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ABSTRACT
Brain extraction, registration and segmentation are indispensable
preprocessing steps in neuroimaging studies. The aim is to extract
the brain from raw imaging scans (i.e., extraction step), align it
with a target brain image (i.e., registration step) and label the
anatomical brain regions (i.e., segmentation step). Conventional
studies typically focus on developing separate methods for the
extraction, registration and segmentation tasks in a supervised
setting. The performance of these methods is largely contingent
on the quantity of training samples and the extent of visual in-
spections carried out by experts for error correction. Nevertheless,
collecting voxel-level labels and performing manual quality con-
trol on high-dimensional neuroimages (e.g., 3D MRI) are expensive
and time-consuming in many medical studies. In this paper, we
study the problem of one-shot joint extraction, registration and
segmentation in neuroimaging data, which exploits only one la-
beled template image (a.k.a. atlas) and a few unlabeled raw images
for training. We propose a unified end-to-end framework, called
JERS, to jointly optimize the extraction, registration and segmen-
tation tasks, allowing feedback among them. Specifically, we use
a group of extraction, registration and segmentation modules to
learn the extraction mask, transformation and segmentation mask,
where modules are interconnected and mutually reinforced by self-
supervision. Empirical results on real-world datasets demonstrate
that our proposed method performs exceptionally in the extraction,
registration and segmentation tasks.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies → 3D imaging;Matching; Image segmentation.

KEYWORDS
brain extraction, skull stripping, registration, alignment, segmenta-
tion, joint learning, one-shot
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Figure 1: The problem of one-shot joint extraction, registration and
segmentation in neuroimaging data. Given a set of unlabeled raw
images of the patients’ heads, a standard template image of the brain
and the segmentation labels of the template image, the goal is to train
a model to perform brain extraction, registration and segmentation
tasks simultaneously on raw images of new patients’ heads.
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1 INTRODUCTION
Background. Brain extraction (a.k.a. skull stripping), registration
and segmentation serve as preliminary yet indispensable steps in
many neuroimaging studies, such as anatomical and functional anal-
ysis [4, 33, 50, 52], brain networks discovering [11, 24, 27, 28, 53, 54],
multi-modality fusion [6, 26], diagnostic assistance [18, 46], and
brain region studies [8, 25]. The brain extraction targets the re-
moval of non-cerebral tissues (e.g., skull, dura, and scalp) from a
patient’s head scan; the registration step aims to align the extracted
brain with a standard brain template; the segmentation step in-
tends to label the anatomical brain regions in the raw imaging scan.
These three tasks serve as crucial preprocessing steps in many neu-
roimaging studies. For example, in brain functional and anatomical
analysis, upon extracting and aligning the brain, the interference
of non-cerebral tissues, imaging modalities, and viewpoints can be
eliminated, thereby enabling accurate quantification of shifts in the
shape, size, and signal; and labeled anatomical brain regions (e.g.,
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frontal lobe, cerebellum, etc.) can be used to guide the structural di-
agnosis. In Alzheimer’s disease diagnosis, the brain across subjects
needs to be first extracted from raw brain imaging scans and then
aligned with a standard template to counteract inter-individual
variations and perform brain function analysis (e.g., discovering
the brain network connectivity). Meanwhile, the intra-individual
structural lesions (e.g., brain atrophy) across different pathological
stages need to be monitored in anatomical analysis (e.g., identify the
corresponding anatomical brain region and measure its alteration
of brain volume). These essential processing steps help doctors
make a comprehensive and accurate diagnosis.

State-of-the-Art. The literature extensively explores brain ex-
traction, registration, and segmentation problems [1, 7, 12, 22, 23,
29, 42]. Conventional approaches primarily emphasize the develop-
ment of separate methods for extraction [23, 29], registration [12,
42], and segmentation [1, 7, 22] under supervised settings. How-
ever, within the domain of medical studies, the process of obtaining
annotations for brain location, image transformations, and seg-
mentation is often accompanied by significant expenses, necessitat-
ing expertise, and substantial time, especially when dealing with
high-dimensional neuroimages (e.g., 3D MRI). To overcome this
limitation, recent works [5, 10, 38, 39, 41, 56] introduce a three-step
approach for one-shot extraction, registration and segmentation
by using automated brain extraction tools [10, 38, 39, 41], unsu-
pervised registration and segmentation models with direct warp-
ing [5, 20, 56], as shown in Figure 2(a). However, these approaches
often rely on manual quality control to correct intermediate results
before performing subsequent tasks, which is time-consuming,
labor-intensive, and subject to variability, thus hampering over-
all efficiency and performance. More recently, joint extraction-
registration method [45] and joint registration-segmentation meth-
ods [16, 35, 51] are introduced to solve the problem in a two-stage
design, as shown in Figure 2(b) and Figure 2(c). However, partial
joint learning neglects the potential relationship among all tasks
and negatively impacts overall performance.

Problem Definition. This paper investigates the problem of
one-shot joint brain extraction, registration, and segmentation, as
shown in Figure 1. The goal is to capture the connections among
three tasks to mutually boost their performance in a one-shot train-
ing scenario. Notably, the extraction, registration and segmentation
labels of the raw image are not available. We expect to perform the
three tasks simultaneously with only one labeled template.

Challenges. Despite its value and significance, the problem
of one-shot joint extraction, registration and segmentation has
not been studied before and is very challenging due to its unique
characteristics listed below:

• Lack of labels for extraction: Traditional learning-based extrac-
tion methods rely on a substantial number of training samples with
accurate ground truth labels. However, collecting voxel-level labels
for high-dimensional neuroimaging data is a resource-intensive
and time-consuming endeavor.

• Lack of labels for registration: Obtaining the accurate ground
truth transformation between raw and template images poses signif-
icant challenges. While unsupervised registration methods [5, 56]
optimize transformation parameters by maximizing image simi-
larity, their effectiveness is contingent upon the prior removal of

(a) Separate extraction [10, 38, 39, 41] + separate registration [5, 56] + separate
segmentation [20]

(b) Joint extraction and registration [45] + separate segmentation [20]

(c) Separate extraction [10, 38, 39, 41] + joint registration and segmentation [16,
35, 51]

(d) Joint extraction, registration and segmentation (ours)

Figure 2: Related works in one-shot brain extraction, registration
and segmentation.

non-brain tissue from the raw image. Failing to do this may lead to
erroneous transformations, rendering the registration invalid.

• Lack of labels for segmentation: Collecting the voxel-level seg-
mentation labels is also difficult. Although we provide a template
with its segmentation labeled (in template image space), the seg-
mentation (in raw image space) of the raw image is not available.

• Dependencies among extraction, registration and segmentation:
Conventional research typically treats extraction, registration, and
segmentation tasks separately. However, these tasks exhibit a high
degree of interdependency. The accuracy of registration and seg-
mentation tasks heavily relies on the extraction task. The registra-
tion process assists the extraction task in capturing cerebral/non-
cerebral information from raw and template images, and providing
segmentation labels for guiding the segmentation task. The seg-
mentation task can inversely force the extraction and registration
tasks to provide precise results. Thus, a holistic solution is required
to effectively manage the interdependencies among these tasks.

Proposed Method. To address the aforementioned challenges,
we propose JERS, a unified end-to-end framework for joint brain
extraction, registration, and segmentation. Figure 2 showcases a
comparison between our method and state-of-the-art approaches.
Specifically, JERS contains a group of extraction, registration and
segmentationmodules, where the extractionmodule gradually elim-
inates the non-brain tissue from the raw image, producing an ex-
tracted brain image; the registration module incrementally aligns
the extracted image with the template and warps the template’s
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segmentation label in the raw image space to guide the segmenta-
tion module; the segmentation module generates a segmentation
label for the raw image and provides feedback to extraction and
registration modules. These three modules help each other to boost
extraction, registration and segmentation performance simultane-
ously. By bridging these three modules end-to-end, we achieve a
joint optimization with only one labeled template assistance.

Upon evaluation on public brain MRI datasets, our proposed
method significantly outperforms state-of-the-art techniques in
extraction, registration, and segmentation accuracy.

2 PRELIMINARIES
In this section, we begin by introducing the relevant concepts and
notations. We then proceed to formally define the problem of one-
shot joint brain extraction, registration, and segmentation.

2.1 Notations and Definitions
Definition 1 (Source, target and target segmentation mask).
Suppose we are given a training dataset D =

{
{S𝑖 }𝑍𝑖=1, (T,B)

}
that

consists of 𝑍 source images S𝑖 ∈ R𝑊 ×𝐻×𝐷 , and a pair of target
image T ∈ R𝑊 ×𝐻×𝐷 and its corresponding segmentation mask
B ∈ {0, 1}𝐶×𝑊 ×𝐻×𝐷 . Here, the source image S𝑖 is the raw MRI
scan of a patient’s head, the target T is a standard template of the
brain, and the segmentation mask B is the one-hot encoding of
the target T segmentation.𝑊 , 𝐻 , and 𝐷 denote the width, height
and depth dimensions of the 3D images, 𝐶 denotes the number of
anatomical labels (e.g., the number of labelled brain regions). To
ensure simplicity, we make the assumption that the source and
target images are resized to the same dimension, denoted as𝑊 ×
𝐻 × 𝐷 . Next, we omit the subscript 𝑖 of S𝑖 for ease of notation.
Definition 2 (Brain extraction mask). Brain extraction mask
M ∈ {0, 1}𝑊 ×𝐻×𝐷 is a binary tensor of identical dimensions to the
source image S. It represents cerebral tissues in S with a value of 1
and non-cerebral tissues with 0. The extracted image E = S ◦M is
obtained by applying theM on S via a element-wise product ◦.
Definition 3 (Affine transformation and warped image). In
order to maintain generality, we consider the transformation in the
registration task to be affine-based. Extending this work to encom-
pass other types of registration, such as nonlinear/deformable reg-
istration, is straightforward. The affine transformation parameters
a ∈ R12 is a vector used to parameterized an 3D affine transfor-
mation matrix A ∈ R4×4. The warped imageW = T (E, a) results
from applying the affine transformation on the extracted image
E, where T (·, ·) denotes the affine transformation operator. At the
voxel level, the relationship between W and E can be expressed as:

W𝑥𝑦𝑧 = E𝑥 ′𝑦′𝑧′ , (1)

where the correspondences between coordinates 𝑥,𝑦, 𝑧 and 𝑥 ′, 𝑦′, 𝑧′
are determined on the affine transformation matrix A:

𝑥 ′

𝑦′

𝑧′

1

 = A


𝑥

𝑦

𝑧

1

 =

𝑎1 𝑎2 𝑎3 𝑎4
𝑎5 𝑎6 𝑎7 𝑎8
𝑎9 𝑎10 𝑎11 𝑎12
0 0 0 1



𝑥

𝑦

𝑧

1

 . (2)

Definition 4 (Source segmentation mask). Brain segmentation
mask R ∈ {0, 1}𝐶×𝑊 ×𝐻×𝐷 is a binary tensor with the first dimen-
sion being the number of anatomical labels and the rest dimensions

Figure 3: A demonstration of extraction, registration and segmenta-
tion functions.

identical to the source image S. Every point in the source image S
is densely labeled according to its anatomical structure, encoded in
a one-hot vector at the corresponding coordinate of R.

2.2 Problem Formulation
The goal of joint brain extraction, registration, and segmentation
is to collectively learn the extraction function 𝑓𝜃 : R𝑊 ×𝐻×𝐷 →
R𝑊 ×𝐻×𝐷 , the registration function 𝑔𝜙 : R𝑊 ×𝐻×𝐷 × R𝑊 ×𝐻×𝐷 →
R12, and the segmentation functionℎ𝜓 : R𝑊 ×𝐻×𝐷 → R𝐶×𝑊 ×𝐻×𝐷 ,
as shown in Figure 3. Specifically, the extraction function 𝑓𝜃 (·) uti-
lizes the source image S as input to predicts a brain extraction
mask M̂ = 𝑓𝜃 (S). The registration function 𝑔𝜙 (·, ·) takes the ex-
tracted brain image Ê = M̂ ◦ S and the target image T to predict
the affine transformation parameter â = 𝑔𝜙 (Ê,T), then obtaining
the warped image Ŵ = T (Ê, â). The warped segmentation mask
V̂ = T (B, â−1) is generated by warping the target segmentation
mask B using inversed affine transformation â−1. Finally, the seg-
mentation function ℎ𝜓 (·) takes the source image S as input to
predict a source brain segmentation mask R̂ = ℎ𝜓 (S). The optimal
parameter 𝜃∗, 𝜙∗ and 𝜓∗ can be found by solving the following
optimization problem:

𝜃∗, 𝜙∗,𝜓∗ = argmin
𝜃,𝜙,𝜓

∑︁
(S,T,B) ∈D

[
L𝑠𝑖𝑚

(
Ŵ,T

)
+ 𝜆L𝑠𝑒𝑔

(
R̂, V̂

)]
, (3)

where the image pair (S,T,B) is sampled from the training dataset
D. L𝑠𝑖𝑚 (·, ·) is image dissimilarity criteria, e.g., mean square error
and L𝑠𝑒𝑔 (·, ·) is segmentation dissimilarity criteria, e.g., cross en-
tropy error. These two criteria guide a joint optimization of extrac-
tion, registration and segmentation functions, allowing feedback
among them.

To the best of our knowledge, this work is the first endeavor
in finding an optimal solution for the one-shot joint brain image
extraction, registration, and segmentation problem. Our approach
eliminates the necessity of labeling the brain extraction masks,
transformation, and segmentation masks of the source image. We
only require one pair of a target image and its corresponding seg-
mentation mask to guide the training, as opposed to other fully
supervised methods [1, 7, 12, 22, 23, 29, 42].
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Figure 4: An overview of proposed JERS. Extraction module takes the raw source image S as input, and gradually produces the extracted brain
image E𝑀 after𝑀 stages of extraction. The final extracted image is E𝑀 . Registration module takes the extracted brain image E𝑀 , target image T
and target segmentation mask B as inputs, and incrementally aligns E𝑀 with T through 𝑁 stages of registration. Then, it generates the warped
segmentation mask V by inversely transforming the target segmentation mask B. Segmentation module takes the raw source image S as input,
and output the brain segmentation mask R. Two loss terms couple all modules together, allowing them to perform joint learning. The final
output of JERS is the extracted brain image E𝑀 constituting only cerebral tissues, the warped image W𝑁 aligning with the target image T, and
the brain segmentation mask R indicating anatomical regions of the source image S.

3 OUR APPROACH
Overview. Figure 4 presents an overview of the proposed JERS
framework for the one-shot joint brain extraction, registration, and
segmentation problem. Our method is an end-to-end deep neural
network consisting of three main branches: 1) Extraction Module
takes the raw source image S as input, and progressively produces
the extracted brain image E𝑀 after𝑀 stages of extraction; 2) Regis-
tration Module takes the extracted brain image E𝑀 , target image T
and target segmentation mask B as inputs, and incrementally aligns
E𝑀 with T through 𝑁 stages of registration. Then, it generates the
warped segmentation mask V (i.e., segmentation mask in the source
image space) by conducting inverse transformation on the target
segmentation mask B; 3) Segmentation Module takes the raw source
image S as inputs, and output the brain segmentation mask R. The
final output of our network is the extracted brain image E𝑀 consti-
tuting only cerebral tissues, the warped imageW𝑁 aligning with
the target image, and the brain segmentation mask R indicating
anatomical regions of the source image.
Key Insight. Considering the highly correlated characteristics of
the extraction, registration, and segmentation tasks, the design of
our method revolves around the following four positive mecha-
nisms among the three modules:

• The unalignable non-brain tissue revealed in the registration
module guides the refinement process in the extraction module.

• The registration module benefits from accurate brain extraction
generated in the extraction module.

• The anatomical structure estimated by the segmentation mod-
ule can provide auxiliary information for the extraction module to

remove non-cerebral tissues and for the registration module to find
regional correspondences.

• The segmentation module relies on the extraction and registra-
tion modules to generate the corresponding segmentation mask in
the source image space.

Hence, we encode the above four positive mechanisms in our
loss function design and train our network in an end-to-end fashion.
Specifically, our loss function includes two perceptual losses: the
image similarity termL𝑠𝑖𝑚 (W𝑁 , T) and the segmentation loss term
L𝑠𝑒𝑔 (R,V). The image similarity loss L𝑠𝑖𝑚 (·, ·) captures the first
and second positive mechanisms, which is affected by extraction
and registration modules. The segmentation loss L𝑠𝑒𝑔 (·, ·) embod-
ies the third and fourth positive mechanisms, which is related to all
modules. We jointly optimize the two loss terms to guide the learn-
ing of extraction, registration, and segmentation modules. Next, we
introduce the details of each module and the training process.

3.1 Extraction Module
For the extraction module, we have adopted the multi-stage design
paradigm, a strategy that has proven effective in previous works [15,
44, 45, 47, 56]. This design allows for a progressive refinement in
the removal of non-cerebral tissues, culminating in an image with
only cerebral tissues at the final stage. Following the multi-stage
design of [45], the extraction module incorporates 𝑀 extraction
stages, and each stage 𝑗 contains two key components as follows.

3.1.1 Extraction Network: 𝑓𝑒 . The extraction network 𝑓𝑒 (·) acts
as an eliminator, intended to sequentially eradicate non-cerebral
elements from source image S, aiming to retain only brain tissue in
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the image obtained at the final stage. With each stage 𝑗 , it forms
an extraction maskM𝑗 , which is utilized to eliminate non-cerebral
tissues in the preceding extracted brain image E𝑗−1. Specifically, we
employ the 3D U-Net [37] as the base network to learn 𝑓𝑒 (·). When
conducting inference, the outputM𝑗 is binarized by a Heaviside step
function. To facilitate effective gradient backpropagation during
the training phase, we employ a Sigmoid function with a large
slope parameter to approximate the Heaviside step function. 𝑓𝑒 (·)
employs a shared-weight scheme, which means 𝑓𝑒 (·) is repeatedly
applied across all stages with the same set of parameters. The
process can be formally expressed as:

M𝑗 = 𝑓𝑒

(
E𝑗−1

)
, (4)

where M𝑗 is the outputted brain mask of the 𝑗-th stage for 𝑗 =

[1, · · · , 𝑀] and E0 = S.

3.1.2 Overlay Layer:𝑂𝐿. The overlay layer serves to eradicate any
residual non-cerebral tissues by applying the current brain mask
M𝑗 to the preceding extracted image E𝑗−1. The updated extraction
is E𝑗 = E𝑗−1 ◦M𝑗 , where ◦ denotes the operation of element-wise
multiplication.

3.2 Registration Module
Similar to the extraction module introduced in Section 3.1, we
execute a multi-stage paradigm [15, 44, 45, 47, 56] to tackle the reg-
istration task. Following the multi-stage settings of [45], the module
is composed of 𝑁 cascading stages, with each stage 𝑘 holding the
key components as follows.

3.2.1 Registration Network: 𝑓𝑟 . The purpose of the registration
network 𝑓𝑟 (·, ·) is to slowly adapt the extracted brain image to
better match the target image. Each stage 𝑘 generates a current
affine transformation A𝑘

i based solely on the prior warped image
W𝑘−1 and the target image T. Similar to the extraction network 𝑓𝑒
in Section 3.1.1, a 3D CNN-based encoder is used to learn 𝑓𝑟 (·, ·) and
a shared weight design is employed across stages using identical
parameters. As a formal expression,

A𝑘
i = 𝑓𝑟

(
W𝑘−1,T

)
, (5)

where A𝑘
i represents the output affine transformation of the 𝑘-th

stage for 𝑘 = [1, · · · , 𝑁 ] andW0 = E𝑀 .

3.2.2 Composition Layer: COMP. For each stage 𝑘 , upon deter-
mining the current affine transformation A𝑘

i through 𝑓𝑟 (·, ·), we
combine all preceding transformations: A𝑘

c = A𝑘
i · A𝑘−1

c , where ·
denoting the matrix multiplication operation. Thus, the combined
transformation A𝑘

c can always be performed on the extracted image
E𝑀 to preserve the sharpness of the warped images [44]. For 𝑘 = 1,
the initial affine transformation A0

c is designated as an identity
matrix, indicating no displacement.

3.2.3 Spatial Transformation Layer: STL. A crucial process in image
registration involves reconstructing the warped imageW𝑘 from the
extracted brain image E𝑀 using the affine transformation operator.
Utilizing the combined transformation A𝑘

c , we introduce a spatial
transformation layer (STL) that resamples voxels from the extracted
image to produce the warped image through W𝑘 = T (E𝑀 ,A𝑘

c ).

Given the affine transformation operator depicted in Eq. (1), we
hold

W𝑘
𝑥𝑦𝑧 = E𝑀𝑥 ′𝑦′𝑧′ , (6)

where [𝑥 ′, 𝑦′, 𝑧′, 1]⊤ = A𝑘
c [𝑥,𝑦, 𝑧, 1]⊤. To assure successful gradi-

ent propagation during this procedure, we adopt a differentiable
transformation founded on trilinear interpolation proposed by [20].

3.3 Inverse Warping and Segmentation Module
This section introduces the two key designs to solve the segmen-
tation task for the input source image S: 1) Inverse Warping takes
the target segmentation mask B and the composed affine trans-
formation A𝑁

c as inputs, and generates a segmentation mask V in
the source image space; 2) Segmentation Network takes the source
image S as input, and predicts the brain segmentation mask R for S.

3.3.1 Inverse Warping. In the training dataset, only the target im-
age T is labeled with its segmentation mask B. In order to generate
the segmentation label for guiding the segmentation network, we
warp the target image segmentation make B into the source image
space by applying the inverse of A𝑁

c :

V𝑐𝑥𝑦𝑧 = B𝑐𝑥 ′𝑦′𝑧′ ,∀𝑐 ∈ {0, 1, . . . ,𝐶 − 1} (7)

where [𝑥 ′, 𝑦′, 𝑧′, 1]⊤ = (A𝑁
c )−1 [𝑥,𝑦, 𝑧, 1]⊤, 𝑐 is the index for anatom-

ical class. Same as the STL in Section 3.2.3, we apply a differentiable
transformation based on trilinear interpolation.

3.3.2 Segmentation Network: 𝑓𝑠 . The segmentation network is tasked
to predict a segmentation mask for the source image S that matches
the synthesized segmentation mask V. Similar to the extraction net-
work discussed in Section 3.1.1, we employ the popular 3D U-Net
as the base network to learn 𝑓𝑠 (·). Formally, we have:

R = 𝑓𝑠 (S) . (8)

3.4 End-to-End Training
We train our JERS model by minimizing the following objective
function

𝜃∗, 𝜙∗,𝜓∗ = min
𝜃,𝜙,𝜓

L𝑠𝑖𝑚 (W𝑁 ,T) + 𝜆L𝑠𝑒𝑔 (R,V) + 𝜂
𝑀∑︁
𝑗=1

R(M𝑗 ), (9)

where 𝜃, 𝜙,𝜓 are the parameters for the extraction, registration,
and segmentation networks, respectively. L𝑠𝑖𝑚 (·, ·) is the image
similarity loss,L𝑠𝑒𝑔 (·, ·) is the segmentation loss,R is the extraction
regularization term, and 𝜆, 𝜂 are positive trade-off weights.

The image similarity loss L𝑠𝑖𝑚 (·, ·) is a loss function measuring
the similarity between the final warped image W𝑁 and the target
image T:

L𝑠𝑖𝑚

(
W𝑁 ,T

)
= L𝑠𝑖𝑚

(
T
(
E𝑀 ,A𝑁

c
)
,T

)
. (10)

We employ the prevailing negative local cross-correlation loss for
L𝑠𝑖𝑚 (·, ·), which is resistant to variations in voxel intensity typi-
cally encountered across different scans and datasets [5, 51, 56]. The
image similarity loss can guide the learning of both the extraction
and registration modules.

The segmentation loss L𝑠𝑒𝑔 (·, ·) is a loss function measuring
the similarity between the predicted segmentation mask R and the
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warped segmentation label V:

L𝑠𝑒𝑔 (R,V) = L𝑠𝑒𝑔

(
𝑓𝑠
(
S
)
,T

(
B,

(
A𝑁
c
)−1)) (11)

Here we use the cross-entropy loss function. The segmentation
loss serves multiple purposes and can guide the learning of the
extraction, registration, and segmentation modules.

Finally, to suppress the occurrence of other connected regions
apart from the brain in the extraction masks, we define the extrac-
tion regularization loss:

R(M𝑗 ) = ∑𝑊
𝑥=1

∑𝐻
𝑦=1

∑𝐷
𝑧=1 ∥∇M

𝑗
𝑥𝑦𝑧 ∥2 . (12)

This regularization term quantifies the edge strength of the pre-
dicted extraction maskM𝑗 , i.e., the likelihood of a voxel being an
edge voxel. Through the minimization of this term, we can suppress
the occurrence of edges, subsequently producing a smooth extrac-
tion mask. In this scenario, we apply the ℓ2-norm of the first-order
derivative ofM𝑗 as the regularization term.

By leveraging the differentiability in each component of this
design, our model can be jointly and progressively optimized in an
end-to-end fashion. This training approach empowers us to unearth
a joint optimal solution for the aggregate tasks of brain extraction,
registration, and segmentation. Thus our work stood in marked
contrast to other works [45, 51] that resort to alternative training
of individual modules and can only reach a sub-optimal solution.

4 EXPERIMENTS
4.1 Datasets
The effectiveness of our proposed method is evaluated across three
public real-world 3D brain MRI datasets: 1) LPBA40 [40] includes 40
raw T1-weighted 3D MRI scans, coupled with brain masks and 56
anatomical structures as segmentation ground truths; 2) CC359 [43]
contains 359 raw T1-weighted 3D brain MRI scans and the brain
masks. It also includes labeled white matter as the segmentation
ground truth; 3) IBSR [36] consists of 18 scans with manual segmen-
tation labels. But due to its small size, it serves only for the evalua-
tion of the model trained on CC359. Brain masks and anatomical
labels facilitate the accuracy evaluation for extraction and segmenta-
tion, respectively. Additional details can be found in Appendix A.2.

4.2 Compared Methods
We outline the comparison of our JERS with several representative
methodologies in brain extraction, registration and segmentation,
as illustrated in Table 1. Notably, there are no existing solutions that
can seamlessly learn brain extraction, registration, and segmenta-
tion in an end-to-end framework. Hence, we designed three-stage
pipeline for comparison, combining various extraction, registration,
and segmentation methods. Baselines detailed in Appendix A.4.
• Brain Extraction Tool (BET) [41]: This technique within the FSL
package uses deformable models for skull stripping.
• 3dSkullStrip (3dSS) [10]: This is a BET variant method within the
AFNI package. It uses a spherical surface to perform skull stripping.
• Brain Surface Extractor (BSE) [39]: Thismethod usesmorphological
operations and edge detection for brain extraction, which leverages
anisotropic diffusion filtering and a Marr Hildreth edge detector to
identify the brain boundary.

Table 1: Summary of compared methods.

Methods Extraction Registration Segmentation Deep learning

BET [41] ✓ ✗ ✗ ✗

3dSkullStrip [10] ✓ ✗ ✗ ✗

BSE [39] ✓ ✗ ✗ ✗

FLIRT [21] ✗ ✓ ✗ ✗

ANTs [3] ✗ ✓ ✗ ✗

VM [5] ✗ ✓ ✗ ✓

CRN [56] ✗ ✓ ✗ ✓

DW [20] ✗ ✗ ✓ ✗

DeepAtlas [51] ✗ ✓ ✓ ✓

ERNet [45] ✓ ✓ ✗ ✓

JERS (ours) ✓ ✓ ✓ ✓

• FMRIB’s Linear Image Registration Tool (FLIRT) [21]: This is an
automatic affine brain image registration tool in the FSL package.
• Advanced Normalization Tools (ANTs) [3]: This is a state-of-the-art
medical image registration toolbox. We set the registration type
and optimization as affine and cross-correlation metrics.
• VoxelMorph (VM) [5]: This is an unsupervised image registration
method that uses a neural network to predict the transformation.
• Cascaded Registration Networks (CRN) [56]: This is an unsuper-
vised multi-stage image registration method, which incrementally
aligns the source image to the target image.
• Directly Warping (DW) [20]: It is an operation used to generate
the segmentation mask by registration. The segmentation mask of
the target image can be directly warped to the source image space
by the completed registration.
• DeepAtlas [51]: This is a joint learning network for image regis-
tration and segmentation tasks.
• ERNet [45]: This is an unsupervised learning method for joint
extraction and registration.

4.3 Experimental Results
Our JERS is compared with baseline methods on extraction, reg-
istration and registration accuracy. We measure the performance
of each task with its corresponding metrics, and also record the
time taken for each baseline method. Based on the experimental
results, we find that JERS not only consistently outperforms other
alternatives in terms of extraction, registration, and segmentation,
but also exhibits superior time efficiency and robustness.

4.3.1 Evaluation Metrics. To evaluate the extraction and segmen-
tation accuracy, we measure the volume overlap between the pre-
dicted and ground-truth masks. To evaluate the registration perfor-
mance, we calculate the mutual information between the warped
image and the target image. Details can be found in Appendix A.1.

4.3.2 Experiment Setting. We divide the datasets into training, val-
idation and test sets. The training set is utilized for parameter
learning of the model, while the validation set is employed to eval-
uate the performance of hyperparameter settings (e.g., the weight
of the segmentation loss term). The test set is used only once to
report the final evaluation results for each model. It should be noted
that the IBSR dataset is exclusively used for testing purposes. We
describe the detail of the data processing, JERS settings and baseline
settings in Appendix A.2, A.3 and A.4. The source code is available
at https://github.com/Anonymous4545/JERS.

https://github.com/Anonymous4545/JERS
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Table 2: Results for brain extraction (Ext), registration (Reg) and segmentation (Seg) in different datasets. The results are reported as perfor-
mance(mean ± std ) of extraction, registration and segmentation of each compared method. “↑” point out “the larger the better”. The best
results are highlighted in bold.

Methods Datasets

LPBA40 CC359 IBSR

Ext Reg Seg Ext Reg Seg Ext Reg Seg Ext Reg Seg
Diceext ↑ MI ↑ Diceseg ↑ Diceext ↑ MI ↑ Diceseg ↑ Diceext ↑ MI ↑ Diceseg ↑

BET [41] FLIRT [21] DW [20] 0.935 ± 0.028 0.627 ± 0.010 0.613 ± 0.025 0.811 ± 0.087 0.481 ± 0.024 0.748 ± 0.062 0.911 ± 0.038 0.521 ± 0.022 0.800 ± 0.010
3dSS [10] FLIRT [21] DW [20] 0.902 ± 0.032 0.627 ± 0.010 0.601 ± 0.017 0.849 ± 0.037 0.500 ± 0.014 0.791 ± 0.034 0.869 ± 0.039 0.508 ± 0.023 0.788 ± 0.021
BSE [39] FLIRT [21] DW [20] 0.938 ± 0.022 0.668 ± 0.010 0.620 ± 0.008 0.846 ± 0.112 0.518 ± 0.035 0.804 ± 0.019 0.873 ± 0.064 0.521 ± 0.026 0.799 ± 0.015

BET [41] ANTs [3] DW [20] 0.935 ± 0.028 0.630 ± 0.013 0.625 ± 0.010 0.811 ± 0.087 0.476 ± 0.027 0.744 ± 0.062 0.911 ± 0.038 0.524 ± 0.022 0.792 ± 0.018
3dSS [10] ANTs [3] DW [20] 0.902 ± 0.032 0.632 ± 0.011 0.524 ± 0.133 0.849 ± 0.037 0.498 ± 0.016 0.758 ± 0.041 0.869 ± 0.039 0.508 ± 0.026 0.762 ± 0.030
BSE [39] ANTs [3] DW [20] 0.938 ± 0.022 0.671 ± 0.008 0.614 ± 0.023 0.846 ± 0.112 0.524 ± 0.035 0.807 ± 0.012 0.873 ± 0.064 0.522 ± 0.027 0.787 ± 0.016

BET [41] VM [5] DW [20] 0.935 ± 0.028 0.627 ± 0.016 0.607 ± 0.019 0.811 ± 0.087 0.465 ± 0.034 0.804 ± 0.015 0.911 ± 0.038 0.525 ± 0.023 0.795 ± 0.013
3dSS [10] VM [5] DW [20] 0.902 ± 0.032 0.623 ± 0.009 0.590 ± 0.009 0.849 ± 0.037 0.496 ± 0.018 0.814 ± 0.007 0.869 ± 0.039 0.509 ± 0.027 0.789 ± 0.017
BSE [39] VM [5] DW [20] 0.938 ± 0.022 0.670 ± 0.003 0.616 ± 0.010 0.846 ± 0.112 0.515 ± 0.041 0.805 ± 0.016 0.873 ± 0.064 0.524 ± 0.028 0.795 ± 0.013

BET [41] CRN [56] DW [20] 0.935 ± 0.028 0.633 ± 0.017 0.618 ± 0.022 0.811 ± 0.087 0.467 ± 0.034 0.806 ± 0.015 0.911 ± 0.038 0.527 ± 0.023 0.800 ± 0.011
3dSS [10] CRN [56] DW [20] 0.902 ± 0.032 0.630 ± 0.012 0.610 ± 0.013 0.849 ± 0.037 0.498 ± 0.017 0.817 ± 0.007 0.869 ± 0.039 0.513 ± 0.028 0.794 ± 0.014
BSE [39] CRN [56] DW [20] 0.938 ± 0.022 0.674 ± 0.006 0.626 ± 0.010 0.846 ± 0.112 0.518 ± 0.040 0.809 ± 0.017 0.873 ± 0.064 0.527 ± 0.028 0.796 ± 0.013

BET [41] DeepAtlas [51] 0.935 ± 0.028 0.627 ± 0.016 0.645 ± 0.009 0.811 ± 0.087 0.467 ± 0.033 0.814 ± 0.017 0.911 ± 0.038 0.524 ± 0.024 0.811 ± 0.011
3dSS [10] DeepAtlas [51] 0.902 ± 0.032 0.625 ± 0.013 0.640 ± 0.010 0.849 ± 0.037 0.498 ± 0.018 0.828 ± 0.007 0.869 ± 0.039 0.509 ± 0.027 0.808 ± 0.013
BSE [39] DeepAtlas [51] 0.938 ± 0.022 0.667 ± 0.006 0.648 ± 0.009 0.846 ± 0.112 0.518 ± 0.041 0.817 ± 0.017 0.873 ± 0.064 0.525 ± 0.029 0.807 ± 0.014

ERNet [45] DW [20] 0.942 ± 0.010 0.675 ± 0.004 0.620 ± 0.012 0.935 ± 0.006 0.573 ± 0.007 0.818 ± 0.007 0.915 ± 0.019 0.544 ± 0.029 0.799 ± 0.012

JERS (ours) 0.944 ± 0.008 0.679 ± 0.005 0.651 ± 0.011 0.937 ± 0.005 0.574 ± 0.006 0.840 ± 0.010 0.917 ± 0.019 0.550 ± 0.025 0.832 ± 0.010

4.3.3 Extraction, Registration and Segmentation Results. Table 2
presents the results for the compared methods as well as the pro-
posed JERS in extraction, registration, and segmentation tasks.
Through a comprehensive evaluation across three datasets, JERS
outperforms existing methods in all metrics.

For the extraction task, we observed that the joint-based ex-
traction methods (JERS and ERNet) outperform other single-stage
extraction methods, especially on the CC359 dataset. Specifically,
we observed a gain in extraction dice score up to 10.4% compared to
the best single-stage extraction method 3dSkullStrip. Furthermore,
joint-based extraction methods prove to be more robust compared
to other alternatives, given their steady performance and achieve-
ment of the lowest standard deviation across all datasets.

When observing registration performance, joint-based registra-
tion methods (JERS and ERNet) also outperform all other methods
across all datasets. Significantly, our findings suggest that the reg-
istration performance of most methods is constrained by the result
of its corresponding extraction method. This underscores the fact
that the precision of extraction considerably influences the subse-
quent registration task’s quality. Joint-based registration methods
leverage this characteristic to yield enhanced results through col-
laborative learning.

For the segmentation task, once again, we find that joint-based
segmentation methods (JERS and DeepAtlas) are superior to DW.
This demonstrates that joint learning with the registration task can
help the segmentation task to boost its performance.

Overall, joint-based methods (JERS, ERNet and DeepAtlas) out-
perform other pipeline-basedmethods in their respective joint tasks.
However, the partially joint methods perform poorly on their stand-
alone task. ERNet performs well on extraction and registration but
inferior on the segmentation task. Similarly, although DeepAtlas
achieves good results on the segmentation task, the stand-alone ex-
traction method limits its extraction and registration performance.
Benefiting from fully end-to-end joint learning, only JERS can per-
form well in all tasks.

4.3.4 Qualitative Analysis. In Figure 5, we visually compare the
performance of our JERS and other approaches on the LPBA test
set. Upon observation, it is evident that JERS achieves more accu-
rate brain extraction compared to BET, 3dSkullStrip, and BSE. The
brain extraction mask predicted by JERS overlaps closely with the
ground truth extraction mask, while the masks predicted by other
extraction methods include noticeable non-brain tissues. Regard-
ing registration results, JERS also outperforms the other methods.
The final registered image of JERS exhibits a higher resemblance
to the target image compared to the alternatives. Importantly, the
inaccurate extraction results with non-brain tissue further impact
the subsequent registration results and ultimately affect the overall
performance. This supports our assertion that failed extraction can
propagate errors to the subsequent registration task, resulting in
irreparable consequences. In terms of the segmentation task, JERS
produces results that closely overlap to the ground truth segmenta-
tion mask. Overall, we can see that better extraction leads to better
registration, and better registration yields better segmentation.

4.3.5 Ablation Study. To demonstrate the effectiveness of our JERS,
we compared five variants of JERS in Table 3. We first freeze the
extraction module, the registration module, and the segmentation
module of JERS respectively. JERSw/o Ext consistently produces the
extractionmask with all values of 1 (i.e., no pattern be removed from
the source image). JERS w/o Reg only outputs the identity affine
matrix representing no displacement applied to the image. JERS w/o
Seg directly warps the segmentationmask to the source image space
(i.e., no segmentation network exists). The results show that the
extraction module, the registration module, and the segmentation
module are essential to JERS, and removing any of them degrades
the performance of all tasks. We then evaluate the effects of multi-
stage and extraction mask smoothing design. The results show that
they significantly boost the performance of all tasks. Since all tasks
are learned in a collective manner, the performance boost of one
module is shared by all other modules.
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Methods BSE - VM - DW BET - CRN - DW 3dSS - ANTs - DW 3dSS - DeepAtlas ERNet - DW JERS (ours) BET - FLIRT - DW
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Figure 5: Visual comparisons for brain extraction, registration and segmentation tasks. We render a 3D visualization of the image and display
the middle slice in three different planes: sagittal, axial and coronal. The left side contains the source and target (template) images and their
corresponding ground truth labels. We show the extraction, registration and segmentation results of each method and its corresponding
predictive labels used for performance evaluations. For the extraction task, a predicted extraction mask (marked by green color) should
coincide as much as possible with the ground truth extraction mask of the source image. Likewise, in the segmentation task, a predicted
segmentation mask (marked by different color regions) should well-overlap with the ground-truth segmentation mask of the source image. For
the registration task, the higher the similarity of the registered brain to the template brain, the better.

4.3.6 Running Efficiency. We measure the efficiency of JERS by
comparing its running time with other baselines. The measurement
is made on the same device with an Intel® Xeon® E5-2667 v4 CPU
and an NVIDIA Tesla A100 GPU. As indicated in Table 4, all joint-
based methods are faster than existing three-stage pipeline-based
methods. This is because they can efficiently perform their corre-
sponding extraction, registration and segmentation tasks end-to-
end on the same device. GPU implementations for BET, 3dSkullStrip,
BSE, FLIRT, and ANTs are not available [3, 10, 21, 39, 41].

4.3.7 Influence of Parameters. We study two crucial hyperparame-
ters of our JERS: the number of stages for extraction and registration
modules and the value of segmentation loss weight 𝜆. In our multi-
stage design, the number of stages in the network represents the
depth of the model and the number of iterations for the extraction
and registration tasks. Essentially, increasing the number of stages
allows for more refinements in the extraction and registration pro-
cesses. As illustrated in Figure 6(a, b, c), we adjust the number of
stages of extraction and registration to study their influence. The
outcomes show that increasing the stages boosts the performance
of all tasks, validating the notion that a multi-stage framework
results in superior overall performance in a joint learning system.

As mentioned in Section 3.4, we introduce a segmentation loss
term to learn a better segmentation network. To show the effective-
ness of the loss term, we vary different values of the loss weight 𝜆
as shown in Figure 6(d). As the weight of the loss term gradually
increases, the segmentation dice score grows as well. This indicates
that our JERS benefits from the segmentation loss term.

5 RELATEDWORK
Neuroimage extraction. In the past decade, numerous methods
have emerged, highlighting the significance of the brain extrac-
tion problem. Smith et al. [41] introduced a deformable model that
fits the brain surface using a locally adaptive set model. 3dSkull-
Strip [10] is a modified version of [41] that employs points outside
the brain surface to guide mesh evolution. Shattuck et al. [39] uti-
lized anisotropic diffusion filtering and a 2D Marr Hildreth edge
detector for brain boundary identification. However, these meth-
ods heavily rely on parameter tuning and manual quality control,
which are time-consuming and labor-intensive. Recently, brain
extraction has benefited from the introduction of deep learning
approaches, which exhibit exceptional performance and speed.
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Table 3: Ablation studies of JERS on LPBA40 dataset

Methods Diceext ↑ MIreg ↑ Diceseg ↑
JERS w/o Ext 0.216 ± 0.018 0.579 ± 0.017 0.224 ± 0.103
JERS w/o Reg 0.311 ± 0.030 0.217 ± 0.036 0.268 ± 0.157
JERS w/o Seg 0.942 ± 0.009 0.677 ± 0.005 0.620 ± 0.008
JERS w/o Multi-stage 0.902 ± 0.005 0.662 ± 0.003 0.609 ± 0.017
JERS w/o Ext smoothing 0.931 ± 0.006 0.673 ± 0.003 0.649 ± 0.008

JERS 0.944 ± 0.008 0.679 ± 0.005 0.651 ± 0.011

Table 4: Running Time of compared methods on LPBA40 dataset.
Methods Time (Sec) ↓

Ext Reg Seg Ext Reg Seg

BET [41] FLIRT [21] DW [20] 2.4751 4.6857 0.1457
3dSS [10] ANTs [3] DW [20] 176.9355 2.6705 0.0370

BSE [39] VM [5] DW [20] 3.5119 0.0050 0.0001
BET [41] CRN [56] DW [20] 2.4751 0.0151 0.0001

BET [41] DeepAtlas [51] 2.4751 0.0018

ERNet [45] DW [20] 0.0420 0.0001

JERS (ours) 0.0455

Kleesiek et al. [23] proposed a voxel-wise 3D CNN for skull strip-
ping, while Hwang et al. [19] demonstrated the effectiveness of
3D-UNet in achieving competitive results. However, these learning-
based approaches often necessitate a substantial amount of properly
labeled data for effective training, which is a challenge considering
that neuroimage datasets are typically small and costly to annotate.
Neuroimage registration. Conventional techniques for image
registration [2, 3, 21] typically aim to maximize image similarity
by iteratively optimizing transformation parameters. Commonly
used intensity-based similarity measures include normalized cross-
correlation (NCC) and mutual information (MI), among others.
However, this iterative optimization approach often suffers from
high computational costs and being stuck in local optima, resulting
in inefficient and unreliable registration outcomes. Recently, nu-
merous deep learning-based methods have been proposed, offering
improved computational efficiency and registration performance.
For instance, Sokooti et al. [42] introduced a multi-scale 3D CNN
called RegNet, which learns the displacement vector field (DVF)
for 3D chest CT registration. Although these methods demonstrate
competitive results, they require supervision. To overcome this lim-
itation, unsupervised registration methods [5, 56] have garnered
significant attention and shown promising outcomes.
Neuroimage segmentation. CNN-based approaches have demon-
strated superior performance in terms of speed and accuracy for
supervised neuroimage segmentation. Based on the dimensionality
of network operation, current work mainly falls into two cate-
gories: 2D CNN-based network and 3D CNN-based network. 2D
CNN-based network processes the volumetric neuroimage data
slice by slice, and assembles the final segmentation mask by putting
segmentation results on all the slices together. The most represen-
tative networks include UNet [37] and Attention-UNet [32]. Since
the 2D CNN-based network treats each slice separately, the spa-
tial information encoded between slices is not utilized, negatively
affecting the segmentation performance. This limitation prompts
the use of the 3D CNN-based network for 3D segmentation. The
most representative network among all is the 3D UNet [9]. Despite
the success CNN-based approaches had in neuroimage segmen-
tation, those approaches still possess a data-hungry nature and
require a large number of labeled neuroimages for training, which
is expensive to acquire.
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Figure 6: Effect of varying the number of stages of the JERS and the
segmentation loss weight 𝜆.

Joint neuroimage registration and segmentation The neuroim-
age registration and segmentation tasks are deeply co-related and
mutually facilitating, thus should not be treated separately. Specifi-
cally, the anatomy structure produced by neuroimage segmentation
can provide auxiliary information for neuroimage segmentation.
This idea is practiced in [17] and demonstrated to be effective. Com-
plementary, the registration task can also aid the segmentation
task, typically studied in the scope of atlas-based segmentation
and data augmentation. In atlas-based segmentation, the atlas label
is transferred to the unlabeled image space using the geometric
transformation estimated by a registration module [14, 49]. Taking
the idea a step further, for data augmentation, new image-label
pairs are generated by means of sampling the geometric and style
transformation [13, 55]. The above methods still focus on a single
task. To address this limitation, exploring work has been conducted
to combine registration and segmentation together, by optimiz-
ing them either jointly [35] or alternatively [16, 51], and is able to
obtain better results.

6 CONCLUSION
This paper introduces a novel unified framework, called JERS, for
one-shot joint extraction, registration and segmentation. In contrast
to prior research, our proposed method seamlessly integrates the
three tasks into a single system, enabling joint optimization. Specifi-
cally, JERS contains a group of collective extraction, registration and
segmentation modules. These three modules help each other boost
extraction, registration, and segmentation performance with only
one labeled template available. Furthermore, our method facilitates
incremental progress for each task, thereby enhancing the overall
performance to a greater extent. The experimental results substan-
tiate that JERS not only surpasses state-of-the-art approaches in
terms of extraction, registration, and segmentation accuracy but
also exhibits high robustness and time-efficiency.
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A APPENDIX
This section provides more details of evaluation metrics and ex-
periment settings to support the reproducibility of the results in
this paper. Our code and data have been made publicly available
at https://github.com/Anonymous4545/JERS.

A.1 Evaluation Metrics
Our defined problem aims to solve the brain extraction, registration
and segmentation tasks simultaneously: 1) identify the brain region
(i.e., whole cerebral tissue) within the source image; 2) align the
extracted cerebral tissues to the target image; 3) identify the anatom-
ical segmentation within the source image. Thus, we evaluate the
accuracy of extraction, registration and segmentation to show the
performance of our proposed method and compared methods.

A.1.1 Extraction Performance. The brain MRI datasets incorporate
the ground truth of the brain mask, representing the labeling of
brain tissue in the source image. To assess the accuracy of extraction,
we evaluate the volume overlap of brain masks using the Dice score,
which can be expressed as:

Diceext = 2 · |M̂ ∩M|
|M̂| + |M|

, (13)

where M̂ denotes the predicted brain mask andM is the correspond-
ing ground truth. If M̂ signifies a precise extraction, we anticipate
a high degree of overlap between the non-zero areas in M̂ andM.

A.1.2 Registration Performance. To evaluate the registration per-
formance, we calculate the mutual information [30, 31, 34, 48] be-
tween the warped image (i.e., registered)W and the target image T:

𝑀𝐼 (W,T) =
∑︁
𝑤,𝑡

𝑝WT (𝑤, 𝑡) log 𝑝WT (𝑤, 𝑡)
𝑝W (𝑤) · 𝑝T (𝑡)

(14)

where 𝑝W (𝑤) and 𝑝T (𝑡) are the marginal probability distributions
of imageW and T, respectively. 𝑝WT (𝑤, 𝑡) is the joint probability
distribution. The mutual information measures the mutual depen-
dence between W and T. If the warped image W and the target
image T are geometrically aligned, we expect the mutual informa-
tion to be maximal.

A.1.3 Segmentation Performance. We evaluate the segmentation
accuracy by measuring the volume overlap of anatomical segmen-
tation, which are the location labels of different tissues in the brain
MRI image. If the segmentation task performs well, the predicted
segmentation mask should overlap with the ground truth. Similar
to the extraction evaluation, we use Dice score to evaluate the over-
lap of the segmentation masks. A Dice score of 1 signifies that the
corresponding structures overlap with the ground truth, whereas
a score of 0 denotes the complete absence of overlap. If the image
includes multiple labeled anatomical structures, the final score is
calculated as the average of the Dice scores for each structure.

A.2 Details of Data Preprocessing
The proposed method and baselines are evaluated on three different
public brain MRI datasets, LPBA40, CC-359 and IBSR.
• LONI Probabilistic Brain Atlas (LPBA40) [40]: The dataset com-
prises 40 raw T1-weighted 3D brainMRI scans, each from a different
patient. It includes corresponding brain masks and segmentation

ground truth for 56 anatomical structures. The brain mask is used
for evaluating the extraction accuracy, while the anatomical seg-
mentations are used for evaluating the segmentation accuracy. Sim-
ilar to [5, 56], our focus is on atlas-based registration, where the
first scan serves as the target image and the remaining scans are
aligned to it. Out of the 39 remaining scans, 30 are used for training,
5 for validation, and 4 for testing. All scans are cropped and resized
to 96 × 96 × 96 dimensions.
• Calgary-Campinas-359 (CC-359) [43]: The dataset consists of 359
raw T1-weighted 3D brain MRI scans from 359 different patients.
Additionally, it includes corresponding brain masks and labeled
white matter as ground truth. The brain masks are used to evaluate
the accuracy of extraction, while the white matter masks are used
for segmentation evaluation. Similar to the LPBA40 dataset, our
focus is on atlas-based registration. For CC359, we divide the dataset
into training, validation, and test sets, consisting of 298, 30, and 30
scans, respectively. All scans are cropped and resized to 96×96×96.
• Internet Brain Segmentation Repository (IBSR) [36]: The dataset
consists of 18 raw T1-weighted 3D brainMRI scans from 18 different
patients, accompanied by corresponding segmentation results. The
segmentation results are merged to create the brain mask. Given
the limited sample size, this dataset is exclusively used for testing
the model trained on CC359. Consequently, all 18 scans are aligned
with the first scan of CC359. After cropping, all scans are resized to
96 × 96 × 96 dimensions.

A.3 Details Settings of JERS
Training settings of JERS. Our experiments are conducted on
Red Hat Enterprise Linux 7.3, utilizing an Intel® Xeon® E5-2667 v4
CPU and an NVIDIA Tesla A100 GPU. The code is implemented in
Python 3.7.6, and the neural networks are built using PyTorch 1.7.1.
The implementation also makes use of Numpy 1.21.6, SimpleITK
2.0.2, and Nibabel 3.1.1. To overcome GPU memory limitations, we
employ batch gradient descent, with each training batch consist-
ing of one image pair. The models are optimized using the Adam
optimizer, with a learning rate of 1 × 10−6. We also apply image
augmentation techniques, including random translation, rotation,
and scaling, to the source images during training. For more details,
please refer to Table 5.

Table 5: Range of random transformation.

Datasets
Transformation

Translation Rotation Scale
(Voxels) (Degree) (Times)

LPBA40 ± 5 ± 5 0.98 ∼ 1.02
CC359 ± 3 ± 3 0.99 ∼ 1.01

Parameters settings of JERS. The extraction and registration
stages are set to 5 in this work. The segmentation loss parameter
𝜆 and extraction mask smooth parameter 𝜂 in Eq. (9) are 0.1 and
1, respectively. The extraction network contains 10 convolutional
layers with 16, 32, 32, 64, 64, 64, 32, 32, 32 and 16 filters. The regis-
tration network adopt 3D CNNs and fully-connected layers to map
the input to the dimension of 1 × 12. It contains 6 convolutional
layers with 16, 32, 64, 128, 256 and 512 filters. The segmentation
network contains 10 convolutional layers with 128, 256, 256, 512,
512, 512, 256, 256, 256 and 128 filters.

https://github.com/Anonymous4545/JERS
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A.4 Settings of Baselines
The settings of baselines are followed by [45] for a fair comparison.
Brain Extraction Tool (BET) [41]: This skull stripping method
is a component of the FSL (FMRIB Software Library) package. It
employs a deformable approach to accurately fit the brain surface
by utilizing locally adaptive set models. The command we use for
BET is bet <input> <output> -f 0.5 -g 0 -m, where f and g are
fractional intensity threshold and gradient in fractional intensity
threshold, respectively. We set them to default values.
3dSkullStrip [10]: This modified version of BET (Brain Extrac-
tion Tool) is integrated into the AFNI (Analysis of Functional Neu-
roImages) package. It performs skull stripping by employing the
expansion paradigm of the spherical surface. The command we
use for 3dSkullStrip is 3dSkullStrip -input <input> -prefix
<output> -mask_vol -fac 1000. fac is set to the default value.
Brain Surface Extractor (BSE) [39]: This method extracts the
brain region by utilizing morphological operations and edge de-
tection techniques. It incorporates anisotropic diffusion filtering
to enhance image quality and a Marr Hildreth edge detector to
accurately identify the boundaries of the brain. The command we
use for BSE is bse -i <input> -o <output> –mask <mask> -p
–trim –auto –timer . Hyperparameters are set to default values.
FMRIB’s Linear Image Registration Tool (FLIRT) [21]: This is
a fully automated affine brain image registration tool included in
the FSL (FMRIB Software Library) package. It performs the regis-
tration process without requiring manual intervention, allowing
for the alignment of brain images based on affine transformations.
The command we use for FLIRT is flirt -in <source> -ref
<target> -out <output> -omat <output parameter> -bins
256 -cost corratio -searchrx -90 90 -searchry -90 90
-searchrz -90 90 -dof 12 -interp trilinear.
Advanced Normalization Tools (ANTs) [3]: It is a cutting-edge
medical image registration toolkit widely used in the field. In our

approach, we employ the affine transformation model and cross-
correlation metric provided by ANTs for the registration process.
VoxelMorph (VM) [5]: This unsupervised image registrationmethod
utilizes a neural network to predict the transformation between
images. In order to ensure a fair comparison, we re-implemented
the method using an affine transformation. The network architec-
ture consists of 6 convolutional layers with filter sizes of 16, 32,
64, 128, 256, and 512. The deformation regularization ratio is set
to 10, ensuring smooth and controlled transformations during the
registration process.
Directly Warping (DW) [20]: This operation refers to generating
a segmentation mask through the process of registration. Once
the registration is completed, the segmentation mask of the target
image can be directly warped and transformed into the source
image space.
Cascaded Registration Networks (CRN) [56]: This is an unsu-
pervised multi-stage registration method that involves iteratively
transforming the source image to align with a target image. Same
to JERS, the number of stages is set to 5. Within each stage, we con-
figure the network architecture with 6 convolutional layers using
filter sizes of 16, 32, 64, 128, 256, and 512.
DeepAtlas [51]: This is an unsupervised learning method for joint
registration and segmentation. For a fair comparison, we configure
6 convolutional layers with 16, 32, 64, 128, 256 and 512 filters for
the registration module, and the segmentation network contains
10 convolutional layers with 128, 256, 256, 512, 512, 512, 256, 256,
256 and 128 filters.
ERNet [45]: This is an unsupervised learning method for joint
extraction and registration. For a fair comparison, the number of
stages is set to 5, and we configure 6 convolutional layers with
16, 32, 64, 128, 256 and 512 filters, and the registration network
contains 6 convolutional layers with 16, 32, 64, 128, 256 and 512
filters.
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