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ABSTRACT
Learning from positive and unlabeled data is known as positive-
unlabeled (PU) learning in literature and has attracted much atten-
tion in recent years. One common approach in PU learning is to
sample a set of pseudo-negatives from the unlabeled data using
ad-hoc thresholds so that conventional supervised methods can be
applied with both positive and negative samples. Owing to the label
uncertainty among the unlabeled data, errors of misclassifying un-
labeled positive samples as negative samples inevitably appear and
may even accumulate during the training processes. Those errors
often lead to performance degradation and model instability. To
mitigate the impact of label uncertainty and improve the robustness
of learning with positive and unlabeled data, we propose a new
robust PU learning method with a training strategy motivated by
the nature of human learning: easy cases should be learned first.
Similar intuition has been utilized in curriculum learning to only
use easier cases in the early stage of training before introducing
more complex cases. Specifically, we utilize a novel “hardness” mea-
sure to distinguish unlabeled samples with a high chance of being
negative from unlabeled samples with large label noise. An iterative
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training strategy is then implemented to fine-tune the selection of
negative samples during the training process in an iterative man-
ner to include more “easy” samples in the early stage of training.
Extensive experimental validations over a wide range of learning
tasks show that this approach can effectively improve the accuracy
and stability of learning with positive and unlabeled data. Our code
is available at https://github.com/woriazzc/Robust-PU.
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• Computing methodologies → Semi-supervised learning
settings.
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1 INTRODUCTION
Conventional supervised binary classification problems often as-
sume that all training samples are clearly labeled as positive (P)
data and negative (N) data. However, correctly labeling all positive
samples in the training data can be costly or impractical in many
real applications, including images classification [8] and priority
ranking [22, 23] of genes or gene combinations associated with dis-
eases. It is then often the case that only a relatively small amount
of positive data is reliably labeled and available for training along

ar
X

iv
:2

30
8.

00
27

9v
1 

 [
cs

.L
G

] 
 1

 A
ug

 2
02

3

https://orcid.org/0009-0007-7643-3717
https://orcid.org/0000-0002-7305-1496
https://orcid.org/0000-0002-4518-323X
https://orcid.org/0009-0008-2893-5461
https://orcid.org/0000-0001-6763-8146
https://orcid.org/0000-0001-6439-8183
https://orcid.org/0000-0002-8997-8317
https://orcid.org/0000-0003-2559-2383
https://orcid.org/0000-0002-2019-213X
https://orcid.org/0000-0002-9230-2799
https://doi.org/10.1145/3580305.3599491
https://github.com/woriazzc/Robust-PU
https://doi.org/10.1145/3580305.3599491


KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zhangchi Zhu, et al.

with a large set of unlabeled (U) data. Learning with such data is
known as Positive-Unlabeled (PU) learning and has attracted much
attention in recent years.

While PU learning problems can be solved by conventional su-
pervised learning approaches by treating all the unlabeled samples
as negative samples, the contamination of positive samples among
unlabeled samples would introduce considerable bias to the learn-
ing process [2]. To address this issue, existing PU learning methods
usually adopt one of the following two strategies: (1) Sample se-
lection strategy, in which negative samples are identified from
the unlabeled data for training. Usually, the trained classification
models are used to generate and update the negative labels based
on ad-hoc thresholds at each training step in a recursive fashion.
However, during the early training stages, the poorly-trained classi-
fication models can easily misclassify unlabeled samples especially
when the prior of positive samples (proportion of positive samples
among unlabeled data) is relatively high. Such misclassification er-
rors could accumulate and cause persistent bias and instability [29]
in the learning process; (2) De-biasing strategy, in which new clas-
sification risks are developed to support unbiased learning with
positive and unlabeled data. This strategy, while circumvents the
issue of labeling the unlabeled data, requires the knowledge of the
prior of positive samples for constructing the unbiased risks, which
can be difficult to estimate accurately in practice.

Despite all those developments, recent studies [30] show that
many existing PU learning methods are still susceptible to noise
in the unlabeled data and tend to overfit the noisy negatives. In
this paper, we propose a robust PU learning method with a new
training strategy to alleviate this issue. This strategy is motivated
by the nature of human learning: it is often better to learn the easier
knowledge first before exposing it to the harder one. This “easy-to-
hard” strategy has been used as one of the most popular approaches
of curriculum learning [27], in which only the easier concepts (i.e.
recognizing objects in simple scenes with clearly visible objects)
are used for training the model during the early stage of learning,
while more complex cases such as cluttered images with occlusions
are only introduced later. It has been verified that such an “easy-to-
hard” strategy can help learn more robust models in scenarios with
noisy data.

In particular, our new training strategy employs an iterative
approach for fine-tuning the selection of negative samples through-
out the training process. In the early stage of training, only the
“easy” samples, unlabeled samples with a very high chance of being
negative, are selected for training the classification model. More
samples, including “hard” ones with higher labeling noise, are in-
troduced in a gradual fashion as the training processes. To support
this strategy, we develop a novel hardness measurement based on
the classification loss to quantify the degree of noise in unlabeled
samples. Furthermore, we implement a training scheduler to over-
see the sample selection process. This scheduler utilizes a dynamic
weight-based threshold for selecting negative samples from unla-
beled data at each iteration. As the number of iterations increases,
this threshold would be smoothly relaxed to ensure the inclusion
of more samples in the later stages of training. Our experiments
show that this strategy can reliably improve the robustness and
generalization of the trained models across a wide range of PU
learning tasks.

In summary, we make the following contributions:
• We demonstrate that a well-designed training strategy based
on the “from easy to hard” principle can lead to consider-
able improvement in PU learning methods and suggest new
research opportunities in this direction.

• We propose a new difficulty measurement for measuring the
“hardness” of PU data and explore a set of training schedulers
for PU learning.

• We propose a novel training strategy called Robust-PU based
on the “hardness” measure and the training scheduler. By dy-
namically increasing the expected number of selected clean
negatives in the training process, this strategy effectively
reduces the influence of noisy negatives and significantly
improves the generalization and robustness ability of the
trained model in PU learning tasks.

• We conduct extensive experimental validations on the effec-
tiveness of the proposed method over a wide range of PU
learning tasks.

2 RELATEDWORKS
2.1 Positive-Unlabeled Learning
Existing PU learning methods mainly fall into two categories. The
first branch relies on negative sampling from unlabeled data and is
also known as biased PU learning. These methods [19, 31] firstly
identify reliable negative samples from unlabeled data and then
apply a regular supervised learning strategy with positive and nega-
tive data. PUbN [11] uses the pre-trained model to recognize a small
portion of negative samples for calculating risks associated with
positive, negative, and unlabeled samples. PULNS [20] combines
PU learning with reinforcement learning. It uses an agent to select
negative samples and treats the binary classifier’s performance on
the validation dataset as the reward. Except for selecting negative
samples from the real dataset, GenPU [10] also adopts the GAN
framework to generate extra data as the input of the classifier. Still,
at the early stage of training, the poorly-trained classification model
can easily misclassify unlabeled samples. Such misclassification er-
rors could accumulate and cause persistent bias and instability in
the learning process.

The second category of PU methods adopts the framework of
cost-sensitive learning, in which new classification risks [6] are
developed to support unbiased classification with positive and un-
labeled data directly. Due to the strong flexibility of deep neural
networks, empirical risks on training data may go negative and
lead to serious overfitting. This issue is addressed by nnPU [15]
that bounds the estimation of the risk on negative data. Self-PU [4]
proposes to use the unlabeled samples via a self-learning method
including model calibration and distillation. It is worth noting that
although Self-PU tries to solve the problem via self-paced learning,
it only takes it as a warm-up and fails to utilize the full power of
the easy-to-hard principle, resulting in an insufficient use of true
negatives. Dist-PU[32] aligns the expectations of the predicted and
true label distributions to improve the label consistency and adopts
entropy minimization and Mixup regularization to avoid the trivial
solution. All these methods assume that the labeled positive data
is identically distributed as the unlabeled positive, which is unre-
alistic in many instances of PU learning. To this end, PUSB [13]
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Figure 1: Overview of the proposed Robust-PU.We propose a novel iterative training strategy to train a classificationmodel with
only positive and unlabeled data. We divide each iteration into three stages: 1) Hardness Measurement, 2) Sample Weighting,
and 3) Weighted Supervised Training. By updating the weights of both positive and unlabeled samples dynamically regarding
their “hardness”, we can greatly alleviate the problem of overfitting the noisy negatives.

takes a mild assumption that preserves the order induced by the
class posterior. In general, while all those methods provide means
for learning unbiased risk estimators from unlabeled data, they all
assume that the prior distribution of positive samples is known or
can be accurately estimated. There are also some studies aiming at
estimating the class prior for PU learning. PE [5] uses penalized
divergences for model fitting to cancel out the error caused by the
absence of negative samples. CAPU [3] jointly optimizes the prior
estimation and the binary classifier by pursuing the optimal solu-
tion of gradient thresholding. Still, estimating class prior remains a
difficult problem which is often harder than the classification task
itself.

2.2 Curriculum Learning
Curriculum learning (CL) is inspired by human learning. Early cur-
riculum learning studies [1, 14, 25, 33] seek an optimized sequence
of training samples (i.e. a curriculum, which can be designed by
human experts) to improve model performance. The main idea of
curriculum learning is to “train from easier data to harder data”.
In practice, CL usually assigns greater weights to easy samples
and gradually increases the weights of each sample in the dataset,
eventually using the full dataset for training. As a general strategy,
curriculum learning has been successfully applied to a variety of
tasks, including computer vision (CV) [9], natural language pro-
cessing (NLP) [24], recommender system (RS) [26], etc.

Many studies adopt CL for denoising and validate its effective-
ness in improving the robustness of models. Specifically, they use
samples with high confidence to alleviate the interference of noisy
data from the perspective of data distribution. Previous works [34]
have validated that CL can help make the training more robust
and more generalizable. The most popular example of using CL
for denoising is combining CL with neural machine translation
(NMT) [16], which always uses a highly heterogeneous and noisy
dataset. CL is also used in weakly-supervised CV tasks to select
clean samples from noisy data collected from the web [9].

Self-paced learning (SPL) is a branch of CL that takes the training
loss given by the current model as the difficulty of samples. It
introduces a regularizer and alternatively optimizes the loss and
regularizer. Then the weight of samples is given by the minimizer
function of the regularizer. The original SPL [17] uses regularizers
that lead to binary weights (i.e. 0 or 1). However, they ignore the
difference between samples with the same weights. Therefore, an
intuitive choice is to design new SP-regularizers to result in soft
weights [12]. Except for the regularizers that have explicit forms,
Fan et al. [7] introduced implicit regularizers, whose analytic forms
are unknown. They are deduced from some well-studied robust
loss functions, and their minimizer functions can be derived from
these loss functions.

Our work shares a similar intuition with CL methods. However,
it is not trivial to apply CL to PU learning. This is because, in PU
learning, unlabeled data usually occupies the vast majority and only
a small portion of the positive samples are labeled. As a result, the
training process can be easily interfered with by the unlabeled pos-
itives in unlabeled samples. To ensure that PU learning can benefit
from similar training strategies as those used in CL methods, a new
pipeline with both hardness measurement and training scheduler
suitable for both positive and unlabeled data is needed.

3 METHOD
In this section, we will introduce our training strategy in detail. Our
new training strategy converts semi-supervised training on PU data
into weighted supervised training with dynamic sample weights
and contains three iterative stages. In Section 3.2, we will explain
the role of each stage. Then, in each of the three subsequent sections,
we will detail a corresponding stage and the new components we
proposed for that stage. Finally, we will provide a holistic view of
our method in Section 3.6.
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3.1 Problem Setup
Here we first introduce the notations in PU learning. Let 𝑋 ∈
R𝑑 , 𝑌 ∈ {0, 1} be the input random variables and the output variable,
respectively. In PU learning, the training set𝐷 consists of two parts,
the positive data X𝑝 and the unlabeled data X𝑢 . X𝑝 contains 𝑛𝑝
instances sampled from 𝑃 (𝑋 |𝑌 = 1). X𝑢 contains 𝑛𝑢 instances
sampled from 𝑃 (𝑋 ). The goal of PU learning is to learn a model
𝑓𝜔 (𝑥𝑖 ) with the optimized parameter 𝜔 to map instance 𝑥𝑖 into the
predicted label 𝑦𝑖 .

Algorithm 1: Robust-PU
Input :Training data (X𝑝 ,X𝑢 );

Iteration number 𝑇 ; Epoch number 𝐸.
Output :Model Parameter 𝜃 .

1 Initialize the model by pre-training using nnPU.
2 for 𝑡 = 1 to 𝑇 do
3 Stage 1: Hardness Measurement
4 Measure the hardness of each sample in X𝑝 and X𝑢

according to Eq. (1) or (2).
5 Stage 2: Sample Weighting
6 Calculate the threshold 𝜆 = 𝐹 (𝑡) according to one of the

pacing functions in Eq. (4) ~(7).
7 Update the weight 𝑣∗

𝑖
of each sample according to Eq. (3).

8 Stage 3: Weighted Supervised Training
9 for epoch 𝑖 = 1 to 𝐸 do
10 Set the ground truth label of unlabeled data as 0.

Update the model parameter 𝜃 by minimizing the
loss Eq. (8).

11 end
12 end

3.2 Overview
As shown in Figure 1, we design an iterative training strategy
for selecting easy positive samples from the positive dataset and
reliable negative samples from the unlabeled dataset to enhance
the model’s ability to distinguish the positive and negative samples.
Specifically, we initialize the model by pre-training using nnPU to
speed up the training. Then we progressively increase the difficulty
of the negative candidates associated with the positive samples in
the training set. In this way, the model is encouraged to gradually
distinguish the positive and negative samples. We describe our
algorithm Robust-PU in Alg. 1.

We divide each iteration into three stages:
• In the hardness measurement stage, we use a “hardness”
metric function to recognize reliable negative data from un-
labeled data and determine easy samples from positive data.

• In the sample weighting stage, we update the weight of each
sample based on its “hardness” and a changing threshold. In
order to realize learning from easy to hard and from clean to
noisy, we propose several schedulers to change the threshold.

• In the final stage, we regard the unlabeled data as negative
and convert the original semi-supervised training into su-
pervised training with weighted samples.

3.3 Hardness Measurement
The difficulty of PU learning is twofold: differentiation and nois-
iness. Differentiation indicates if the positive samples can be dif-
ferentiated from the negative samples. Noisiness indicates if the
selected pseudo-negatives are true negatives. Thus we measure the
hardness for both positive and negative samples.

To evaluate the differentiation and noisiness, the classification
loss has been widely used [30], which gives low (high) differentiable
and clean samples a high (low) loss. Specifically, we calculate the
classification loss using +1 as the ground truth for positive samples.
And for unlabeled samples, in this stage, we treat all of them as
negative samples and calculate the loss using -1 as the ground truth.
Thus we formulate the key idea of hardness with two functions, as
we called the hardness metric function 𝑑 :

• Logistic loss

𝑑𝑖 = log(1 + exp(−𝑦𝑖𝑧𝑖/𝜏)) (1)

where 𝑧 denotes the logit, 𝜏 denotes the temperature, and 𝑦
denotes the “pseudo ground-truth”, which is +1 for positive
samples and -1 for unlabeled samples.

• Sigmoid loss

𝑑𝑖 =
𝑒𝑥𝑝 (−𝑦𝑖𝑧𝑖/𝜏)

1 + 𝑒𝑥𝑝 (−𝑦𝑖𝑧𝑖/𝜏)
(2)

In the above two functions, we adopt temperature scaling, a
widely-used method for uncertainty calibration, which is also help-
ful in our method.

Compared with Sigmoid loss, Logistic loss is much smoother to
smoothly add the unlabeled data into the training process of PU
learning. On the contrary, sigmoid produces a “step-wise” learning
type to add the samples. Moreover, the sigmoid function is bounded
from above, while the logistic function is not. In the experiment
section, we conduct extensive experiments on both functions and
report the results.

3.4 Sample Weighting
In the second stage, we update the weight of each sample based
on its hardness. To map the hardness of each sample to its weight
dynamically, we propose two functions, i.e. the hardness-weight
mapping function and the training scheduler.

Hardness-weight mapping function.We adopt the minimizer
function of SPL-IR-welsch [7] to map the hardness of each sample
to its weight:

𝑣∗𝑖 = exp(− 𝑑𝑖

𝜆2
) (3)

where 𝑣∗
𝑖
denotes the weight of the 𝑖-th sample, 𝑑𝑖 denotes the

hardness of the 𝑖-th sample, and 𝜆 denotes the threshold.
Training Scheduler. In order to make the weights of the sam-

ples change as the training process proceeds, we introduce several
training schedulers to control the threshold. These schedulers are
defined by their corresponding pacing function.

Inspired by previous studies in curriculum learning [27, 28], we
propose a set of pacing functions to deal with different scenarios.
The detained formulation of these functions as well as the semantic
explanation of these functions are introduced in the following.
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The self-paced pacing function 𝐹 (𝑡) returns a value monoton-
ically increasing from 𝜆0 to 𝛽 with the input variable 𝑡 , which
represents the current training iteration. It monitors the model
learning status and controls the curriculum learning speed. We
explore several function classes as follows:

• Linear function: indicating the constant learning speed:

𝐹𝑙𝑖𝑛𝑒𝑎𝑟 (𝑡) = min(𝛽, 𝜆0 +
𝛽 − 𝜆0
𝑇𝑔𝑟𝑜𝑤

· 𝑡) (4)

where 𝛽 denotes the final value of the threshold, 𝜆0 denotes
the initial value of the threshold,𝑇𝑔𝑟𝑜𝑤 denotes the iteration
when the threshold reaches 𝛽 for the first time, 𝑡 denotes the
current iteration.

• Convex function: indicating the learning speed from fast
to slow:

𝐹𝑐𝑜𝑛𝑣𝑒𝑥 (𝑡) =
{
𝜆0 + (𝛽 − 𝜆0) ∗ sin( 𝑡

𝑇𝑔𝑟𝑜𝑤
∗ 𝜋

2 ), if 𝑡 ≤ 𝑇𝑔𝑟𝑜𝑤

𝛽, otherwise
(5)

• Concave function: indicating the learning speed from slow
to fast:

𝐹𝑐𝑜𝑛𝑐𝑎𝑣𝑒 (𝑡) =
{
𝜆0 + (𝛽 − 𝜆0) ∗ (1 − cos( 𝑡

𝑇𝑔𝑟𝑜𝑤
∗ 𝜋

2 )), if 𝑡 ≤ 𝑇𝑔𝑟𝑜𝑤

𝛽, otherwise
(6)

• Exponential function: indicating an exponential change
of the learning speed from fast to slow:

𝐹𝑒𝑥𝑝 (𝑡) = 𝜆0 + (𝛽 − 𝜆0) ∗ (1 − 𝛾𝑡 ) (7)

where 𝛾 is the hyper-parameter that controls the speed of
change.

Different classes of pacing functions indicate different learning
styles and can be used in different scenarios. In the experiment
section, we apply these pacing functions on multiple datasets and
report the results of Robust-PU equipped with different pacing
functions.

3.5 Weighted Supervised Training
In the final stage, we treat the unlabeled data as negative and con-
vert the original semi-supervised training into supervised training
with weighted samples. In this stage, various supervised training
methods and losses can be used. In our work, we adopt the binary
cross-entropy loss for simplicity. Thus the supervised training loss
for the 𝑖-th sample, i.e. 𝐿𝑖 in Eq. (10) is

𝐿(𝑞𝑖 , 𝑦𝑖 ) = −𝑦𝑖 · log𝑞𝑖 − (1 − 𝑦𝑖 ) · log(1 − 𝑞𝑖 ) (8)

where 𝑞𝑖 is the probability of the 𝑖-th sample being positive, given
by the current model. 𝑦𝑖 is the ground truth label, note that 𝑦𝑖 = 0
for unlabeled samples.

Finally, in this stage, we update the model parameter by mini-
mizing the loss of all weighted samples:

min
𝜃

𝑛𝑝∑︁
𝑖=1

𝑣𝑖𝐿(𝑞𝑖 , 1) +
𝑛𝑢∑︁
𝑖=1

𝑣𝑖𝐿(𝑞𝑖 , 0) (9)

where 𝑣𝑖 denotes the current weight of the 𝑖-th sample, 𝑛𝑝 is the
number of positive samples, and 𝑛𝑢 is the number of unlabeled
samples.

In the experiments, we find that performing multiple epochs
in this stage is helpful in improving the performance of the final
model. To this end, we propose to perform the weighted supervised
training for 𝐸 epochs.

3.6 Overall Objective
While one can implement our method by following our three-stage
strategy, we also provide an overall objective function in Eq. (10)
to help readers understand our method from a more holistic per-
spective. Note that the objective function we proposed in Eq. (10)
contains two kinds of parameters, namely the classifier’s parame-
ters 𝜃 and the samples’ weights v𝑝 , v𝑢 , and we alternately optimizes
these two types of parameters in our strategy. Thus thewhole frame-
work of our method is equivalent to minimizing Eq. (10) via the
alternative search strategy (ASS):

min
𝜃,v𝑝 ,v𝑢

E(𝜃, v𝑝 , v𝑢 ; 𝜆𝑝 , 𝜆𝑢 ) =
𝑛𝑝∑︁
𝑖=1

𝑣
𝑝

𝑖
𝐿+𝑖 + 𝑔(𝑣𝑝

𝑖
, 𝑑

𝑝

𝑖
; 𝜆𝑝 ) (10)

+
𝑛𝑢∑︁
𝑖=1

𝑣𝑢𝑖 𝐿
−
𝑖 + 𝑔(𝑣𝑢𝑖 , 𝑑

𝑢
𝑖 ; 𝜆

𝑢 )

where 𝑑𝑝 , 𝑑𝑢 denote the hardness for distinguishing the easy and
clean samples from the positive and unlabeled data, respectively.
𝑣𝑖 is the weight of the 𝑖-th sample. 𝐿𝑖 is the loss of the 𝑖-th sample
in the “Weighted Supervised Training” stage in the previous itera-
tion. 𝑔(𝑣, 𝑑 ; 𝜆) is the implicit regularizer SPL-IR-welsch [7]. It is the
dual potential function of the Welsch function 𝜆2

(
1 − exp

(
−𝐿2

𝜆2

))
,

which is a well-studied robust function, and the minimizer function
of 𝑔(𝑣, 𝑑 ; 𝜆) is our hardness-weight mapping function in Eq. (3). It
is worth noting that there is no analytic form of the regularizer 𝑔.
However, we maintain the form in Eq. (10) as per the custom in self-
paced learning. 𝜆𝑝 and 𝜆𝑢 are the thresholds for positive samples
and unlabeled samples, respectively. We change these thresholds
throughout the training process and derive them from the training
scheduler.

4 EXPERIMENTS
In this section, we empirically evaluate the performance of our
method compared with the state-of-art approaches and justify the
benefit of our method on commonly used benchmarks. We also
investigate the impact of hyper-parameters and conduct ablation
studies to analyze the effect of our method. Due to space limitations,
some experimental results are reported in Appendix A.

4.1 Experimental Setup
Datasets

Weperform experiments on eight commonly used public datasets:
(1) CIFAR-10, (2) STL-10, (3) MNIST, (4) F-MNIST, (5) Alzheimer and
(6) three datasets from UCI Machine Learning Repository, includ-
ing mushrooms, shuttle and spambase. Since some datasets have
multiple classes, we preprocess it as a binary classification prob-
lem following the processing of conventions [13]. Specifically, we
choose some of the classes as positive classes, and the others as
negative classes, as shown in Table 1. The summary of datasets
is listed in Table 2, including the number of instances, the feature
dimensions, and the number of positive and negative instances.



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zhangchi Zhu, et al.

Table 1: Preprocessing of the datasets.

Dataset Positive class Negative class

CIFAR-10 airplane, truck, automobile, ship bird, cat, deer, dog, frog, horse
STL-10 0, 2, 3, 8, 9 1, 4, 5, 6, 7
MNIST 0, 2, 4, 6, 8 1, 3, 5, 7, 9
F-MNIST 0, 2, 4, 6 1, 3, 5, 7, 8, 9
shuttle 1 2, 3, 4, 5, 6, 7

Table 2: Details of the datasets in our experiments.

Dataset #Ins #Fea #Pos #Neg

CIFAR-10 60,000 3 × 32 × 32 24,000 36,000
STL-10 13,000 3 × 96 × 96 6,500 6,500
MNIST 70,000 28 × 28 34,418 35,582
F-MNIST 70,000 28 × 28 28,000 42,000
Alzheimer 6400 3 × 224 × 224 960 5,440
mushroom 8,124 22 3,912 4,208
shuttle 58,000 9 12,414 45,586
spambase 4,601 57 1,813 2,788

Compared Methods
To demonstrate the superiority of Robust-PU, we compare it

with PN baseline which simply regards unlabeled data as negative,
together with seven best-perform PU learning algorithms to date: 1)
uPU [6] introduces a general unbiased risk estimator. 2) nnPU [15]
proposes a non-negative risk estimator for PU learning and fixes
the overfitting problem in PU learning. 3) PUSB [13] captures the
existence of a selection bias in the labeling process and achieves
compatible performance on some benchmarks. 4) PUbN [11] pro-
poses to incorporate biased negative data based on empirical risk
minimization and shows high performance on CIFAR-10 and MNIST.
5) PULNS [20] is a powerful PU learning approach that selects effec-
tive negative samples from unlabeled data based on reinforcement
learning. 6) P3Mix [18] adopt the mixup technique and select the
mixup partners for marginal pseudo-negative instances from the
positive instances that are around the learned boundary. For each
setting, we show the best result among P3Mix-E and P3Mix-C. 7)
Dist-PU [32] proposes to pursue the label distribution consistency
between predicted and ground-truth label distribution and achieves
state-of-the-art performance on several benchmarks. All hyperpa-
rameters of the compared methods are tuned in the same way as
reported in the references.
Evaluation Metric

We select the error rate of classification (i.e., 1 - accuracy) on
the testing dataset as our evaluation metric, which is consistent
with the common practice in PU learning. For each configuration of
our method and all compared methods, we conduct 10 independent
runs and report the average error rate and standard deviation.
Dataset construction

We construct positive-unlabeled datasets for each binary-labeled
dataset.

As for the training dataset, we divide it into X𝑝 consisting of 𝑛𝑝
positive data which is sampled randomly from all positive samples
in the original dataset, and X𝑢 consisting of 𝑛𝑢 unlabeled data. To

construct X𝑢 , we introduce 𝜋 as the proportion of positive samples
in X𝑢 , and randomly select 𝑛𝑢 · 𝜋 positive samples and 𝑛𝑢 · (1 − 𝜋)
negative samples from the corresponding distribution in the orig-
inal dataset. We set the value of 𝑛𝑝 and 𝑛𝑢 following the setup
in PUSB [13]. Specifically, for CIFAR-10, F-MNIST and MNIST, we
set 𝑛𝑝 = 2000 and 𝑛𝑢 = 4000. For STL-10, we set 𝑛𝑝 = 1000 and
𝑛𝑢 = 2000. For Alzheimer, mushroom, shuttle and spambase, we
set 𝑛𝑝 = 400 and 𝑛𝑢 = 800. For all datasets, in order to demon-
strate different scenarios, we select the class prior (i.e. 𝜋 ) from
{0.2, 0.4, 0.6}, following the setup in PULNS [20].

As for the validation dataset and the testing dataset, we generate
them in the same way as X𝑢 in the training dataset along with the
same setting of values for 𝜋 . We use |𝑉𝑎𝑙 | and |𝑇𝑒𝑠𝑡 | to denote the
number of samples in the validation dataset and testing dataset.
For CIFAR-10, STL-10, F-MNIST and MNIST, we set |𝑉𝑎𝑙 | = 500 and
|𝑇𝑒𝑠𝑡 | = 5000. For Alzheimer, mushroom, shuttle and spambase,
we set |𝑉𝑎𝑙 | = 100 and |𝑇𝑒𝑠𝑡 | = 1000.
Classifier Specification

We use different classifiers for different datasets, following the
setting in previous work [13, 20]. For CIFAR-10 and STL-10, we
adopt an all-convolutional neural network. For Alzheimer, we use
ResNet-50. For the remaining datasets, we adopt a multilayer per-
ceptron (MLP) with ReLU activation and a single-hidden-layer of
100 neurons.
Hyperparameter Setting

We pre-train our classifiers with nnPU for 100 epochs and train
for 20 epochs in each iteration.We apply the Adam optimizer and set
the batch size to 64. The learning rate is tuned from {10−2, 10−3, 10−4}.
The weight decay is tuned from {0, 10−4, 10−2}, and the num-
ber of warm-up epochs in each iteration is tuned from {0, 5, 10}.
We tune the temperature 𝜏 from [0.2, 3.0], initial threshold 𝜆0
from [0.1, 0.9], maximum threshold 𝛽 from {1, 2, 5}, epoch num-
ber 𝐸 from {10, 20, 50}, and number of growing steps 𝑇𝑔𝑟𝑜𝑤 from
{10, 15, 20}. We conduct early stopping based on the accuracy on
the validation set and stop iterating when the accuracy on the
validation set doesn’t increase for 5 consecutive iterations.

4.2 Experimental Results
Comparison with state-of-the-art methods. We conduct exten-
sive experiments on eight datasets to demonstrate the superiority
of our method against compared methods. The experimental results
on seven datasets are listed in Table 3. And we show the experi-
mental results on a more challenging dataset, i.e., the Alzheimer’s
Dataset in Table 4. Note that in all compared methods, class-prior i.e.
𝜋 is assumed to be known, while it is not required in our method.

Table 3 summarizes the performance of all methods on seven
datasets under three values of 𝜋 in terms of average error rate and
standard deviation over ten trials. From the results, we see that
Dist-PU and P3Mix are the best baselines on all datasets. However,
neither of them is consistently better than the other. In contrast, our
proposed Robust-PU outperforms all the compared methods by a
significant margin on all datasets and achieves the best performance
in all cases. This validates the effectiveness of our proposed method.
Specifically, on dataset spambase with 𝜋 = 0.2, 0.4 and 0.6, Robust-
PU achieves the average error rates of 6.40%, 9.79%, and 11.25%
respectively, while the best baseline gets 8.01%, 11.85%, and 13.54%
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Table 3: Classification errors of nine methods on seven datasets with 𝜋 ∈ {0.2, 0.4, 0.6}. The best values are bold. The average
error rate of classification in test data (%) and standard deviation over 10 trials are reported.

𝜋 Method CIFAR-10 STL-10 MNIST F-MNIST mushrooms shuttle spambase

0.2

PN 17.98 (0.016) 16.02 (0.012) 14.02 (0.004) 5.20 (0.004) 1.70 (0.004) 7.17 (0.007) 17.37 (0.010)
uPU 11.60 (0.028) 13.21 (0.023) 8.87 (0.006) 4.12 (0.003) 1.59 (0.007) 4.03 (0.011) 10.80 (0.019)
nnPU 12.63 (0.008) 14.63 (0.032) 7.38 (0.009) 4.21 (0.006) 1.42 (0.008) 3.06 (0.009) 10.23 (0.004)
PUSB 11.60 (0.010) 14.29 (0.025) 6.24 (0.005) 4.10 (0.005) 1.58 (0.006) 3.08 (0.009) 10.08 (0.005)
PUbN 9.24 (0.009) 13.21 (0.026) 5.87 (0.006) 4.22 (0.005) 1.78 (0.005) 2.36 (0.005) 9.42 (0.020)
PULNS 8.47 (0.009) 12.16 (0.015) 3.64 (0.009) 4.00 (0.004) 0.40 (0.004) 1.88 (0.008) 8.71 (0.020)
P3Mix 7.99 (0.009) 10.92 (0.015) 3.61 (0.007) 3.82 (0.003) 0.37 (0.003) 1.76 (0.005) 8.03 (0.007)

Dist-PU 8.68 (0.008) 9.99 (0.008) 3.54 (0.003) 3.90 (0.004) 0.34 (0.003) 1.79 (0.006) 8.01 (0.011)
ours 7.58 (0.004) 9.95 (0.012) 3.28 (0.003) 3.59 (0.003) 0.24 (0.002) 1.23 (0.004) 6.40 (0.006)

0.4

PN 21.71 (0.016) 26.48 (0.017) 17.27 (0.011) 8.08 (0.017) 4.78 (0.017) 8.83 (0.014) 22.09 (0.032)
uPU 13.61 (0.012) 20.73 (0.016) 12.90 (0.010) 5.44 (0.007) 1.95 (0.012) 5.31 (0.007) 15.96 (0.039)
nnPU 12.60 (0.013) 16.15 (0.027) 7.74 (0.008) 5.03 (0.002) 1.77 (0.009) 5.14 (0.010) 15.77 (0.031)
PUSB 12.62 (0.011) 17.47 (0.031) 8.09 (0.014) 4.97 (0.005) 1.99 (0.011) 3.69 (0.012) 13.16 (0.021)
PUbN 11.13 (0.018) 16.89 (0.018) 7.00 (0.020) 4.98 (0.003) 1.82 (0.011) 4.44 (0.010) 12.86 (0.032)
PULNS 10.76 (0.010) 16.98 (0.030) 5.62 (0.006) 4.76 (0.004) 1.32 (0.009) 2.79 (0.013) 12.03 (0.021)
P3Mix 10.52 (0.007) 16.28 (0.020) 4.34 (0.004) 4.69 (0.005) 1.29 (0.011) 2.90 (0.010) 11.89 (0.024)

Dist-PU 10.35 (0.006) 16.91 (0.022) 4.36 (0.004) 4.68 (0.004) 1.29 (0.006) 3.08 (0.012) 11.85 (0.024)
ours 10.26 (0.006) 15.62 (0.017) 3.80 (0.003) 4.56 (0.003) 0.61 (0.004) 1.36 (0.003) 9.79 (0.014)

0.6

PN 31.39 (0.044) 37.15 (0.055) 21.48 (0.021) 17.81 (0.036) 19.61 (0.042) 24.42 (0.052) 34.33 (0.026)
uPU 14.58 (0.012) 23.38 (0.032) 16.17 (0.010) 8.50 (0.009) 2.02 (0.009) 5.32 (0.009) 25.31 (0.029)
nnPU 13.85 (0.014) 19.06 (0.012) 9.85 (0.008) 8.03 (0.002) 2.06 (0.015) 5.27 (0.009) 22.43 (0.032)
PUSB 12.23 (0.015) 20.60 (0.019) 8.22 (0.018) 7.26 (0.007) 3.09 (0.013) 3.91 (0.011) 15.39 (0.031)
PUbN 11.62 (0.010) 19.01 (0.023) 7.62 (0.014) 7.63 (0.003) 2.36 (0.011) 3.72 (0.020) 16.18 (0.030)
PULNS 11.39 (0.014) 20.03 (0.022) 5.81 (0.004) 5.28 (0.004) 2.01 (0.004) 3.64 (0.014) 13.54 (0.025)
P3Mix 10.88 (0.010) 19.32 (0.015) 5.19 (0.006) 4.85 (0.005) 1.72 (0.005) 3.57 (0.012) 13.54 (0.025)

Dist-PU 10.77 (0.007) 19.30 (0.027) 5.22 (0.005) 4.62 (0.005) 1.31 (0.005) 3.52 (0.010) 13.55 (0.023)
ours 10.73 (0.005) 18.15 (0.011) 4.48 (0.003) 4.39 (0.002) 0.84 (0.003) 1.50 (0.006) 11.25 (0.009)

respectively. Also note that Robust-PU consistently achieves the
lowest standard deviation in almost all cases, which verifies the
stability of our proposed method. Moreover, recent works suffer
from a significant performance drop when 𝜋 increases, as results
on shuttle with different 𝜋 show. In contrast, the performance of
Robust-PU only shows a slight drop and maintains state-of-the-art
performance even when 𝜋 increases. Since we take the positive
samples in the unlabeled data as the noise in negative data, the
results validate the robustness of Robust-PU under large noise level.

Table 4: Classification errors of Robust-PU on Alzheimer’s
Dataset.

Method 𝜋 = 0.2 𝜋 = 0.4 𝜋 = 0.6

uPU 31.22 (0.010) 34.96 (0.016) 35.88 (0.023)
nnPU 31.57 (0.012) 34.46 (0.017) 35.89 (0.027)
PUSB 30.97 (0.010) 34.19 (0.018) 34.96 (0.024)
PUbN 29.82 (0.008) 32.99 (0.015) 34.89 (0.022)
PULNS 29.47 (0.011) 32.75 (0.014) 33.90 (0.019)
Dist-PU 29.13 (0.008) 31.97 (0.015) 33.16 (0.021)
ours 28.49 (0.008) 30.69 (0.014) 32.71 (0.021)

Results on Alzheimer’s Dataset. To show the superiority of
our method in more difficult real-world scenarios. We conduct
experiments on the Alzheimer’s dataset [4, 32]. We show the ex-
perimental results on Alzheimer’s dataset over 5 random seeds in
Table 4. On this dataset, we observe the same phenomena as in
other datasets. That is, our method achieves a significantly lower
classification error rate than the other methods. And we are able to
have more minor performance degradation in scenarios where a
larger 𝜋 is set, which verifies the robustness of our method.

Visualization. In Figure 2, we visualize the representations
learned by Robust-PU in the last three iterations and that learned
byDist-PU using UMAP [21]. Positive samples are blue and negative
samples are red. ’x’ represents labeled data and ’o’ represents unla-
beled data. We conduct the experiment on the MNIST dataset with
𝜋 = 0.6. We observe that 1) compared with the best baseline Dist-
PU, Robust-PU learns much more distinguishable representations
in the last iteration, which demonstrates the excellent classification
ability of our proposed method. 2) As the training process proceeds,
the boundary between positive and negative samples is becom-
ing clearer, which verifies that our approach promotes the further
learning of the classifier. 3) There is still some overlap between
positive and negative samples, however, it may be beneficial to
avoid overfitting.
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Figure 2: UMAP visualization of the representations learned by (a) Robust-PU in the last three iterations and (b) Dist-PU on
MNIST with 𝜋 = 0.6. Positive samples are blue and negative samples are red. ’x’ represents labeled data and ’o’ represents
unlabeled data.

Results on Unlabeled Samples. To validate the classification
ability of our method on unlabeled data, we visualize the classifica-
tion loss of unlabeled samples throughout the training process in
Figure 3. 1) We can observe that both Dist-PU and Robust-PU can fit
the negative samples in the unlabeled samples quickly and achieve
small losses. 2) However, there is a huge difference between the y-
axis scales of the two graphs. For positive samples in the unlabeled
samples (which are regarded as noises), our method always gives
a much larger loss than that given by Dist-PU. This shows that
our method can effectively distinguish noises in the unlabeled data
and thus avoid over-fitting the noises. 3) Furthermore, we observe
that after using entropy minimization and Mixup regularization,
there appears an extremely rapid decrease in the loss on unlabeled
positive samples. This may be due to the fact that regularization
can polarize the predicted values, thus driving the model to mis-
classify the “hard noises”. On the contrary, our method is able to
dynamically change the weights of samples so that these noises
are gradually removed and thus avoids persistent bias caused by
incorrect pseudo labels.

4.3 Ablation Studies
In this section, we present the results of ablation studies to show
the effect of each component in Robust-PU.

Effect of hardness-weight mapping function. The hardness-
weight mapping function learning plays an important role in our
method. To validate its effectiveness, we compare the performance
of Robust-PU equipped with different hardness-weight mapping
functions. We use Hard [17] and Linear [12] as the baseline and
summarize the results of baselines and our method in Table 5. Hard
simply set the sample weight as 1 if its hardness is smaller than the
threshold, otherwise 0. Linear maps the hardness linearly to the
weight.

From the results, We observe that our method, which uses the
minimizer function of SPL-IR-Welsh as the hardness-weight map-
ping function, performs much better than the baselines. Note that
different hardness-weight mapping functions correspond to differ-
ent kinds of regularizers 𝑔(𝑣, 𝑑 ; 𝜆) in Eq. (10). Both Hard and Linear
correspond to the explicit form of 𝑔(𝑣, 𝑑 ; 𝜆), while for SPL-IR-Welsh,

Table 5: Classification errors of Robust-PU with different
hardness-weight mapping functions.

𝜋 = 0.2 𝜋 = 0.4 𝜋 = 0.6

CIFAR-10
Hard 8.656 (0.007) 11.016 (0.008) 11.436 (0.005)
Linear 9.368 (0.010) 11.176 (0.010) 11.088 (0.007)
ours 7.586 (0.004) 10.260 (0.006) 10.738 (0.005)

MNIST
Hard 5.324 (0.007) 7.562 (0.006) 6.480 (0.006)
Linear 4.608 (0.003) 6.130 (0.005) 8.972 (0.008)
ours 3.282 (0.003) 3.802 (0.003) 4.482 (0.003)

mushroom
Hard 0.610 (0.005) 1.250 (0.008) 2.280 (0.007)
Linear 0.650 (0.003) 1.610 (0.012) 2.230 (0.006)
ours 0.240 (0.002) 0.610 (0.004) 0.840 (0.003)

shuttle
Hard 2.250 (0.014) 3.180 (0.011) 6.590 (0.005)
Linear 1.940 (0.008) 3.850 (0.008) 2.840 (0.008)
ours 1.230 (0.004) 1.360 (0.003) 1.500 (0.006)

spambase
Hard 8.850 (0.010) 11.030 (0.016) 12.490 (0.011)
Linear 8.790 (0.012) 12.080 (0.011) 13.840 (0.015)
ours 6.400 (0.006) 9.790 (0.014) 11.250 (0.009)

𝑣 · 𝐿+𝑔(𝑣, 𝑑 ; 𝜆) corresponds to the Welsch function, which is a well-
studied robust loss function, and the analytic form of 𝑔(𝑣, 𝑑 ; 𝜆) is
unknown. So the results are also consistent with the previous stud-
ies [27] in curriculum learning that implicit SP-regularizers perform
better than other types. Moreover, as the class prior increases, both
Hard and Linear suffer from a significant performance drop, while
the performance of Robust-PU our method shows only a slight drop.
We attribute this advantage to the robust function corresponding
to SPL-IR-Welsh, which reduces the impact of the loss of noisy
samples through the meaningful transformation of the original loss
𝐿. Surprisingly, we find that Robust-PU with Linear is not always
better than Hard, which indicates that if not carefully designed,
soft hardness-weight mapping functions are not always superior
to hard ones.

Effect of training scheduler. Our main idea is to change the
weights of samples gradually. To investigate the effectiveness of our
method, we conduct experiments to show the results of Robust-PU
with different training schedulers and report the results in Table 6.
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Figure 3: Binary cross-entropy loss of (a) Dist-PU and (b) Robust-PU.

Table 6: Classification errors of Robust-PU with different
training schedulers.

𝜋 = 0.2 𝜋 = 0.4 𝜋 = 0.6

CIFAR-10

const 9.468 (0.005) 12.012 (0.004) 11.492 (0.009)
convex 8.358 (0.005) 10.540 (0.004) 10.852 (0.006)
concave 7.682 (0.005) 10.532 (0.004) 11.023 (0.007)

exponential 7.818 (0.004) 10.512 (0.005) 10.811 (0.005)
linear 7.586 (0.004) 10.260 (0.006) 10.738 (0.005)

MNIST

const 5.244 (0.006) 7.492 (0.004) 8.724 (0.006)
convex 3.526 (0.005) 3.804 (0.003) 5.292 (0.004)
concave 3.681 (0.004) 3.906 (0.004) 5.319 (0.003)

exponential 3.422 (0.005) 3.793 (0.005) 4.512 (0.003)
linear 3.282 (0.003) 3.802 (0.003) 4.482 (0.003)

mushroom

const 1.630 (0.005) 1.650 (0.006) 2.090 (0.010)
convex 0.510 (0.004) 0.930 (0.006) 1.030 (0.003)
concave 0.520 (0.006) 0.850 (0.005) 1.100 (0.004)

exponential 0.480 (0.004) 0.720 (0.005) 0.970 (0.005)
linear 0.240 (0.002) 0.610 (0.004) 0.840 (0.003)

shuttle

const 3.850 (0.006) 3.440 (0.009) 3.660 (0.010)
convex 2.470 (0.005) 1.630 (0.004) 1.810 (0.007)
concave 2.590 (0.006) 1.620 (0.006) 1.800 (0.009)

exponential 1.920 (0.006) 1.580 (0.005) 1.970 (0.008)
linear 1.230 (0.004) 1.360 (0.003) 1.500 (0.006)

spambase

const 9.660 (0.009) 12.350 (0.012) 15.200 (0.006)
convex 6.380 (0.007) 10.820 (0.010) 10.800 (0.007)
concave 8.640 (0.005) 12.370 (0.012) 14.490 (0.008)

exponential 7.820 (0.006) 9.920 (0.013) 11.920 (0.008)
linear 6.400 (0.006) 9.790 (0.014) 11.250 (0.009)

We use the constant scheduler as the baseline, which fixes the
threshold throughout the training process.

From the results, we observe that all schedulers that return a
changing threshold outperform the constant scheduler in all cases.
Therefore, the results validate the effectiveness of our idea. As 𝜋
gets larger, the performance of the constant training scheduler suf-
fers from a significant drop while others remain good performance.
Note that since we regard the positive data in unlabeled samples as
noise, the results show that Robust-PU is more robust than the base-
line. Moreover, the results demonstrate that the dynamic threshold
can better reflect the learning status of the current iteration, thus
helping the hardness-weight mapping function to better distinguish

between positive and negative samples in the unlabeled data. Be-
sides, each of the four proposed schedulers has its own pros and
cons. So it is better to choose the training scheduler according to
the characteristic of the dataset.

5 CONCLUSION
In this work, drawing inspiration from human learning and the field
of curriculum learning, we present a novel training strategy for
positive-unlabeled (PU) learning, referred to as Robust-PU. Robust-
PU converts the original semi-supervised learning into supervised
learning with weighted samples and dynamically updates the sam-
ple weights based on the scheduler of the training process and
the hardness of each sample. Specifically, Robust-PU employs an
iterative training strategy and we divide each iteration into three
stages. In the first stage, we calculate the hardness for both positive
and unlabeled samples by treating all of the unlabeled samples as
negative and taking the classification losses as the hardness. In
the second stage, we use a hardness-weight mapping function to
determine the sample weights based on their hardness and dynamic
threshold that reflects the scheduler of the training process. In the
final stage, we adopt conventional supervised training methods
with weighted samples. By gradually updating the weights of un-
labeled data, Robust-PU greatly avoids persistent bias caused by
misclassification errors in the early stage of training. Extensive
experiments validate that the proposed Robust-PU can not only
avoid overfitting on noises in unlabeled samples but also achieve
state-of-the-art performance.

In the future, we plan to explore more hardness metric func-
tions and study the range of applications of these hardness metrics.
Moreover, in our experiments, we observe that each type of training
scheduler has its own pros and cons and get different performance
on different datasets. Thus designing more training schedulers and
combining the pacing function with the characteristic of the dataset
is also an interesting direction for future work.
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A HYPERPARAMETER ANALYSIS
A.1 Effect of hardness metric functions

Table 7: Classification errors of Robust-PU with different
hardness metric functions (i.e. sigmoid loss and logistic loss).

𝜋 = 0.2 𝜋 = 0.4 𝜋 = 0.6

CIFAR-10 sigmoid 8.170 (0.006) 11.730 (0.006) 12.356 (0.006)
logistic 7.586 (0.004) 10.260 (0.006) 10.738 (0.005)

MNIST sigmoid 4.454 (0.003) 5.260 (0.003) 5.718 (0.003)
logistic 3.282 (0.003) 3.802 (0.003) 4.482 (0.003)

mushroom sigmoid 0.300 (0.003) 0.670 (0.004) 1.040 (0.005)
logistic 0.240 (0.002) 0.610 (0.004) 0.840 (0.003)

shuttle sigmoid 1.180 (0.004) 2.140 (0.008) 3.365 (0.009)
logistic 1.230 (0.004) 1.360 (0.003) 1.500 (0.006)

spambase sigmoid 7.690 (0.013) 9.980 (0.015) 12.985 (0.018)
logistic 6.400 (0.006) 9.790 (0.014) 11.250 (0.009)

To investigate the effect of the hardness metric functions, we
compare the results of Robust-PU equipped with different hardness
metric functions, including sigmoid loss and logistic loss. The re-
sults are reported in Table 7. According to the results, it is apparent
that Robust-PU with logistic loss achieves a lower error rate in all
cases, especially on large datasets i.e., CIFAR-10 and MNIST. Note
that we use the “large-small loss” trick to identify noises in unla-
beled samples. However, the sigmoid loss is bounded from above,
thus limiting the hardness of the samples which should have greater
losses. Besides, the logistic loss is much smoother than the sigmoid
function which helps us smoothly add the unlabeled data into the
training process of PU learning.

A.2 Effect of temperature 𝜏
Temperature scaling is a widely-used method for uncertainty cal-
ibration, and we find that it is also helpful in our method. We
summarize the results of different settings of 𝜏 to quantify the effec-
tiveness brought by 𝜏 in Eq. (1) and Eq. (2). Specifically, in Figure 4(a)
and Figure 4(b), we show the curve of error rate changing with
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Figure 4: Curve of error rate (mean ± std) changing with 𝜏 on
mushroom and CIFAR-10 when 𝜋 = 0.2 (left), 0.4 (middle) and
0.6 (right).

𝜏 on mushroom and CIFAR-10, respectively. From Figure 4(a), we
observe that the error rate decreases as 𝜏 increases. As a result,
it is reasonable to select a large temperature (e.g. 4) on mushroom.
From Figure 4(b), we observe that 1) the performance is stable when
𝜋 = 0.4 and 2) under the circumstance that 𝜏 = 0.2 or 𝜏 = 0.6, the
performance is stable as 𝜏 increases from 0.1 to 1.0, then starts
dropping as 𝜏 continues to increase. As a result, it seems reasonable
to set 𝜏 = 1 on CIFAR-10.

A.3 Effect of epoch number 𝐸
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Figure 5: Classification error of Robust-PU with different
epoch number. We conduct the experiments on MNIST (left)
and CIFAR-10 (right) under different class priors.

In the final stage of each iteration, we convert the PU learning
into supervised training and optimize the model for 𝐸 epochs. To
study the role of the epoch number 𝐸, we conduct the experiments
onMNIST and CIFAR-10 under different class priors and summarize
the results of Robust-PU with different 𝐸 in Figure 5. From the
results, we observe that: (1) The performance of Robust-PU becomes
better as the number of epochs increases. It suggests that better
model performance in the supervised training stage is needed to
improve the finalmodel. (2) However, it would lead to overfitting the
misclassified samples and hurt the performance of the final model
if the number of epochs is too large. (3) We find that setting the
epoch number 𝐸 to 20 usually leads to good results on all datasets.
Moreover, for larger datasets, we recommend using a relatively
larger 𝐸, such as 30, if the training cost is acceptable because it is
less likely to overfit on large datasets.
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