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ABSTRACT
The prevalence of tree-like structures, encompassing hierarchical

structures and power law distributions, exists extensively in real-

world applications, including recommendation systems, ecosystems,

financial networks, social networks, etc. Recently, the exploitation

of hyperbolic space for tree-likeness modeling has garnered consid-

erable attention owing to its exponential growth volume. Compared

to the flat Euclidean space, the curved hyperbolic space provides

a more amenable and embeddable room, especially for datasets

exhibiting implicit tree-like architectures. However, the intricate

nature of real-world tree-like data presents a considerable challenge,

as it frequently displays a heterogeneous composition of tree-like,

flat, and circular regions. The direct embedding of such heteroge-

neous structures into a homogeneous embedding space (i.e., hyper-

bolic space) inevitably leads to heavy distortions. To mitigate the

aforementioned shortage, this study endeavors to explore the cur-

vature between discrete structure and continuous learning space,

aiming at encoding the message conveyed by the network topology

in the learning process, thereby improving tree-likeness modeling.

To the end, a curvature-aware hyperbolic graph convolutional neu-

ral network, 𝜅HGCN, is proposed, which utilizes the curvature to

guide message passing and improve long-range propagation. Exten-

sive experiments on node classification and link prediction tasks

verify the superiority of the proposal as it consistently outperforms

various competitive models by a large margin.
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Figure 1: The (tree-like) graph 𝐺 in the left subfigure can
be considered as a discrete approximation to the hyperbolic
manifold M in the right subfigure; on the other hand, the
hyperbolic manifold M can also be approximated as the
graph 𝐺 .
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1 INTRODUCTION
Tree-like structures refer to networks, systems, or data organiza-

tions that resemble a tree in their architecture, with nodes branching

out from the root into multiple levels. They are widely observed

in various real-world domains [1, 3, 44, 53, 64, 101], such as recom-

mendation systems, financial networks, and social networks.

Recently, the utilization of hyperbolic space for modeling tree-

like structures has garnered substantial attention [11, 24, 45, 56,

57, 61, 65, 90, 96]. Compared with the zero curvature Euclidean

space, one key property of negative curvature hyperbolic space

is that it expand exponentially, making it can be considered as a

continuous tree and vice versa (as shown in Figure 1). In other

words, hyperbolic space allows for the efficient representation of a

tree-like structure, as it enables nodes to be spread apart as they

move away from the root, preventing crowding and overlapping of

nodes as is commonly observed in Euclidean space. Additionally,

hyperbolic space allows for exponential growth in the number

of nodes in a given area, which is well-suited for modeling the

exponential growth of trees.

However, the real-world dataset often deviates from a pure tree

configuration and manifests in a labyrinthine complexity, pos-

ing large challenges for tree-likeness modeling within hyperbolic

space [82, 103]. For instance, biological taxonomies, which depict

the hierarchical relationships between different species from a
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Figure 2: Illustration of two tree-like graphs: 𝑇1 (left) is pure
and𝑇2 (right) has a local heterogeneous structure. The arrows
indicate the aggregation flow and the values on the edges
represent the edge curvature, denoted as 𝜅1 for 𝑇1 and 𝜅2

for 𝑇2. By incorporating curvature 𝜅 into the neighboring
aggregation, the detection of local structures is improved.
This is achieved by assigning asymmetric weights (𝜅1

𝑎,𝑜 vs
𝜅1

𝑎,𝑏
) to nodes at different levels and results in larger values

for nodes in a circular shape (𝜅1

𝑎,𝑜 vs 𝜅2

𝑎,𝑜 and 𝜅1

𝑎,𝑐 vs 𝜅2

𝑎,𝑐 ).

global view, often exhibit both extensive local flat regions where
multiple species are closely related and local circular regions where
species connections are less defined. The local structure of a tree-

like graph exhibits a heterogeneous blend of tree-like, flat, and

circular patterns, resulting in difficulties in uniformly embedding

the data into a homogeneous embedding space and thereby engen-

dering structural biases and distortions.

To mitigate the limitations, this study seeks to examine the inter-

section between the discrete structure of the data and the continu-

ous learning space. The aim is to encode the information inherent in

the network topology in a manner that is both effective and imbued

with structural inductive bias, thereby enhancing the performance

of downstream tasks. From a geometric perspective, the quality of

the embedding in geometric learning depends on the compatibility

between the intrinsic graph structure and the embedding space [26].

In light of this principle, we employs the concept of curvature to
guide tree-likeness modeling in hyperbolic space. As shown in Fig-

ure 2, the incorporation of curvature information offers a more

comprehensive grasp of the local shape characteristics, facilitating

the representation of the shape and contours of diverse regions

within the learning space.

In Riemannian geometry, curvature measures the deviation of a

geometric object from being flat, originally defined on continuous

smooth manifolds [40]. Smooth manifolds with positive, zero, or

negative curvature are spherical, Euclidean, and hyperbolic spaces,

respectively. This concept has been extended to discrete objects

such as graphs, where curvature describes the deviation of a local

pair of neighborhoods from a "flat" case.

Graph curvature, analogous to curvature in the realm of continu-

ous geometry, consists of Gaussian curvature, Ricci curvature, and

mean curvature. These components have unique roles: Gaussian

curvature quantifies the local curvature at vertices, Ricci curvature

allocates curvature to the edges, and mean curvature provides an

overall metric for the entire graph. In this work, we focus on Ricci

curvature for graph convolution and edge-based filtering. Several

definitions have been proposed about Ricci curvature, including

Ollivier Ricci curvature [58], Forman Ricci curvature [21], Balanced

Forman curvature [74]. Ricci curvature controls the overlap be-

tween two distance balls by considering the radii of the balls and

the distance between their centers [33]. Furthermore, the lower

bound of Ricci curvature can reveal valuable global geometric and

topological information [4]. It is also an effective indicator of tree-

like, flat, and cyclic areas, making it well-suited for integration into

hyperbolic space to capture asymmetries, biases, and hierarchies.

Overall, we put forward a novel framework: curvature-aware

hyperbolic graph convolutional neural network (𝜅HGCN) for effec-

tively modeling tree-like datasets with complex structures. Specifi-

cally, 𝜅HGCN leverages the discrete Ricci curvature to guide mes-

sage passing and dynamically adapts the global continuous hyper-

bolic curvature. Through empirical evaluations on diverse datasets

and tasks, we confirm the superiority of the 𝜅HGCN, as it consis-

tently outperforms existing baselines by substantial margins. The

major contributions of this work are summarized as follows:

• We design a novel hyperbolic geometric learning framework

that encapsulates the graph Ricci curvature into the contin-

uous embedding space, producing less distortion, powerful

expressiveness, and topology-aware embeddings;

• We present a new message technique for hyperbolic graph

embedding, and we further prove that it produces a smaller

(larger) embedding distance when larger (smaller) curvature

is involved, which well handles the inconsistency between

the local structure and global curvature of embedding space;

• Extensive experiments demonstrate that the proposed model

𝜅HGCN achieves significant improvements over various

baselines on link prediction and node classification tasks.

2 RELATEDWORK
For tree-likeness modeling, we mainly review the latest research

techniques including graph neural networks and hyperbolic geom-

etry. In addition to this, we also review the recent advancements in

curvature and curvature-based learning.

2.1 Graph Neural Networks
Tree-structured data can often be represented as graphs. In re-

cent years, graph neural networks (GNNs) have gained significant

attention within the graph learning community. The main con-

cept behind GNNs is a message-passing mechanism that aggre-

gates information from neighboring nodes. GNNs have demon-

strated remarkable performance in various tasks, including node

classification, link prediction, graph classifications, and graph re-

construction [23, 25, 28, 35, 41, 42, 48, 52, 67, 69, 78, 88, 95, 98–

100]. They have also found wide applications in recommender sys-

tems, anomaly detection, social networks analysis, and more [12–

16, 20, 35, 49, 66, 68, 69, 92]. The majority of GNNs learn graphs in

Euclidean space due to their computational advantages and intu-

itiveness. However, Euclidean models are limited in their ability to

represent complex patterns in graph [9].

2.2 Hyperbolic Geometry
Hyperbolic representation learning has recently garnered consid-

erable attention [17, 102]. Hyperbolic geometry has been recog-

nized as a continuous tree [37], exhibiting properties such as low
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distortion and small generalization errors when modeling tree-

like structured data [63, 72, 73]. Its applications span various do-

mains [50, 61, 90], including computer vision [5, 30, 34], natural

language processing [8, 10, 36, 51, 56, 57, 62], recommender sys-

tems [14, 70, 80, 81, 87, 91], graph learning [7, 11, 27, 43, 45, 89, 96]

and more [84]. In the graph learning domain, recent works [11, 43,

45, 47, 89, 92, 96, 97] have generalized graph neural networks to

hyperbolic space and demonstrated impressive performance, par-

ticularly on tree-like data. Some studies [60, 71, 82, 103] propose

learning graph in different embedding spaces or product spaces.

Furthermore, researchers have also explored the use of ultrahyper-

bolic geometry for graph learning [38, 39, 85, 86]. However, many

existing methods fail to consider the local heterogeneous struc-

ture of graphs, resulting in significant distortion and low-quality

embeddings.

2.3 Graph Curvature
Graph curvature, resembling curvature in continuous geometry, in-

cludes Gaussian curvature, Ricci curvature, and average curvature.

Each of these elements serves a distinct purpose: Gaussian curva-

ture measures local curvature at vertices, Ricci curvature assigns

curvature to edges, and average curvature offers a global measure

for the entire graph. Applications of graph curvatures span various

domains in network alignment, congestion and vulnerability de-

tection, community detection, and robustness analysis [32, 54, 55].

The recent work of curvature graph neural network (CurvGN) [93]

introduced the notion of Ricci curvature into the field of graph learn-

ing. The study in [74] showed that edges with negative curvature

can contribute to the over-squashing problem in graph embed-

dings. Coinciding with the announcement of the accepted papers

for WWW 2023, we noted a parallel work by Fu et al. [22] that

introduces the idea of class-aware Ricci curvature for addressing

hierarchy-imbalance in node classification, while in our work, we

aim to explore the integration of more generalized ricci curvature

with hyperbolic graph convolution and curvature-based filtering

mechanism to enhance the performance of HGCN for a more range

of tasks, including node classification and link prediction.

3 BACKGROUND
In this part, we first briefly review the necessary definitions of

differential geometry, primarily concentrating on hyperbolic geom-

etry. A thorough and in-depth explanation can be found in [40]. We

also give a short introduction about Ollivier Ricci curvature (ORC),

which is a generalized Ricci curvature tailored for discrete objects

(e.g., graphs)
1
. The readers may refer to [58] for more details.

3.1 Riemannian Geometry
Manifold and Tangent Space. Riemannian geometry, a subfield of

differential geometry, denoted asM with a Riemannianmetric𝑔. An

𝑛-dimensional manifold (M, 𝑔) represents a smooth and real space,

essentially an extension of a 2-D surface to higher dimensions, that

can be locally approximated byR𝑛 . For any point x onM, we define

a tangent space TxM, acting as the first-order approximation ofM
in the vicinity of x. This tangent space is an 𝑛-dimensional vector

space that is isomorphic to R𝑛 . The metric 𝑔 on the Riemannian

1
Our work is also applicable to other types of Ricci curvature.

manifold designates a smoothly changing positive definite inner

product < ·, · >: TxM × TxM → R on this tangent space, thereby

facilitating the definition of numerous geometric attributes, such

as geodesic distances, angles, and curvature.

Geodesics and Induced Distance Function. For a curve 𝛾 :

[𝛼, 𝛽] → M, the shortest length of 𝛾 , i.e., geodesics, is defined as

𝐿(𝛾) =
∫ 𝛽
𝛼

∥𝛾 ′ (𝑡)∥𝑔𝑑𝑡 . Then the distance of u, v ∈ M, 𝑑M (u, v) =
inf 𝐿(𝛾) where 𝛾 is a curve that 𝛾 (𝑎) = u, 𝛾 (𝑏) = v.

Maps and Parallel Transport. The maps define the relation-

ship between the hyperbolic space and the corresponding tangent

space. Given a point x ∈ M and a vector v ∈ TxM, a unique ge-

odesic 𝛾 : [0, 1] → M exists, satisfying 𝛾 (0) = x, 𝛾 ′ (0) = v. The
exponential map, symbolized as expx : TxM → M, is defined such

that expx (v) = 𝛾 (1). Conversely, the logarithmic map, denoted as

logx, acts as the inverse of expx. Furthermore, the parallel transport

𝑃𝑇x→y : TxM → TyM achieves the transportation from point x
to point y, while ensuring the preservation of the metric tensors.

Hyperbolic Models. Hyperbolic geometry describes a curved

space with negative curvature. There are several mathematically

equivalent ways to model hyperbolic geometry that emphasize

different properties, but our methods apply to hyperbolic geometry

in general and are not limited to any particular model. Formulas

for concepts such as distance, maps, and parallel transport are

summarized in Appendix B.

3.2 Graph Curvature
Curvature is a fundamental concept in smooth spaces that has also

generalized to discrete objects (e.g., graphs). There are several dis-

tinct notions of discrete Ricci curvature for graphs or networks,

such as the Forman-Ricci curvature [21] and Ollivier-Ricci cur-

vature [58]. Here we mainly focus on ORC since it is more geo-

metrical [33, 58]. Another reason is ORC builds a bridge between

continuous geometry and discrete structures [2, 76].

Definition 3.1 (Ollivier-Ricci Curvature). Let 𝐺 = (𝑉 , 𝐸)
be a locally finite, connected, and simple graph (i.e., 𝐺 contains no
multiple edges or self-loops), for any two distinct vertices 𝑣1, 𝑣2, the
ORC of 𝑣1 and 𝑣2 is defined as

𝜅 (𝑣1, 𝑣2) = 1 −
𝑊 (𝑚𝑣1

,𝑚𝑣2
)

𝑑 (𝑣1, 𝑣2)
∈ (−2, 1), (1)

where 𝑑 (𝑣1, 𝑣2) is the shortest path between 𝑣1 and 𝑣2 on graph 𝐺 ,
𝑊 (𝑚𝑣1

,𝑚𝑣2
) is the Wasserstein distance (see Definition 3.2) between

two probability measures (see Definition 3.3)𝑚𝑣1
and𝑚𝑣2

.

Definition 3.2 (Wasserstein Distance). Let 𝑚1,𝑚2 be two
probability measures on 𝑉 . The Wasserstein distance𝑊 (𝑚1,𝑚2) be-
tween𝑚1 and𝑚2 is given by

𝑊 (𝑚1,𝑚2) = inf

𝜋𝑖,𝑗 ∈Π

∑︁
𝑣𝑖 ,𝑣𝑗 ∈𝑉

𝜋𝑖, 𝑗 (𝑣𝑖 , 𝑣 𝑗 )𝑑 (𝑣𝑖 , 𝑣 𝑗 ), (2)

where 𝜋𝑖, 𝑗 : 𝑉 ×𝑉 → [0, 1] is a transport plan, i.e., the probability
measure of the amount of mass transferred from 𝑣𝑖 to 𝑣 𝑗 . Then to seek
an optimal transference plan (𝜋 ) that is to minimize the total cost of
moving from 𝑣𝑖 to 𝑣 𝑗 such that for every 𝑣𝑖 , 𝑣 𝑗 in 𝑉 satisfying∑︁

𝑣𝑖 ∈𝑉
𝜋𝑖, 𝑗 (𝑣𝑖 , 𝑣 𝑗 ) =𝑚1;

∑︁
𝑣𝑗 ∈𝑉

𝜋𝑖, 𝑗 (𝑣𝑖 , 𝑣 𝑗 ) =𝑚2 . (3)
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Figure 3: Schematic of 𝜅HGCN. (1) The simplified algorithm flow of our method: consists of hyperbolic projection, feature
transform, and aggregation. After that, a readout layer is applied to the embeddings for either a node classification or link
prediction task. (2) The visualization of neighborhood aggregation procedure: first project information to hyperbolic space
for transformation, then map messages to the tangent space, perform the aggregation in the tangent space with the guide
of discrete curvature (and attention), and then map back to the hyperbolic space. (3) The details of Ricci Curvature-aware
aggregation and its combination with feature-based attention.

Definition 3.3 (Probability Measure). Given 𝐺 = (𝑉 , 𝐸), for
a vertex 𝑣𝑖 in𝑉 , denote 𝑑𝑣𝑖 the degree of 𝑣𝑖 and 𝑁 (𝑣) the neighbors of
𝑣 , for any 𝑝 ∈ [0, 1], the probability measure𝑚𝑣𝑖 on 𝑉 is defined as:

𝑚𝑣𝑖 =


𝑝, if 𝑣 = 𝑣𝑖
1−𝑝
𝑑𝑣
, if (𝑣𝑖 ) ∈ 𝑁 (𝑣) .

0, otherwise
(4)

Geometric Intuition. ORC seeks the most efficient transporta-

tion plan that preserves mass between two probability measures,

which may be solved using linear programming. Intuitively, trans-

porting messages between two nodes whose neighbors are highly

overlapping, such as two nodes in the same cluster, is costless.

On the other hand, if two nodes are situated in distinct groups or

clusters, information flow between them is difficult.

4 METHODOLOGY
The proposed method, 𝜅HGCN, combines discrete and continuous

curvatures to improve tree-like modeling in hyperbolic space. Our

approach emphasizes the strengthening of message passing in nodes

with high local graph curvature and the weakening of message

propagation in nodes with low local curvature. This curvature-

guided approach enhances the formation of hierarchies and reduces

the impact of structural incompatibility on the modeling process.

4.1 𝜅HGCN
Our approach, named 𝜅HGCN, presents a novel curvature-aware

hyperbolic graph network model, as depicted in Figure 3. Building

upon the foundation of HGCN [11], we implement graph convolu-

tion operations via the tangential method [11, 45] space. However,

it is worth mentioning that 𝜅HGCN is flexible and can be applied

to non-tangential methods as well [97]. Similar to other GNN and

HGNN models, 𝜅HGCN also comprises three fundamental mod-

ules: hyperbolic feature transformation, curvature-aware neighbor

aggregation, and non-linear activation.

4.1.1 Hyperbolic Feature Transformation. Hyperbolic feature trans-
formation is formulated as:

hℓ,H
𝑖

=

(
Wℓ ⊗𝜅ℓ−1 xℓ−1,H

𝑖

)
⊕𝜅ℓ−1 bℓ , (5)

where ℓ denotes the ℓ-th layer,W is the trainable matrix and b is the
bias.W ⊗𝜅 x := exp

𝜅
o (W log

𝜅
o (x)) and x ⊕𝜅 b := exp

𝜅
x (𝑃𝑇𝜅o→x (b))

are matrix-vector multiplication and bias translation operations

in hyperbolic space, respectively. The superscript
H

denotes the

hyperbolic feature.

4.1.2 Curvature-Aware Neighbor Aggregation. Curvature-Aware
Neighbor Aggregation, as shown in Figure 4, is built in the tangent
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Figure 4: Illustration of the proposed Curvature-aware aggre-
gation. Compared with the traditional aggregation scheme,
the proposed method further makes the aggregation process
aware of the local structure.

space of the origin:

˜hℓ,H
𝑖

= exp
𝜅𝑙−1

o
©­«
∑︁
𝑗∈N𝑖

𝜅̃𝑖, 𝑗 · log
𝜅𝑙−1

o (hℓ,H
𝑗

)ª®¬. (6)

Here 𝜅̃𝑖, 𝑗 denotes the curvature for capturing the local structure,

computed by softmax operation within the neighbors N𝑖 (N𝑖 con-
tains the node self):

𝜅̃𝑖, 𝑗 = softmax𝑗∈N(𝑖 )
(
MLP(𝜅𝑖, 𝑗 )

)
, (7)

where 𝜅𝑖, 𝑗 is the raw ORC value, and MLP (Multilayer Perceptron)

is employed to make the curvature more adaptive to the overall

negative curvature. This approach is referred to as Curv. When

it comes to the case where the topology information and node

features are inconsistent to a certain degree, e.g., the network is

quite sparse or depends more on the node features, inspired by [94],

we propose a feature-attention enhanced aggregation (CurvAtt),

which encodes node state into the curvature:

𝜅̃′𝑖, 𝑗 =
𝑤𝜅𝜅̃𝑖, 𝑗 +𝑤𝛼𝛼𝑖, 𝑗

𝑤𝜅 +𝑤𝛼
, (8)

where 𝛼𝑖, 𝑗 is hyperbolic feature attention,𝑤𝜅 and𝑤𝛼 are the train-

able parameters that adjust structure information and feature cor-

relation with the initial value 1.0. The hyperbolic feature attention

𝛼𝑖, 𝑗 is defined as:

𝛼𝑖, 𝑗 = softmax𝑗∈N𝑖

(
MLP(log

𝜅
o (hH𝑖 )∥ log

𝜅
o (hH𝑗 ))

)
. (9)

4.1.3 Hyperbolic Non-linear Activation. After that, we apply a non-
linear activation:

xℓ,H
𝑖

= 𝜎𝜅ℓ−1,𝜅ℓ ( ˜hℓ,H) = exp
𝜅ℓ
o

(
𝜎 (log

𝜅ℓ−1

o ( ˜hℓ,H))
)
. (10)

Geometric Intuition. The real-world tree-like graphs with het-

erogeneous local structures are inevitably distorted if we directly

embed them into a homogeneous manifold. For instance, the em-

bedding of quasi-cycle graphs such as 𝑛 × 𝑛 square lattices (zero

curvature) and 𝑛-node cycles (positive curvature) incur at least

a multiplicative distortion of 𝑂 (𝑛/log𝑛) in hyperbolic space [79].

Graph Ricci curvature is able to mitigate this distortion. The geo-

metric intuition is that the more positive the curvature is, the more

two distance balls centered at nearby points overlap, and therefore,

the cheaper it is to transport the mass from one to the other. Theo-

retical results show that with the increasing number of triangles

involved in the linked pair (𝑖, 𝑗), the lower bound of curvature will

be increased [33], as stated in Theorem 4.1. It is easy to understand

because when the two vertices share many triangles, then the trans-

portation distance should be smaller, and the curvature, therefore,

is correspondingly larger.

Theorem 4.1 (Lower bound of ORC [33]). On a locally finite
graph, for any pair of neighboring vertices i, j, let #(𝑖, 𝑗) := number
of triangles which include 𝑖, 𝑗 as vertices for 𝑖 ∼ 𝑗 . Then, we have the
inequality, saying that

𝜅𝑖, 𝑗 ≥ −
(
1 − 1

𝑑𝑖
− 1

𝑑 𝑗
− #(𝑖, 𝑗)
𝑑𝑖 ∧ 𝑑 𝑗

)
+

−
(
1 − 1

𝑑𝑖
− 1

𝑑 𝑗
− #(𝑖, 𝑗)
𝑑𝑖 ∨ 𝑑 𝑗

)
+
+ #(𝑖, 𝑗)
𝑑𝑖 ∨ 𝑑 𝑗

,

(11)

where 𝑠+ := max(𝑠, 0), 𝑠 ∨ 𝑡 := max(𝑠, 𝑡), 𝑎𝑛𝑑 𝑠 ∧ 𝑡 := min(𝑠, 𝑡).

In this study, we make a theoretical analysis in Theorem 4.2,

which further demonstrates the relations of ORC and embedding

distance, i.e., when a large curvature is involved within the linked

node, the closer of their embedding distance, which thus mitigates

the distortion.

Theorem 4.2 (Embedding Distance w.r.t ORC). Let (𝑖, 𝑗) ∈ 𝐸
be the linked pair, h𝑖 , h𝑗 ∈ R𝑑 be the node state in the tangent space,
𝑑𝑖 be the degree of node 𝑖 , and 𝐷 be the distance of node 𝑖 and node 𝑗
in the tangent space, that is

𝐷 = ∥h𝑖 − h𝑗 ∥, (12)

where ∥ · ∥ is the Euclidean norm. Define a large ORC as 𝜅̃𝑖, 𝑗 >

max{1/𝑑𝑖 , 1/𝑑 𝑗 } and a small ORC as 𝜅̃𝑖, 𝑗 < min{1/𝑑𝑖 , 1/𝑑 𝑗 }. Then,
when the large ORC is involved, their embedding distance will get
smaller if using 𝜅HGCN. On the contrary, when the small ORC is
involved, their embedding distance will get larger.

Proof. In the following, we use𝐷𝑙 and𝐷𝑠 to denote the distance

when large and small curvature 𝜅̃ are involved, respectively. The

main idea is that when there is a large curvature involved, the node

distance will be decreased compared with the original case (degree-

based aggregation), that is 𝐷𝑙 < 𝐷 . At the same time, when there

is a small curvature involved, the node distance will increase, that

is 𝐷𝑠 > 𝐷 .

(1) When a large curvature (i.e., 𝜅𝑖, 𝑗 > max(1/𝑑𝑖 , 1/𝑑 𝑗 )) is in-
volved, more messages will be transferred, and we decompose the

embedding, taking h𝑖 as an example, into two components: one is

from original h𝑖 and another is the incremental parts from h𝑗 , then

𝐷𝑙 = ∥(h𝑖 + 𝛼𝑖h𝑗 ) − (h𝑗 + 𝛼 𝑗h𝑖 )∥
= ∥(h𝑖 − 𝛼 𝑗h𝑖 ) − (h𝑗 − 𝛼𝑖h𝑗 )∥,

(13)

where 𝛼𝑖 (𝛼 𝑗 ) is the difference between 𝜅̃𝑖, 𝑗 and 1/𝑑𝑖 ( 1/𝑑 𝑗 ), i.e.,
𝛼𝑖 = 𝜅̃𝑖, 𝑗 − 1/𝑑𝑖 , 𝛼 𝑗 = 𝜅̃𝑖, 𝑗 − 1/𝑑 𝑗 . Since 𝜅̃𝑖, 𝑗 > max(1/𝑑𝑖 , 1/𝑑 𝑗 ), 𝛼𝑖
and 𝛼 𝑗 are both positive. Let 𝛼𝑖 𝑗 = 𝛼𝑖 ≈ 𝛼 𝑗 , then

𝐷𝑙 ≈ ∥(h𝑖 − 𝛼𝑖 𝑗h𝑖 ) − (h𝑗 − 𝛼𝑖 𝑗h𝑗 )∥
= (1 − 𝛼𝑖 𝑗 )∥h𝑖 − h𝑗 ∥
< 𝐷.

(14)
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Then, we easily know that when large curvature is involved, the

distance will be reduced and two nodes will be closer to each other.

What’s more, the larger the curvature, the closer the nodes are.

(2) Similarly, when a small curvature (𝜅𝑖, 𝑗 < min(1/𝑑𝑖 , 1/𝑑 𝑗 )) is
involved, fewer messages will be transferred, and we decompose

the embedding, taking h𝑖 as an example, into two components: one

is from original h𝑖 and another is the reduction parts of h𝑗 , that is

𝐷𝑠 = ∥(h𝑖 − 𝛽𝑖h𝑗 ) − (h𝑗 − 𝛽 𝑗h𝑖 )∥
≈ (1 + 𝛽𝑖 𝑗 )∥h𝑖 − h𝑗 ∥
> 𝐷,

(15)

where 𝛽𝑖 is the difference between 1/𝑑𝑖 and 𝜅̃𝑖, 𝑗 , i.e., 𝛽𝑖 = 1/𝑑𝑖 −
𝜅̃𝑖, 𝑗 , 𝛽 𝑗 = 1/𝑑 𝑗 − 𝜅̃𝑖, 𝑗 . Both 𝛽𝑖 and 𝛽 𝑗 are positive in that 𝜅𝑖, 𝑗 <

min(1/𝑑𝑖 , 1/𝑑 𝑗 ). Let 𝛽𝑖 𝑗 = 𝛽𝑖 ≈ 𝛽 𝑗 , then, we easily know that when

small curvature is involved, the node pair will become more distant

in the embedding space. What’s more, the smaller the curvature,

the more distant the nodes are. □

4.2 Curvature-based Homophily Constraint
In the degree-based learning paradigm, like GCN [35], the influ-

ence of a node on another node decays exponentially as their graph

distance increases as shown by [31]. The analysis in [31] is lim-

ited degree-based aggregation and Euclidean space. The hyperbolic

message passing learning paradigm of 𝜅HGCN also shows a similar

phenomenon, which causes too much influence loss in long-term

propagation. Especially, if the paths consist of numerous connec-

tions to other nodes, the node influence is minimal. For clarity, we

term the hyperbolic message passing learning paradigm in 𝜅HGCN

or original HGNNs [11, 45, 96] as HMP. The HMP is a local ag-

gregation method, in which the influence of nodes decreases with

increasing distance, as demonstrated in Theorem 4.3.

Theorem 4.3 (Decaying property of HMP). Let 𝑝 be a path
between node 𝑢 and node 𝑣 , 𝑑∗𝑔 be the shortest distance between 𝑢 and
𝑣 , let 𝐶 be a constant and z be the embedding on the tangent space.
Consider the node influence 𝐼𝑢,𝑣 (𝐼𝑢,𝑣 = ∥𝜕z𝑢/𝜕z𝑣 ∥) from 𝑣 to 𝑢 using
HMP, 𝐼𝑢,𝑣 ≤ 𝐶𝛾𝑑

∗
𝑔 (0 < 𝛾 <= 1). The condition for equality is 𝑑∗𝑔 = 1,

and 𝑣 is the unique neighbors of node 𝑢, correspondingly𝐶 = 1, 𝛾 = 1.

Proof. Recall the aggregation rule in Equations (6) and (7) (sim-

ilar to that in origin HGNNs), we focus on the aggregation in the

tangent space and ignore the previous logarithmic map and the

later exponential map since they are applied before and after the

whole aggregation process, respectively. Then for any node 𝑢 and

𝑣 , the update rule in the tangent space can be formulated as:

z𝑢 =
∑︁

𝑗∈N(𝑢 )
𝜅̃𝑢,𝑗 z𝑗 =

1

𝐾𝑢𝑢

∑︁
𝑗∈N(𝑖 )

exp(𝜅̃𝑢,𝑗 )z𝑗 , (16)

where 𝐾𝑢𝑢 =
∑
𝑗∈N(𝑢 ) exp(𝜅̃𝑢,𝑗 ).2 By an expansion of node in the

neighbor N( 𝑗), we have:

z𝑢 =
1

𝐾𝑢𝑢

∑︁
𝑗∈N(𝑢 )

exp(𝜅̃𝑢,𝑗 ) ∗
1

𝐾𝑗 𝑗

∑︁
𝑘∈N( 𝑗 )

exp(𝜅̃ 𝑗,𝑘 )z𝑘 . (17)

2
For original HGNNs, the 𝜅 can be replaced with degree-based weight or attention-

based weight.

We completely expand it:

z𝑢 =
1

𝐾𝑢𝑢

∑︁
𝑗∈N(𝑢 )

exp(𝜅̃𝑖, 𝑗 ) ∗ · · · ∗
1

𝐾𝑜𝑜

∑︁
𝑝∈N(𝑜 )

exp(𝜅̃𝑜,𝑝 )z𝑝 .

(18)

Node influences 𝐼𝑢,𝑣 of 𝑣 on 𝑢 in the message passing output is

𝐼𝑢,𝑣 = ∥𝜕z𝑢/𝜕z𝑣 ∥, where the norm is any subordinate norm and the

node influence measures how a change in 𝑣 passes to a change in 𝑢.

By equation (18), the node influence can be computed as:

𝐼𝑢,𝑣 = ∥ 𝜕z𝑢
𝜕z𝑣

∥

= ∥ 𝜕

𝜕z𝑣
( 1

𝐾𝑢𝑢

∑︁
𝑗∈N(𝑢 )

exp(𝜅̃𝑖, 𝑗 ) ∗ · · · ∗
1

𝐾𝑜𝑜

∑︁
𝑝∈N(𝑜 )

exp(𝜅̃𝑜,𝑝 )z𝑝 )∥ .

(19)

The partial derivative of the nodes in Equation (19) is zero if they

are not on the path between node 𝑢 and 𝑣 , and then the feature

influence can be decomposed into the sum influence of all related

paths. Suppose there are 𝑛 paths between 𝑢 and 𝑣 , then

𝐼𝑢,𝑣 =





 𝜕

𝜕z𝑣

(
𝐼𝑝1

+ · · · + 𝐼𝑝𝑖 · · · + 𝐼𝑝𝑛
)



 , (20)

where

𝐼𝑝𝑖 =
1

𝐾𝑢𝑢
exp(𝜅̃𝑢,𝑝𝑖

𝑗
) · · · 1

𝐾𝑝𝑖𝑛𝑖 𝑝
𝑖
𝑛𝑖

exp(𝜅̃𝑝𝑖𝑛𝑖 ,𝑣)︸                                               ︷︷                                               ︸
𝑆 (𝐼𝑝𝑖 )

z𝑣 .

Note that, in Equation (20), the scalar term 𝑆 (𝐼𝑝𝑖 ) ranges from (0, 1]
and all 𝐼𝑝𝑖 (1 ≤ 𝑖 ≤ 𝑛) have the term𝑚𝑣 , thus we separate 𝑆 (𝐼𝑝𝑖 ) and
the rest derivative term and then uses the absolute homogeneous

property, i.e., ∥𝛼𝑀 ∥ = |𝛼 |∥𝑀 ∥

𝐼𝑢,𝑣 =
��𝑆 (𝐼𝑝1

) + · · · + 𝑆 (𝐼𝑝𝑖 ) · · · + 𝑆 (𝐼𝑝𝑛 )
�� ∥ 𝜕𝑧𝑣
𝜕𝑧𝑣

∥

=
��𝑆 (𝐼𝑝1

) + · · · + 𝑆 (𝐼𝑝𝑖 ) · · · + 𝑆 (𝐼𝑝𝑛 )
��

≤ |𝑛 ∗ max(𝑆 (𝐼𝑝𝑖 )) |

= |𝑛 ∗ 𝛾𝑛
𝑖

|

≤ |𝑛 ∗ 𝛾𝑑
∗
𝑔 |

= 𝐶𝛾
𝑑∗𝑔 ,

(21)

where 𝑑𝑔 is the shortest path between 𝑢 and 𝑣 , 𝑑∗ ≤ 𝑛𝑖 and 0 < 𝛾 ≤
1, thus the second inequality holds on in Equation (21). For more

generality, we use constant 𝐶 to denote the 𝑛. The condition for

equality is if and only if 𝑑∗𝑔 = 1 and the 𝑣 is the unique neighbor of

node 𝑢, i.e., 𝛾 = 1 and 𝐶 = 1. □

Theorem 4.3 shows that the node influence using HMP exponen-

tially decays as the shortest graph distance 𝑑∗𝑔 between two nodes

increases. In other words, distant nodes in dense areas will have

less interaction, even if they are in a dense connected area. To alle-

viate the phenomenon, we propose a Curvature-based Homophily

Constraint (𝜅HC) to enhance the connection within linked pairs.

The basic idea is to push the embeddings of linked nodes closer

if their ORC value is larger than a threshold. In this way, we can

enforce disjoint node pairs in dense areas or clusters to have more
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Table 1: Comparisons of the abilities of models in terms of
global tree-likeness modeling (Global), local heterogeneous
structure learning (Local), and neighbor interaction (Neigh-
bor) are indicated by ✓ for the presence of the ability and ×
for its absence.

Model Type Models Global Local Neighbor

Shallow models

EUC × × ×
HYP ✓ × ×

Euclidean GNN models

GCN × × ✓
GAT × × ✓
SAGE × × ✓
SGC × × ✓

Curvature GNN models

CurvGN × ✓ ✓
𝜅GCN ✓ × ✓

Hyperbolic GNN models

HGCN ✓ × ✓
LGCN ✓ × ✓

Curvature-aware HGNN model 𝜅HGCN ✓ ✓ ✓

influence on each other through their mutual neighbors, which is

given by:

L𝜅ℎ𝑐+ = − 1

|𝐸𝜅 |
∑︁

(𝑖, 𝑗 ) ∈𝐸𝜅
log 𝑝 (xℓ,H

𝑖
, xℓ,H
𝑗

), (22)

where 𝐸𝜅 is the filtered edge set based on ORC threshold 𝜏3; 𝑝 (·) is
the Fermi-Dirac function, indicating the probability of two hyper-

bolic nodes (𝑢, 𝑣) link or not, which is given by:

𝑝 (x𝑢 , x𝑣) =
[
exp (𝑑2

H (x𝑢 , x𝑣) − 𝑟 )/𝑡 + 1

]−1

, (23)

and 𝑑H (x𝑢 , x𝑣) is the hyperbolic distance from 𝑢 to 𝑣 , 𝑟 and 𝑡 is

hyper parameters and we set it as previous work [11]. We also

sample the same number of negative link pairs that they have no

connections or the curvature is very small based on the results

in [74]. Totally,

L𝜅ℎ𝑐 = L𝜅ℎ𝑐+ + L𝜅ℎ𝑐− . (24)

Geometric Intuition. HMP helps build the connection between

the graph topology and the embedding space, adjust the curvature

of the hyperbolic geometry, and guide the information flow. It also

shortens the distance of two linked nodes in an area with many

triangles, helpingmitigate the distortion caused by hyperbolic space.

Nonetheless, HMP is local inherently, and the proposed𝜅HC further

enhances the interactions of unconnected nodes, which is non-local.

4.3 𝜅HGCN Architecture
Given the Euclidean feature x𝐸 , we first project it into the hyper-
bolic manifold by the exponential map. 𝜅HGCN architecture takes

layers of HMP as the encoder. Following the literature, the Fermi-

Dirac function is used as a decoder in the link prediction task. For

the node classification task, the final hyperbolic vector is mapped

back to tangent space and decoded with MLP, which is the same

with work [11].

3
We select edges if their ORC value is larger than a threshold where edges can be

constructed bymultiple hop neighbors and the weight is added their curvature together

based on their shortest distance.

Table 2: Statistics of the datasets

Dataset Nodes Edges Classes Node features Hyperbolicity𝛿

Disease (NC) 1044 1043 2 1000 0

Disease (LP) 2665 2664 2 1000 0

Airport 3188 18631 4 4 1

PubMed 19717 88651 3 500 3.5

Cora 2708 5429 7 1433 11

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. The evaluation of our work utilizes several datasets, in-

cluding Disease, Airport, and three benchmark citation networks,

namely PubMed and Cora. While Disease and Airport exhibit

a more hierarchical structure, the citation networks are less so,

making them suitable for demonstrating the generalization capabil-

ity of our proposal. In Table 2, we provide the data statistics and

hyperbolicity metric that measures the tree-likeness of each graph.

For further details, please refer to Appendix A.

Baselines. We compare our proposed model with various base-

lines. (1) Shallow Euclidean and hyperbolic models, including Eu-

clidean embeddings (EUC) and Poincaré embeddings (HYP) [56];

(2) Euclidean GNN models, i.e., GCN [35], GraphSAGE (SAGE) [28],

Graph Attention Networks (GAT) [78], Simplified Graph Convolu-

tion, (SGC) [83]; (3) Curvature GNN models, including Curvature

Graph Network (CurvGN) [93] which applies the discrete curvature

in Euclidean model and ProdGCN which deploys GNNs to products

of constant curvature spaces, both of them are close to our work;

Hyperbolic GNNs, including HGCN [11], HGNN [45], HGAT [96],

LGCN [97]. Table 1 presents the different features of the afore-

mentioned models regarding their capabilities for perceiving both

global tree-likeness modeling and local heterogeneous structure,

as well as their interactional aptitude with regard to neighboring

information.

Experimental Details Data split. We evaluate 𝜅HGCN on both

node classification and link prediction tasks. The data split is the

same with the previous works [11]. More specifically, in link pre-

diction, we randomly split edges into 85%, 5%, 10% for training,

validation, and test sets, respectively. For node classification, we

split nodes into 70%, 15%, 15% for Airport, 30%, 10%, 60% for Dis-

ease, and we use 20 labeled train examples per class for Cora, and

PubMed. Implementation details. We closely follow the parameter

settings as HGCN [11], fix the number of embedding dimensions

to 16 and then perform hyper-parameter search on a validation

set over learning rate, weight decay, dropout, and the number of

layers. We also adopt the early stopping strategies based on the

validation set as [11]. For baselines, we mainly refer to the reported

results in the literature, and for the inconsistent cases (such as

different embedding dimensions in H2H-GCN), we re-implement

their official code in similar experimental settings. Evaluation met-
ric. Following the literature, we report the F1-score for Disease and
Airport datasets, and accuracy for the others in the node classifi-

cation tasks. For the link predictions task, the Area Under Curve

(AUC) is calculated.
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Table 3: Profiling evaluation on node classification. F1-score
with standard deviation for Disease and Airport; accuracy for
others (the higher, the better).

Dataset Disease Airport PubMed Cora

Hyperbolocity (𝛿) 0 1 3.5 11

EUC 32.5 ± 1.1 60.9 ± 3.4 48.2 ± 0.7 23.8 ± 0.7

HYP [56] 45.5 ± 3.3 70.2 ± 0.1 68.5 ± 0.3 22.0 ± 1.5

GCN [35] 69.7 ± 0.4 81.4 ± 0.6 78.1 ± 0.2 81.3 ± 0.3

GAT [78] 70.4 ± 0.4 81.5 ± 0.3 79.0 ± 0.3 83.0 ± 0.7

SAGE [29] 69.1 ± 0.6 82.1 ± 0.5 77.4 ± 2.2 77.9 ± 2.4

SGC [83] 69.5 ± 0.2 80.6 ± 0.1 78.9 ± 0.0 81.0 ± 0.1

CurvGN [93] 89.8 ± 2.9 84.7 ± 1.5 78.3 ± 0.3 82.0 ± 0.9

𝜅GCN [6] 82.1 ± 1.1 84.4 ± 0.4 78.3 ± 0.6 80.8 ± 0.6

HGCN [11] 74.5 ± 0.9 90.6 ± 0.2 80.3 ± 0.3 79.9 ± 0.2

LGCN [97] 84.4 ± 1.0 90.9 ± 1.0 78.8 ± 0.5 83.3 ± 0.5

𝜅HGCN (Ours) 92.3 ± 1.4 92.8 ± 0.4 82.1 ± 0.5 82.5 ± 0.6

Δ𝐸 (%) +31.1 +13.0 +3.9 −0.6

Δ𝜅 (%) +2.8 +9.6 +4.9 +0.6

Δ𝐻 (%) +2.2 +3.6 +5.0 +5.4

Table 4: Profiling evaluation on link prediction. AUC scores
with standard deviation are reported (the higher, the better).
The best is bold.

Dataset Disease Airport PubMed Cora

Hyperbolicity(𝛿) 0 1 3.5 11

EUC 60.9 ± 3.4 92.0 ± 0.0 83.3 ± 0.1 82.5 ± 0.3

HYP [56] 70.2 ± 0.1 94.5 ± 0.0 87.5 ± 0.1 87.6 ± 0.2

GCN [35] 64.7 ± 0.5 89.3 ± 0.4 91.1 ± 0.5 90.4 ± 0.2

GAT [78] 69.8 ± 0.3 90.5 ± 0.3 91.2 ± 0.1 93.7 ± 0.1

SAGE [28] 65.9 ± 0.3 90.4 ± 0.5 86.2 ± 1.0 85.5 ± 0.6

SGC [83] 65.1 ± 0.2 89.8 ± 0.3 94.1 ± 0.0 91.5 ± 0.1

CurvGN [93] 80.6 ± 0.8 89.5 ± 0.3 91.6 ± 0.4 72.5 ± 0.7

𝜅GCN [6] 92.0 ± 0.5 92.5 ± 0.5 94.9 ± 0.3 92.6 ± 0.4

HGCN [11] 90.8 ± 0.3 96.4 ± 0.1 96.3 ± 0.0 92.9 ± 0.1

LGCN [97] 96.6 ± 0.6 96.0 ± 0.6 96.6 ± 0.1 93.6 ± 0.4

𝜅HGCN (Ours) 96.7 ± 0.1 98.2 ± 0.1 96.7 ± 0.1 95.0 ± 0.1

Δ𝐸 (%) +27.2 +8.5 +2.8 +1.4

Δ𝜅 (%) +4.1 +6.2 +1.9 +2.6

Δ𝐻 (%) +0.6 +0.2 +1.3 +1.1

5.2 Experimental Results
We report the results of 10 random experiments

4
, including standard

deviations in TABLE 3 and 4, where the Δ𝐸 ,Δ𝜅 ,Δ𝐻 is the improve-

ment of the proposed model 𝜅HGCN over the Euclidean GNNs,

Curvature-related GNNs and Hyperbolic GNNs, respectively.

Node Classification. The experimental results of node classifica-

tion are summarized in TABLE 3, where a lower hyperbolicity value

corresponds to a more tree-like structure. The key findings are: (1)

Overall, the proposed model performs impressively, surpassing pre-

vious models on four out of five datasets. Specifically, hyperbolic

models (e.g., HGCN, LGCN) perform substantially better on the

more hyperbolic dataset (e.g., Disease) than on the less hyperbolic

dataset; Euclideanmodels (e.g., GCN, GAT) findmore success on the

less hyperbolic datasets (e.g., Cora) than on the more hyperbolic

dataset; whereas our model performs better on both datasets, which

is consistent with our motivation, namely, that the graph can be bet-

ter learned under the guidance of curvature. In addition, from the

improvements of Δ𝜅 , we discovered that CurvGN with discrete cur-

vature and 𝜅GCN with continuous curvature both perform worse

than our method which validates the power of hyperbolic geome-

try and the curvature-aware learning. (3) When it comes to Cora,

both hyperbolic models and the proposed 𝜅HGCN fail to outper-

form Euclidean GAT [78], indicating Euclidean geometry is more

suitable for modeling data with scarcely hierarchical structures.

Nevertheless, it is noted that 𝜅HGCN still outperforms well-known

Euclidean GCN models, e.g., GCN [35], SGC [83], SAGE [28]. It is

observed that the proposed method 𝜅HGCN also helps to narrow

down the gap between hyperbolic models and Euclidean GAT.

Link Prediction. The experimental results of link prediction tasks

are summarized in TABLE 4. In the link prediction task, we fur-

ther have the following observations: (1) Compared with Euclidean

4
The results on Lorentz model are similar.

Table 5: Performance of different aggregation methods: cur-
vature (Curv) and feature-enhanced curvature (CurvAtt).

Dataset NC LP

Curv CurvAtt Curv CurvAtt

Disease 91.8 ± 1.9 92.3 ± 1.4 95.7 ± 0.3 95.8 ± 0.1

Airport 92.4 ± 1.0 92.8 ± 0.8 98.0 ± 0.1 98.2 ± 0.1

PubMed 81.2 ± 0.1 82.1 ± 0.4 96.5 ± 0.1 96.7 ± 0.1

Cora 82.3 ± 0.6 82.5 ± 0.6 94.9 ± 0.3 95.0 ± 0.5

counterparts, Our proposed 𝜅HGCN, and other hyperbolic models

have achieved better performance. It is because hyperbolic space

owns a larger embedding space, where the structural dependencies

could be well preserved by the link prediction loss, providing more

space or boundary for nodes to be well arranged; (2) In compari-

son with the advanced hyperbolic models, our model also obtains

remarkable gains and refresh the records.

According to the above extensive experiments, we are safe to

conclude that equipping ORC with hyperbolic geometry further

improves its generalization ability, obtaining high-quality represen-

tations for both tree-like and non-tree-like structured data. This

confirms our primary motivation that the curvature carries rich

information which is beneficial for graph representation learning

in the embedding manifold. Specifically, incorporating the struc-

ture information featured by ORC helps the models developed in a

continuous manifold with negative curvature to perceive the role

of each node, accelerating the learning procedure, and reducing the

distortion for graph embedding of less hierarchical networks.

5.3 Effectiveness of Aggregations
In Section 4.1, we introduce two tangential aggregation strategies:

the curvature-based approach (denoted as Curv) and the feature-

augmented method (denoted as CurvAtt). The performance of
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Figure 5: The performance of node classification by 𝜅HGCN
with 𝜅HC and without 𝜅HC.
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Figure 6: A tree-like area (upper row) and a triangle-contained
area (lower row) with edge weights by HGCN (left column) and
𝜅HGCN (right column).

these two aggregation strategies is evaluated and reported in Table 5.

Our results show that the feature-augmented approach outperforms

the curvature-based one in most cases, which can be attributed to

the complex nature of real-world systems and the incongruities be-

tween node features and topology. The feature-augmented method

offers a more flexible and adaptive way to synthesize information

from various sources, thus resulting in improved performance.

5.4 Effectiveness of 𝜅HC
Figure 5 displays the results of adding 𝜅HC or not on 𝜅HGCN. As it

observed, the performance degenerates substantially on DISEASE

when applying 𝜅HC, while there are significant improvements

on the three citation networks, i.e., PubMed, and Cora. This phe-

nomenon can be understood as follows. Adding 𝜅HC as in node

classification will force linked nodes to obtain more similar repre-

sentations. For the pure tree-like dataset, i.e., DISEASE (without

any triangle and circle), these node pairs belong to different levels,

and adding 𝜅HC impairs the learning of asymmetric dependencies,

which further affects the establishment of hierarchical awareness.

When it comes to the citation networks instead, 𝜅HC helps to re-

duce the distortion caused by hyperbolic geometry and thus boost

the learning.

5.5 Case Study of Ricci Curvature Weights
In this section, we demonstrate the effectiveness of our method

through a case study. We extract a subtree centered on a randomly

sampled node (node 10, in this case), from the Disease dataset,

where node 2 is from a higher level and the remaining nodes (42, 43,

44, 45) belong to a lower level. The edges depict disease propagation

paths. As shown in the upper sub-figures of Figure 6, we display the

corresponding edge weights assigned by both 𝜅HGCN and HGCN

during the node classification task. The comparison between the

two reveals that 𝜅HGCN (upper right) effectively distinguishes

node levels, as it assigns greater importance to the parent node

(node 2) and equally emphasizes the child nodes from the same

level, whereas HGCN (upper left) fails to make such distinctions.

This substantiates the importance of ORC in facilitating hierarchical

learning.

Furthermore, we illustrate a subgraph with triangles selected

from the citation network, Cora, as depicted in the lower two

sub-figures of Figure 6. This subgraph comprises nodes 𝑜, 𝑒, 𝑑 that

form a triangle. We examine the edge weights around node 𝑜 and

present the results in the lower two sub-figures of Figure 6. Ob-

serving these results, it is evident that 𝜅HGCN (as shown in the

lower right) effectively identifies the local triangle structure and

assigns larger weights to promote inter-node message exchange.

In contrast, HGCN (as depicted in the lower left) fails to grasp the

intricate topology in this area. These observations further attest to

the efficacy of our proposed method in uncovering local clusters

and mitigating the distortions imposed by hyperbolic geometry.

6 CONCLUSION
For modeling tree-like structures, the hyperbolic space has demon-

strated its ability to capture hierarchical relationships. However,

approximating a discrete tree-like graph with a hyperbolic manifold

can result in inevitable distortions, as real-world tree-like graphs

are inherently complex. In this work, we integrate the intrinsic

graph structure into the continuous hyperbolic embedding space

via the discrete Ricci curvature. As expected, the graph curvature

facilitates the node to perceive the role and the hierarchy it belongs

to, helping accelerate the hierarchical formation as well as alleviate

the distortion in local clusters or cliques. The superiority of the

proposal is demonstrated by extensive experiments. Curvature is a

geometric notion with appealing and descriptive properties for both

network and continuous space. Via the interaction of curvatures,

we can build proper connections for a graph and the embedding

space to obtain high-quality representations, which is a promising

direction to advance geometric learning. In the future, we will con-

sider the use of Ricci flow, a more sophisticated geometric concept

derived from Ricci curvature, to further enhance graph embedding

and graph machine learning in tree-likeness modeling.
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APPENDIX
A DATASETS
In this section, we provide details about the datasets used in our

study. The Disease dataset contains nodes that are labeled as in-

fected or not infected with a disease, with features indicating their

susceptibility to the disease. The disease-spreading network in this

dataset displays a clear hierarchical structure, which makes it ideal

for testing the effectiveness of hyperbolic embedding models. We

use this dataset to validate our proposal. The Airport dataset

consists of nodes representing airports, with edges indicating the

existence of routes between two airports and labels reflecting the

population of the respective country that the airport belongs to.

In contrast, the PubMed and Cora datasets represent scientific

papers as nodes, with edges indicating citations and labels cor-

responding to academic subfields. Additionally, the Disease and

Airport datasets have imbalanced node labels, rendering accuracy

an inadequate measure of model performance. Therefore, we use

the F1 score as a more suitable measure for imbalanced datasets.

Conversely, for the remaining datasets with balanced node classes,

we use accuracy to evaluate the models. Furthermore, note that

according to the official code of HGCN
5
, the data statistics for Dis-

ease in node classification and link prediction differ slightly, and

we list them separately in Table 2 for clarity.

Hyperbolicity 𝛿 is a metric that quantifies how closely a graph

resembles a tree structure, with lower values of 𝛿 indicating greater

tree-like characteristics. A 𝛿 value of 0 corresponds to a tree, while

higher hyperbolicity values indicate a less tree-like structure. The

relationship between hyperbolicity and tree-like characteristics has

been established in various studies, including [3, 32, 53].

B HYPERBOLIC GEOMETRY
The geometry of a Riemannian manifold is defined by its curvature:

elliptic geometry for positive curvature, Euclidean geometry for

zero curvature, and hyperbolic geometry for negative curvature. In

this study, we concentrate on the latter, i.e. hyperbolic geometry.

There exist several equivalent hyperbolic models that exhibit di-

verse characteristics, yet are mathematically isometric. Our main

focus will be on two extensively researched hyperbolic models.: the

Poincaré ball model [56] and the Lorentz model (also known as the

hyperboloid model) [57]. Let ∥.∥ be the Euclidean norm and ⟨., .⟩L
denote the Minkowski inner product, respectively. The two models

are denoted by Definition B.1 and Definition B.2. A compilation of

the formulas and operations associated with these models, such as

distance, mapping, and parallel transport, is presented in Table 6.

These operations include Möbius addition [75] denoted by ⊕𝜅 and

the gyration operator [75] denoted by gyr[., .]𝑣 .

Definition B.1 (Poincaré BallModel). The Poincaré Ball Model
with negative curvature 𝜅 is defined as a Riemannian manifold
(B𝑛𝜅 , 𝑔B), whereB𝑛𝜅 is an open𝑛-dimensional ball with radius 1/

√︁
|𝜅 |,

B𝑛𝜅 =
{
x ∈ R𝑛 : ∥x∥2 < −1/𝜅

}
. The metric tensor of this model is

expressed as 𝑔B = 𝜆2𝑔𝐸 , where the conformal factor 𝜆 = 2

1+𝜅 |x |2 and
𝑔𝐸 = 𝐼𝑛 represents the Euclidean metric.

5
https://github.com/HazyResearch/hgcn

Definition B.2 (LorentzModel). The Lorentzmodel, also known
as the hyperboloidmodel, is defined as a Riemannianmanifold (L𝑛𝜅 , 𝑔L),
where L𝑛

𝐾
=

{
x ∈ R𝑛+1

: ⟨x, x⟩L = 1

𝜅

}
. The metric tensor of the

Lorentz model is given by 𝑔L = diag( [−1, 1, ..., 1]), where 𝜅 is the
negative curvature constant.

C MORE ANALYSIS
C.1 Computational Complexity of ORC
The computation of ORC is formulated as linear programming

problems [18, 46], and its computational complexity is 𝑂 ( |𝐸 |𝑑3

max
),

where 𝑑max is the maximum degree of the graph. To illustrate the

computational cost, we present the actual run-time on a machine

with the environment Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHZ

in TABLE 7. The results indicate that the time required for comput-

ing ORC is proportional to the size of the graph, and the cost for

smaller graphs is correspondingly lower. Importantly, it is notewor-

thy that ORC only needs to be computed once prior to the training

process, with the same computational complexity as HGCN [11]

during both training and inference. To handle extremely large-scale

graphs, approximation methods such as Sinkhorn [19] or Jaccard

proxy [59] may be utilized.

C.2 Embedding Visualization

Figure 7: Visualization of Cora and DISEASE. First row: Em-
bedding of Cora by HGCN (left) and 𝜅HGCN (right)]; Second
row: Embedding of DISEASE by HGCN (left) and 𝜅HGCN
(right)

The efficacy of 𝜅HGCN and HGCN in learning representations

for node classification is demonstrated through the visualization of

their performance on the Disease and Cora datasets. To accomplish

this, we employ the t-distributed Stochastic Neighbor Embedding

(t-SNE) technique [77] to reduce the high-dimensional embeddings

produced by the final layer of each model to a two-dimensional

plane for visual examination. The results, shown in Figure 7, de-

pict nodes as individual points, where each point is assigned a

color that corresponds to its class. The visualization indicates that

https://github.com/HazyResearch/hgcn
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Table 6: Summary of operations in the Poincaré ball model and the Lorentz model (𝜅 < 0)

Poincaré Ball Model Lorentz Model (Hyperboloid Model)

Manifold B𝑛𝜅 =
{
x ∈ R𝑛 : ⟨x, x⟩2 < − 1

𝜅

}
L𝑛𝜅 =

{
x ∈ R𝑛+1

: ⟨x, x⟩L = 1

𝜅

}
Metric 𝑔

B𝜅
x =

(
𝜆𝜅x

)
2 I𝑛 where 𝜆𝜅x = 2

1+𝜅 ∥x∥2

2

𝑔
L𝜅
x = 𝜂, where 𝜂 is 𝐼 except 𝜂0,0 = −1

Distance 𝑑𝜅B (x, y) = 1√
|𝜅 |

cosh
−1

(
1 − 2𝜅 ∥x−y∥2

2

(1+𝜅 ∥x∥2

2
) (1+𝜅 ∥y∥2

2
)

)
𝑑𝜅L (x, y) = 1√

|𝜅 |
cosh

−1
(
𝜅⟨x, y⟩L

)
Logarithmic Map log

𝜅
x (y) = 2√

|𝜅 |𝜆𝜅
tanh

−1

(√︁
|𝜅 | ∥−x ⊕𝜅 y∥

2

)
−x⊕𝜅y

∥−x⊕𝜅y∥2

log
𝜅
x (y) =

cosh
−1 (𝜅 ⟨x,y⟩L )

sinh(cosh
−1 (𝜅 ⟨x,y⟩L ))

(
y − 𝜅⟨x, y⟩Lx

)
Exponential Map exp

𝜅
x (v) = x ⊕𝜅

(
tanh

(√︁
|𝜅 | 𝜆

𝜅
x ∥v∥2

2

)
v√

|𝜅 | ∥v∥2

)
exp

𝜅
x (v) = cosh

(√︁
|𝜅 |∥v∥L

)
x + v

sinh

(√
|𝜅 | ∥v∥L

)
√
|𝜅 | | |v | |L

Parallel Transport 𝑃𝑇𝜅x→y (v) =
𝜆𝜅x
𝜆𝜅y

gyr[y,−x]𝑣 𝑃𝑇𝜅x→y (v) = v − 𝜅 ⟨y,v⟩L
1+𝜅 ⟨x,y⟩L (x + y)

Table 7: Computation cost of Ricci curvature where the unit
of time is in seconds. NC: node classification; LP: link predic-
tion.

Task Disease Airport PubMed Cora

NC (s) 0.8 2.7 45.5 2.3

LP (s) 1.5 2.2 41.3 2.1

Table 8: Curvature-wise performance on cora dataset

Method Negative Zero Positive

GT-Prop (%) 0.536 0.138 0.326

GCN (%) 0.512 0.085 0.216

HGCN (%) 0.523 0.077 0.213

𝜅HGCN (%) 0.535 0.082 0.217

the representations learned by 𝜅HGCN exhibit sharper boundaries

between different classes, thus showcasing the improved discrimi-

native power of the proposed method compared to HGCN.

C.3 Curvature-wise Performance
The objective of the study is to perceive the local structure around

nodes in tree-like graphs, encompassing local tree-like, zero-density,

and densely connected structures. To demonstrate the effective-

ness of the proposed method, we conducted further analysis by

classifying nodes into defined local substructures. As an example,

consider the following, we set the nodes to the following three types:

tree-like (𝜅𝑖 ≥ −0.01); zero-like (−0.01 < 𝜅𝑖 ≤ 0.01); positive-like
(𝜅𝑖 > 0.01). The curvature of each node is defined as the sum of

curvatures over its edges, that is: 𝜅𝑖 =
1

|𝑁𝑖 |
∑
𝑗∈𝑁𝑖

𝜅𝑖 𝑗 , where |𝑁𝑖 |
is the number of neighbors of node 𝑖 , and 𝜅𝑖 𝑗 is the curvature of

the edge between nodes 𝑖 and 𝑗 . This curvature measure was used

to determine the local substructure of each node. In the following,

we evaluated the performance of three models (GCN, HGCN, and

the proposed method) on both the Cora and Airport datasets.

Specifically, we calculated the accuracy/F1-score on the test set for

nodes in each local substructure.

The results are shown in Table 8 and Table 9. The "GT-Prop"

row in the Tables show the proportion of nodes belonging to each

Table 9: Curvature-wise performance on Airport dataset

Method Negative Zero Positive

GT-Prop (%) 0.418 0.439 0.143

GCN (%) 0.277 0.424 0.118

HGCN (%) 0.382 0.405 0.117

𝜅HGCN (%) 0.395 0.410 0.123

local substructure, with the proportions summing to 1. The values

in the GCN, HGCN, and proposed model rows represent the pro-

portion of nodes in each substructure that were correctly predicted

by the respective models. In other words, the table presents the

accuracy of each model in representing the local environment for

different types of nodes. Overall, the study found that the models

achieved comparable accuracy to the best achievable, but perfor-

mance varied across different substructures. Specifically, Euclidean

GCN outperformed HGCN on zero-density and densely connected

areas, but underperformed on tree-like nodes. In contrast, HGCN

showed improved accuracy for tree-like nodes, but lower accuracy

on other substructures. The proposed model achieved a balance of

performance across all substructures, with high accuracy for both

tree-like and non-tree-like nodes.

C.4 Connections of the Discrete and
Continuous Curvatures

The discrete curvature 𝜅 is computed in advance, which can be

regarded as an edge weight. The continuous curvature 𝑐 of the

predefined hyperbolic space is learnable and differentiable. For sim-

plicity, we denote the learnable parameters of our model 𝜅HGCN as

𝜃 . Let us consider node classification as an example. If the ground-

truth label of node x is y and the predicted label is ȳ, then we

have ȳ = 𝜅HGCN(x, 𝜅, 𝜃, 𝑐) and the loss is given by 𝐿(y, ȳ). We

can take the derivative of 𝑐 with respect to the loss, i.e.,
𝜕𝐿 (y,ȳ)
𝜕𝑐 =

𝜕 (y,𝜅HGCN(x,𝜅,𝜃,𝑐 ) )
𝜕𝑐 . It is easy to see that the update of 𝑐 is con-

strained by 𝜅. In other words, we learn a good embedding space

equipped with curvature 𝑐 that matches the graph structure through

discrete Ricci curvature 𝜅.
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