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ABSTRACT

In this paper, we describe a new algorithm called Preferential At-
tachment k-class Classifier (PreAttacK) for detecting fake ac-
counts in a social network. Recently, several algorithms have ob-
tained high accuracy on this problem. However, they have done so
by relying on information about fake accounts’ friendships or the
content they share with others—the very things we seek to prevent.

PreAttacK represents a significant departure from these ap-
proaches. We provide some of the first detailed distributional anal-
yses of how new fake (and real) accounts first attempt to make
friends by strategically targeting their initial friend requests after
joining a major social network (Facebook). We show that even be-
fore a new account has made friends or shared content, these initial
friend request behaviors evoke a natural multi-class extension of the
canonical Preferential Attachment model of social network growth.

We leverage this model to derive a new algorithm, PreAttacK.
We prove that in relevant problem instances, PreAttacK near-
optimally approximates the posterior probability that a new account
is fake under this multi-class Preferential Attachment model of new
accounts’ (not-yet-answered) friend requests. These are the first
provable guarantees for fake account detection that apply to new
users, and that do not require strong homophily assumptions.

This principled approach also makes PreAttacK the only algo-
rithm with provable guarantees that obtains state-of-the-art per-
formance at scale on the global Facebook network, allowing it to
detect fake accounts before standard methods apply and at lower
computational cost. Specifically, PreAttacK converges to informa-
tive classifications (AUC ≈0.9) after new accounts send + receive a
total of just 20 not-yet-answered friend requests. For comparison,
state-of-the-art network-based algorithms do not obtain this per-
formance even after observing additional data on new users’ first
100 friend requests. Thus, unlike mainstream algorithms, PreAttacK
converges before the median new fake account has made a single
friendship (i.e. accepted friend request) with a human.
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1 INTRODUCTION

Fake user accounts are the primary source of fake news and other
malicious phenomena on social networks such as Facebook and
Twitter. Organized campaigns of fake accounts have recently been
used to influence public opinion, push propaganda, infiltrate politi-
cal discourse, manipulate stock markets, steal personal data, and
propagate scams [7, 13, 14, 16–18, 26, 34, 35, 37, 38, 40]. Detecting
these fake accounts and limiting their ability to interact maliciously
with humans are core tasks for modern social networks [11, 23, 47].

The scale of fake accounts has increased commensurately with
the rapid growth of online social networks. In the last year alone,
Facebook disabled 6.1 billion fake accounts—more than double the
number of active users on the Facebook network [16]. This figure
reflects immense recent progress in fake account classification—
for example, Facebook disabled the vast majority of these fakes
during account registration. Nonetheless, the fraction of active
social network users who are fake has remained at roughly 4-5% (for
Facebook) or 8-15% (for Twitter) for the last several years [16, 40].

The early detection paradox. These active fakes that evade
registration-time classifiers and join a social network raise what
we call the early detection paradox:Mainstream algorithms to detect
active fake accounts rely on information about their friends or the
content they share with others, yet these friendships and shared content
are the very things we seek to prevent. Our goal in this paper is to
design algorithms that overcome this paradox by classifying active
fake accounts before they make friends or share content.
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Figure 1: Distribs. of counts of Facebook friend requests sent

by new fake accounts before a single real user accepts any

among new fake accounts who eventually befriend a real user.

Median at blue solid line; mean at dashed red line.

Recent algorithms. This paradox is captured by the two main-
stream approaches to fake account detection:

• Network-structural algorithms.Network-structural algorithms
classify long-tenured accounts via the Homophily Assump-
tion, which states that users eventually tend to cluster to-
gether (i.e. make the majority of their steady-state friend-
ships) with other users who share their same {𝑓 𝑎𝑘𝑒, 𝑟𝑒𝑎𝑙}
label [20, 44, 49, 53]. Based on this assumption, network-
structural algorithms attempt to propagate a small number
of known users’ {𝑓 𝑎𝑘𝑒, 𝑟𝑒𝑎𝑙} labels across the friendship
network to unknown users via either Random Walks [9, 15,
21, 49, 52, 53] or Belief Propagation [19, 20, 43–45].

• Feature-based classifiers. Recently, a variety of research has
detected fake accounts in a supervised learning setting. State-
of-the-art algorithms such as DEC [47], Jodie [25] and Ties
[30] accomplish this via embeddings of tens of thousands
of features that capture sophisticated properties of a user’s
friendship network, such as the average account age of a
user’s friends-of-friends, or temporal trends in the content
a user shares over time [22, 24, 25, 30, 36, 41, 47]. While
these algorithms have no theoretic guarantees, they are per-
formant: Facebook now uses them to obtain high quality
{𝑓 𝑎𝑘𝑒, 𝑟𝑒𝑎𝑙} labels (AUC>0.98) for virtually all of their long-
tenured users [11, 23, 47].

Notwithstanding these impressive results, neither approach is
ideally suited to the early detection of new fake accounts that have
not yetmademany (or any) friendships: Because such accounts have
just passed registration-time feature-based classifiers, they cannot
be detected by other feature-based classifiers until their features
evolve significantly. Also, many informative features are unknown
until after a new user has made several friends or shared content
with others. Similarly, it is well-known that mainstream network-
structural algorithms do not apply, as their theoretic guarantees
rely critically on the Homophily Assumption, which only applies to
long-tenured users who have had sufficient ‘stabilization time’ to
make the majority of their eventual friendships [1, 9, 33, 44, 49]. For
this reason, evaluations of network-structural algorithms have often
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Figure 2: Distribs. of counts of friend requests sent + received.

excluded new users with less than e.g. 1 to 6months of tenure on the
social network [9, 10, 49]. Recent evaluations of these algorithms
on the Facebook network suggest they perform poorly (AUC<0.6)
on new users who have not yet made many friends [11].

Overcoming the paradox. To address this early detection para-
dox, we use data from the Facebook social network to provide some
of the first distributional analyses of how fake (and real) accounts
target their friend requests after joining a major social network
(Figs. 1-4). This focus on friend requests is motivated by the fact
that new fake accounts can only meaningfully interact with real
users after they have sent friend requests to real users (or received
requests from real users) and those requests have been seen and
accepted. Fig. 1 shows that among the subset of new fake accounts
that eventually obtain a friendship with a real user, the median new
fake account sends 16 friend requests before obtaining a single
friendship (accepted request) with a real user (note log-scale). If
we also include the requests these new fake accounts receive from
others (Fig. 2), the count increases to 29 requests (sent+received).

Can we leverage this small number of not-yet-answered friend
requests to distinguish new fake accounts from new real users?

𝑘-Class Directed Preferential Attachment model (𝑘CDPA).
On the Facebook network, we observe that while fake and real users
do differ slightly as a class in terms of the degree to which they send
and receive requests from fakes and reals (red vs. blue distributions
in Figs. 3 and 4, next pg.—see also Sec. 5), these class-level differences
are small in comparison to individual-level differences (spread of
distributions). Specifically, some users are exponentially more likely
to request (or be requested by) a real user (mass right of red lines
in Figs. 3 and 4, resp.); Other users are exponentially more likely to
request (or be requested by) a fake account (mass left of red lines).

This observation evokes the canonical Preferential Attachment
(PA, i.e. rich-get-richer) generative model of social network growth
[2, 5, 6, 8, 32]. In a traditional PA model, each new user joins a
social network and sends friend requests to recipients who are
selected with probability proportional to the counts of requests
that they have already received. This process results in a power-
law distribution of users’ in-degrees such that a small number of
recipients become vastly more popular than others. PA models and
their associated dynamic processes continue to motivate a variety
of recent results across several machine learning subfields.
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Figure 3: Mass right of 𝑥=1 line represents {𝑓 𝑎𝑘𝑒, 𝑟𝑒𝑎𝑙} Face-
book users who receive disproportionately more of real users’

requests vs. fakes’ requests by the factor on the 𝑥 axis.

In our problem setting, fake and real users’ ‘preferential attach-
ment’ to different individuals inspires a natural multi-class exten-
sion of the PA model, which we call 𝑘CDPA:

• Suppose we observe an arbitrary preexisting directed net-
work of friend requests between existing users. Then, sup-
pose some new fake and real users join this network.

• New fakes and reals each send and receive friend requests
to/from existing users who are chosen proportional to how
many of the new user’s 𝑓 𝑎𝑘𝑒/𝑟𝑒𝑎𝑙 class already did so.

The 𝑘CDPA model provides a principled foundation for a clas-
sifier that applies to new accounts. Specifically, recent research
has highlighted various similar multi-class PA models as a theo-
retical mechanism for the emergence of homophily in social net-
works [3, 4, 27, 29, 54]. As such, our 𝑘CDPA model forms a natural
antecedent to standard homophily-based fake account detection
methods that are used to detect long-tenured fake accounts.

We emphasize that we use 𝑘CDPA to model the friend request
networks of a small batch of new users; we do not assume that the
entire network emerged from this process (which would be a far
stronger assumption), nor do we assume that the (distinct) network
of accepted friend requests (i.e. friendships) adheres to PA.

Main contribution. Our main result is an algorithm, PreAt-
tacK, that determines the posterior probability that a new user is a
fake account based on the 𝑘CDPA model of her (not-yet-answered)
friend requests. Specifically, PreAttacK updates the probability
that a new user is fake to the extent she (1) ‘preferentially attaches’
to specific recipients in keeping with their probabilities of being
requested by fake accounts vs. by real ones, and also (2) to the
extent existing users ‘preferentially attach’ to her in keeping with
their probabilities of sending requests to fake accounts vs. real ones.

• Theoretic contribution.Wederive instance-specific bounds
that show PreAttacK near-optimally approximates each
new user’s posterior probability of being fake in relevant
problem instances at lower computational cost than alterna-
tives. These are the first provable guarantees for fake account
detection that apply to new users, and that do not require
strong homophily assumptions. Indeed, despite the enor-
mous popularity of Preferential Attachment models, to our
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Figure 4: Mass right of 𝑥=1 line represents FB users who send

disproportionately more requests to real users vs. to fakes.

knowledge PreAttacK is the first time that the correspond-
ing classifier has been derived.

• Real-world effectiveness. This principled approach makes
PreAttacK the only algorithm with provable guarantees
that obtains state-of-the-art performance at scale on the
global Facebook network. Specifically, we implement PreAt-
tacK at scale at Facebook and show it obtains high AUC≈0.9
after new users sent/received a total of just 20 not-yet-answered
friend requests. For comparison, state-of-the-art network-
based algorithms do not obtain this performance even after
observing additional data on new users’ first 100 friend re-
quests. This means that unlike existing algorithms, PreAt-
tacK converges to detect fakes before the median new fake
account makes a single friendship (i.e. accepted request) with
a real user (see Figs. 1 and 2 on the previous page).

• General applicability.While we focus on fake accounts on
Facebook, PreAttacK applies generally to networks where
directed edges convey information about users’ latent labels,
such as Twitter or Instagram ‘follows’, LinkedIn ‘connects’,
etc. PreAttacK may also be used to infer new users’ other
latent class labels beyond fake/real (e.g. political party, etc.),
which offers a means to address other cold-start problems.

Paper organization. Section 2 specifies the 𝑘CDPA model. Sec-
tions 3 and 4 derive PreAttacK and its instance-specific approx-
imation bounds. Section 5 extends PreAttacK by incorporating
observed homophily to obtain faster convergence. Section 6 shows
PreAttacK’s performance on the Facebook network.

2 MULTI-CLASS DIRECTED PA (𝑘CDPA)

Our core generative model is a simple but powerful extension of the
canonical directed Preferential Attachment (rich-get-richer) model
to the setting where there are 𝑘=2 classes of new users, fakes and
reals, who join a preexisting social network. Whereas traditional
PA models capture how new users tend to seek out already-popular
users, 𝑘CDPA captures how new users tend to seek out (request
and/or be requested by) users who are already popular with those
of the new user’s fake/real class:
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• New users’ outgoing friend requests:We model that new
fake users send friend requests to existing users drawn in
proportion to the counts of requests existing users already
received from fakes only, and new real users send friend
requests to existing users drawn in proportion to the counts
of requests existing users already received from reals only.

• New users’ incoming friend requests: Similarly, each new
fake [or real] user receives requests from existing users who
are drawn in proportion to the counts of requests existing
users already sent to fakes [or reals].

The 𝑘CDPAmodel is formally described by the following genera-
tive process. Suppose we have a preexisting directed social network
𝐺 (𝑉 , 𝐸0, 𝐿𝑉 ) where edges 𝐸0 capture friend requests (not friend-
ships/accepted requests). We consider 𝑘=2 classes: users a ∈ 𝑉

have known fake/real labels 𝐿𝑉 : 𝐿𝑉 ∈ {𝐹, 𝑅} |𝑉 | . We will denote
a single user a’s label by lowercase ℓa . Finally, we have a small
set of new users 𝑈 : 𝑈 = {𝑢1 . . . 𝑢𝑚} who are each fake with prob-
ability 𝜋 . Some new users 𝑢 are more likely than others to send
a friend request and/or receive a friend request. To be as general
as possible, suppose we have some distribution D that captures
these probabilities (so D’s domain includes 2|𝑈 | entries—two for
the probability that each new user 𝑢 will [𝑠𝑒𝑛𝑑, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒] a friend
request). The 𝑘CDPA model is then:

𝑘-Class Directed Preferential Attachment (𝑘CDPA)

input Preexisting network of requests 𝐺 (𝑉 , 𝐸0, 𝐿𝑉 ); new users𝑈
Draw new users’ fake/real labels 𝐿𝑈 = {ℓ𝑢 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜋)}
for 𝑖 ∈ 1, . . . , 𝑛

Draw new user & direction {𝑢 ∈ 𝑈 , 𝑑 ∈ [𝑠𝑒𝑛𝑑, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒]} ∼ D
if 𝑑 = 𝑠𝑒𝑛𝑑

Draw a ∈ 𝑉 ; 𝑃 (a) ∝ 𝛼 +∑𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[(𝑦 = a) ∧ (ℓ𝑥 = ℓ𝑢 )]
𝐸𝑖 = 𝐸𝑖−1 ∪ {𝑢 → a}

else

Draw a ∈ 𝑉 ; 𝑃 (a) ∝ 𝛼 +∑𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[(𝑥 = a) ∧ (ℓ𝑦 = ℓ𝑢 )]
𝐸𝑖 = 𝐸𝑖−1 ∪ {a → 𝑢}

return 𝐺 (𝑉 ∪𝑈 , 𝐸𝑖 , 𝐿𝑉 ∪ 𝐿𝑈 )

Here, 𝛼 is a small constant that captures e.g. the probability that a
preexisting user a receives or sends her first-ever request (in Section
5 below, we consider a ‘homophily-incorporating’ extension where
𝛼 depends on the sender and receivers’ real/fake labels). By 1 we
denote the indicator function that takes value 1 if the argument is
true and 0 otherwise, so the sum under the if 𝑑 = 𝑠𝑒𝑛𝑑 statement
counts the number of friend requests that existing user a has already
received from users who have the same {𝑓 𝑎𝑘𝑒, 𝑟𝑒𝑎𝑙} label as new
user𝑢. Note that this includes requests from the preexisting network
(𝐸0) as well as requests from new users in previous iterations.1

While we are interested in 𝑘=2 classes, note that 𝑘CDPA eas-
ily extends to the case where there are 𝑘>2 classes of users, 𝐿𝑉 ∈
{1, . . . , 𝑘} |𝑉 | just by replacing Bernoulli(𝜋 )withMultinom(𝜋1, . . . , 𝜋𝑘 ).
This captures (for example) settings where there are multiple types
of fake users: sockpuppets, false news bots [42], etc., and each has
different preferences in terms of existing users they seek to befriend.
1As in the original PA model, this generative process may result in a multigraph (e.g. if
the same edge is drawn twice). This is suitable for our setting, as social network users
can send multiple friend requests to the same recipient (e.g. if the first is rejected).

Very recently, similar 2-class (and multi-class) PA models have
receivedmuch attention due to their ability to explain the generative
process by which homophily and related properties emerge in social
networks [3, 4, 27, 29, 54]. However, for our purposes, we do not
require the model to explain the full evolution of a social network;
we merely require it to capture the friend request behavior of new
users who join a long-established network (e.g. Facebook).

3 THE PREATTACK ALGORITHM

In this section, we derive a new algorithm, PreferentialAttachment
k-class Classifier (PreAttacK) that near-optimally approximates
the posterior probability that each new social network user is a
fake account under the 𝑘CDPA model. Intuitively, PreAttacK up-
dates the probability that a new user is fake to the extent she (1)
‘preferentially attached’ to specific recipients in keeping with their
probabilities of being requested by fake accounts vs. by reals, and
also (2) to the extent existing users ‘preferentially attached’ to her
in keeping with their probabilities of sending requests to fake ac-
counts vs. reals. Because 𝑘CDPAmodels friend requests rather than
friendships (accepted requests), PreAttacK can classify new users
even before they make a single friendship. Surprisingly, despite the
complex properties of 𝑘CDPA (and PA processes in general), we
show that PreAttacK is also computationally efficient on mature
social networks containing billions of users.

PreAttacK considerations. We are interested in the 𝑘=2 case
where users are {𝑟𝑒𝑎𝑙, 𝑓 𝑎𝑘𝑒}, but also show in Appendix B that
PreAttacK also accommodates 𝑘>2 to classify multiple types of
fakes, such as sockpuppets and false news bots. Importantly, we will
assume that the count of requests that each new user 𝑢 sends and
receives are independent of her label. This precludes the undesirable
scenario where PreAttacK e.g. penalizes new real users who send
many requests by increasing the posterior probability that they are
fake. Finally, note that 𝑘CDPA generates no requests between new
accounts. It is easy tomodify𝑘CDPA to generate such requests2, but
excluding them precludes a scenario where the posterior probability
that one new account is fake depends only on other new accounts.
This prevents malicious adversaries from manipulating PreAttacK
by generating many new accounts at once (see Section 4.3).

PreAttacK part I: A new user’s outgoing friend requests.
The conditional probability 𝑃𝐹a𝑖+ that new fake user 𝑢 who sends a
friend request at iteration 𝑖 of 𝑘CDPA draws preexisting user a for
the recipient is proportional to the count of requests that a already
received from fakes before iteration 𝑖:

𝑃𝐹a𝑖+ B𝑃 [a𝑖 |ℓu = F, 𝐸𝑖−1, 𝑢, 𝑑, 𝐿𝑉 ∪ 𝐿𝑈 ] (1)

=
𝛼 +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[𝑦=a ∧ ℓ𝑥 =𝐹 ]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[ℓ𝑥 =𝐹 ]
(2)

Similarly, if new user 𝑢 is real, this probability becomes:

𝑃𝑅a𝑖+ B 𝑃 [a𝑖 |ℓ𝑢 =𝑅, ·] =
𝛼 +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[𝑦=a ∧ ℓ𝑥 =𝑅]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[ℓ𝑥 =𝑅]
(3)

Given all new users’ {𝐹, 𝑅} labels and the sequence of all other
new users’ friend requests 𝐸1, . . . , then the joint conditional proba-
bility of observing𝑢’s sequence of outgoing friend request recipients
2To make this change, add a line:𝑉 = 𝑉 ∪𝑢 at the end of the for-loop.
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a𝑖 is just the product of their individual probabilities (eqn. 2 or 3).
Denote this sequence of 𝑢’s recipients by N+

𝑢 . If 𝑢 is fake:

𝑃𝐹N+
𝑢
B 𝑃 [N+

𝑢 |ℓ𝑢 =𝐹, ·] =
∏

a𝑖 :{𝑢→a }𝑖 ∈N+
𝑢

𝑃𝐹a𝑖+ (4)

And similarly, if 𝑢 is real, this conditional probability is:

𝑃𝑅N+
𝑢
B 𝑃 [N+

𝑢 |ℓ𝑢 =𝑅, ·] =
∏

a𝑖 :{𝑢→a }𝑖 ∈N+
𝑢

𝑃𝑅a𝑖+ (5)

PreAttacK part II: A new user’s incoming requests. Noting
the symmetry of the 𝑘CDPA model with respect to requests that
new users send and receive, we can also derive the cond. probability
𝑃𝐹a𝑖− that a new user 𝑢 who receives a friend request at iteration 𝑖

draws preexisting user a for the request’s sender. Similar to above,
this probability is proportional to the count of requests that a has
already sent to users who share the same label as 𝑢. If 𝑢 is fake:

𝑃𝐹a𝑖− B 𝑃 [a𝑖 |ℓ𝑢 =𝐹, ·] =
𝛼 +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[𝑥 =a ∧ ℓ𝑦 =𝐹 ]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[ℓ𝑦 =𝐹 ]
(6)

And if new user 𝑢 is real, this conditional probability is:

𝑃𝑅a𝑖− B 𝑃 [a𝑖 |ℓ𝑢 =𝑅, ·] =
𝛼 +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[𝑥 =a ∧ ℓ𝑦 =𝑅]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[ℓ𝑦 =𝑅]
(7)

Similar to above, the joint conditional probability of 𝑢’s sequence
of incoming friend request senders (denoted by N−

𝑢 ) if 𝑢 is fake is:

𝑃𝐹N−
𝑢
B 𝑃 [N−

𝑢 |ℓ𝑢 =𝐹, ·] =
∏

a𝑖 :{a→𝑢}𝑖 ∈N−
𝑢

𝑃𝐹a𝑖− (8)

And similarly, if 𝑢 is real, this conditional probability is:

𝑃𝑅N−
𝑢
B 𝑃 [N−

𝑢 |ℓ𝑢 =𝑅, ·] =
∏

a𝑖 :{a→𝑢}𝑖 ∈N−
𝑢

𝑃𝑅a𝑖− (9)

Posterior probability that a new user is fake. We are now
able to derive the full posterior probability that new user𝑢 is fake as
a function of the observed sequence of preexisting users to whom
she sent friend requests and from whom she received requests.
Leveraging Bayes’ rule and the law of total probability we have:

P∗u : = 𝑃 [ℓ𝑢 = 𝐹 |N+
𝑢 ,N−

𝑢 , 𝐸0, 𝐸1 . . . 𝐸𝑛, 𝐿𝑉 ∪ 𝐿𝑈 \𝑢 ] (10)

=
𝑃𝐹N+

𝑢
· 𝑃𝐹N−

𝑢
· 𝜋

𝑃𝐹N+
𝑢
· 𝑃𝐹N−

𝑢
· 𝜋 + 𝑃𝑅N+

𝑢
· 𝑃𝑅N−

𝑢
· (1 − 𝜋)

(11)

=

(
1 + (𝑃𝐹N+

𝑢
· 𝑃𝐹N−

𝑢
)−1 (𝑃𝑅N+

𝑢
· 𝑃𝑅N−

𝑢
) · 𝜋−1 (1 − 𝜋)

)−1
(12)

This posterior captures the idea that𝑢 is relatively more likely to
be fake to the extent she ‘preferentially’ sent requests to recipients
who are more preferred by fakes, and also to the extent she received
requests from senders who are more likely to send to fakes.

3.1 Intractability

Unfortunately, this expression for the posterior probability P∗u that
a new user 𝑢 is fake is intractable, as it requires knowledge of the
(latent) real/fake label of all new users who sent requests before
𝑢. Moreover, computing this posterior in expectation becomes in-
feasible as we consider more than a handful of new users, as this
requires integrating over all possible label combinations.

A standard approach at this point would be to apply either lin-
earized belief propagation or MCMC techniques. However, both are
computationally expensive in large networks due to the need to e.g.
iterate between inferring new users’ posterior labels and updating
all existing users’ sending and receiving preferential attachment
weights (i.e. sums within 𝑃𝐹a𝑖+, 𝑃

𝑅
a𝑖+, 𝑃

𝐹
a𝑖−, 𝑃

𝑅
a𝑖−) until (possible) con-

vergence. They also typically lack convergence guarantees [20, 51],
or obtain guarantees only at the expense of the approximation (e.g.
via linearization) [43, 45] or significant complexity [50].

3.2 Fast approximation

In contrast to these approaches, we consider a fast approximation
for P∗u based on the following idea: PA probabilities in mature social
networks are stable over small batches of new entrants. So, rather
than account for small and intractable changes to one new user’s
posterior that accrue due to other new users’ edges 𝐸1, . . . , we ignore
them and then bound their worst-case impact. Consider that given
a large preexisting network, a small batch of new accounts who
send and receive friend requests (probably) do not significantly
change existing users’ PA probabilities (i.e. sums in the Draw steps
of 𝑘CDPA). At a high level, there are three reasons why this is so:

(1) Collisions are (probably) rare. Given a large preexisting
network of 300million (Twitter) or 2 billion (Facebook) users,
a small batch of new users are unlikely to ‘draw’ the same
recipientsmultiple times.When a new user sends a request to
a recipient who was not previously requested by a new user,
the numerators in 𝑃𝐹a𝑖+ and 𝑃𝑅a𝑖+ are equal to their (known)
original values in 𝐸0. The same is true of numerators in
𝑃𝐹a𝑖− and 𝑃𝑅a𝑖− when a new user receives a request from a
not-previously-drawn sender.

(2) Collisions (probably) have negligible impact. In cases
where multiple new accounts do send friend requests to
the same preexisting recipient, that recipient was proba-
bly already very popular (i.e. already had a large PA prob-
ability) due to PA’s ‘rich-get-richer’ dynamics. In that case,
this preexisting recipient’s PA probability only undergoes
a small percentage change after each new request, so it is
well-approximated by its original value in 𝐸0. This argument
also applies when multiple new accounts receive requests
from the same preexisting recipient.

(3) New users have a small number of friend requests.

A large preexisting social network of billions of users re-
sults from on the order of 1011 friend requests. The new
requests sent by a relatively small batch of new fake and real
accounts has only a negligible impact on this preexisting
count. Therefore, the denominators in 𝑃𝐹a𝑖+, 𝑃

𝑅
a𝑖+, 𝑃

𝐹
a𝑖− , 𝑃

𝑅
a𝑖−

are well-approximated by their original values in 𝐸0.
These three key intuitions, which we formalize in Section 4, sug-

gest we can obtain a good approximation for the posterior P∗u by
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holding all PA probabilities fixed at their values in the preexisting
requests network𝐺 (𝑉 , E0, 𝐿𝑉 ). With this change, we can approxi-
mate the probability of observing the 𝑖’th request that a new (fake
or real) account sends or receives, 𝑃𝐹a𝑖+, 𝑃

𝑅
a𝑖+, 𝑃

𝐹
a𝑖− , and 𝑃

𝑅
a𝑖− , without

knowing the labels of other new accounts. For example, for the
‘sending’ probabilities 𝑃𝐹a𝑖+ and 𝑃𝑅a𝑖+:

𝑃𝐹a𝑖+ = 𝑃 [a𝑖 |ℓ𝑢 = 𝐹, ·] (13)

≈ 𝑃𝐹a+ B
𝛼 +∑

𝑒𝑥→𝑦 ∈E0 1[𝑦 = a ∧ ℓ𝑥 = 𝐹 ]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈E0 1[ℓ𝑥 = 𝐹 ] (14)

And similarly:

𝑃𝑅a𝑖+ = 𝑃 [a𝑖 |ℓ𝑢 = 𝑅, ·] (15)

≈ 𝑃𝑅a+ B
𝛼 +∑

𝑒𝑥→𝑦 ∈E0 1[𝑦 = a ∧ ℓ𝑥 = 𝑅]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈E0 1[ℓ𝑥 = 𝑅] (16)

We obtain approximations for the remaining PA probabilities
(‘receiving’ probabilities) 𝑃𝐹a− , and 𝑃𝑅a− by making the identical
substitution of 𝐸0 for 𝐸𝑖−1 in eqns. 6, and 7 (note that these four
approximations are constant for all new edges to/from the same
preexisting user a , so we drop 𝑖 subscripts accordingly).

We now obtain an approximation P̂u of the posterior probability
P∗u that new user 𝑢 is fake by using these approximations in eqns.
4, 5, 8, and 9 to approximate the joint probabilities of all of user
𝑢’s outgoing & incoming edges conditional on her real/fake label,
𝑃𝐹N+

𝑢
, 𝑃𝑅N+

𝑢
, 𝑃𝐹N−

𝑢
, and 𝑃𝑅N−

𝑢
, then computing her posterior (eqn. 12).

This approach is formalized in the PreAttacK algorithm:

PreAttacK

input Preexisting𝐺 (𝑉 , 𝐸0, 𝐿𝑉 ); new users𝑈 ; new requests 𝐸𝑛\𝐸0
for a ∈ 𝑉 who receives a new request,

⋃(a : {𝑥 → a} ∈ 𝐸𝑛\𝐸0)
Compute 𝑃𝐹a+ and 𝑃𝑅a+

for a ∈ 𝑉 who sends a new request,
⋃(a : {a → 𝑥} ∈ 𝐸𝑛\𝐸0)

Compute 𝑃𝐹a− and 𝑃𝑅a−
for new user 𝑢 ∈ 𝑈

Compute 𝑃𝐹
𝑁 +
𝑢
, 𝑃𝑅

𝑁 +
𝑢
, 𝑃𝐹

𝑁 −
𝑢
, and 𝑃𝑅

𝑁 −
𝑢

Compute posterior P̂u
return [P̂1, . . . , P̂ |U | ]

Below, we show that in our setting PreAttacK obtains near-
optimal approximations for the posterior probabilities P∗u at low
computational cost. We also show in Section 5 that it can be natu-
rally extended to capture homophily or even monophily—scenarios
where 𝛼 = f (ℓa , ℓ𝑢 ). These extensions incur no cost in terms of
complexity, and they slightly improve the approximation bounds.

4 ANALYSIS OF PREATTACK

Our goal in this section is to show that PreAttacK results in im-
proved computational complexity over alternatives, and that it
admits instance-specific approximation bounds that confirm near-
optimal posterior inference for our problem instance. We note that
these are some of the first theoretic guarantees for this problem
that do not rely on homophily assumptions.

4.1 Complexity of PreAttacK

Computing all existing users’ preferential attachment weights re-
quires |𝐸0 | +4( |𝑉 + | + |𝑉 − |) ≤ |𝐸0 | +8( |𝑉 |) simple operations, where
𝑉 +,𝑉 − ⊆ 𝑉 respectively refer to the subset of preexisting users
who receive and send requests in preexisting network 𝐸0. Then,
computing PreAttacK’s posterior for all new accounts 𝑈 requires
2|𝐸𝑛\𝐸0 | + 2|𝑈 | operations. Importantly, unlike state-of-the-art al-
gorithms, PreAttacK can be computed for all new accounts in a
single pass through all edges [20, 43, 45, 49]. This yields O(|𝐸𝑛 |)
asymptotic complexity, which is O(|𝑉 ∪𝑈 |) in (sparse) social net-
works [28]. This improves on state-of-the-art algorithms such as
SybilBelief, SybilRank, and SybilSCAR, which require O(𝑚 |𝐸′ |),
where𝑚 is the number of iterations (at least O(log( |𝑉 ∪𝑈 |))) and
𝐸′ is the set of all accepted friend requests [20, 45, 49].

4.2 Instance-specific approximation guarantee

We formalize the three key intuitions from Section 3.2 to derive
instance-specific and new-user-specific approximation guarantees.
This is advantageous because it allows researchers to also obtain an
upper- and lower-bound of the exact posterior for each new user,
and also to determine the batch size (or subset) of new users that can
be classified while maintaining a desired worst-case approximation
bound for a specific problem instance. We give the key intuition
for the proof here and defer full analysis to Appendix A.

One-sided approximation errors. It is acceptable for PreAt-
tacK to overestimate the posterior probability that a new fake
is fake and underestimate the probability that a new real is fake,
but not the opposite. Therefore we seek, for each new user 𝑢, two
bounds: a worst-case approximation factor (underestimate factor)
𝑓 𝐹 ≤ P̂u/P∗u, which is useful if 𝑢 is fake, and a factor (overestimate
factor) 𝑓 𝑅 ≥ P̂u/P∗u that is useful in case 𝑢 is real.

Avoiding the combinatorial problem of new users’ labels.
Consider 𝑓 𝐹 . The main difficulty is that we cannot know (without
trying all combinations) the worst-case configuration of new users’
latent labels that results in the worst underestimate P̂u/P∗u. This is
because each new user before 𝑢 may have sent multiple requests
to recipients a , some of which result in increases to P∗u (e.g. if the
other new user is also fake and targets some of the same recipients
as 𝑢) and some in decreases (e.g. if the other new user is also fake
and targets some recipients who are not among 𝑢’s recipients).

We sidestep this combinatorial problem by imagining that each
new edge to/from a new account prior to 𝑢’s is sent by a unique
‘phantom’ new account 𝑝 whose label is the worst-case label for the
bound of interest. Thus, for 𝑓 𝐹 we assume ℓ𝑝=𝐹 if 𝑝’s single new
request is to/from the same preexisting recipient a as one of 𝑢’s re-
quests, and ℓ𝑝=𝑅 otherwise. Compute𝑢’s ‘worst case underestimate
if 𝑢 is fake’ posterior PFu,WC using these ‘phantom labels’ to obtain
𝑓 𝐹 = P̂u/PFu,WC ≤ P̂u/P∗u. To then obtain the ‘worst case overesti-
mate if 𝑢 is real’ factor 𝑓 𝑅 , compute PRu,WC assuming the opposite:
ℓ𝑝=𝑅 if 𝑝’s single new request is to/from the same preexisting user
a as one of 𝑢’s requests, else ℓ𝑝=𝐹 (see Appendix A).

In Section 6, we show this yields useful approximation bounds
for millions of new accounts in real data (𝑓 𝐹 ≈ 0.85, 𝑓 𝑅 ≈ 1.1).

110



Preemptive Detection of Fake Accounts on Social Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

4.3 Adversarial robustness in practice

We also highlight an important property that PreAttacK shares
with recent advances in practical adversarial robustness for this
problem. The most performant recent algorithms for fake account
detection at Facebook obtain adversarial robustness in practice by
leveraging so-called ‘deep network features’ [47], which are features
that capture aggregate properties of each user’s friends-of-friends.
Such aggregates have been shown to be practically difficult for even
coordinated campaigns of fake accounts to manipulate, particularly
when befriending (at least some) real users. PreAttacK similarly
works by aggregating over the features (i.e. counts) of e.g. friend-
requesters-of-friend-requestees. As such, PreAttacK’s preferential
attachment probabilities may also be considered ‘deep network
features’. Manipulating PreAttacK’s prediction for a certain user
would require an adversary to manipulate the counts of fake and
real senders who send requests to the user’s recipients, as well
as the counts of known fake and real users to whom the user’s
requesters also send requests.3 See also Appendix C.

Below, we also consider a variant of PreAttacK called PreAt-
tacK++ that also prevents sophisticated adversaries from avoiding
detection by targeting only very unpopular (and thus uninforma-
tive) real users who have sent and received few friend requests.

Finally, we note that in practice on large scale social networks,
new approaches to this problem that are practically vulnerable to
attack (such as modifying a fake account classifier by adding a new
and informative feature that can be manipulated by users) tend to
prompt an observable response from sophisticated adversaries (see
e.g. [47]). We have observed no such response to PreAttacK.

5 PREATTACK++ AND HOMOPHILY

We also consider a variant of PreAttacK, PreAttacK++, that
incorporates homophily and/or monophily4 to more rapidly detect
fakes. PreAttacK++ captures scenarios where the 𝑘CDPA prior
probabilities5 𝛼 that an existing user a receives a request from (or
sends a request to) a new user𝑢 depend on𝑢 and a ’s real/fake labels,
and also on whether the new account is the sender or the recipient.
This captures e.g. a typical case where a new real account is a priori
much less likely to send a request to a preexisting fake account vs.
a preexisting real account (even if neither has previously received
any requests). It can also capture monophilic networks where e.g.
new fakes prefer to target real users rather than other fakes.

Incorporating these label-dependent probabilities is advanta-
geous because they allow the posterior to update even when a new
user sends requests to (or receives requests from) preexisting re-
cipients who have not received any requests, but whose label is
known. This also prevents sophisticated fake accounts from avoid-
ing detection by targeting only unpopular recipients.

3Alternatively, a sophisticated adversary might attempt to learn and then target the set
of real users who are primarily targeted by real users and not fakes (i.e. who have small
𝑃𝐹
a+/𝑃𝑅

a+ < 1). However, even if this were possible, selection bias dictates that these
real users may be less receptive to accepting fakes’ friend requests, and the adversary
would have to severely limit its fake accounts’ friend requests to each real user 𝑣 to
avoid increasing 𝑃𝐹

a+ (which would result in future detection by PreAttacK).
4Recall that monophily occurs where one type of user prefers to connect to a specific
other type of user, e.g. if fake users send requests to reals rather than other fakes.
5We refer to 𝛼 ’s as ‘probabilities’ for readability, but note that in 𝑘CDPA, PA probabil-
ities are proportional to 𝛼 , so it is possible to choose parameters 𝛼 ∈ [0, inf ) .

In the most general case, 𝛼 can take 8 values: 4 probabilities
that a new {𝑓 𝑎𝑘𝑒, 𝑟𝑒𝑎𝑙} user 𝑢 sends a request to any preexisting
{𝑓 𝑎𝑘𝑒, 𝑟𝑒𝑎𝑙} user a , which we denote by 𝛼+

ℓ𝑢→ℓa
and 4 probabil-

ities that a new {𝑓 𝑎𝑘𝑒, 𝑟𝑒𝑎𝑙} user 𝑢 receives a request from any
preexisting {𝑓 𝑎𝑘𝑒, 𝑟𝑒𝑎𝑙} a , denoted by 𝛼−

ℓa→ℓ𝑢
. Estimates of these

probabilities are known or easily obtainable from historical data.
PreAttacK++ uses them (per 𝑘CDPA) in the approximate proba-
bilities 𝑃𝐹a+, 𝑃𝑅a+, 𝑃𝐹a− , and 𝑃𝑅a− of observing each new edge in the
first 2 loops in PreAttacK. For example, in PreAttacK++, the
probability 𝑃𝐹a+ that a new fake user sends a request to a becomes:

𝑃𝐹a+ =
𝛼+F→ℓa

+∑
𝑒𝑥→𝑦 ∈E0 1[𝑦 = a ∧ ℓ𝑥 = 𝐹 ]∑

𝑣∈𝑉 𝛼+F→ℓa
+ ∑

𝑒𝑥→𝑦 ∈E0 1[ℓ𝑥 = 𝐹 ]
) (17)

And the probability a new fake receives a request from a becomes:

𝑃𝐹a− =
𝛼−
ℓa→F +

∑
𝑒𝑥→𝑦 ∈E0 1[𝑥 = a ∧ ℓ𝑦 = 𝐹 ]∑

𝑣∈𝑉 𝛼−
ℓa→F + ∑

𝑒𝑥→𝑦 ∈E0 1[ℓ𝑦 = 𝐹 ]
) (18)

Note that PreAttacK++’s new expressions for 𝑃𝑅a+ and 𝑃𝑅a− can be
obtained by substituting 𝑅 for 𝐹 everywhere in eqns. 17 and 18.

Note this change does not incur a penalty in terms of complexity.
Also, because more informative 𝛼+

ℓ𝑢→ℓa
and 𝛼−

ℓa→ℓ𝑢
values reduce

the marginal change in posterior that can accrue due to new edges
in each existing user’s PA weights, PreAttacK++ admits slightly
improved instance-specific bounds compared to PreAttacK for
identical problem instances (see Appendix A).

6 EVALUATIONS

Our goal in this section is to show that beyond its provable guaran-
tees, PreAttacK performs well in practice on new fake accounts
on the global Facebook network. Our goal is not to measure perfor-
mance on all fake accounts, as the current generation of production
classifiers already detect the vast majority of fakes during account
registration [47, 49]. Similarly, PreAttacK is not an alternative
to other production classifiers that detect longer-tenured fake ac-
counts based on their longer timelines of friendships and shared
content [30]. Rather, we seek to overcome the early detection para-
dox by rapidly obtaining a good classification after an account
passes registration, but before it can engage with real users. Thus,
rather than measure performance on all new accounts (including
those easily detected by existing means), we instead evaluate the
degree to which PreAttacK improves upon state-of-the-art defenses
already in place [11, 30, 47] by detecting new fake accounts that are
not yet detected by those methods. This ‘hardest-to-detect’ class
[11, 23, 47] of new fakes motivates our evaluations.

Our main empirical result is that PreAttacK converges to infor-
mative classifications (AUC ≈0.9) after new accounts send + receive
a total of 20 not-yet-answered friend requests.6 For comparison,
state-of-the-art network-based algorithms do not obtain this per-
formance even after observing additional data on new users’ first
100 friend requests. This means that unlike many state-of-the-art
algorithms, PreAttacK converges before the median fake account
makes a single friendship (accepted request) with a real user.
6As is standard, we use the ROC AUC as our metric because real/fake account labels are
highly imbalanced (∼95% of users are real) [11, 44, 47]. Recall that a perfect classifier
has AUC=1, whereas AUC=0.5 denotes ‘no better than random’.
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Figure 5: Eval. 1 -send version AUC vs. # friend requests sent.

To accomplish this, we conduct two sets of evaluations. In the
first set, we evaluate PreAttacK and its variants on new accounts
that joined the global Facebook network, and we show how PreAt-
tacK converges to AUC ≈0.9 as each new account sends and re-
ceives its first handful of friend requests. In our second set of eval-
uations, we compare PreAttacK to four state-of-the-art network-
based benchmarks. Because these benchmarks are significantly
more computationally intensive than PreAttacK, we restrict our
data in this 2nd evaluation to a single country of ∼1 million users.

6.1 Evaluation 1 framework

To evaluate PreAttacK’s performance on new fake accounts on
the global Facebook network, we adopt the evaluation framework
of [11]. Specifically, we consider the set of all (𝑛>106) new accounts
that joined the global Facebook network during a particular week
last year, along with the time-ordered set of friend requests that
they sent and received during that week. Our goal is to determine
whether PreAttacK could have accurately classified these new
accounts using just their initial 1, 2, . . . 50 initial friend requests from
this first week after they joined the network, based on the counts of
requests that preexisting accounts had sent and received from real
and fake accounts prior to the start of this week (i.e. preexisting
users’ PA probabilities). Because several months have passed since
this ‘historical evaluation week’, we can now measure the accu-
racy of PreAttacK’s ‘early’ classifications against high-confidence
labels subsequently obtained from production classifiers. [23, 47].

We also confirm PreAttacK guarantees near-optimal approxi-
mations (𝑓 𝐹 ≥ 0.85, 𝑓 𝑅 ≤ 1.1) for >90% of these new accounts by
computing the instance-specific bounds (see Section 4).

Homophily benchmark. We also consider a simplified vari-
ant of PreAttacK: Homophily. Homophily is identical to PreAt-
tacK++ but with existing users’ PA probabilities zeroed out except
for 𝛼 terms, such that the probability of each new user’s edge
to/from any existing user is proportional to the overall within- or
cross-class rate 𝛼+

ℓ𝑢→ℓa
or 𝛼−

ℓa→ℓ𝑢
(see Appendix D). By comparing

PreAttacK toHomophily, we ascertain the degree to which PreAt-
tacK’s performance is homophily-based (i.e. driven by real vs. fake
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Figure 6: Eval. 1 AUC vs. # friend requests (sent+received).

users’ different preferences for in-class vs. cross-class friends) ver-
sus the degree to which it is driven by differences between real and
fake users’ preferences for individuals (i.e. our 2-Class PA model).

PreAttacK-send, PreAttacK++-send, &Homophily-send.
For each variant, we also compute a ‘-send’ version that only con-
siders the friend requests that new users sent (and ignores requests
they received). By comparing (for example) PreAttacK-send to
PreAttacK, we measure how PreAttacK’s performance is driven
by the requests that new users send vs. the requests they receive.

Fast implementation and practical scaling. We implement
PreAttacK and its variants in PyTorch [31]. On a 40-core 2GHz
production virtual machine and even without GPUs, PreAttacK
classifies more than a million new accounts-per-second. This effi-
ciency permits us to recompute PreAttacK’s posterior after each
user’s first friend request, second request, and so on in order to
obtain real-time-updated classifications for all new accounts.

6.2 Evaluation 1 Results
Fig. 5 plots the AUC of PreAttacK-send versus the count of friend
requests sent by new accounts. Each (𝑥,𝑦) point in the plot rep-
resents the AUC of the corresponding variant of PreAttacK run
on just the first 𝑥 friend requests sent by new accounts during
the ‘evaluation week’. Here, we observe that PreAttacK-send
and PreAttacK++-send already obtain an informative posterior
(AUC>0.75) after a new account sends 2 friend requests—well less
than the 16 requests it takes the median new fake to make a friend-
ship (i.e. accepted request) with a real user. Note that the x-axis
of Fig. 5 corresponds to our motivating plot, Fig. 1 in Section 1.
PreAttacK-send and PreAttacK++-send then converge to ap-
prox. AUC≈0.85 after a new account sends ≈25 friend requests.

Fig. 6 plots the AUC of the full (send+receive) version of PreAt-
tacK versus the total count of friend requests sent+received by new
accounts. Here, the additional information regarding the friend
requests that new accounts receive permits PreAttacK and PreAt-
tacK++ to obtain AUC≈0.9 after each new account sends + receives
a total of 20 requests. Thus, they converge before the median fake
account makes a friendship (i.e.accepted request) with a single real
user (which requires a total of 29 requests—see Fig. 2).
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Figure 7: Eval. 2 AUC vs. # friend requests sent.

PreAttacK vs. Homophily. Interestingly, Homophily-send
performs only slightly better7 than random (Fig. 5), andHomophily
(Fig. 6) is only moderately informative. The large gap between Ho-
mophily vs. PreAttacK suggests that PreAttacK’s performance
is driven by differences between real and fake users’ preferences for
individuals (i.e.𝑘CDPA), rather than by real and fake users’ different
preferences for in-class vs. cross-class friends (i.e. homophily).

PreAttacK vs. PreAttacK++. In both Fig. 5 and Fig. 6, PreAt-
tacK++ (or PreAttacK++-send) offers a small-but-consistent per-
formance improvement of ∼0.01-0.02 AUC over PreAttacK (or
PreAttacK-send), which is considered nontrivial in this competi-
tive domain [30, 47]. We compared them and found that ‘++’ ver-
sions detected additional fakes that were targeting only ‘unpopular’
existing users whose PA probabilities for both reals and fakes were
both small (and thus less informative).

6.3 Evaluation 2 framework

Evaluation 2 compares PreAttacK and its variants to four state-of-
the-art network-based fake account detection algorithms: GANG
[43], SybilRank, [49], SybilBelief [20], and SybilSCAR [44]. These
benchmarks are significantly more computationally intensive than
PreAttacK, so we follow [11] and restrict the network to a single
country of ∼1 million users. This makes it practically feasible to run
benchmarks using their papers’ original C++ code and parameters.
We provide details in Appendix E.

It is computationally impractical to run benchmarks multiple
times to compute AUC after each new user’s 1st, 2nd, etc. request, so
we instead partition new users in Figs. 7 & 8 by #requests they sent
(or sent+received): [0, 5], [6, 10], [11, 25], [26, 50], [51, 100], [101,∞].

6.4 Evaluation 2 Results
Fig. 7 plots the AUC of PreAttacK-send and benchmarks vs. the
count of friend requests that new accounts send, and Fig. 8 plots
the AUC of full PreAttacK vs. the total count of requests that
new accounts send+receive. Consistent with their performance on
the global Facebook network (Figs. 5 & 6), PreAttacK-send and
7This suggests that the ‘hardest-to-detect’ new fake accounts in our evaluation set are
savvy enough to avoid ‘suspicious’ friendships with other fakes.
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Figure 8: Eval. 2 AUC vs. # friend requests (sent+received).

PreAttacK obtain an informative signal of new accounts’ authen-
ticity before the median fake obtains a friendship (accepted request)
with a single human. In contrast, benchmarks perform poorly on
new users, consistent with [11]. We theorize this is because the
current generation of new fakes do not exhibit sufficient homophily.
GANG-s is a partial exception: it uses the directed network of friend
requests (like PreAttacK) to obtain a useful AUC of 0.75-0.85, albeit
with high variance (Fig. 7). However, unlike PreAttacK, GANG-s
often misclassifies new users that receive many requests (Fig. 8).

7 CONCLUSION

In this paper, we have studied a principled algorithmic approach
to address what we call the early detection paradox: mainstream
algorithms to detect fake accounts rely on the same behaviors they
seek to prevent, such as fake accounts’ friendships and the content
they share with others. To overcome this paradox, we show some of
the first distributional analyses of how fake (and real) accounts send
and receive friend requests after joining a major social network,
before they have made friends or shared content. We show that
these friend request behaviors evoke a natural multi-class exten-
sion to the preferential attachment model of social network growth.
We leverage this model to derive a new algorithm PreAttacK,
and we show that in relevant problem instances, PreAttacK near-
optimally approximates the posterior probability that a new user is
fake. This approach also provides some of the first theoretic guar-
antees for fake account detection that do not rely on homophily
assumptions. We conduct a variety of evaluations on the global
Facebook network, and we consistently find that PreAttacK ob-
tains informative classifications of new accounts before the median
fake account succeeds in making a single friendship (i.e. accepted
friend request) with a real user. We note that, while impressive,
PreAttacK’s AUC does not match state-of-the-art feature-based
classifiers such as DEC, which eventually obtains AUC>0.98 on
the set of all active accounts by leveraging ∼20,000 user-features
that describe users’ friendships and shared content [47]. Instead,
PreAttacK complements such methods by obtaining informative
and interpretable early classifications before fake accounts can pop-
ulate a user-feature vector, share content, or interact with others.
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APPENDIX

A DEFERRED ANALYSIS FOR INSTANCE-SPECIFIC BOUNDS

Lower bound 𝑓 𝐹 . We seek a worst-case factor 𝑓 𝐹 ≤ P̂u/P∗u that bounds PreAttacK’s underestimation of the posterior probability that 𝑢
is fake, which is useful in case 𝑢 is fake (Section 4). The main difficulty is that a new user who sent/received requests before 𝑢 may have had
both positive and negative effects (i.e. via its different edges) on 𝑢’s posterior. To sidestep the problem of trying all combinations of new
users’ latent labels, we bound the worst-case by supposing each new edge before 𝑢’s edges contained a unique new ‘phantom’ user whose
latent label was the worst-case for its respective edge. Thus, any new user’s edge before 𝑢’s edges that contained the same preexisting user as
the one in 𝑢’s edge gets a fake phantom user; any other such edge gets a real phantom user. We compute the exact posterior (eqn. 12) using
these phantom users’ labels (in place of the latent ones) to obtain the desired bound. The probabilities for each of 𝑢’s observed edges become:

𝑃𝐹a𝑖+ B 𝑃 [a𝑖 |ℓ𝑢 =𝐹, ·] =
𝛼 +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[𝑦=a ∧ ℓ𝑥 =𝐹 ]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[ℓ𝑥 =𝐹 ]
≤ 𝑃𝐹a𝑖+,𝑊𝐶𝐹 B

𝛼 +∑
𝑒𝑥→𝑦 ∈E0 1[𝑦=a ∧ ℓ𝑥 =𝐹 ] +

∑
𝑒𝑥→𝑦 ∈𝐸𝑖−1\𝐸0 1[𝑦=a]

𝛼 |𝑉 | +∑
𝑒𝑥→𝑦 ∈E0 1[ℓ𝑥 = 𝐹 ] + ∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1\𝐸0 1[𝑦 = a] (19)

𝑃𝑅a𝑖+ B 𝑃 [a𝑖 |ℓ𝑢 =𝑅, ·] =
𝛼 +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[𝑦=a ∧ ℓ𝑥 =𝑅]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[ℓ𝑥 =𝑅]
≥ 𝑃𝑅a𝑖+,𝑊𝐶𝐹 B

𝛼 +∑
𝑒𝑥→𝑦 ∈E0 1[𝑦=a ∧ ℓ𝑥 =𝑅]

𝛼 |𝑉 | +∑
𝑒𝑥→𝑦 ∈E0 1[ℓ𝑥 =𝑅] +

∑
𝑒𝑥→𝑦 ∈𝐸𝑖−1\𝐸0 1[𝑦≠a]

(20)

𝑃𝐹a𝑖− B 𝑃 [a𝑖 |ℓ𝑢 =𝐹, ·] =
𝛼 +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[𝑥 =a ∧ ℓ𝑦 =𝐹 ]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[ℓ𝑦 =𝐹 ]
≤ 𝑃𝐹a𝑖−,𝑊𝐶𝐹 B

𝛼 +∑
𝑒𝑥→𝑦 ∈E0 1[𝑥 =a ∧ ℓ𝑦 =𝐹 ] +

∑
𝑒𝑥→𝑦 ∈𝐸𝑖−1\𝐸0 1[𝑥 = a]

𝛼 |𝑉 | +∑
𝑒𝑥→𝑦 ∈E0 1[ℓ𝑦 =𝐹 ] + ∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1\𝐸0 1[𝑥 = a] (21)

𝑃𝑅a𝑖− B 𝑃 [a𝑖 |ℓ𝑢 =𝑅, ·] =
𝛼 +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[𝑥 =a ∧ ℓ𝑦 =𝑅]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1 1[ℓ𝑦 =𝑅]
≥ 𝑃𝑅a𝑖−,𝑊𝐶𝐹 B

𝛼 +∑
𝑒𝑥→𝑦 ∈E0 1[𝑥 =a ∧ ℓ𝑦 =𝑅]

𝛼 |𝑉 | +∑
𝑒𝑥→𝑦 ∈E0 1[ℓ𝑦 =𝑅] +

∑
𝑒𝑥→𝑦 ∈𝐸𝑖−1\𝐸0 1[𝑥 ≠ a] (22)

P̂u/P∗u B P̂u/
( 𝑃𝐹N+

𝑢
· 𝑃𝐹N−

𝑢
· 𝜋

𝑃𝐹N+
𝑢
· 𝑃𝐹N−

𝑢
· 𝜋 + 𝑃𝑅N+

𝑢
· 𝑃𝑅N−

𝑢
· (1 − 𝜋)

)
(23)

= P̂u/
( ∏

a𝑖 ∈N+
𝑢
𝑃𝐹a𝑖+ · ∏a𝑖 ∈N−

𝑢
𝑃𝐹a𝑖− · 𝜋∏

a𝑖 ∈N+
𝑢
𝑃𝐹a𝑖+ · ∏a𝑖 ∈N−

𝑢
𝑃𝐹a𝑖− · 𝜋 + ∏

a𝑖 ∈N+
𝑢
𝑃𝑅a𝑖+ · ∏a𝑖 ∈N−

𝑢
𝑃𝑅a𝑖− · (1 − 𝜋)

)
(24)

≥ 𝑓 𝐹 B P̂u/
( ∏

a𝑖 ∈N+
𝑢
𝑃𝐹
a𝑖+,𝑊𝐶𝐹

· ∏a𝑖 ∈N−
𝑢
𝑃𝐹
a𝑖−,𝑊𝐶𝐹

· 𝜋∏
a𝑖 ∈N+

𝑢
𝑃𝐹
a𝑖+,𝑊𝐶𝐹

· ∏a𝑖 ∈N−
𝑢
𝑃𝐹
a𝑖−,𝑊𝐶𝐹

· 𝜋 + ∏
a𝑖 ∈N+

𝑢
𝑃𝑅
a𝑖+,𝑊𝐶𝐹

· ∏a𝑖 ∈N−
𝑢
𝑃𝑅
a𝑖−,𝑊𝐶𝐹

· (1 − 𝜋)

)
(25)

This expression for 𝑓 𝐹 requires no knowledge of new users’ latent labels, and conveniently, it can be computed during the same single pass
through new edges that we use to compute PreAttacK with no penalty in asymptotic complexity (Note also that the expression for 𝑓 𝐹 can
be further factored as in eqn. 12).

Upper bound 𝑓 𝑅 . We also seek a worst-case overestimate factor 𝑓 𝑅 ≥ P̂u/P∗u that bounds PreAttacK’s overestimation of the posterior
probability that 𝑢 is fake, which is useful in case 𝑢 is real. Similar to before, we bound the worst-case by computing the exact posterior (eqn.
12) supposing each new edge before 𝑢’s edges contained a unique new ‘phantom’ user whose latent label was the worst-case for 𝑢’s posterior:

𝑃𝐹a𝑖+ ≥ 𝑃𝐹a𝑖+,𝑊𝐶𝑅 B
𝛼 +∑

𝑒𝑥→𝑦 ∈E0 1[𝑦 = a ∧ ℓ𝑥 = 𝐹 ]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈E0
(
𝛼 + 1[ℓ𝑥 = 𝐹 ]

)
+ ∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1\𝐸0 1[𝑦 ≠ a]
(26)

𝑃𝑅a𝑖+ ≤ 𝑃𝑅a𝑖+,𝑊𝐶𝑅 B
𝛼 +∑

𝑒𝑥→𝑦 ∈E0 1[𝑦 = a ∧ ℓ𝑥 = 𝑅] +∑
𝑒𝑥→𝑦 ∈𝐸𝑖−1\𝐸0 1[𝑦 = a]

𝛼 |𝑉 | +∑
𝑒𝑥→𝑦 ∈E0 1[ℓ𝑥 = 𝑅] +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1\𝐸0 1[𝑦 = a] (27)

𝑃𝐹a𝑖− ≥ 𝑃𝐹a𝑖−,𝑊𝐶𝑅 B
𝛼 +∑

𝑒𝑥→𝑦 ∈E0 1[𝑥 = a ∧ ℓ𝑦 = 𝐹 ]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈E0 1[ℓ𝑦 = 𝐹 ] + ∑
𝑒𝑥→𝑦 ∈𝐸𝑖−1\𝐸0 1[𝑥 ≠ a] (28)

𝑃𝑅a𝑖− ≤ 𝑃𝑅a𝑖−,𝑊𝐶𝑅 B
𝛼 +∑

𝑒𝑥→𝑦 ∈E0 1[𝑥 = a ∧ ℓ𝑦 = 𝑅] +∑
𝑒𝑥→𝑦 ∈𝐸𝑖−1\𝐸0 1[𝑥 = a]

𝛼 |𝑉 | +∑
𝑒𝑥→𝑦 ∈E0 1[ℓ𝑦 = 𝑅] +∑

𝑒𝑥→𝑦 ∈𝐸𝑖−1\𝐸0 1[𝑥 = a] (29)

P̂u/P∗u B P̂u/
( ∏

a𝑖 ∈N+
𝑢
𝑃𝐹a𝑖+ · ∏a𝑖 ∈N−

𝑢
𝑃𝐹a𝑖− · 𝜋∏

a𝑖 ∈N+
𝑢
𝑃𝐹a𝑖+ · ∏a𝑖 ∈N−

𝑢
𝑃𝐹a𝑖− · 𝜋 + ∏

a𝑖 ∈N+
𝑢
𝑃𝑅a𝑖+ · ∏a𝑖 ∈N−

𝑢
𝑃𝑅a𝑖− · (1 − 𝜋)

)
(30)

≤ 𝑓 𝑅 B P̂u/
( ∏

a𝑖 ∈N+
𝑢
𝑃𝐹
a𝑖+,𝑊𝐶𝑅

· ∏a𝑖 ∈N−
𝑢
𝑃𝐹
a𝑖−,𝑊𝐶𝑅

· 𝜋∏
a𝑖 ∈N+

𝑢
𝑃𝐹
a𝑖+,𝑊𝐶𝑅

· ∏a𝑖 ∈N−
𝑢
𝑃𝐹
a𝑖−,𝑊𝐶𝑅

· 𝜋 + ∏
a𝑖 ∈N+

𝑢
𝑃𝑅
a𝑖+,𝑊𝐶𝑅

· ∏a𝑖 ∈N−
𝑢
𝑃𝑅
a𝑖−,𝑊𝐶𝑅

· (1 − 𝜋)

)
(31)

Note that 𝑓 𝐹 is strictly decreasing, and 𝑓 𝑅 strictly increasing in the number of new users’ edges before 𝑢’s.
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B MULTI-CLASS PREATTACK

PreAttacK also applies to the case where we want to classify 𝑘>2
classes ^ ∈ {1, . . . , 𝑘} of fake users, such as sockpuppets, false news
bots [42], etc. and each has different preferences in terms of existing
users they seek to befriend. Computing PreAttacK in this case, we
first compute 𝑘 conditional probabilities 𝑃^a𝑖+ of each observed edge
that new user 𝑢 sends—one for each class ^—and also 𝑘 conditional
probabilities 𝑃^a𝑖− of each observed edge that new user 𝑢 receives:

𝑃^a𝑖+ =
𝛼 +∑

𝑒𝑥→𝑦 ∈E0 1[𝑦 = a ∧ ℓ𝑥 = ^]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈E0 1[ℓ𝑥 = ^] ; (32)

𝑃^a𝑖− =
𝛼 +∑

𝑒𝑥→𝑦 ∈E0 1[𝑥 = a ∧ ℓ𝑦 = ^]
𝛼 |𝑉 | +∑

𝑒𝑥→𝑦 ∈E0 1[ℓ𝑦 = ^] (33)

We use these (approximated) conditional probabilities to com-
pute 𝑘 joint conditional probabilities 𝑃^N+

𝑢
of all 𝑢’s outgoing re-

quests, and 𝑘 probabilities 𝑃^N−
𝑢
of all 𝑢’s incoming requests. Finally

we compute 𝑘−1 (approximated) posterior probabilities—one for
each class that could describe the new account (the 𝑘’th is implied).
Here, the posterior probability that 𝑢 is a member of class ^ that
has prior probability 𝜋^ is:

P̂^u =
𝑃^N+

𝑢
· 𝑃^N−

𝑢
· 𝜋^

𝑃^N+
𝑢
· 𝑃^N−

𝑢
· 𝜋^ +

𝑘∑︁
𝛾={1,...,^ }\^

𝑃
𝛾

N+
𝑢
· 𝑃𝛾N−

𝑢
· 𝜋𝛾

(34)

=

(
1 + (𝑃^N+

𝑢
· 𝑃^N−

𝑢
· 𝜋𝑘 )−1

𝑘∑︁
𝛾={1,...,^ }\^

𝑃
𝛾

N+
𝑢
· 𝑃𝛾N−

𝑢
· 𝜋𝛾

)−1
(35)

C ADVERSARIAL ROBUSTNESS IN PRACTICE:

ADDITIONAL DISCUSSION

We also note a relationship between our work and the very recent
discussions in the fake account and fake news detection community
that have highlighted causal considerations, and in particular, un-
observed confounding and related biases (see e.g. Cheng et al. [12]).
Specifically, algorithmic approaches to fake accounts (or fake news)
will suffer from bias to the extent that they leverage users’ counts
of fake friends (or fake news articles shared) without accounting
for the fact that some users had more exposure to fake accounts
(e.g. by receiving more friend requests from fakes) than others a
priori, and some users had more exposure to real accounts than
others a priori. Such bias can explicitly accrue when, for example,
algorithms increase the posterior belief that a new account is real
by the same amount for each real account she befriends, failing to
account for the fact that different users have varying propensities
to receive friend requests from fake accounts. It is also well-known
that adversaries can leverage this bias to avoid detection. For exam-
ple, an adversary might avoid detection by mainstream algorithms
by sending thousands of friend requests to real users in the hope
of befriending a ‘normal’ number of real friends, knowing that cer-
tain algorithms are blind to rejected friend requests and unable to
account for the fake account’s unduly high a priori exposure to real
users. Our distributional analyses in Section 1 confirm this ‘varying

exposure’ phenomenon for our problem instance. Sophisticated
adversaries may also attempt to learn the subset of real users who
accept friend requests indiscriminately, or they may strategically
delete certain friendships after making them in order to manipulate
detection algorithms (see e.g. [39, 47, 48]).

Whereas several new research streams seek to address these
sources of bias via propensity scoring and other inference tech-
niques, PreAttacK sidesteps them entirely by aggregating over
all friend requests (rather than the subset that are accepted). More
importantly, PreAttacK does not require inferential propensity
scoring corrections to address bias from to the fact that different
users have varying exposure to fake accounts, as we are able to
use social network data to explicitly compute each existing user’s
‘propensity’ to receive a friend request from (or send a request
to) fake and real accounts, which we compute as each user’s pref-
erential attachment probabilities, 𝑃𝐹a+, 𝑃𝑅a+, 𝑃𝐹a−, 𝑃𝑅a− . In this way,
PreAttacK may be seen as robust to prevalent confounding bias
vulnerabilities that are common among mainstream approaches in
this application domain.

D DETAILS OF HOMOPHILY BENCHMARK

Homophily is equivalent to PreAttacK++ with 𝐸0 = ∅. Thus,
all request probabilities in Homophily can be summarized by an
8-tuple, including 4 probabilities 𝛼+

ℓ𝑢→ℓa
that a new {𝑓 𝑎𝑘𝑒, 𝑟𝑒𝑎𝑙}

sends a request to a preexisting {𝑓 𝑎𝑘𝑒, 𝑟𝑒𝑎𝑙} and 4 probabilities
𝛼−
ℓa→ℓ𝑢

that a new {𝑓 𝑎𝑘𝑒, 𝑟𝑒𝑎𝑙} receives a request from a preexisting
{𝑓 𝑎𝑘𝑒, 𝑟𝑒𝑎𝑙}. Here, 𝑘CDPA reduces to a 2-class directed Stochastic
Block Model (SBM) [46].

E DETAILS OF BENCHMARK ALGORITHMS

Section 6 compares PreAttacK and its variants to four state-of-the-
art benchmarks. For each, we use their paper’s code and parameters:

GANG. GANG [43] is a recent algorithm that leverages directed
edges (requests) in a belief-propagation framework. We consider
two variants: GANG-s, which uses the directed network of friend-
ship requests sent, and GANG-r, which uses the directed network
of requests received. This allows us to test GANG’s performance
when beliefs about the authenticity of a new user flow from senders
to receivers, or alternatively, from receivers to senders. As with
SybilBelief, we set parameters {\+, \−, \ } to {0.9, 0.1, 0.5} per [43].

SybilRank. SybilRank [49] is currently the most widely used
random walk based algorithm. SybilRank runs on the network of
accepted friend requests and set of known real users. As in [49], we
run SybilRank for log2( |𝑉 |) iterations.

SybilBelief. SybilBelief [20] is a loopy belief propagation algo-
rithm that is widely used in state-of-the-art applications. SybilBe-
lief uses the network of accepted friend requests and both known
real users and fakes. As in [20], we run SybilBelief with edge
weights of 0.9 and set {\+, \−, \ } to {0.9, 0.1, 0.5}.

SybilSCAR. SybilSCAR [44] is a recent algorithm that uses the
graph of accepted requests and both known real users and fakes.
We run both versions: SybilSCAR-C with weights equal to half
the inverse of the avg. degree per [44], and user-degree weighted
SybilSCAR-D. Each point in Figs. 7 & 8 reports the higher of their
two AUC’s. Per [44], we set {\+, \−, \ } to {0.6, 0.4, 0.5}, and 𝛿=10−3.
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