01 78.06±7.43 78.12±3.62
Graphormer-SPD 0.122±0.001 0.607±0.002 0.0079±0.0001 0.492±0.004 68.43±5.82 91.39±7.35 82.12±3.40 78.59±4.35
Graphormer-SPIS 0.115±0.001 0.595±0.001 0.0073±0.0001 0.484±0.005 69.28±5.34 92.48±5.87 83.22±2.25 79.41±1.46

Table 2: Results of graph representation learning benchmarks. All results except for GCN, GAT, GIN, GraphSAGE, SAT and
Graphormer variants are cited from their original papers. ↓ for lower is better, and ↑ for higher is better. Appendix D.3 reports
performances on QM9 by seperate tasks.

Equipped with the provably powerful SPIS encoding, Graphormer-

SPIS achieves state-of-the-art performance and outperforms exist-

ing graph Transformers and GNNs, which echoes our theoretical

results on the strong expressive power of SPIS. Meanwhile, when

employing the less expressive Neighbor and id encoding, the Trans-

former network loses the ability to accurately distinguish graph

structures, leading to a significant performance drop. In the case

of the GraphGPS model, the experimental results follow the same

pattern. The original model achieved a certain level of performance

improvement after incorporating the structural encoding in the

Transformer layer. The stronger the expression ability of the struc-

tural encoding, the more significant the performance improvement.

Overall, the experimental results demonstrate that our theoretical

analysis has a practical impact on enhancing the performance of

graph Transformers in various graph tasks.

8 Conclusion
In this paper, we introduce SEG-WL test as a novel unified frame-

work for analyzing the expressive power of graph Transformers.

In this framework, we theoretically characterize how to improve

the expressivity of graph Transformers with respect to WL test

and GNNs, and propose a provably powerful structural encoding

method SPIS. Experiments have verified that the performances

of benchmark graph Transformers can benefit from this theory-

oriented extension. We also discuss our work’s limitations and

potential social impact in Appendix E.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Wenhao Zhu, Tianyu Wen, Guojie Song, Liang Wang, and Bo Zheng

Model Training MAE Validation MAE

GCN n/a 0.1379

GCN-virtual n/a 0.1153

GIN n/a 0.1195

GIN-virtual n/a 0.1083

GRPE n/a 0.0890

EGT n/a 0.0869

Graphormer (-SPD) 0.0348 0.0864

Graphormer-SPIS 0.0350 0.0861

GraphGPS (medium) (-id) 0.0726 0.0858

GraphGPS-Neighbor 0.0730 0.0856

GraphGPS-SPD 0.0719 0.0853

GraphGPS-SPIS 0.0710 0.0850

Table 3: Results on ogb-PCQM4Mv2 dataset.

References
[1] Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. 2020.

On Weisfeiler-Leman invariance: Subgraph counts and related graph properties.

J. Comput. System Sci. 113 (2020), 42–59.
[2] Waiss Azizian and Marc Lelarge. 2020. Expressive power of invariant and equi-

variant graph neural networks. arXiv preprint arXiv:2006.15646 (2020).
[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).
[4] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein.

2022. Improving graph neural network expressivity via subgraph isomorphism

counting. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).
[5] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. 2022. Structure-aware

transformer for graph representation learning. In International Conference on
Machine Learning. PMLR, 3469–3489.

[6] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković.

2020. Principal neighbourhood aggregation for graph nets. Advances in Neural
Information Processing Systems 33 (2020), 13260–13271.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[8] Vijay Prakash Dwivedi and Xavier Bresson. 2020. A generalization of transformer

networks to graphs. arXiv preprint arXiv:2012.09699 (2020).
[9] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and

Xavier Bresson. 2020. Benchmarking graph neural networks. arXiv preprint
arXiv:2003.00982 (2020).

[10] Robert W Floyd. 1962. On ambiguity in phrase structure languages. Commun.
ACM 5, 10 (1962), 526.

[11] Linton C Freeman. 1977. A set of measures of centrality based on betweenness.

Sociometry (1977), 35–41.

[12] Martin Grohe. 2017. Descriptive complexity, canonisation, and definable graph
structure theory. Vol. 47. Cambridge University Press.

[13] William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive Representation

Learning on Large Graphs. arXiv:1706.02216 [cs.SI]

[14] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feed-

forward networks are universal approximators. Neural networks 2, 5 (1989),

359–366.

[15] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure

Leskovec. 2021. Ogb-lsc: A large-scale challenge for machine learning on graphs.

arXiv preprint arXiv:2103.09430 (2021).
[16] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets

for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020).

[17] Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian.

2022. Global self-attention as a replacement for graph convolution. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
655–665.

[18] John J Irwin and Brian K Shoichet. 2005. ZINC- a free database of commercially

available compounds for virtual screening. Journal of chemical information and
modeling 45, 1 (2005), 177–182.

[19] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[20] Devin Kreuzer, Dominique Beaini, William L Hamilton, Vincent Létourneau, and

Prudencio Tossou. 2021. Rethinking Graph Transformers with Spectral Attention.

arXiv preprint arXiv:2106.03893 (2021).
[21] Xin Liu, Haojie Pan, Mutian He, Yangqiu Song, Xin Jiang, and Lifeng Shang. 2020.

Neural subgraph isomorphism counting. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1959–1969.

[22] Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochastic gradient descent with

warm restarts. arXiv preprint arXiv:1608.03983 (2016).
[23] Ilya Loshchilov and Frank Hutter. 2018. Decoupled Weight Decay Regularization.

In International Conference on Learning Representations.
[24] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. 2019.

Provably powerful graph networks. Advances in neural information processing
systems 32 (2019).

[25] Federico Monti, Karl Otness, and Michael M Bronstein. 2018. Motifnet: a motif-

based graph convolutional network for directed graphs. In 2018 IEEE Data Science
Workshop (DSW). IEEE, 225–228.

[26] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,

and Marion Neumann. 2020. Tudataset: A collection of benchmark datasets for

learning with graphs. arXiv preprint arXiv:2007.08663 (2020).
[27] Christopher Morris, Gaurav Rattan, and Petra Mutzel. 2020. Weisfeiler and Leman

go sparse: Towards scalable higher-order graph embeddings. Advances in Neural
Information Processing Systems 33 (2020), 21824–21840.

[28] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric

Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and leman go neural:

Higher-order graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 33. 4602–4609.

[29] Wonpyo Park, Woong-Gi Chang, Donggeon Lee, Juntae Kim, et al. 2022. Grpe:

Relative positional encoding for graph transformer. In ICLR2022 Machine Learning
for Drug Discovery.

[30] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole

Von Lilienfeld. 2014. Quantum chemistry structures and properties of 134 kilo

molecules. Scientific data 1, 1 (2014), 1–7.
[31] Raghunathan Ramakrishnan, Mia Hartmann, Enrico Tapavicza, and O Anatole

Von Lilienfeld. 2015. Electronic spectra from TDDFT and machine learning in

chemical space. The Journal of chemical physics 143, 8 (2015), 084111.
[32] Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy

Wolf, and Dominique Beaini. 2022. Recipe for a General, Powerful, Scalable

Graph Transformer. arXiv:2205.12454 (2022).
[33] Bastian Rieck, Christian Bock, and Karsten Borgwardt. 2019. A persistent

weisfeiler-lehman procedure for graph classification. In International Confer-
ence on Machine Learning. PMLR, 5448–5458.

[34] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,

and Junzhou Huang. 2020. Self-supervised graph transformer on large-scale

molecular data. arXiv preprint arXiv:2007.02835 (2020).
[35] Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond.

2012. Enumeration of 166 billion organic small molecules in the chemical universe

database GDB-17. Journal of chemical information and modeling 52, 11 (2012),

2864–2875.

[36] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. 2021. Random features

strengthen graph neural networks. In Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM). SIAM, 333–341.

[37] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,

and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, 9 (2011).

[38] Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi Flamary. 2019. Op-

timal transport for structured data with application on graphs. In International
Conference on Machine Learning. PMLR, 6275–6284.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information processing systems. 5998–6008.
[40] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[41] Clement Vignac, Andreas Loukas, and Pascal Frossard. 2020. Building pow-

erful and equivariant graph neural networks with structural message-passing.

Advances in Neural Information Processing Systems 33 (2020), 14143–14155.
[42] Boris Weisfeiler and Andrei Leman. 1968. The reduction of a graph to canonical

form and the algebra which appears therein. NTI, Series 2, 9 (1968), 12–16.
[43] Asiri Wijesinghe and Qing Wang. 2021. A New Perspective on" How Graph

Neural Networks Go Beyond Weisfeiler-Lehman?". In International Conference
on Learning Representations.

[44] Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. [n. d.]. Node-

Former: A Scalable Graph Structure Learning Transformer for Node Classification.

In Advances in Neural Information Processing Systems.
[45] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Ge-

niesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a

https://arxiv.org/abs/1706.02216

On Structural Expressive Power of Graph Transformers Woodstock ’18, June 03–05, 2018, Woodstock, NY

benchmark for molecular machine learning. Chemical science 9, 2 (2018), 513–530.
[46] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing,

Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tieyan Liu. 2020. On layer

normalization in the transformer architecture. In International Conference on
Machine Learning. PMLR, 10524–10533.

[47] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).
[48] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,

Yanming Shen, and Tie-Yan Liu. 2021. Do Transformers Really Perform Bad for

Graph Representation? arXiv preprint arXiv:2106.05234 (2021).
[49] Jiaxuan You, JonathanGomes-Selman, Rex Ying, and Jure Leskovec. 2021. Identity-

aware graph neural networks. arXiv preprint arXiv:2101.10320 (2021).
[50] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and

Sanjiv Kumar. 2019. Are transformers universal approximators of sequence-to-

sequence functions? arXiv preprint arXiv:1912.10077 (2019).

[51] Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. 2022. Hierarchical Graph

Transformer with Adaptive Node Sampling. arXiv preprint arXiv:2210.03930
(2022).

[52] Zhen Zhang, Mianzhi Wang, Yijian Xiang, Yan Huang, and Arye Nehorai. 2018.

Retgk: Graph kernels based on return probabilities of random walks. Advances
in Neural Information Processing Systems 31 (2018).

[53] Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun,

Xing Xie, and Yanfang Ye. 2021. Gophormer: Ego-Graph Transformer for Node

Classification. arXiv preprint arXiv:2110.13094 (2021).

Woodstock ’18, June 03–05, 2018, Woodstock, NY Wenhao Zhu, Tianyu Wen, Guojie Song, Liang Wang, and Bo Zheng

A Proofs

A.1 Theorem 1

We first restate Theorem 1 in a more generalized version which can

be applied to both cases when the graph embedding is computed

by a global readout function or virtual node trick:

Theorem 1. For any structural encoding scheme 𝑆 = (𝑓𝐴, 𝑓𝑅) and
labeled graph 𝐺 = (𝑉 , 𝐸) with label map ℎ0 : 𝑉 → X, if a graph
neural model A : G → R𝑑 satisfies the following conditions:

(1) A computes the initial node embeddings with

𝑙0 (𝑣) = 𝜙 (ℎ0 (𝑣), 𝑓𝐴 (𝑣,𝐺)), (18)

(2) A aggregates and updates node embeddings iteratively with

𝑙𝑡 (𝑣) = 𝜎 ({{(𝑙𝑡−1 (𝑢), 𝑓𝑅 (𝑣,𝑢,𝐺)) : 𝑢 ∈ 𝑉 }}), (19)

where 𝜙 and 𝜎 above are model-specific functions,
(3) The final graph embedding is computed by a global readout

on the multiset of node features {{𝑙𝑡 (𝑣) : 𝑣 ∈ 𝑉 }}, or repre-
sented by the embedding of node 𝑠 such that for any 𝑢, 𝑣 ∈ 𝑉 ,
𝑓𝑅 (𝑠, 𝑣,𝐺) = 𝑓𝑅 (𝑠,𝑢,𝐺) = 𝑓𝑅 (𝑣, 𝑠,𝐺) = 𝑓𝑅 (𝑢, 𝑠,𝐺).

then for any labeled graphs 𝐺1 and 𝐺2, if A maps them to different
embeddings, 𝑆-SEG-WL also decides 𝐺1 and 𝐺2 are not isomorphic.

Proof. We first show that for any node 𝑣,𝑢 at iteration 𝑡 , if 𝑆-

SEG-WL generates 𝑔𝑡 (𝑣) = 𝑔𝑡 (𝑢), then A also generates the same

embeddings for 𝑣 and 𝑢 as 𝑙𝑡 (𝑣) = 𝑙𝑡 (𝑢). For 𝑡 = 0 this proposition

holds because if 𝑔0 (𝑣) = 𝑔0 (𝑢) then 𝑣 and 𝑢 must have the same

input label and absolute structural encoding, which leads to 𝑙0 (𝑣) =
𝑙0 (𝑢). Suppose this proposition holds for iteration 0, 1, . . . , 𝑡 and

𝑔𝑡+1 (𝑣) = 𝑔𝑡+1 (𝑢). From the injectiveness of function Φ, we have

{{(𝑔𝑡 (𝑟), 𝑓𝑅 (𝑣, 𝑟,𝐺)) : 𝑟 ∈ 𝑉𝑣}} = {{(𝑔𝑡 (𝑟), 𝑓𝑅 (𝑢, 𝑟,𝐺)) : 𝑟 ∈ 𝑉𝑢 }},
(20)

where𝑉𝑣 is the node set of graph that 𝑣 belongs to, which is the same

for𝑉𝑢 . If two finite multisets are identical, then the elements in the

two multisets can be matched in pairs. Therefore, according to our

assumption at iteration 𝑡 such that𝑔𝑡 (𝑣) = 𝑔𝑡 (𝑢) =⇒ 𝑙𝑡 (𝑣) = 𝑙𝑡 (𝑢),
we have

{{(𝑙𝑡 (𝑟), 𝑓𝑅 (𝑣, 𝑟,𝐺)) : 𝑟 ∈ 𝑉 }} = {{(𝑙𝑡 (𝑟), 𝑓𝑅 (𝑢, 𝑟,𝐺)) : 𝑟 ∈ 𝑉 }}. (21)
ConsideringA updates node labels by 𝑙𝑡+1 (𝑣) = 𝜎 ({{(𝑙𝑡 (𝑟), 𝑓𝑅 (𝑣, 𝑟,𝐺)) :

𝑟 ∈ 𝑉 }}), 𝑙𝑡+1 (𝑣) = 𝑙𝑡+1 (𝑢) holds. This proves the proposition

above by induction. Now that for any iteration 𝑡 we have 𝑔𝑡 (𝑣) =
𝑔𝑡 (𝑢) =⇒ 𝑙𝑡 (𝑣) = 𝑙𝑡 (𝑢), indicating that a mapping𝜓𝑡 exists such

that for any node 𝑣 , 𝑙𝑡 (𝑣) = 𝜓𝑡 (𝑔𝑡 (𝑣)).
Now consider two graphs 𝐺1 and 𝐺2 where A maps them to

different embeddings after 𝑡 iterations. If A computes the graph

embedding by a readout function on the multiset of node features,

then {{𝑙𝑡 (𝑟) : 𝑟 ∈ 𝑉 }} must be different for two graphs. Since

{{𝑙𝑡 (𝑟) : 𝑟 ∈ 𝑉 }} = {{𝜓𝑖 (𝑔𝑡 (𝑟)) : 𝑟 ∈ 𝑉 }}, {{𝑔𝑡 (𝑟) : 𝑟 ∈ 𝑉 }} must

also be different for two graphs, which shows that 𝑆-SEG-WL

decides 𝐺1 and 𝐺2 are not isomorphic. Meanwhile, if the graph

embedding is represented by embedding of node 𝑠 such that for

any 𝑢, 𝑣 ∈ 𝑉 , 𝑓𝑅 (𝑠, 𝑣,𝐺) = 𝑓𝑅 (𝑠,𝑢,𝐺) = 𝑓𝑅 (𝑣, 𝑠,𝐺) = 𝑓𝑅 (𝑢, 𝑠,𝐺),
then 𝑙𝑡 (𝑠) is different for two graphs. Since 𝑙𝑡 (𝑠) is generated by

𝑙𝑡 (𝑠) = 𝜎 ({{(𝑙𝑡−1 (𝑟), 𝑓𝑅 (𝑠, 𝑟,𝐺)) : 𝑟 ∈ 𝑉 }}) and 𝑓𝑅 (𝑠, 𝑟,𝐺) is the
same for every 𝑟 ∈ 𝑉 , {{𝑙𝑡−1 (𝑟) : 𝑟 ∈ 𝑉 }} must be different for two

graphs, which goes back to the situation we have discussed above.

Therefore, the proof is completed. □

A.2 Theorem 2

Our proof for Theorem 2 is largely based on the proof for the

universal approximation theorem of the Transformer architecture,

so it is strongly recommended to go through the proof in [50] before

reading our proof in the next section.

A.2.1 bias-GT Model To present a simple and flexible example on

building theoretically powerful graph Transformers, we propose

bias-GT, a graph Transformer model that works under any struc-

tural encoding schemes with minimal modifications to the original

Transformer architecture. More concretely, for 𝑆 = (𝑓𝐴, 𝑓𝑅) and
input graph 𝐺 , the input embedding of node 𝑣 is computed by

𝑙0 (𝑣) = Linear(Concat(ℎ0 (𝑣), 𝑓𝐴 (𝑣,𝐺)), (22)

where Linear(·) is a linear layer, Concat(·) refers to the concatena-

tion operation. At every Transformer layer, the relative structural

encodings are introduced as transformed attention biases. For every

node pair (𝑢, 𝑣), the final attention weight 𝑎𝑢𝑣 from node 𝑢 to 𝑣 is

computed by

𝑎𝑢𝑣 = 𝑎𝑢𝑣 + Embedding(𝑓𝑅 (𝑢, 𝑣,𝐺)), (23)

where 𝑎𝑢𝑣 is the original attention weight computed by scaled-dot

self-attention, and Embedding(·) transforms relative embeddings in

C to R using via embedding lookup or linear layers. All remaining

network components stay the same with the original Transformer

architecture. This bias-GT model offers a straightforward strategy

for injecting strutural information to the Transformer and can be

viewed as a simplified version of some exisiting models [48, 53].

We will use 𝑆-bias-GT to denote bias-GT network with structural

encoding scheme 𝑆 . The proposition below shows that 𝑆-SEG-WL

test limits the expressive power of 𝑆-bias-GT:

Proposition 4. For any regular structural encoding scheme 𝑆 =

(𝑓𝐴, 𝑓𝑅) and two graphs 𝐺1,𝐺2, if 𝑆-bias-GT maps them to different
embeddings, 𝑆-SEG-WL also decides 𝐺1 and 𝐺2 are not isomorphic.

Proof. We only need to check the conditions in Theorem 1. For

the first condition, 𝑆-bias-GT computes the initial node embeddings

with

𝑙0 (𝑣) = 𝜙 (ℎ0 (𝑣), 𝑓𝐴 (𝑣,𝐺)) = Linear(Concat(¯ℎ0 (𝑣), 𝑓𝐴 (𝑣,𝐺)), (24)

and for the second condition, since 𝑆 is regular, the relative struc-

tural encoding functions satisfy 𝑓𝑅 (𝑣, 𝑣,𝐺) ≠ 𝑓𝑅 (𝑣,𝑢,𝐺) for 𝑣,𝑢 ∈ 𝑉 ,

then a function operated on {{(𝑙𝑡−1 (𝑢), 𝑓𝑅 (𝑣,𝑢,𝐺)) : 𝑢 ∈ 𝑉 }} can be

viewed as a function operated on (ℎ𝑣, {{(𝑙𝑡−1 (𝑢), 𝑓𝑅 (𝑣,𝑢,𝐺)) : 𝑢 ∈
𝑉 }}) because 𝑓𝑅 (𝑣, 𝑣,𝐺) is different from all other relative encodings.

On Structural Expressive Power of Graph Transformers Woodstock ’18, June 03–05, 2018, Woodstock, NY

𝑆-bias-GT updatesthe node embeddings with

𝑙𝑡 (𝑣) =𝜎 (ℎ𝑣, {{(𝑙𝑡−1 (𝑢), 𝑓𝑅 (𝑣,𝑢,𝐺)) : 𝑢 ∈ 𝑉 }}) (25)

=FFN(Concat𝑖=1,...,ℎ (
∑︁
𝑢∈𝑉

𝑤𝑖𝑣𝑢𝑙𝑡−1 (𝑣)𝑊 𝑖
𝑄)𝑊𝑂), (26)

where𝑤𝑖𝑣𝑢 =
exp(𝛼𝑖𝑣𝑢)∑
𝑟 ∈𝑉 exp(𝛼𝑖𝑣𝑟)

(27)

and 𝛼𝑖𝑣𝑢 =
(𝑙𝑡−1 (𝑣)𝑊 𝑖

𝑄
) (𝑙𝑡−1 (𝑢)𝑊 𝑖

𝐾
)⊤

√
𝑑

(28)

+ Embedding𝑖 (𝑓𝑅 (𝑣,𝑢,𝐺)) . (29)

𝑊 𝑖
𝑄
,𝑊 𝑖

𝐾
,𝑊 𝑖

𝑉
,𝑊𝑂 above are projection matrices, FFN is the feed-

forward layer, and layer normalization and residual connections

are omitted for clarity. The function 𝜎 is basically the computation

steps of the Transformer with 𝑓𝑅 (𝑣,𝑢,𝐺) injected as attention bias.

Since the graph embedding can be computed by a global readout

function, according to Theorem 1, the proof is completed. □

A.2.2 Explainations on Theorem 2 When the input graph order

𝑛 is fixed, let the input be 𝐺 = (𝑉 , 𝐸) with label map ℎ0 and

𝑉 = {𝑣1, . . . , 𝑣𝑛}. To properly define this approximation process,

for some structural encoding scheme 𝑆 , the input for both SEG-

WL test and bias-GT network 𝑔 is viewed as the feature matrix

𝑿0 = [ℎ0 (𝑣1), . . . , ℎ0 (𝑣𝑛)] ∈ R𝑑×𝑛 and the adjacency matrix 𝑨
with permutation invariance. We define the SEG-WL test func-

tion 𝑓𝑡 by stacking all labels generated by 𝑡-iteration SEG-WL test

in 𝑓𝑡 (𝑿0,𝑨) = [𝑔𝑡 (𝑣1), . . . , 𝑔𝑡 (𝑣𝑛)], and the output of 𝑔 is simi-

larly defined by stacking all feature vectors generated by the net-

work. We define the d𝑝 distance between 𝑓𝑡 and 𝑔 as d𝑝 (𝑓𝑡 , 𝑔) =
max𝑨 d𝑝 (𝑓𝑡 (·,𝑨), 𝑔(·,𝑨)), where d𝑝 (𝑓𝑡 (·,𝑨), 𝑔(·,𝑨)) is the ℓ𝑝 dis-

tance on R𝑑×𝑛 between 𝑓𝑡 and 𝑔 when 𝑨 is fixed. Following [50],

d𝑝 also stands for ℓ𝑝 distance between functions in the remaining

context.

Φ({{(𝑔𝑡−1 (𝑣𝑖), 𝑓𝑅 (𝑣 𝑗 , 𝑣𝑖 ,𝐺)) : 𝑣𝑖 ∈ 𝑉)}}) can be viewed as a per-

mutation (of node order) invariant function Φ(𝑿𝑡−1,𝑾𝑗), where
𝑿𝑡−1 = [𝑔𝑡−1 (𝑣1), . . . , 𝑔𝑡−1 (𝑣𝑛)] ∈ R𝑑×𝑛 is the matrix of node

labels and 𝑾𝑗 = [𝑓𝑅 (𝑣 𝑗 , 𝑣1,𝐺)), . . . , 𝑓𝑅 (𝑣 𝑗 , 𝑣𝑛,𝐺))] ∈ C𝑛 . The as-

sumption that Φ can be extended to a continuous function with

respect to node labels means that, for any fixed𝑾𝑗 , Φ(𝑿𝑡−1,𝑾𝑗) is
a continuous function with respect to any entry-wise ℓ𝑝 norm of

𝑿𝑡−1 with compact support in R𝑑×𝑛 (since X is compact).

A.2.3 Proof for Theorem 2

Proof. Since the first iteration of SEG-WL test can be arbitrarily

approximated by performing a linear layer on embeddings gener-

ated by concatnating the initial embeddings and absolute positional

encodings, according to the universal approximation theorem [14]

and Lipschitz continuity of feed-forward layers, the key technical

challenge in proving Theorem 2 is showing that each iteration 𝑖 in

1, . . . , 𝑡 of SEG-WL test can be approximated arbitrarily well using

the bias-GT network. Let 𝑓 stands for one iteration of 𝑆-SEG-WL

test, with input and output defined according to 𝑓𝑡 . We denote

𝜶𝑖, 𝑗 = 𝑓𝑅 (𝑣𝑖 , 𝑣 𝑗 ,𝐺) for simplicity, and let 𝒙𝑖 be the input labels of

𝑣𝑖 for 𝑓 . Then 𝑓 can be viewed as:

𝑓 (𝑿 ,𝑨) = [Φ({{(𝒙𝑖 ,𝜶1,𝑖)}}𝑖=1,...,𝑛), . . . ,Φ({{(𝒙𝑖 ,𝜶𝑛,𝑖)}}𝑖=1,...,𝑛)] .
(30)

That is, if our Transformer network is capable of approximating

the multiset function Φ that takes the feature matrix and structural

encodings as input, then it can approximate 𝑓 at any precision

because the output of 𝑓 contains 𝑛 entries computed individually

by Φ. As we have mentioned, Φ can be rewritten to the following

equivalent form:

Φ({{(𝒙𝑖 ,𝜶 𝑗,𝑖)}}𝑖=1,...,𝑛) = Φ(𝑿 ,𝑾𝑗), where 𝑿 = [𝒙1, . . . , 𝒙𝑛] (31)

and𝑾𝑗 = [𝜶 𝑗,1, . . . ,𝜶 𝑗,𝑛] . (32)

In this form, Φ is permutation equivariant such that for any permu-

tation matrix 𝑷 , Φ(𝑿𝑷 ,𝑾𝑗𝑷) = Φ(𝑿 ,𝑾𝑗).
The major problem is that the bias-GT network 𝑔 only take

𝑿 as feature input while incorporating structural encodings 𝑾𝑗

in attention layers as biases. According to our assumptions, we

can assume without generality that X ⊂ (0, 1)𝑑 and the compact

support of extented functionΦwith respect to𝑿 is containedwithin

[0, 1]𝑑×𝑛 . We follow the proof structure outlined in [50].

Step 1: Approximate 𝑓 by ¯𝑓 , a piece-wise constant function with respect
to 𝑿 . According to previous assumptions and statements in [50],

for any fixed𝑾𝑗 , Φ is a uniform continuous function (because Φ has

compact support) with respect to the argument 𝑿 . Suppose for𝑾𝑗 ,

there exists 𝛿𝑾𝑗
such that for any 𝑿 , 𝒀 ,∥𝑿 − 𝒀 ∥∞ < 𝛿𝑾𝑗

we have

∥Φ(𝑿 ,𝑾𝑗) − Φ(𝒀 ,𝑾𝑗)∥𝑝 < 𝜖
3
. Since the possible graph structures

of order 𝑛 is finite, C is a finite set and the possible choices of𝑾𝑗 is

also finite. Therefore, we can pick 𝛿 = min𝑾𝑗
{𝛿𝑾𝑗

}, then for any

𝑿 , 𝒀 ,𝑾𝑗 , if ∥𝑿 − 𝒀 ∥∞ < 𝛿 we have ∥Φ(𝑿 ,𝑾𝑗) − Φ(𝒀 ,𝑾𝑗)∥𝑝 < 𝜖
3
.

Accordingly, we can define a piece-wise constant function Φ̄ to

approximate Φ as

Φ̄(𝑿 ,𝑾𝑗) =
∑︁
𝑳∈G𝛿

Φ(𝑪𝑳,𝑾𝑗)1{𝑿 ∈ S𝑳}, (33)

where S𝑳 is a cube of width 𝛿 with 𝑳 being one of its vertices,

𝑪𝑳 ∈ S𝑳 is the center point of S𝑳 (Please refer to Appendix B.1 of

[50] for a detailed explanation). By the uniform continuity of Φ, we
can prove ∥Φ(𝑿 ,𝑾𝑗) − Φ̄(𝑿 ,𝑾𝑗)∥𝑝 < 𝜖

3
for any 𝑿 ,𝑾𝑗 . Also, it is

trivial to verify that Φ̄ is permutation equivariant. By defining
¯𝑓 by

replacing function Φ with Φ̄ in Equation 30, we have d𝑝 (𝑓 , ¯𝑓) ≤ 𝜖
3
.

Step 2: Approximate ¯𝑓 with modified bias-GT network. In this step

we aim to approximate
¯𝑓 using a modified bias-GT network, where

the softmax operator𝜎 [·] and ReLU(·) are replaced by the𝛾-hardmax

operator 𝜎H,𝛾 [·] and an activation finction 𝜙 that is a piece-wise

linear function with at most three pieces in which at least one piece

is constant. Note that the 𝛾-hardmax operator is defined by adding

𝛾 > 0 to non-zero elements of 𝜎H.

Proposition 5. Φ̄ can be approximated by a modified bias-GT
network 𝑔 such that d𝑝 (¯𝑓 , 𝑔) ≤ 𝜖

3
.

Step 3: Approximate modified bias-GT network with (original) bias-GT
network. Finally, we will show that the modified bias-GT 𝑔 can be

approximated by the original bias-GT architecture.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Wenhao Zhu, Tianyu Wen, Guojie Song, Liang Wang, and Bo Zheng

Proposition 6. 𝑔 can be approximated by a bias-GT network 𝑔
such that d𝑝 (𝑔,𝑔) ≤ 𝜖

3
.

Following [50], along with three steps above, we prove that a

single 𝑆-SEG-WL iteration 𝑓 can be arbitrarily approximated with

a bias-GT network 𝑔. By stacking such bias-GT networks, we show

that 𝑆-SEG-WL with any number of iterations can be approximated

by 𝑆-bias-GT at any precision. We next provide proofs for the two

propositions. □

A.2.4 Proof for Proposition 6

Proof. We only need to notice that for any 𝑨, 𝜎H,𝛾 (𝑨) →
𝜎H (𝑨) as 𝛾 → 0. Then together with Appendix B.2 of [50], we

can finish the proof. □

A.2.5 Proof for Proposition 7

Proof. We will prove this statement in five major steps:

(1) Given input𝑿 , a group of feed-forward layers in themodified

Transformer network can quantize 𝑿 to an element 𝑳 on the

grid G𝛿 := {0, 𝛿, . . . , 1 − 𝛿}𝑑×𝑛 .
(2) A group of additional feed-forward layers then scales 𝑳 to a

different level, where for every 𝑙 𝑗 := 𝒖⊤𝑳:, 𝑗 , 𝑙 𝑗 ∈ {1, 𝛿−1, 𝛿−2, . . . , 𝛿−𝛿
−𝑑+1}

holds. (𝒖 = (1, 𝛿−1, 𝛿−2, . . . , 𝛿−𝑑+1).)
(3) A group of biased self-attention layers perform global shift

on 𝑳, such that for any 𝑖 and 𝑗 , the shifted 𝑙𝑖 and 𝑙 𝑗 are

different if and only if their corresponding multisets of label-

RSE tuples ({{(𝒙𝑘 ,𝜶𝑖,𝑘) : 𝑘 = 1, . . . , 𝑛}} for 𝑙𝑖) are different.
(4) Next, a group of self-attention layers map the shifted 𝑳 to

the desirable contextual mappings 𝑞(𝑳). (defined in [50])

(5) Finally, a group of feed-forward layers can map elements of

the contextual embeddings 𝑞(𝑳) to the desirable values in

the piece-wise constant function.

Smiliar to Section 4 of [50], Proposition 7 can be proved with five

steps above, where the major difference here is in Step 1-3 we

create contextual mappings for both node features and relative

structural encodings. Next we explain the five steps in detail.

Step 1. Since X is bounded, we can assume without generality that

X ⊂ (0, 1)𝑑 . Thus, according to Lemma 5 in [50], the input 𝑿 can

be quantized to grid G𝛿 := {0, 𝛿, . . . , 1 − 𝛿}𝑑×𝑛 . We still use 𝒙𝑖 to
denote the quantized feature vector.

Step 2. Before this step, we have 𝑙 𝑗 ∈ [0 : 𝛿 : 𝛿−𝑑+1 − 𝛿]. Our goal
in this step is to scale each 𝑙 𝑗 to 𝛿

−𝛿−1𝑙 𝑗
. For every entry 𝑳:, 𝑗 in 𝑳,

the scaling function is defined as

𝑳:, 𝑗 ↦→ 𝑳:, 𝑗 + (𝛿−𝛿
−1𝒖⊤𝑳:, 𝑗 − 𝒖⊤𝑳:, 𝑗)𝒆 (1) , (34)

We use a group of feed-forward layers to approximate this function,

which is possible because Transformer has residual connections.

Note that after this process, {1, 𝛿−1, 𝛿−2, . . . , 𝛿−𝛿
−𝑑+1} contains all

possible values for 𝑙 𝑗 . As our proof can have 𝛿 arbitrarily small, we

assume 𝛿−1 > 𝑛.

Step 3. Since C is finite we may assume C = {1, 2, . . . , 𝑐}, and let

𝑾 = {𝜶𝑟,𝑠 }𝑟,𝑠=1,...,𝑛 . We use one self-attention layer consists of 𝑐

attention heads to perform the desired global shift. We first define

𝜙𝑖 (𝑾) = {𝜙𝑖 (𝜶𝑟,𝑠)}𝑟,𝑠=1,...,𝑛, (35)

where 𝜙𝑖 (𝑥) =
{

1, if 𝑥 = 𝑖,

0, else.
(36)

Then, for 𝑖 = 1, 2, . . . , 𝑐 , the 𝑖-th attention head is defined as

𝜓𝑖 (𝒁) = 𝒆 (1)𝒖⊤𝒁𝜎
H,𝛿−𝑝+1/𝑛!

(𝜙𝑖 (𝑾)) (37)

where 𝑝 = −𝛿−𝑑 . Noticing lim𝛿→0
𝛿−𝑝+1/𝑛! = 0 and the fact in

A.2.4, the selected 𝜎
H,𝛿−𝑝+1/𝑛!

is acceptable. This 𝜙𝑖 (𝑥) function can

be learned by embedding layers operated on the relative structural

encodings. And the final attention layer is computed as

Ψ(𝒁) = 𝒁 +
𝑐∑︁
𝑖=1

𝑛!𝛿 (3𝑝+𝑞)𝑖𝜓𝑖 (𝒁), (38)

where 𝑞 satisfies 𝛿𝑞+1 ≤ 𝑛! ≤ 𝛿𝑞 . Note that 𝑝 and 𝑞 are both

negative. For the convenience of further description, we define

𝒖⊤Ψ(𝑳) = [¯𝑙1, . . . , ¯𝑙𝑛] .

Explanation on Step 2 and 3. We aim to generate the bijective
column id mapping for each {{(𝒙 𝑗 ,𝜶𝑖, 𝑗) : 𝑗 = 1, . . . , 𝑛}}, while
using only 𝑿 as feature input and the structural encodings are

leveraged by shift operations in Step 2 and 3. We further prove this

in Proposition 7 below:

Proposition 7. For any 𝑢, 𝑣 ∈ {1, . . . , 𝑛}, ¯𝑙𝑢 = ¯𝑙𝑣 if and only if
{{(𝒙 𝑗 ,𝜶𝑢,𝑗) : 𝑗 = 1, . . . , 𝑛}} = {{(𝒙 𝑗 ,𝜶𝑣,𝑗) : 𝑗 = 1, . . . , 𝑛}}, and every
¯𝑙𝑢 is bounded.

Proof. For each node 𝑢, we define 𝑌 (𝑢, 𝑖) = {{𝒙𝑣 : 𝜶𝑢,𝑣 = 𝑖}}
and 𝑆 (𝑢, 𝑖) = ∑

𝜶𝑢,𝑣=𝑖 𝑙𝑣 , where 𝑙𝑣 is the scaled 𝒖⊤𝑳:,𝑣 after Step 2.

Let the first row of 𝜓𝑖 (𝒁) be [𝑟𝑖 (1), 𝑟𝑖 (2), . . . , 𝑟𝑖 (𝑛)] . We first

show that 𝑟𝑖 (𝑢) = 𝑟𝑖 (𝑣) if and only if 𝑌 (𝑢, 𝑖) = 𝑌 (𝑣, 𝑖). Due to

the ingenious construction of 𝒖 in [50], 𝑙 𝑗 has been an injective

descriptor of 𝒙 𝑗 before the scaling in Step 2. Since the scaling in Step
2 is injective, the scaled 𝑙 𝑗 also becomes an injective descriptor of

𝒙 𝑗 . According to our scaling strategy, the scaled 𝑙 𝑗 can be viewed as

a 𝑝-digit one-hot representation of 𝒙 𝑗 . Noticing 𝛿−1 > 𝑛, 𝑆 (𝑢, 𝑗), as
the summation of these scaled 𝑙 𝑗 , also becomes a unique descriptor

of 𝑌 (𝑢, 𝑖) and 1 ≤ 𝑆 (𝑢, 𝑗) ≤ 𝛿𝑝 .

Definition A.1. Suppose the set of possible values of 𝑎 is 𝑃 . Then
for any 𝑢, 𝑣 ∈ 𝑃 , if |𝑢 − 𝑣 | is always an integer multiple of 𝑠 , then we
call 𝑠 the minimal distance between any unique choices of 𝑎.

Accordingly, the minimal distance between any unique choices

of 𝑆 (𝑢, 𝑗) is 1 because the the minimal distance between any scaled

𝑙 𝑗 is 1.

Next, before discussing𝜓𝑖 in Equation (37), (38) and 𝑟𝑖 , we first

present a lamma:

Lemma 1. For real numbers 𝑎, 𝑏, the minimal distance between
any unique choices of 𝑏 is 𝑠 , and 𝑎 ≤ 𝑚 holds. 𝑎 +𝑏 becomes a unique
descriptor of 𝑎 if 2𝑚 < 𝑠 .

On Structural Expressive Power of Graph Transformers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Proof. Suppose we have 𝑎1 + 𝑏1 = 𝑎2 + 𝑏2 and 𝑎1 ≠ 𝑎2. Then

we have

|𝑎1 − 𝑎2 | = |𝑏1 − 𝑏2 |, (39)

and |𝑏1 − 𝑏2 | ≥ 𝑠 , |𝑎1 − 𝑎2 | ≤ 2𝑚. Then the proof is completed by

contradiction. □

Given the definition of𝜓𝑖 (please refer to Appendix B.5 in [50]

for more details on the selective shift operation, which is the basis

for the construction of𝜓𝑖), we have

𝑟𝑖 (𝑢) = (1

𝑘
+ 𝛿−𝑝+1

𝑛!

)𝑆 (𝑢, 𝑖), (40)

where 𝑘 = |𝑌 (𝑢, 𝑖) |. According to the range of scaled 𝑙 𝑗 , we have

1 ≤ 1

𝑘
𝑆 (𝑢, 𝑖) ≤ 𝛿𝑝+1, (41)

𝛿−𝑝+1

𝑛!

≤ 𝛿−𝑝+1

𝑛!

𝑆 (𝑢, 𝑖) ≤ 𝛿

𝑛!

. (42)

It is easy to infer that the minimal distance between any unique

choices of
1

𝑘
𝑆 (𝑢, 𝑖) is an integer multiple of

1

𝑛!
, and we have

2 · 𝛿
𝑛!

< 2 · 1

2𝑛!

=
1

𝑛!

. (43)

According to Lemma 1, 𝑟𝑖 (𝑢) is a unique descriptor of 𝛿
−𝑝+1

𝑛!
𝑆 (𝑢, 𝑖),

then it is also a unique descriptor of 𝑌 (𝑢, 𝑗). Now we have 1 ≤
𝑟𝑖 (𝑢) ≤ 𝛿𝑝 and the minimal distance between any unique choices

of 𝑟𝑖 (𝑢) is 𝛿
−𝑝+1

𝑛!
. The following Lemma is applied to the construction

of Ψ:

Lemma 2. For 𝑘 positive real numbers 𝑎1, 𝑎2, ..., 𝑎𝑘 ,
∑𝑘
𝑖=1

𝑎𝑖 is a
unique descriptor of (𝑎1, 𝑎2, . . . , 𝑎𝑘) if:

(1) For any 𝑎𝑖 , there exists 𝑟𝑖 such that 𝑎𝑖 ≤ 𝑟𝑖 ,
(2) Let 𝑠 (𝑖) be the minimal distance between any unique choices

of 𝑎𝑖 , then 𝑠 (𝑖) >
∑𝑖−1

𝑗=1
𝑟 𝑗 holds for any 𝑖 .

Proof. Assuming that there exists two groups of positive real

numbers {𝑎 (1)
𝑖

}𝑘
𝑖=1

and {𝑎 (2)
𝑖

}𝑘
𝑖=1

which both satisfy conditions

above and

∑𝑘
𝑖=1

𝑎
(1)
𝑖

=
∑𝑘
𝑖=1

𝑎
(2)
𝑖

. Besides, the two group of num-

bers are not totally equal correspondingly, which means there must

exist one 𝑙 ∈ {1, 2, ..., 𝑐} such that 𝑎
(1)
𝑙

≠ 𝑎
(2)
𝑙

and for any 𝑗 > 𝑙 ,

𝑎
(1)
𝑗

= 𝑎
(2)
𝑗

holds.

According to the second condition, |𝑎 (1)
𝑙

−𝑎
(2)
𝑙

| > ∑𝑙−1

𝑗=1
𝑟 𝑗 holds.

Since

∑𝑘
𝑖=1

𝑎
(1)
𝑖

=
∑𝑘
𝑖=1

𝑎
(2)
𝑖

, then

|𝑎 (1)
𝑙

− 𝑎
(2)
𝑙

| = |
𝑙−1∑︁
𝑗=1

𝑎
(1)
𝑗

−
𝑙−1∑︁
𝑗=1

𝑎
(2)
𝑗

| (44)

= |
𝑙−1∑︁
𝑗=1

(𝑎 (1)
𝑗

− 𝑎
(2)
𝑗

) | (45)

≤
𝑙−1∑︁
𝑗=1

|𝑎 (1)
𝑗

− 𝑎
(2)
𝑗

| (46)

≤
𝑙−1∑︁
𝑗=1

𝑟 𝑗 , (47)

where the proof is completed by contradiction. □

Finally we consider the definition of Ψ. We have

¯𝑙𝑢 = 𝑙𝑢 +
𝑐∑︁
𝑖=1

𝑛!𝛿 (3𝑝+𝑞)𝑖𝑟𝑖 (𝑢), (48)

and it can be concluded that

1 ≤ 𝑙𝑢 ≤ 𝛿𝑝+1, (49)

𝛿3𝑖𝑝+(𝑖+1)𝑞+1 ≤ 𝑛!𝛿 (3𝑝+𝑞)𝑖𝑟𝑖 (𝑢) ≤ 𝛿 (3𝑖+1)𝑝+(𝑖+1)𝑞, for 𝑖 = 1, . . . , 𝑐 .

(50)

And theminimal distance between any unique choices of𝑛!𝛿 (3𝑝+𝑞)𝑖𝑟𝑖 (𝑢)
is

𝑠 (𝑖) = 𝛿 (3𝑖−1)𝑝+𝑖𝑞+1 . (51)

If 𝑖 = 1, then 𝑠 (1) = 𝛿2𝑝+𝑞+1 > 𝛿𝑝+1
; if 𝑖 = 𝑗 + 1, then trivially we

have

𝑠 (𝑗 + 1) = 𝛿 (3𝑗+2)𝑝+(𝑗+1)𝑞+1 >

𝑗∑︁
𝑠=1

𝛿 (3𝑠+1)𝑝+(𝑠+1)𝑞 . (52)

Thus, according to the lemma above,
¯𝑙𝑢 also becomes a unique

descriptor of {{𝑌 (𝑢, 𝑖) : 𝑖 = 1, . . . , 𝑛}}, then it must be a unique

descriptor of {{(𝒙𝑢 ,𝜶𝑢,𝑗) : 𝑗 = 1, . . . , 𝑛}}. We also have
¯𝑙𝑢 bounded

as
¯𝑙𝑢 < 𝛿 (3𝑐+1)𝑝+(𝑐+1)𝑞−1

, which completes the proof. □

Step 4. After the previous steps,
¯𝑙𝑢 is the unique id for {{(𝒙 𝑗 ,𝜶𝑢,𝑗) :

𝑗 = 1, . . . , 𝑛}}, andwe have ¯𝑙𝑢 ∈ [0 : 𝛿 : 𝛿 (3𝑐+1)𝑝+(𝑐+1)𝑞−1−𝛿] . It can
be observed that if we define𝑑′ = (3𝑐+1)𝑝+(𝑐+1)𝑞−1 and treat𝑑′ as
the "new"𝑑 , we can apply exactly the samemethods in Appendix B.5

of [50] to employ multiple selective shift operations and generate

contextual embeddings forH = [{{(𝒙 𝑗 ,𝜶𝑖, 𝑗) : 𝑗 = 1, . . . , 𝑛}}]𝑖=1,...,𝑛 .

Note that since we assume X ⊂ (0, 1)𝑑×𝑛 , only Category 1 and 2

(Appendix B.5 of [50]) need to be considered.

Step 5. Now with contextual embeddings 𝑞(H), we can use meth-

ods in Appendix B.6 of [50] to map every mapping values to the

desired output computed by
¯𝑓 , which completes the proof. □

A.3 Proof for Theorem 3

Proof. Let the label mappings generated by 𝑆 ′-SEG-WL and

𝑆-SEG-WL at iteration 𝑡 be 𝑔′𝑡 and 𝑔𝑡 respectively. We denote the

conditions in Equation 13 and 14 as 𝑓𝐴 = 𝑝𝐴 (𝑓 ′𝐴) and 𝑓𝑅 = 𝑝𝑅 (𝑓 ′𝑅).
For graphs𝐺𝑣 = (𝑉𝑣, 𝐸𝑣) and𝐺𝑢 = (𝑉𝑢 , 𝐸𝑢) (𝐺𝑣 and𝐺𝑢 may be the

same graph), we first show that for any node 𝑣 ∈ 𝑉𝑣 and 𝑢 ∈ 𝑉𝑢 at

iteration 𝑡 , if 𝑆 ′-SEG-WL generates 𝑔′𝑡 (𝑣) = 𝑔′𝑡 (𝑢), then 𝑆-SEG-WL

also gets𝑔𝑡 (𝑣) = 𝑔𝑡 (𝑢). For 𝑡 = 0 this holds because if𝑔′
0
(𝑣) = 𝑔′

0
(𝑢)

then 𝑣 and 𝑢 must have ℎ0 (𝑣) = ℎ0 (𝑢) and 𝑓 ′
𝐴
(𝑣,𝐺𝑣) = 𝑓 ′

𝐴
(𝑢,𝐺𝑢).

Since 𝑓𝐴 = 𝑝𝐴 (𝑓 ′𝐴), it means that 𝑓𝐴 (𝑣,𝐺𝑣) = 𝑓𝐴 (𝑢,𝐺𝑢), which
leads to 𝑔0 (𝑣) = 𝑔0 (𝑢). Suppose this condition holds for iteration

0, 1, . . . , 𝑡 and 𝑔′
𝑡+1

(𝑣) = 𝑔′
𝑡+1

(𝑢). From the injectiveness of function

Φ, we have

{{(𝑔′𝑡 (𝑟), 𝑓 ′𝑅 (𝑣, 𝑟,𝐺𝑣)) : 𝑟 ∈ 𝑉𝑣}} = {{(𝑔′𝑡 (𝑟), 𝑓 ′𝑅 (𝑢, 𝑟,𝐺𝑢)) : 𝑟 ∈ 𝑉𝑢 }}.
(53)

If two finite multisets are identical, then the elements in the two

multisets can be matched in pairs. The condition 𝑓𝑅 = 𝑝𝑅 (𝑓 ′𝑅) im-

plies that for any 𝑟, 𝑠 , 𝑓 ′
𝑅
(𝑣, 𝑟,𝐺𝑣) = 𝑓 ′

𝑅
(𝑢, 𝑠,𝐺𝑢) =⇒ 𝑓𝑅 (𝑣, 𝑟,𝐺𝑣) =

Woodstock ’18, June 03–05, 2018, Woodstock, NY Wenhao Zhu, Tianyu Wen, Guojie Song, Liang Wang, and Bo Zheng

𝑓𝑅 (𝑢, 𝑠,𝐺𝑢). Together with the assumption that 𝑔′𝑡 (𝑣) = 𝑔′𝑡 (𝑢) im-

plies 𝑔𝑡 (𝑣) = 𝑔𝑡 (𝑢), we can conclude that

(𝑔′𝑡 (𝑟), 𝑓 ′𝑅 (𝑣, 𝑟,𝐺𝑣)) = (𝑔′𝑡 (𝑠), 𝑓 ′𝑅 (𝑢, 𝑠,𝐺𝑢)) =⇒ (54)

(𝑔𝑡 (𝑟), 𝑓𝑅 (𝑣, 𝑟,𝐺𝑣)) = (𝑔𝑡 (𝑠), 𝑓𝑅 (𝑢, 𝑠,𝐺𝑢)) . (55)

Therefore, we have

{{(𝑔𝑡 (𝑟), 𝑓𝑅 (𝑣, 𝑟,𝐺𝑣)) : 𝑟 ∈ 𝑉𝑣}} = {{(𝑔𝑡 (𝑟), 𝑓𝑅 (𝑢, 𝑟,𝐺𝑢)) : 𝑟 ∈ 𝑉𝑢 }},
(56)

which directly leads to 𝑔𝑡+1 (𝑣) = 𝑔𝑡+1 (𝑢). Then the proposition

above is proved by induction. Now that for any iteration 𝑡 we have

𝑔′𝑡 (𝑣) = 𝑔′𝑡 (𝑢) =⇒ 𝑔𝑡 (𝑣) = 𝑔𝑡 (𝑢), indicating that a mapping 𝜓𝑡
exists such that for any node 𝑣 , 𝑔𝑡 (𝑣) = 𝜓𝑡 (𝑔′𝑡 (𝑣)).

Now consider two graphs 𝐺1 and 𝐺2 where 𝑆-SEG-WL decides

them as non-isomorphic after 𝑡 iterations, then the multiset of all

updated node labels {{𝑔𝑡 (𝑣) : 𝑣 ∈ 𝑉 }} must be different for two

graphs. Since {{𝑔𝑡 (𝑣) : 𝑣 ∈ 𝑉 }} = {{𝜓𝑡 (𝑔′𝑡 (𝑣)) : 𝑣 ∈ 𝑉 }}, {{𝑔′𝑡 (𝑣) :

𝑣 ∈ 𝑉 }} must also be different for two graphs or we will reach a

contradiction, which suggests that 𝑆 ′-SEG-WL distinguishes 𝐺1

and 𝐺2 after 𝑡 iterations. □

A.4 Proof for Theorem 4

Proof. The formal definition for WL test is presented in Appen-

dix 2. Here we denote 𝑁 + (𝑣) = 𝑁 (𝑣) ∪ {𝑣} as the ego subgraph of

node 𝑣 . For label update of node 𝑣 , the values of Neighbor𝑅 divides

the node set𝑉 into three parts: the central node 𝑣 , the neighborhood

nodes 𝑁 (𝑣) and nodes out of 𝑣 ’s ego subgraph𝑉 \𝑁 + (𝑣). Thus, the
node label update function controlled by Neighbor𝑅 can be viewed

as

𝑔𝑡 (𝑣) = Φ(𝑔𝑡 (𝑣), {{𝑔𝑡 (𝑟) : 𝑟 ∈ 𝑁 (𝑣)}}, {{𝑔𝑡 (𝑠) : 𝑠 ∈ 𝑉 \ 𝑁 + (𝑣)}}) .
(57)

For the first part of the proof, we prove that Neighbor-SEG-WL

can distinguish any non-isomorphic graphs distinguishable by WL

test. We first show that for any node 𝑣,𝑢 at iteration 𝑡 , if Neighbor-
SEG-WL generates 𝑔𝑡 (𝑣) = 𝑔𝑡 (𝑢), then WL will obtain 𝑤𝑡 (𝑣) =

𝑤𝑡 (𝑢). For 𝑡 = 0 this obviously holds. Suppose this condition holds

for iteration 0, 1, . . . , 𝑡 and𝑔𝑡+1 (𝑣) = 𝑔𝑡+1 (𝑢). From the injectiveness

of function Φ, we have

(𝑔𝑡 (𝑣), {{𝑔𝑡 (𝑟) : 𝑟 ∈ 𝑁 (𝑣)}}, {{𝑔𝑡 (𝑠) : 𝑠 ∈ 𝑉𝑣 \ 𝑁 + (𝑣)}}) (58)

=(𝑔𝑡 (𝑢), {{𝑔𝑡 (𝑟) : 𝑟 ∈ 𝑁 (𝑢)}}, {{𝑔𝑡 (𝑠) : 𝑠 ∈ 𝑉𝑢 \ 𝑁 + (𝑢)}}), (59)

where 𝑉𝑣 is the node set of graph that 𝑣 belongs to, which is the

same for 𝑉𝑢 . Slicing the two equivalent tuples above will also get

equivalent results, as

(𝑔𝑡 (𝑣), {{𝑔𝑡 (𝑟) : 𝑟 ∈ 𝑁 (𝑣)}}) = (𝑔𝑡 (𝑢), {{𝑔𝑡 (𝑟) : 𝑟 ∈ 𝑁 (𝑢)}}) . (60)

Therefore we have𝑤𝑡+1 (𝑣) = 𝑤𝑡+1 (𝑢), and the proposition above
is proved by induction. Now that for any iteration 𝑡 we have𝑔𝑡 (𝑣) =
𝑔𝑡 (𝑢) =⇒ 𝑤𝑡 (𝑣) = 𝑤𝑡 (𝑢), indicating that a mapping 𝜓𝑡 exists

such that for any node 𝑣 ,𝑤𝑡 (𝑣) = 𝜓𝑡 (𝑔𝑡 (𝑣)).
Consider two graphs𝐺1 and𝐺2 where WL decides them as non-

isomorphic after 𝑡 iterations, then the multiset of all updated node

labels {{𝑤𝑡 (𝑣) : 𝑣 ∈ 𝑉 }} must be different for two graphs. Since

{{𝑤𝑡 (𝑣) : 𝑣 ∈ 𝑉 }} = {{𝜓𝑡 (𝑔𝑡 (𝑣)) : 𝑣 ∈ 𝑉 }}, {{𝑔𝑡 (𝑣) : 𝑣 ∈ 𝑉 }} must

also be different for two graphs, which suggests that Neighbor-SEG-
WL can distinguish 𝐺1 and 𝐺2 after 𝑡 iterations.

In the second part of the proof we only need to show that

any non-isomorphic graphs indistinguishable by WL test can not

be distinguished by Neighbor-SEG-WL. Suppose there are two

graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) that WL test cannot dis-

tinguish and the iteration converges at iteration 𝑡 . Then for any

𝑣,𝑢 ∈ 𝑉1, 𝑤𝑡 (𝑣) = 𝑤𝑡 (𝑢) implies 𝑤𝑡+1 (𝑣) = 𝑤𝑡+1 (𝑢) (the same

for 𝑉2), and there exists a bijective mapping 𝜃 : 𝑉1 → 𝑉2 such

that for any 𝑣 ∈ 𝑉1, 𝑤𝑡 (𝑣) = 𝑤𝑡 (𝜃 (𝑣)) and 𝑤𝑡+1 (𝑣) = 𝑤𝑡+1 (𝜃 (𝑣)).
Since 𝑤𝑡 can be viewed as an absolute structural encoding func-

tion, we denote Neighbor+ = (𝑤𝑡 ,Neighbor𝑅) and Neighbor+ must

be more powerful than Neighbor according to Theorem 3 because

Neighbor+ ⪰ Neighbor. Let 𝑔+ be the label mapping generated by

Neighbor+-SEG-WL on 𝐺1 and 𝐺2, and we may assume without

generality that 𝑔+
0
= 𝑤𝑡 . For node 𝑣 ∈ 𝑉1, its first updated label is

computed by

𝑔+
1
(𝑣) = Φ(𝑤𝑡 (𝑣), {{𝑤𝑡 (𝑟) : 𝑟 ∈ 𝑁 (𝑣)}}, {{𝑤𝑡 (𝑠) : 𝑠 ∈ 𝑉1 \ 𝑁 + (𝑣)}}) .

(61)

Consider 𝑣,𝑢 ∈ 𝑉1 where 𝑤𝑡 (𝑣) = 𝑤𝑡 (𝑢). According to the defini-

tion of WL test,𝑤𝑡+1 (𝑣) = 𝑤𝑡+1 (𝑢) implies {{𝑤𝑡 (𝑟) : 𝑟 ∈ 𝑁 (𝑣)}} =
{{𝑤𝑡 (𝑟) : 𝑟 ∈ 𝑁 (𝑢)}}. And because 𝑣 and 𝑢 belongs to the same

graph, we also have {{𝑤𝑡 (𝑠) : 𝑠 ∈ 𝑉1 \ 𝑁 + (𝑣)}} = {{𝑤𝑡 (𝑠) : 𝑠 ∈
𝑉1 \ 𝑁 + (𝑢)}}. This results in 𝑔+

1
(𝑣) = 𝑔+

1
(𝑢).

Next we consider 𝑣 ∈ 𝑉1 and 𝜃 (𝑣) ∈ 𝑉2 where𝑤𝑡 (𝑣) = 𝑤𝑡 (𝜃 (𝑣))
and𝑤𝑡+1 (𝑣) = 𝑤𝑡+1 (𝜃 (𝑣)). According to the definition of WL test,

𝑤𝑡+1 (𝑣) = 𝑤𝑡+1 (𝜃 (𝑣)) implies {{𝑤𝑡 (𝑟) : 𝑟 ∈ 𝑁 (𝑣)}} = {{𝑤𝑡 (𝑟) : 𝑟 ∈
𝑁 (𝜃 (𝑣))}}. Since WL test can not distinguish 𝐺1 and 𝐺2, we have

{{𝑤𝑡 (𝑠) : 𝑠 ∈ 𝑉1}} = {{𝑤𝑡 (𝑠) : 𝑠 ∈ 𝑉2}}, indicating that {{𝑤𝑡 (𝑠) :

𝑠 ∈ 𝑉1 \ 𝑁 + (𝑣)}} = {{𝑤𝑡 (𝑠) : 𝑠 ∈ 𝑉2 \ 𝑁 + (𝜃 (𝑣))}}, which shows

𝑔+
1
(𝑣) = 𝑔+

1
(𝜃 (𝑣)).

Together with statements above, for any 𝑣,𝑢 ∈ 𝑉1 with 𝑔+
0
(𝑣) =

𝑔+
0
(𝑢), we have 𝑔+

1
(𝑣) = 𝑔+

1
(𝑢) and 𝑔+

1
(𝑣) = 𝑔+

1
(𝜃 (𝑣)). As 𝜃 is a

bijective mapping, we can conclude that a mapping 𝜇 exists such

that for any 𝑣 ∈ 𝑉1 ∪ 𝑉2, 𝑔
+
1
(𝑣) = 𝜇 (𝑔+

0
(𝑣)), which tells us that

{{𝑔+
1
(𝑠) : 𝑠 ∈ 𝑉1}} = {{𝑔+

1
(𝑠) : 𝑠 ∈ 𝑉2}} and Neighbor+-SEG-WL has

not update any useful information in its first iteration. Therefore,

we can see that {{𝑔+𝑡 (𝑠) : 𝑠 ∈ 𝑉1}} = {{𝑔+𝑡 (𝑠) : 𝑠 ∈ 𝑉2}} for any 𝑡 by

induction, then Neighbor+-SEG-WL can not distinguish 𝐺1 and 𝐺2.

Because Neighbor+-SEG-WL is more powerful than Neighbor-SEG-
WL, Neighbor-SEG-WL also can not distinguish the two graphs,

meaning that any non-isomorphic graphs indistinguishable by WL

test can not be distinguished by Neighbor-SEG-WL, which com-

pletes the proof. □

A.5 Proof for Theorem 5

Proof. We can easily show that SPD-SEG-WL is more powerful

thanNeighbor-SEG-WL using Theorem 3 since two nodes are linked

if there shortest path distance is 1. And according to Theorem 4,

Neighbor-SEG-WL is as powerful as WL, then SPD-SEG-WL is more

powerful than WL.

Figure 5 below shows a pair of graphs that can be distinguished

by SPD-SEG-WL but not WL, which completes the proof. □

On Structural Expressive Power of Graph Transformers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Figure 5: Two graphs that can be distinguished by SPD-SEG-
WL but not WL.

A.6 Proof for Proposition 1

Proof. Let 𝐶𝑙 denote the cycle graph of length 𝑙 . Then consider

two graphs 𝐺1 and 𝐺2, where 𝐺1 consists of 2𝑘 + 4 identical 𝐶
2𝑘+3

graphs, and𝐺2 consists of 2𝑘 + 3 identical𝐶
2𝑘+4

graphs.𝐺1 and𝐺2

have the same number of nodes, and the induced 𝑘-hop neighbor-

hood of any node in either of the two graphs is simply a path of

length 2𝑘 + 1. As a result, for structural encoding scheme 𝑆 with

𝑘-hop receptive field, 𝑆-SEG-WL generates identical labels for every

node in the two graphs, making 𝐺1 and 𝐺2 indistinguishable for

𝑆-SEG-WL. However, in𝐺2 there exists shortest paths of length 𝑘+2

while 𝐺1 not, so SPD-SEG-WL can distinguish the two graphs. □

A.7 Proof for Theorem 6

Proof. Considering SPD𝑅 is the first dimension of SPIS𝑅 , we
have SPIS ⪰ SPD and we can prove SPIS-SEG-WL is more powerful

than SPD-SEG-WL according to Theorem 3.

Figure 6 below shows a pair of graphs that can be distinguished

by SPIS-SEG-WL but not SPD-SEG-WL. It is trivial to verify that SPD-
SEG-WL can not distinguish them. For SPIS-SEG-WL, to understand

this, Figure 6 colors examples of SPIS between non-adjacent nodes

in the two graphs, where the nodes at two endpoints are colored

as red. In the first graph, every SPIS between non-adjacent nodes

has 3 nodes, but in the second graph there exists SPIS between non-

adjacent nodes that has 4 nodes, so SPIS-SEG-WL can distinguish

them. □

Figure 6: Two graphs that can be distinguished by SPIS-SEG-
WL but not SPD-SEG-WL.

A.8 Proof for Proposition 2

Proof. It is trivial to verify that regular graphs with different

parameters can be distinguished by WL, so we focus on strongly

regular graphs with the same 𝑛 and 𝑘 but different 𝜆 and 𝜇. For

SRG(𝑛, 𝑘, 𝜆, 𝜇), since every non-adjacent pair of nodes has 𝜇 neigh-

bors in common, the SPIS between evry non-adjacent pair of nodes

will have 𝜇 + 2 nodes, which implies that SPIS-SEG-WL can dis-

tinguish strongly regular graphs with different 𝑛, 𝑘, 𝜇. Besides, the

four parameters of strongly regular graphs are not independent,

they satisfy

𝜆 = 𝑘 − 1 − 𝜇

𝑘
(𝑛 − 𝑘 − 1), (62)

so SPIS-SEG-WL can distinguish strongly regular graphs with dif-

ferent parameters. □

A.9 Proof for Proposition 3

Proof. Figure 7 below shows a pair of graphs that can be dis-

tinguished by SPIS-SEG-WL but not 3-WL. The two graphs, named

as the Shrikhande graph and the Rook’s 4 × 4 graph, are both

SRG(16, 6, 2, 2) and the most popular example for indistinguishabil-

ity with 3-WL [1]. To show they can be distinguished by SPIS-SEG-
WL, Figure 7 also colors examples of SPIS between non-adjacent

nodes, where the nodes at two endpoints are colored as red. In the

second graph (the Shrikhande graph), one can verify that every

SPIS between non-adjacent nodes has 4 nodes and 4 edges, but in

the first graph (the Rook’s 4 × 4 graph) there exists SPIS between

non-adjacent nodes that has 5 edges, making SPIS-SEG-WL capable

of distinguishing them. □

Figure 7: Two graphs (the Shrikhande graph and the Rook’s
4 × 4 graph) that can be distinguished by SPIS-SEG-WL but
not 3-WL.

B More Discussions

Isomorphic Structural Encodings. For any structural encoding func-

tion, we say 𝑓𝐴 is isomorphic to 𝑓 ′
𝐴
if there exists a bijective mapping

𝑝 such that 𝑓𝐴 = 𝑝 (𝑓 ′
𝐴
), which is the same for 𝑓𝑅 . It is trivial to

conclude that isomorphic structural encodings have the same ex-

pressive power.

Reduction of Absolute Structural Encodings. It can be observed that

for structural encoding scheme 𝑆 = (𝑓𝐴, 𝑓𝑅), 𝑓𝐴 and 𝑓𝑅 may express

overlapping information and can be reduced to form a more concise

representation. Since the principal phase of SEG-WL test is the label

update controlled by relative structural encodings, we focus on the

case where 𝑓𝐴 can be deduced from 𝑓𝑅 , and we can reduce 𝑓𝐴 to

eliminate redundant information, which is defined as

Definition B.1 (Reduction of Absolute Structural Encod-

ings). A structural encoding scheme 𝑆 = (𝑓𝐴, 𝑓𝑅) can be reduced to
𝑆 ′ = (id𝐴, f𝑅) if there exists mapping 𝑝 such that for any 𝐺 = (𝑉 , 𝐸)
and 𝑣 ∈ 𝑉 we have

𝑓𝐴 (𝑣,𝐺) = 𝑝 ({{𝑓𝑅 (𝑣,𝑢,𝐺) : 𝑢 ∈ 𝑉 }}) (63)

Proposition 8. If structural encoding scheme 𝑆 can be reduced to
𝑆 ′, then two graphs can be distinguished by 𝑆-SEG-WL if and only if
they are distinguishable by 𝑆 ′-SEG-WL.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Wenhao Zhu, Tianyu Wen, Guojie Song, Liang Wang, and Bo Zheng

Proof. According to Theorem 3, 𝑆-SEG-WL is more powerful

than 𝑆 ′-SEG-WL, thus we only need to prove that any graphs dis-

tinguishable by 𝑆-SEG-WL can be distinguished by 𝑆 ′-SEG-WL.

Let the label mappings generated by 𝑆 ′-SEG-WL and 𝑆-SEG-WL at

iteration 𝑡 be 𝑔′𝑡 and 𝑔𝑡 respectively. For graphs𝐺𝑣 = (𝑉𝑣, 𝐸𝑣) and
𝐺𝑢 = (𝑉𝑢 , 𝐸𝑢) (𝐺𝑣 and 𝐺𝑢 may be the same graph), we first show

that for any node 𝑣 ∈ 𝑉𝑣 and𝑢 ∈ 𝑉𝑢 at iteration 𝑡 , if 𝑆 ′-SEG-WL gen-

erates 𝑔𝑡+1 (𝑣) = 𝑔𝑡+1 (𝑢), then 𝑆-SEG-WL also gets 𝑔𝑡 (𝑣) = 𝑔𝑡 (𝑢).
For 𝑡 = 0, from the injectiveness of Φ we have

{{(𝑔′
0
(𝑟), 𝑓 ′𝑅 (𝑣, 𝑟,𝐺𝑣)) : 𝑟 ∈ 𝑉𝑣}} = {{(𝑔′

0
(𝑟), 𝑓 ′𝑅 (𝑢, 𝑟,𝐺𝑢)) : 𝑟 ∈ 𝑉𝑢 }}.

(64)

Accordingly, we have

{{𝑓 ′𝑅 (𝑣, 𝑟,𝐺𝑣) : 𝑟 ∈ 𝑉𝑣}} = {{𝑓 ′𝑅 (𝑢, 𝑟,𝐺𝑢) : 𝑟 ∈ 𝑉𝑢 }}, (65)

which directly leads to 𝑓𝐴 (𝑣,𝐺𝑣) = 𝑓𝐴 (𝑢,𝐺𝑢). According to the def-
inition of 𝑆 ′, we have 𝑔0 (𝑣) = 𝑔0 (𝑢). Suppose this condition holds

for iteration 0, . . . , 𝑡 and 𝑔′
𝑡+1

(𝑣) = 𝑔′
𝑡+1

(𝑢). From the injectiveness

of function Φ, we have

{{(𝑔′𝑡 (𝑟), 𝑓𝑅 (𝑣, 𝑟,𝐺𝑣)) : 𝑟 ∈ 𝑉𝑣}} = {{(𝑔′𝑡 (𝑟), 𝑓𝑅 (𝑢, 𝑟,𝐺𝑢)) : 𝑟 ∈ 𝑉𝑢 }}.
(66)

According to the assumption that 𝑔′𝑡 (𝑣) = 𝑔′𝑡 (𝑢) implies 𝑔𝑡−1 (𝑣) =
𝑔𝑡−1 (𝑢), we can infer that

{{(𝑔𝑡−1 (𝑟), 𝑓𝑅 (𝑣, 𝑟,𝐺𝑣)) : 𝑟 ∈ 𝑉𝑣}} = {{(𝑔𝑡−1 (𝑟), 𝑓𝑅 (𝑢, 𝑟,𝐺𝑢)) : 𝑟 ∈ 𝑉𝑢 }},
(67)

which directly leads to 𝑔𝑡 (𝑣) = 𝑔𝑡 (𝑢). Then the proposition above is

proved by induction. Now that for any iteration 𝑡 we have𝑔′
𝑡+1

(𝑣) =
𝑔′
𝑡+1

(𝑢) =⇒ 𝑔𝑡 (𝑣) = 𝑔𝑡 (𝑢), indicating that a mapping 𝜓𝑡 exists

such that for any node 𝑣 , 𝑔𝑡 (𝑣) = 𝜓𝑡 (𝑔′𝑡+1
(𝑣)).

Now consider two graphs 𝐺1 and 𝐺2 where 𝑆-SEG-WL decides

them as non-isomorphic after 𝑡 iterations, then the multiset of

all updated node labels {{𝑔𝑡 (𝑣) : 𝑣 ∈ 𝑉 }} must be different for

two graphs. Since {{𝑔𝑡 (𝑣) : 𝑣 ∈ 𝑉 }} = {{𝜓𝑡 (𝑔′𝑡+1
(𝑣)) : 𝑣 ∈ 𝑉 }},

{{𝑔′
𝑡+1

(𝑣) : 𝑣 ∈ 𝑉 }} must also be different for two graphs or we will

reach a contradiction, which suggests that 𝑆 ′-SEG-WL distinguishes

𝐺1 and 𝐺2 after 𝑡 + 1 iterations. □

The proposition above guarantees that the reduction of redun-

dant encodings will not influence the expressive power of corre-

sponding SEG-WL test. For example, since the degree of nodes can

be obtained by counting its neighbors, then (Deg𝐴,Neighbor𝑅) can
be reduced to (id𝐴,Neighbor𝑅).

C Connections between SEG-WL Test and
Previous Graph Transformers

As we have discussed above, SEG-WL test is capable of characteriz-

ing the expressive power of most graph Transformers, and here we

will present some examples. Note that in the scope of this paper,

we only consider simple undirected graphs with node features.

Graphormer [48]. The Graphormer model utilizes three types of

structural encodings: Centrality Encoding that encodes node de-

grees, Spatial Encoding that encodes the structural relation between

nodes via shortest path distance, and Edge Encoding that captures

information of edges that connect two nodes (which we do not

consider since it relates to edge feature). The Centrality Encoding

corresponds to the Deg𝐴 absolute structural encoding we discuss

in Section 5.1, and the Spatial Encoding is equivalent to the shortest

path distance encoding SPD𝑅 in Section 5.1. Therefore, similar to

the proof for Proposition 4, we can prove that the expressivity of

Graphormer with two types of structural encoding above can be

characterized with Graphormer-SEG-WL, where

Graphormer = (Deg𝐴, SPD𝑅). (68)

According to Proposition 8, the Graphormer encoding above can

be reduced to SPD = (id𝐴, SPD𝑅) since the degree of node 𝑣 can

be inferred from the number of node 𝑣 such that SPD(𝑣,𝑢) = 1.

Thus, the expressivity of Graphormer can be characterized with

SPD-SEG-WL. According to our analysis in Section 6.1, SPD-SEG-
WL is strictly more powerful than WL and has unique expressive

power elaborated by Proposition 1.

SEG-WL [8] and SAN [20]. SEG-WL and SAN both employ Lapla-

cian eigenvalues and eigenvectors as absolute structural encodings,

and during Transformer layers the embedding update strategy is

determined by link connections. For both models, it can be easily

verified that Laplacian𝑘
𝐴
below characterizes their absolute struc-

tural encodings:

Laplacian𝑘𝐴 (𝑣,𝐺) = (Λ𝑘𝐺 , 𝜆
𝑘
𝑣), (69)

where Λ𝑘
𝐺
is the 𝑘 smallest Laplacian eigenvalues of graph 𝐺 , 𝜆𝑘𝑣 is

the Laplacian eigenvector of 𝑣 in𝐺 corresponding to Λ𝑘
𝐺
, and every

Laplacian𝑘
𝐴
(𝑣,𝐺) comes from a deterministic factorization policy

for graph Laplacian matrix. As for relative structural encoding,

since during Transformer layers both models only consider if two

nodes are linked, we can conclude that Neighbor𝑅 summarizes the

expressivity of embedding update process. Therefore, Laplacian𝑘 -
SEG-WL is an upper bound on the expressivity of SAN and SEG-WL

model, where

Laplacian𝑘 = (Laplacian𝑘𝐴,Neighbor𝑅) . (70)

It is quite difficult to accurately analyze the expressive power of

Laplacian𝑘 since it relates to the sign invariance of Laplacian eigen-

vectors and contents of spectral graph theory. However, since

Laplacian𝑘 only involves the Neighbor𝑅 relative encoding, our The-

orem 4 shows that for SAN and SEG-WL, the exploitation of Trans-

former network results in no improvement on the structural ex-

pressive power when comparing with GNNs using Laplacian𝑘
𝐴
as

additional node features.

Gophormer [53]. Gophormer is a scalable graph Transformer model

for node classification with proximity-enhanced multi-head atten-

tion (PE-MHA) as the core module for learning graph structure.

When analyzing the structural expressive power of Gophormer, the

global nodes added to represent global information are ignored. It

can be concluded that the following Proximity𝑘
𝑅
relative structural

encoding characterizes the expressivity of PE-MHA in Gophormer:

Proximity𝑘𝑅 (𝑣𝑖 , 𝑢 𝑗 ,𝐺) = (𝑰 (𝑖, 𝑗), ˜𝑨(𝑖, 𝑗), . . . , ˜𝑨𝑘 (𝑖, 𝑗)), (71)

where 𝑰 is the identity matrix, and
˜𝑨 = Norm(𝑨+ 𝑰) is the normal-

ized adjacency matrix with self-loop. Since Gophormer employs

no absolute structural encoding, Proximity𝑘 -SEG-WL describes the

expressivity of Gophormer, where Proximity𝑘 = (id𝐴, Proximity𝑘
𝑅
).

On Structural Expressive Power of Graph Transformers Woodstock ’18, June 03–05, 2018, Woodstock, NY

As for any 𝑣𝑖 , 𝑣 𝑗 ,𝑨(𝑖, 𝑗) can be inferred from (𝑰 (𝑖, 𝑗), ˜𝑨(𝑖, 𝑗)), the
Proximity𝑘 structural encoding is more expressive than Neighbor
when 𝑘 ≤ 1. As a result, according to Theorem 4, Proximity𝑘 -
SEG-WL is more powerful than WL, and one can easily verify that

two graphs in Figure 5 can be distinguished by Proximity𝑘 -SEG-
WL. Therefore, we can conclude that Gophormer with Proximity𝑘

encoding is strictly more powerful than WL.

SAT [5] SAT propose the Structure-Aware Transformer with its

new self-attention mechanism which incorporates structural in-

formation into the original self-attention by extracting a subgraph

representation rooted at each node using GNNs before computing

the attention. Theoretical results in the SAT paper guarantees that

SAT is at least as expressive as the GNN subgraph extractor, and

using SEG-WL test we will arrive at the similar result. In the frame-

work of SEG-WL test, regardless of absolute structural encoding,

SAT model incorporates the node features generated by GNNs as

relative structural encoding at each structure-aware attention:

SAT subtree

𝑅 (𝑣,𝑢,𝐺) = (GNN(𝑘)
𝐺

(𝑣),GNN(𝑘)
𝐺

(𝑢)) (72)

(𝑘-subtree GNN extractor), (73)

SAT subgraph

𝑅
(𝑣,𝑢,𝐺) = (

∑︁
𝑢∈𝑁𝑘 (𝑣)

GNN
(𝑘)
𝐺

(𝑢),
∑︁

𝑟 ∈𝑁𝑘 (𝑢)
GNN

(𝑘)
𝐺

(𝑟)),

(74)

(𝑘-subgraph GNN extractor). (75)

For 𝑘-subtree GNN extractor, considering that GNN
(𝑘)
𝐺

(𝑣) can be

inferred from {{SAT subtree

𝑅
(𝑣,𝑢,𝐺) : 𝑢 ∈ 𝑉 }} by choosing the first

element of each tuple, with proposition 8 we can conclude that

SAT
subtree

can be viewed as having absolute structural encod-

ing generated by GNN
𝑘
𝐺
, which is the same for 𝑘-subgraph GNN

extractor. Therefore, SAT subtree
-SEG-WL is more powerful than

𝜙 (𝑣,𝐺) = GNN
(𝑘)
𝐺

(𝑣), and SAT subgraph
-SEG-WL is more powerful

than 𝜙 (𝑣,𝐺) = ∑
𝑢∈𝑁𝑘 (𝑣) GNN

(𝑘)
𝐺

(𝑢), which shows that the expres-
sivity upper bound of SAT is more powerful than its GNN feature

extractor.

D Graph Representation Learning Experiments

D.1 Datasets

Statistics of the datasets used in this work are summarized in Table

4 and 5.

D.2 Settings

D.2.1 Graphormer and GraphGPS Variants

Model Description. In graph representation learning experiments,

We use four Graphormer variants based on four structural encoding

schemes discussed in themain paper: SPIS, SPD,Neighbor and id. For
Graphormer-SPIS, to incorporate the extra structural information

encoded by SPIS encoding while not making significant changes to

the model architecture, we replace the spatial encoding𝑏SPD𝑅 (𝑣,𝑢,𝐺)
in Graphormer with 𝑏SPD𝑅 (𝑣,𝑢,𝐺) + Linear(|𝑉SPIS(𝑣,𝑢) |, |𝐸SPIS(𝑣,𝑢) |),

and keep the remaining network components unchanged. Graphormer-

SPD is basically the original Graphormer architecture. In Graphormer-

Neighbor, we remove the edge encoding since it contains informa-

tion beyond the neighborhood connections, and replace the spatial

encoding 𝑏SPD𝑅 (𝑣,𝑢,𝐺) in Graphormer with 𝑏Neighbor𝑅 (𝑣,𝑢,𝐺) . Simi-

larly, for Graphormer-id, we remove the centrality encoding and

edge encoding, and substitute the spatial encoding 𝑏SPD𝑅 (𝑣,𝑢,𝐺) in
Graphormer with 𝑏id𝑅 (𝑣,𝑢,𝐺) . For GraphGPS, we use the optimal

settings reported by the original paper on ogb-PCQM4M dataset.

Model Configurations. We report the detailed hyper-parameter set-

tings used for training the Graphormer variants in Table 6. We use

the source code provided by [48] (MIT 2.0 license) and use AdamW

[23] as optimizer and linear decay as learning rate scheduler. All

models are trained on 2 NVIDIA RTX 3090 GPUs for up to 12 hours.

D.2.2 Baselines

Model Configurations. We report the detailed hyper-parameter set-

tings used for training GNN baselines including GCN [19], GAT

[40], GIN [47] and GraphSAGE [13] in Table 7. During training

stage, we use AdamW [23] as optimizer and decay the learning rate

with a cosine annealing utilized in [22]. All models are trained on 2

NVIDIA RTX 3090 GPUs until convergence for up to 12 hours.

For SAT [5] model, it has substantially higher complexity than

all proposed methods and baselines with its GNN-based feature

extractor. We follow the instructions and run the code in https://

github.com/BorgwardtLab/SAT on ZINC dataset. Due to limitations

on computational resources, to give a fair comparison, we run the

model for 3.5 days with almost 1000 epochs, and report the best

performance.

D.3 Performances on QM9

Here we additionally report the performance of Graphormer vari-

ants over 12 tasks individually on QM9 dataset in Table 8.

D.4 Code

The experiment code is available in https://drive.google.com/file/d/

1umXMdH1wz3wk3dxZ6XOoe0eys7x9AoW8/view?usp=share_link.

E Limitations and Possible Negative Societal
Impacts

Limitations. It is well-known that self-attention in Transformer

network has quadratic complexity with respect to the input size,

and since SEG-WL test is proposed to characterize the expressiv-

ity of graph Transformers, it inherits this complexity issue and

each label update iteration of SEG-WL test costs 𝑂 (𝑛2) complex-

ity (equivalent to 2-WL), where 𝑛 is the input graph size. Besides,

the structural encodings may be computed by algorithms with rel-

ative high complexity, like SPD which is obtained by the 𝑂 (𝑛3)
Floyd-Warshall algorithm, and in Appendix B we formulate the

complexity of proposed SPIS as 𝑂 (𝑛3 + 𝑛2𝑡2). Still, we believe it is
worth studying the expressive power of graph Transformers despite

these limitations on complexity. It is shown that the global receptive

field brought by self-attention can lead to higher performance than

traditional GNNs on real-world benchmarks [48]. Additionally, as

https://github.com/BorgwardtLab/SAT
https://github.com/BorgwardtLab/SAT
https://drive.google.com/file/d/1umXMdH1wz3wk3dxZ6XOoe0eys7x9AoW8/view?usp=share_link
https://drive.google.com/file/d/1umXMdH1wz3wk3dxZ6XOoe0eys7x9AoW8/view?usp=share_link

Woodstock ’18, June 03–05, 2018, Woodstock, NY Wenhao Zhu, Tianyu Wen, Guojie Song, Liang Wang, and Bo Zheng

Datasets #Graphs #Nodes #Node Attributes #Edges #Edge Attributes #Tasks

ZINC(subset) 12,000 277920 1 597960 1 1

QM9 130831 2359210 11 4883516 4 12

QM8 21786 169339 79 352356 10 16

ESOL 1128 14991 9 15428 3 1

Table 4: Statics for graph regression datasets.

Datasets #Graphs #Nodes #Node Attributes #Edges #Edge Attributes #Classes

PTC-MR 344 4015 18 10108 4 2

MUTAG 188 3371 7 7442 4 2

COX2 467 19252 35 40578 - 2

PROTEINS 1113 43471 3 162088 - 2

Table 5: Statics for graph classification datasets.

ZINC QM9 QM8 ESOL PTC-MR MUTAG COX2 PROTEINS

peak_learning_rate 2e-4 3e-4 3e-4 5e-4 0.01 0.01 0.01 0.01

end_learning_rate 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9

hidden_dim 80 512 256 256 256 256 256 256

ffn_dim 80 512 256 256 256 256 256 256

weight_decay 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0

input_dropout_rate 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

attention_dropout_rate 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1

dropout_rate 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1

num_layers 12 20 6 16 16 16 16 16

num_heads 8 32 16 16 16 16 16 16

Table 6: Model configurations and hyper-parameters of Graphormer with different types of structural encoding.

ZINC QM9 QM8 ESOL PTC-MR MUTAG COX2 PROTEINS

peak_learning_rate 3e-4 3e-4 3e-4 1e-3 3e-4 3e-4 3e-4 3e-4

end_learning_rate 1e-9 1e-9 1e-5 1e-9 1e-9 1e-9 1e-9 1e-9

hidden_dim 256 256 256 512 256 256 256 256

weight_decay 0.01 0.01 0.0 0.01 0.01 0.01 0.01 0.01

input_dropout_rate 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0

dropout_rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

num_layers 16 16 16 5 5 5 5 5

num_heads(only for GAT) 4 4 4 4 4 4 4 4

Table 7: Model configurations and hyper-parameters of GNN baselines.

Transformer gain popularity in multiple areas of machine learning,

the complexity issue of Transformers can bemostly resolved by low-

complexity self-attention techniques and modern computational

devices specially optimized for Transformers. Therefore, together

with our theoretical results which show graph Transformers can

exhibit outstanding expressive power, we believe Transformers will

be widely used in graph machine learning due to their performance

and expressivity, despite their higher complexity than GNNs.

Ethic Statement and Possible Negative Societal Impacts. This work is

a foundational research on the expressivity of graph Transformers

and is not tied to any particular applications. Therefore, our work

may have potential negative societal impacts with malicious use of

graph neural models (like generating fake profiles) or environmen-

tal impact (like training huge graph Transformers).

On Structural Expressive Power of Graph Transformers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Task Unit

MAE

Graphormer-id Graphormer-Neighbor Graphormer-SPD Graphormer-SPIS

𝜇 D 8.1654±0.1095 0.6926±1.646e-4 0.3688±3.010e-4 0.3536±3.727e-4
𝛼 𝑎3

0
24.562±0.1815 0.8597±6.886e-4 0.2417±8.542e-7 0.2365±1.105e-3

𝜖HOMO eV 1.5222±0.0283 0.1962±3.667e-4 0.0683±2.186e-5 0.0664±5.848e-5
𝜖LUMO eV 4.3868±0.2717 0.2644±5.850e-5 0.0699±1.036e-5 0.0686±9.445e-5
Δ𝜖 eV 0.6235±0.0126 0.3407±4.459e-4 0.0933±1.420e-4 0.0904±2.811e-4
⟨𝑅2⟩ 𝑎2

0
166.64±12.339 76.885±2.309e-2 18.774±7.047e-2 18.174±3.046e-2

ZPVE eV 1.3654±0.0391 0.0165±3.954e-6 0.0061±2.012e-4 0.0055±5.311e-7
𝑈0 eV 3457.2±274.96 1.0558±8.925e-4 3.8210±7.458e-2 2.1069±3.581e-4
𝑈 eV 2041.3±47.641 1.0552±2.932e-4 3.8882±2.049e-1 2.1069±3.694e-4
𝐻 eV 3593.4±31.424 1.0540±6.737e-4 3.7888±1.232e-1 2.1007±4.798e-4
𝐺 eV 1468.9±97.816 1.0505±6.409e-4 3.8175±1.508e-1 2.0994±3.115e-4
𝑐v

cal

mol K
5.4585±0.1456 0.4510±1.725e-4 0.1034±5.555e-5 0.1027±6.856e-7

Table 8: Performance on QM9, reported by separate tasks.

	Abstract
	1 Introduction
	2 Related Work
	2.1 WL Test and GNNs
	2.2 Graph Transformer

	3 Preliminaries
	4 SEG-WL Test and Graph Transformers
	4.1 From WL Test to SEG-WL Test
	4.2 Theoretically Powerful Graph Transformers

	5 General Discussions on SEG-WL Test and Structural Encodings
	5.1 Examples of Structural Encodings
	5.2 Structural Encoding Determines the Expressiveness and Convergence Rate of SEG-WL test
	5.3 WL as SEG-WL Test

	6 Shortest-Path-Based Relative Structural Encodings
	6.1 Expressivity of SPD Encoding
	6.2 SPIS Relative Structural Encoding
	6.3 Analysis on SPIS Encoding

	7 Experiments
	7.1 Synthetic Isomorphism Tests
	7.2 Graph Representation Learning

	8 Conclusion
	References
	A Proofs
	A.1 Theorem 1
	A.2 Theorem 2
	A.3 Proof for Theorem 3
	A.4 Proof for Theorem 4
	A.5 Proof for Theorem 5
	A.6 Proof for Proposition 1
	A.7 Proof for Theorem 6
	A.8 Proof for Proposition 2
	A.9 Proof for Proposition 3

	B More Discussions
	C Connections between SEG-WL Test and Previous Graph Transformers
	D Graph Representation Learning Experiments
	D.1 Datasets
	D.2 Settings
	D.3 Performances on QM9
	D.4 Code

	E Limitations and Possible Negative Societal Impacts

