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ABSTRACT
Irregularly sampled multivariate time series are ubiquitous in var-
ious fields, particularly in healthcare, and exhibit two key char-
acteristics: intra-series irregularity and inter-series discrepancy.
Intra-series irregularity refers to the fact that time-series signals
are often recorded at irregular intervals, while inter-series discrep-
ancy refers to the significant variability in sampling rates among
diverse series. However, recent advances in irregular time series
have primarily focused on addressing intra-series irregularity, over-
looking the issue of inter-series discrepancy. To bridge this gap, we
present Warpformer, a novel approach that fully considers these
two characteristics. In a nutshell, Warpformer has several crucial
designs, including a specific input representation that explicitly
characterizes both intra-series irregularity and inter-series discrep-
ancy, a warping module that adaptively unifies irregular time series
in a given scale, and a customized attention module for representa-
tion learning. Additionally, we stack multiple warping and attention
modules to learn at different scales, producing multi-scale repre-
sentations that balance coarse-grained and fine-grained signals for
downstream tasks. We conduct extensive experiments on widely
used datasets and a new large-scale benchmark built from clinical
databases. The results demonstrate the superiority of Warpformer
over existing state-of-the-art approaches. 1

CCS CONCEPTS
• Applied computing → Health informatics; • Computing
methodologies → Neural networks; • Mathematics of com-
puting → Time series analysis.
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1 INTRODUCTION
With the rapid trend of digitalization in clinical systems, a large
accumulation of clinical time-series data has attracted broad re-
search attention, from both computer science and medical com-
munities [14, 21, 54], to explore machine learning solutions over
diverse scenarios of digital therapeutics, such as risk stratification
and early warning [18, 27, 59], clinical outcome prediction [12, 31],
and treatment recommendation [29, 42]. Advanced learning tech-
niques over clinical time series indeed have profound impacts in
the real world, such as improving the efficiency and the quality of
clinical practices, relieving the burdens of clinicians and nurses, and
in some sense, facilitating the equity in terms of the distribution of
medical resources [11, 15, 25].

As a specific type of irregularly sampled multivariate time series,
clinical time series exhibit two prominent characteristics: intra-
series irregularity and inter-series discrepancy. Intra-series irregu-
larityrefers to the fact that variate signals within each time series
are usually recorded in irregular intervals in practice, breaking up
the traditional assumption of regularly sampled time series. Be-
sides, inter-series discrepancy denotes the presence of dramatically
different sampling rates among multiple time series, leading to a
significant imbalance in the occurrence of different signals.

To facilitate understanding, we select some representative time
series from MIMIC-III [15], a large-scale healthcare database, and
plot them in Figure 1a. We can observe that various vital physio-
logical indicators, such as heart rate, glucose, oxygen saturation,
and sodium, are irregularly measured, and some common clinical
interventions, such as per os intake and normal saline, are also ir-
regularly issued. In addition to intra-series irregularity, we can also
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(a) Six clinical time series (b) The distribution of sampling intervals for different
clinical signals

Figure 1: We select some representative time series from the MIMIC-III [15] database to intuitively illustrate two prominent
characteristics, intra-variate irregularity and inter-variate discrepancy, of irregularly sampled multivariate time series.

observe that heart rate is frequently measured while sodium is spo-
radically sampled, exhibiting significant discrepancy in sampling
frequency. Further, to provide a comprehensive view of inter-series
discrepancy, we present the distribution of sampling intervals for
tens of typical signals in Figure 1b.

These two data characteristics present substantial challenges in
modeling irregularly sampled multivariate time series, particularly
in the context of clinical data. First, intra-series irregularity prevents
the direct adoption of classical time-series models [20, 30, 35, 49, 55,
60, 61] because these models do not include specific mechanisms to
handle irregularity in time, which essentially conveys indispensable
information on its own [5, 57]. Recent advances in irregular time
series have made remarkable progresses to tackle intra-series irregu-
larity, such as extending recurrent neural networks [5], leveraging
neural ordinary differential equations (ODEs) [6, 32], and introduc-
ing time representations [13, 17, 23, 37, 38, 43, 57]. Nevertheless,
to the best of our knowledge, these methods do not pay attention
to and address the dilemma caused by inter-series discrepancy in
unifying multivariate time series of significantly different granu-
larities: on one hand, a fine-grained unification retains detailed
variations for frequently monitored signals but leads to very sparse
placements of sporadically observed signals; on the other hand, a
coarse-grained unification provides more balanced placements for
all type of signals and can be used to obtain much clearer overall
trending, but it sacrifices detailed variations for high-frequency
signals.

To bridge this gap, this paper introduces Warpformer, a novel
approach that fully considers both intra-series irregularity and inter-
series discrepancy. Warpformer starts with a specific input represen-
tation that unifies all signals in the original scale and encodes both
signal values and other valuable information brought by intra-series
irregularity, such as sampling timepoints and intervals. Besides, this
representation preserves both temporal and signal dimensions to
explicitly present the underlying inter-series discrepancy in sam-
pling frequency. Given this input representation, we stack several
Warpformer layers, each of which consists of a warping module

and a doubly self-attention module. The warping module is a specif-
ically designed differentiable network that directly operates on
our representation for irregular time series and performs either
down-sampling or up-sampling operations to unify all series in
a new scale. Following this, the doubly self-attention module, a
Transformer [44]-like network, is responsible for representation
learning on the unified data representation. As a result, multiple
Warpformer layers together produce multi-scale representations for
irregular time series, which are added through a residual connection
to support downstream tasks.

We validate the effectiveness of Warpformer by comparing it
with various state-of-the-art solutions on widely used datasets, such
as PhysioNet [39] and Human Activity [32]. Moreover, we also con-
struct a new large-scale benchmark with five critical clinical tasks
from theMIMIC-III [15] database to provide more thorough compar-
isons. Our results indicate thatWarpformer, with its specific designs
tailored to the characteristics of irregular time series, achieves sig-
nificant improvements and becomes a new state-of-the-art on these
benchmark datasets.

To sum up, our contributions include:

• To the best of our knowledge, this work is the first one that
highlights the importance of both intra-series irregularity and
inter-series discrepancy for irregularly sampled multivariate
time series. Besides, Warpformer is also the first multi-scale
approach for irregular time series.

• We provide extensive experiments to demonstrate the su-
periority of Warpformer and to verify our critical designs.
More importantly, we have constructed a new benchmark
with a much larger scale and diversified tasks, which can
benefit future research in this field.

2 RELATEDWORK
This work focuses on irregularly sampled clinical time series and
highlights the multi-scale modeling capability. Besides, we intro-
duce a similar idea of dynamic time warping to enable the adaptive
unification for irregular time series. Thus we review related work
from these aspects in this section.
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Modeling Irregularly Sampled Time Series. Existing meth-
ods for modeling irregularly sampled time series have apparent
limitations. Early methods [24, 51, 52, 56] used either hourly aggre-
gation or forward imputation to obtain uniformly spaced intervals,
overlooking meaningful temporal patterns in irregular sampling.
Later approaches, including modifying updating equations in re-
current neural networks [5, 26, 28], learning neural ODEs [6, 32],
introducing time-based attentions [37, 38], adding extra time rep-
resentations [13, 23, 43], and employing graphs to model inter-
actions [57], made remarkable progresses on capturing sampling
irregularity but did not seriously consider significant discrepancy
in sampling frequency across different series. We note that two
emerging paradigms from these approaches are more related to
our work: one is to interpolate irregularly observed values to reg-
ularly spaced reference points [37, 38]; the other is to unfold ir-
regular time series into a long sequence of "(value, type, time)"
tuples [13, 23, 43]. However, the former unifies all time series in
one group of pre-specified reference time points, limiting its capabil-
ity in identifying a data-oriented unification to balance fine-grained
and coarse-grained information. Besides, the latter is easy to suffer
from the severe imbalance in the observations of different signals
and lose the opportunity to capture the general trending hidden
from the coarse-grained and balanced view. In contrast, we seri-
ously consider the challenge of inter-series discrepancy and equip
Warpformer with the multi-scale capability to balance fine-grained
and coarse-grained views.

Multi-scale Modeling for Time Series. It is well understood
that multi-scale modeling plays a critical role in generic time se-
ries. For instance, previous studies [23, 24, 53] on electronic health
records have shown the importance of capturing patient states
with multiple time granularity. Besides, recent studies [20, 35] have
demonstrated that equipping Transformer extensions for time series
with the multi-scale capability can bring significant performance
improvements. However, these multi-scale approaches only work
in the context of regularly spaced time series, and it is non-trivial
to adapt them into the setup of irregularly sampling. Accordingly,
Warpformer fills this gap and opens up an avenue for multi-scale
analysis on irregularly sampled multivariate time series.

Dynamic Time Warping. Existing studies [3, 22, 33] across
various application scenarios have witnessed the existence of tem-
poral misalignment. The underlying reasons could be phase shift,
sampling rates, precision, etc. To unify these misaligned signals,
dynamic time warping (DTW) was proposed [2] and further de-
veloped [7, 58]. Traditionally, people use DTW to adjust temporal
matching by dynamic programming [2, 3, 7, 33]. In recent years,
the need for input-dependent DTW has driven the development
of various learning-based alignment solutions, such as temporal
transformer nets [22], diffeomorphic temporal alignment nets [48],
dynamic temporal pooling [16], and warping based on two-sided
distributions [34]. While sharing a similar idea of introducing warp-
ing when unifying different signals, this work fundamentally differs
from existing DTW-based studies. First, our warping module is the
first design that connects differentiable DTW to irregular time se-
ries. In contrast, existing studies only consider DTW for regularly
sampled time series. Besides, we have formulated unique operations,

which will be specified in Section 3.2, to stimulate the adaptive uni-
fication of different signals in a given scale. This functionality is
different from existing DTW studies that serve very different pur-
poses, mostly for aligning and clustering. Last, to the best of our
knowledge, this is also the first time a warping module is embedded
into a neural architecture to support multi-scale learning.

3 METHODOLOGY
In Figure 2, we give an overview of the information flow in Warp-
former and highlights our specific designs within the Warpformer
layer. In a nutshell, Warpformer starts from a specific input encoder
providing rich and structured data representations for irregular
time series (Section 3.1) and stacks several Warpformer layers to
enable multi-scale representation learning. Each Warpformer layer
consists of a warping module (Section 3.2), unifying input repre-
sentations in a given scale while in the meanwhile preserving the
same structured format, and a doubly self-attention module (Sec-
tion 3.3), responsible for learning high-level representations from
unified input data. In this way, multiple Warpformer layers pro-
duce multi-scale representations, which are added via a residual
connection and then fed into a task decoder (Section 3.4) to support
downstream applications.

3.1 Input Encoder

Let
{
[(𝑡𝑘
𝑖
, 𝑥𝑘
𝑖
)]𝐿𝑘
𝑖=1

}𝐾
𝑘=1

denote the irregularly sampled multivariate
time series of a specific patient, where we have 𝐾 variates, the 𝑘-th
variate contains 𝐿𝑘 irregularly sampled observations, and the 𝑖-th
observation of the 𝑘-th variate is composed of the recording time
𝑡𝑘
𝑖
and the recorded value 𝑥𝑘

𝑖
. While holding the advantage of high

flexibility in accommodating various signals with variable lengths
and sampling rates, this data format does not fit naturally for batch
processing in modern neural networks training and inference. Thus,
we turn to develop a specific data representation for Warpformer.

First, we collect all unique timestamps by taking an union oper-
ation over [{𝑡𝑘

𝑖
}𝐿𝑘
𝑖=1]

𝐾
𝑘=1 and organize them in ascending order as

𝑇 ∈ R𝐿 , where 𝐿 denotes the number of all unique timestamps. Then
we fill in a value matrix 𝑋 ∈ R𝐾×𝐿 , a type matrix 𝐸 ∈ R𝐾×𝐿 , and
a mask matrix𝑀 ∈ R𝐾×𝐿 according to the following rules: 𝑋𝑘,𝑗 =
𝑥𝑘
𝑖
, 𝐸𝑘,𝑗 = 𝑘,𝑀𝑘,𝑗 = 1 if 𝑇𝑗 equals to 𝑡𝑘𝑖 ; 𝑋𝑘,𝑗 = 0, 𝐸𝑘,𝑗 = 0, 𝑀𝑘,𝑗 = 0

otherwise. Given such a data organization, we apply several encod-
ing functions to obtain the input representation 𝐻 ∈ R𝐾×𝐿×𝐷 as
𝐻 = 𝑓 val (𝑋 ) + 𝑓 type (𝐸) + 𝑓 abs (𝑇 ) + 𝑓 rel (𝑇,𝑀), where 𝑓 val denotes
one fully-connected mapping to transform a single value to an em-
bedding of size 𝐷 , 𝑓 type (·) denotes a lookup table that transform
categorical variate indicators into type embeddings (also size 𝐷),
and 𝑓 abs (·), 𝑓 rel (·, ·) are functions to obtain time-related embed-
dings. Similar to encoding time-sensitive patterns in previous stud-
ies [37, 45], we design 𝑓 abs (·), which is in essence a combination
of several parallel sinusoidal mappings and one linear mapping,
to encode the absolute time. To be specific, the 𝑑-th element of
𝑓 abs (·)’s output embedding is defined as𝑤1 ·𝑇 + 𝑏1 if 𝑑 equals to 1
and sin(𝑤𝑑 ·𝑇 +𝑏𝑑 ) otherwise (1 < 𝑑 ≤ 𝐷). Here {𝑤𝑑 , 𝑏𝑑 }𝐷𝑑=1 make
up the parameters of 𝑓 abs (·). Besides, inspired by the success of
relative positional encoding in sequence learning [36], we develop
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Figure 2: An overview of our Warpformer model: in the right side, we visualize the overall information flow in Warpformer; in
the middle, we plot the detailed information flow within a Warpformer layer; in the left side, we visualize crucial intermediate
results during the calculation of 𝑓 warp for the 𝑘-th variate to facilitate understanding of how our warping module works.

𝑓 rel (·, ·) to encode relative-time information. In this function, we
first calculate the sequence of sampling intervals for each variate
based on 𝑇 and 𝑀 and then apply a two-layer perceptron over
the interval value to obtain the relative-time embedding. Last, we
feed 𝐻 together with𝑀 and 𝑇 (broadcasted from R𝐿 to R𝐾×𝐿) to
subsequent modules.

Connection and Distinction Between Our Input Encoder
and Existing Ones. The importance of incorporating distinctive
information, such as sampling irregularity, into the learning pro-
cess for irregularly sampled time series has been widely recog-
nized [5, 6, 37, 57]. Sharing the same spirit, our input representation
𝐻 encapsulates various critical information, including not only vari-
ate values and types but also sampling time and frequencies. But
different from recent advancements that built on top of either regu-
larly interpolated representations [37, 38] or a flattened sequence
with varying types of signals interleaved [13, 23, 43], our repre-
sentation retains both temporal and variate dimensions (R𝐾×𝐿)
along with irregular intervals. Such a structured format has several
benefits, such as explicitly presenting concurrent observations of
certain signals and, more importantly, clearly revealing inter-series
discrepancies in sampling frequency.

3.2 Warping Module
The intention of introducing a warping module is to adaptively
unify diverse irregularly sampled series into calibrated positions
following a specific granularity for further representation learning.
Nevertheless, this functionality poses several requirements to the
design of this module. First, this module should produce input-
dependent unification that fits for the underlying data distribution
and benefits downstream tasks. To this end, this module should be
differentiable so that supervision signals from downstream tasks

can guide appropriate unification. Besides, this module should sup-
port both down sampling and up sampling to align both coarse-
grained and fine-grained information. Last, we want to preserve
the warping output in the same format as the input 𝐻 ∈ R𝐾×𝐿×𝐷

owing to the same consideration of explicitly presenting inter-series
discrepancy, as specified in Section 3.1. With a full consideration of
these requirements, we develop our warping module as follows.

An Overview. Let (𝐻 (𝑛−1) ,𝑀 (𝑛−1) , 𝑇 (𝑛−1) ) be the input to the
warping module of the𝑛-thWarpformer layer (𝑛 ∈ {1, · · · , 𝑁 }), and
we use 𝐿 (𝑛−1) to denote the corresponding sequence length. Our
warping module aims to produce the transformation tensor 𝐴(𝑛) ∈
R𝐾×𝐿 (𝑛)×𝐿 (𝑛−1)

based on the encoded representation 𝐻 (𝑛−1) ∈
R𝐾×𝐿 (𝑛−1)×𝐷 and obtain the transformed representation 𝑍 (𝑛) ∈
R𝐾×𝐿 (𝑛)×𝐷 , the new mask 𝑀 (𝑛) ∈ R𝐾×𝐿 (𝑛)

, and the new an-
chor time 𝑇 (𝑛) ∈ R𝐾×𝐿 (𝑛)

as: 𝐴(𝑛) = 𝑓 warp
(
𝐻 (𝑛−1) , 𝑀 (𝑛−1)

)
,

𝑍 (𝑛) = 𝐴(𝑛) ⊗ 𝐻 (𝑛−1) , 𝑀 (𝑛) = 𝐴(𝑛) ⊗ 𝑀 (𝑛−1) , and 𝑇 (𝑛) =

𝐴(𝑛) ⊗ 𝑇 (𝑛−1) , where 𝑓 warp (·, ·) denotes a differentiable function
that emits the warping transformation tensor 𝐴(𝑛) , ⊗ refers to a
batch matrix product, and 𝐿 (𝑛) is a hyper-parameter pre-defined
as the new sequence length in the 𝑛-th layer. Note that, in or-
der to support representation learning on the first layer over the
raw granularity, we simply compose 𝐾 identity mappings into
𝐴(1) as 𝐴(1) = [𝐼𝐿×𝐿1 , · · · , 𝐼𝐿×𝐿

𝐾
], thus we have 𝐻 (1) = 𝐻 (0) = 𝐻 ,

𝑀 (1) = 𝑀 (0) = 𝑀 , and 𝑇 (1) = 𝑇 (0) = 𝑇 . For subsequent lay-
ers that operate in adaptively identified granularity, we adopt a
parameterized instantiation of 𝑓 warp.

Calculating Warping Curves. To facilitate understanding, be-
low we specifically show how to obtain a mapping matrix 𝒂𝑘 =

𝐴
(𝑛)
𝑘,:,: ∈ R

𝐿 (𝑛)×𝐿 (𝑛−1)
from the enriched representation𝒉𝑘 = 𝐻

(𝑛−1)
𝑘,:,: ∈
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R𝐿
(𝑛−1)×𝐷 and the corresponding mask 𝒎𝑘 = 𝑀

(𝑛−1)
𝑘,: ∈ R𝐿 (𝑛−1)

of
the 𝑘-th variate. First, we compute a non-negative score for each
observation entry in 𝒉𝑘 : 𝒔𝑘 = 𝑓 𝒔 (𝒉𝑘 ) ⊙ 𝒎𝑘 , where 𝒔𝑘 ∈ R𝐿 (𝑛−1)

is
the score vector of the 𝑘-th variate, 𝑓 𝒔 (·) is the score function, and
⊙ denotes the element-wise product. Since each entry in 𝒉𝑘 already
includes sufficient intra-series and inter-series information owing
to the doubly self-attention module of the last layer, we simply
instantiate 𝑓 𝒔 (𝒉𝑘 ) as a two-layer fully connected network. In this
way, we can obtain variate-specific scores and also take the global
context into account. Then we apply a normalized cumulative sum-
mation over 𝒔𝑘 to obtain the warping curve 𝝀𝑘 ∈ R𝐿 (𝑛−1)

, so we
have 𝝀𝑘,𝑖 = (∑𝑖

𝑖′=1 𝒔𝑘,𝑖′ )/(
∑𝐿 (𝑛−1)
𝑖′=1 𝒔𝑘,𝑖′ ).

Calculating Transformation Mappings. This warping curve
is non-descending, and its values are located within [0, 1]. There-
fore, by dividing [0, 1] into 𝐿 (𝑛) segments and using segment bound-
aries to cut the warping curve 𝝀𝑘 , we naturally derive a mapping
fromR𝐿

(𝑛−1)
toR𝐿

(𝑛)
. To be specific, we obtain the left boundaries of

𝐿 (𝑛) segments dividing [0, 1] as 𝒓1 = [0, 1
𝐿 (𝑛) , · · · , 𝐿

(𝑛)−1
𝐿 (𝑛) ] and the

right boundaries as 𝒓2 = [ 1
𝐿 (𝑛) ,

2
𝐿 (𝑛) , · · · , 1]. To use 𝒓1, 𝒓2 ∈ R(𝑛)

to cut 𝝀𝑘 ∈ R(𝑛−1) , we first extend the second dimension for 𝒓1, 𝒓2
and the first dimension for 𝝀𝑘 and then apply broadcast operations
along the new dimension to expand them into the same space of
R𝐿

(𝑛)×𝐿 (𝑛−1)
. We denote the resulting matrices of 𝒓1, 𝒓2, and 𝝀𝑘 as

𝑅1, 𝑅2, and Λ𝑘 , respectively. Note that the operation of Λ𝑘 −𝑅1 ≥ 0
gives us the mask information indicating whether an element in
𝜆𝑘 is on the right side of the left boundary of a specific segment.
Similarly, 𝑅2−Λ𝑘 ≥ 0 tells us whether an element is on the left side
of the right boundary of a given segment. Given the fact that an
element belongs to a segment if and only if this element is located
in the range covered by the left and right boundaries, we can ob-
tain the matrix 𝑎𝑚

𝑘
defining the mapping from R𝐿

(𝑛−1)
to R𝐿

(𝑛)
as

𝒂𝑚
𝑘

= (Λ𝑘 − 𝑅1 ≥ 0) & (𝑅2 −Λ𝑘 ≥ 0), where & denotes the logical
And operation.

Enabling Up-sampling. Using the segment boundaries speci-
fied by 𝒓1 and 𝒓2 to cut the warping curve naturally supports the
down-sampling behavior, which happens when several entries in
𝝀𝑘 fall into the same segment. But this scheme cannot assign any
entry in 𝝀𝑘 to multiple positions in R𝐿

(𝑛)
if we want a fine-grained

unification when 𝐿 (𝑛) > 𝐿 (𝑛−1) . To support up-sampling, our over-
all idea is to traverse the leftmost non-zero boundary in the upper
triangle matrix (Λ𝑘 − 𝑅1 ≥ 0) ⊙ Λ𝑘 and the rightmost non-zero
boundary in the lower triangle (𝑅2 − Λ𝑘 ≥ 0) ⊙ Λ𝑘 and then copy
these two boundary curves, essentially triggering up-sampling be-
haviors when 𝐿 (𝑛) > 𝐿 (𝑛−1) , to supplement the initial mapping
matrix 𝒂𝑚

𝑘
. In practice, we can implement this idea very efficiently

by adjusting 𝑅1 and 𝑅2. First, we can use the values in the right-
most non-zero boundary of (𝑅2 − Λ𝑘 ≥ 0) ⊙ Λ𝑘 to update 𝒓1 as
𝒓1𝑢 = min(𝒓1, perRowMax((𝑅2−Λ𝑘 ≥ 0) ⊙Λ𝑘 )) and then broadcast
𝒓1𝑢 ∈ R𝐿 (𝑛)

along a new dimension to obtain 𝑅1𝑢 ∈ R𝐿 (𝑛)×𝐿 (𝑛−1)
. The

adjusted 𝑅1𝑢 ensures that the mappings recorded by the rightmost
non-zero boundary of (𝑅2 − Λ𝑘 ≥ 0) is definitely included in the
non-zero entries of (Λ𝑘 − 𝑅1𝑢 ≥ 0). And we can perform a similar

adjustment to obtain 𝑅2𝑢 . Finally, we calculate 𝒂𝑚𝑘 with new 𝑅1𝑢 and
𝑅2𝑢 as 𝒂𝑚

𝑘
= (Λ𝑘 − 𝑅1𝑢 ≥ 0) & (𝑅2𝑢 − Λ𝑘 ≥ 0).

Enabling Differentiation. Moreover, we note that the opera-
tion involved in obtaining 𝒂𝑚

𝑘
is non-differentiable. Accordingly,

we utilize the following equation to compute a mapping matrix
that preserves the flow of gradient computations: 𝒂𝑢

𝑘
= 𝒂𝑚

𝑘
⊙(

max
(
Λ𝑘 − 𝑅1, 0

)
+max

(
𝑅2 − Λ𝑘 , 0

) )
. Note that the value of a non-

zero element in 𝒂𝑢
𝑘
denotes the summation of its distance to the

left boundary and the distance to the right, which exactly equals
to the segment width, namely 1

𝐿 (𝑛) . This fact means that 𝒂𝑢
𝑘
is

a mapping matrix with uniform weights. Furthermore, to stabi-
lize the magnitude of the transformed embedding in 𝑍 (𝑛) , which
should be irrelevant to the number of raw data points assigned to
a specific segment, we normalize 𝒂𝑢

𝑘
by its per-row summation as

𝒂𝑘 = 𝒂𝑢
𝑘

/
rowSum(𝒂𝑢

𝑘
).

It is apparent that the above operations to obtain 𝒂𝑘 can be easily
parallelized for all 𝐾 variates, and all these operations constitute
the function 𝑓 warp (𝐻 (𝑛−1) , 𝑀 (𝑛−1) ) to produce the final transfor-
mation tensor 𝐴(𝑛) . Moreover, we can observe that 𝑇 (𝑛−1) does
not participate in the computation of 𝐴(𝑛) because 𝐻 (𝑛−1) already
includes time-related information in the input encoder. We preserve
the calculation from 𝑇 (𝑛−1) to 𝑇 (𝑛) mainly for visualization and
interpretation purposes.

3.3 Doubly Self-attention Module
To perform effective learning over 𝑍 (𝑛) , the representation pro-
duced by the warping module in the 𝑛-th layer, a desired learning
module on top of 𝑍 (𝑛) should not only hold sufficient capacities
to effectively capture predictive patterns but also retain the rep-
resentation structure that includes both time and variate dimen-
sions, in other words, keep operating in the space of R𝐾×𝐿 (𝑛)×𝐷 ,
so as to preserve the inductive bias of explicitly presenting "concur-
rent" observations and to support further processing of subsequent
warping modules. Although Transformer [44], an extraordinarily
successful neural architecture applied in various sequence learning
scenarios [4, 8, 9, 19, 40], appears to be a straightforward option,
its self-attention mechanism, assuming the input sequence lies in
the space of R𝐿

(𝑛)×𝐷 , does not support our target of capturing both
intra-series and inter-series patterns. Therefore, we develop a novel
doubly self-attention mechanism as a customized extension of the
Transformer encoder to fit our representation structure.

Specifically, we perform two consecutive standard self-attention
operations on two views of the organized representation 𝑍 (𝑛) ∈
R𝐾×𝐿 (𝑛)×𝐷 . In the first view, we regard 𝑍 (𝑛) as 𝐾 sequences of
embeddings with each sequence in R𝐿

(𝑛)×𝐷 . As for the second,
we rearrange 𝑍 (𝑛) into 𝐿 (𝑛) sequences of embeddings with each
one in R𝐾×𝐷 . Besides, each self-attention operation also follows
prior arts [46] to perform layer normalization [1] over the input
in advance and include a residual connection. Such a doubly self-
attention mechanism enables the information exchange across both
intra-series and inter-series dimensions. After that, we finish one-
layer encoding by applying the vanilla position-wise feed-forward
mapping in Transformer, which naturally fits our representation
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format. Last, to enable effective learning and facilitate sufficient ex-
changes of both intra-series and inter-series information, we stack
multiple such encoding layers to compose the doubly self-attention
module that maps 𝑍 (𝑛) into 𝐻 (𝑛) for the subsequent process. Note
that 𝑍 (𝑛) and 𝐻 (𝑛) are in the same space as R𝐾×𝐿 (𝑛)×𝐷 , and we
do not need to change𝑀 (𝑛) and 𝑇 (𝑛) .

3.4 Task Decoder
With multi-layer stacking of Warpformer layers, each of which con-
sists of a warping module and a doubly self-attention module, we
can naturally obtain multi-scale representations by aggregating the
output of each layer, denoted as {(𝐻 (𝑛) , 𝑀 (𝑛) )}𝑁

𝑛=1. While these
representations correspond to different sequence lengths, denoted
as {𝐿 (𝑛) }𝑁

𝑛=1, we adopt attention-based pooling operations to ob-
tain fix-sized embeddings for downstream tasks. Note that these
representations correspond to different sequence lengths, denoted
as {𝐿 (𝑛) }𝑁

𝑛=1, due to the layer-by-layer warping transformations
towards more coarse-grained views. To leverage these multi-scale
representations in variable shapes, we condense the time and variate
dimensions of each𝐻 (𝑛) to obtain a fixed-size embedding inR𝐷 . To
be specific, we leverage an attention-based aggregation operation:
𝑓 agg (Query,Key,Value) = Softmax(Query · Key𝑇 ) · Value, where
Query ∈ R𝐷 is a query vector, Key ∈ R𝐿×𝐷 is a key matrix, Value ∈
R𝐿×𝐷 is a value matrix, and we use · to denote vector-matrix prod-
uct. Note that no matter how 𝐿 varies, the output of 𝑓 agg is still in
R𝐷 . To condense the time dimension, we simply set Query = 𝑄𝑡 ,
Key = Tanh(Linear(𝒉𝑘 )), Value = 𝒉𝑘 , 𝒖𝑘 = 𝑓 agg (·, ·, ·), where
𝑄𝑡 ∈ R𝐷 denotes a parameter, 𝒉𝑘 ∈

{
𝐻

(𝑛)
𝑘,:,: ∈ R

𝐿 (𝑛)×𝐷
}𝐾
𝑘=1

refers

to the𝑘-th slicing of𝐻 (𝑛) along the variate dimension, and similarly
𝒖𝑘 ∈ R𝐷 denotes the 𝑘-th slicing of 𝑈 (𝑛) ∈ R𝐾×𝐷 . Furthermore,
we set Query = 𝑄𝑣 , Key = Tanh(Linear(𝑈 (𝑛) )), Value = 𝑈 (𝑛) ,
and 𝒗 (𝑛) = 𝑓 agg (·, ·, ·) to remove the variate dimension. In this
way, we transform the tensor 𝐻 (𝑛) into the fixed-size embedding
𝒗 (𝑛) ∈ R𝐷 . By applying the same operations with shared param-
eters over all {𝐻 (𝑛) }𝑁

𝑛=1, we obtain a bunch of equal-size embed-
dings {𝒗 (𝑛) }𝑁

𝑛=1 encapsulating multi-scale patterns. We add these
embeddings into the final representaiton 𝒗 =

∑𝑁
𝑛=1 𝒗

(𝑛) to support
downstream tasks. For example, given a multi-class classification
task with𝐶 classes in total, we can perform the following computa-
tion: �̂� = Softmax(𝑊 𝑦𝒗 + 𝒃𝑦), where the prediction vector �̂� ∈ R𝐶
includes a predicted probability distribution over 𝐶 classes, and
𝑊 𝑦 ∈ R𝐶×𝐷 , 𝒃𝑦 ∈ R𝐶 are task-specific parameters.

4 EXPERIMENTS
In this section, we provide extensive experiments to demonstrate
the effectiveness of Warpformer.

4.1 Experimental Settings
4.1.1 Datasets. We follow existing studies [5, 6, 37] to compare
different models on the PhysioNet dataset [39] and the Human Ac-
tivity dataset [32]. The PhysioNet dataset comprises 4, 000 instances
and focuses on predicting in-hospital mortality. It includes 4 types
of demographics and 37 physiological signals collected during the
initial 48 hours of ICU admission. The median length of instances

in this dataset is 72. The Human Activity dataset aims to classify
specific human activities among seven types for each timepoint in
a segment of irregularly sampled time series. It consists of 6, 554
time-series segments with a total of 12 channels. All instances in
this dataset have a fixed length of 50 timepoints. We mainly follow
the existing setup [37] to divide the original dataset into the train,
validation, and test sets, except that we do not shuffle instances in
the Human Activity dataset, which are obtained by truncating five
long sequences, to avoid the potential information leakage. Nev-
ertheless, these two datasets cover very limited clinical prediction
tasks domain, signal types, and data instances, which may lead to
biased estimates in comparing different approaches. Meanwhile, we
note that theMIMIC-III database [15] contains many clinical scenar-
ios calling for accurate predictions over diversified clinical signals,
most of which are irregularly sampled. Then we refer to [25, 43, 47]
and construct a new benchmark with five representative clinical
tasks, 103 clinical signals (61 biomarkers and 42 interventions), and
hundreds of thousands of instances. The specific clinical tasks in-
clude in-hospital mortality (MOR), decompensation (DEC), length
of stay (LOS), next timepoint will be measured (WBM), and clinical
intervention prediction (CIP), each of which serves as a new dataset
for evaluation. Additional details on these datasets can be found in
Appendix A.

4.1.2 Metrics. In line with previous studies, we evaluate the per-
formance using the area under the receiver operating characteris-
tic curve (AUROC) and the area under the precision-recall curve
(AUPRC) for the PhysioNet dataset and the five datasets derived
from MIMIC-III. Besides, following the prior art, we introduce Ac-
curacy as the evaluation metric for the Human Activity dataset. For
multi-class or multi-label classifications, we calculate AUROC and
AUPRC scores for each individual class (label) and then compute
the average as the dataset-level score. To eliminate the randomness,
we conduct each experiment with five random seeds and report
both the mean and standard deviation of the results.

4.1.3 Baselines. We organize existing methods applicable to ir-
regular clinical time series into five paradigms. The first is to in-
troduce irregularity-sensitive updating mechanisms into recurrent
neural networks, such as RNN-Mean, RNN-Forward, RNN-Δ𝑡 ,
RNN-Decay, and GRU-D in [5] as well as Phased-LSTM [28].
The second is to model the hidden continuous dynamics behind
irregular observations via neural ODEs, such as ODE-RNN and
L-ODE-ODE [32]. Since neural ODEs are computational inten-
sive, the third paradigm, including IP-Net [38] andmTAND [37],
attempts to introduce continuous-time representations and align ir-
regular observations into regularly spaced reference points to fit for
classical time-series models. The fourth paradigm tackles the time
irregularity by organizing multiple types of irregular observations
into a long sequence of "(time, type, value)" tuples and modeling
their interactions via self-attention mechanisms, such as SeFT [13],
or via graph neural networks, such asRainDrop [57]. Last, the fifth
paradigm refers to recent domain-specific methods for electronic
health records (EHRs). Typical examples include AdaCare [24],
a multi-scale model but operating on regularly aggregated time
series, and STraTS [43], a similar variant of SeFT introducing train-
able time encodings and auxiliary learning objectives. We include
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Table 1: Evaluation results (mean ± std %) on PhysioNet and
Human Activity.

Model PhysioNet Human Activity
AUROC AUPRC Accuracy AUPRC

RNN-Mean 55.5 ± 8.7 20.3 ± 7.5 74.9 ± 1.4 65.5 ± 2.4
RNN-Forward 84.2 ± 0.7 52.6 ± 0.7 76.7 ± 0.6 68.7 ± 0.6
RNN-Δ𝑡 65.7 ± 3.2 25.2 ± 1.5 74.6 ± 0.6 65.3 ± 2.0
RNN-Decay 49.9 ± 0.9 15.7 ± 0.4 75.9 ± 1.3 64.4 ± 1.5
GRU-D 84.7 ± 0.3 52.6 ± 0.3 75.0 ± 1.0 64.3 ± 1.7
Phased-LSTM 78.1 ± 0.5 40.7 ± 3.6 73.5 ± 1.7 60.8 ± 1.0

ODE-RNN 83.7 ± 0.6 53.3 ± 1.1 76.0 ± 1.2 64.9 ± 2.6
L-ODE-ODE 81.2 ± 1.3 46.6 ± 3.6 76.7 ± 1.4 77.1 ± 1.4

SeFT 70.8 ± 0.3 29.9 ± 0.9 75.8 ± 3.3 66.1 ± 3.3
RainDrop 69.2 ± 4.2 28.4 ± 3.6 70.2 ± 1.6 62.3 ± 2.6

IP-Nets 75.6 ± 1.1 37.5 ± 2.3 73.5 ± 1.7 64.7 ± 2.4
mTAND 86.0 ± 0.4 54.6 ± 0.9 81.3 ± 0.3 73.5 ± 0.8

Warpformer 86.6 ± 0.6 56.7 ± 0.7 84.9 ± 0.7 81.1 ± 0.9

these two EHR-specific methods in the experiments on large-scale
datasets built from MIMIC-III.

4.1.4 Implementation Details. We employ slightly different hy-
perparameter configurations across the datasets in our experiments.
For a comprehensive reference, we have summarized the hyperpa-
rameter settings used for each dataset in Appendix B.2. Our model
is implemented using PyTorch 1.9.0, and both training and infer-
ence are performed on CUDA 11.3. We utilize the Adam optimizer
with an initial learning rate of 10−3. The models are trained for
a maximum of 50 epochs, and early stopping is applied if there
is no improvement on the validation set for 5 consecutive train-
ing epochs. All experiments are conducted on NVIDIA Tesla V100
GPUs. To ensure fair comparisons with other baselines, we ex-
plore the hyperparameter search space around their best-reported
configurations.

To accommodate the variability in input sequence lengths across
datasets, we introduce a normalized length �̃� = 𝐿/𝐿𝑑𝑎𝑡𝑎 , where
𝐿𝑑𝑎𝑡𝑎 is the median length of training instances. When �̃� is less than
1, the warping layer predominantly downsamples the time series,
while a value greater than 1 signifies upsampling. For example, in
the case of theHuman Activity dataset with a median length of 50, if
�̃� (𝑛) = 0.2, it means that the new sequence length in the 𝑛-th layer
is 10 (i.e., 10/50 = 0.2). The median lengths for each clinical dataset
can be found in Table 4. We utilized specific scales for different
datasets in our main experimental results and ablation tests. For the
PhysioNet dataset, we use three scales with �̃� (1) = 0.2 and �̃� (2) = 1.
For the Human Activity dataset, we use three scales with �̃� (1) = 1.2
and �̃� (2) = 1. Lastly, for theMIMIC-III based datasets, we utilize two
scales with �̃� (1) = 1. Given the importance of �̃� (𝑛) as a predefined
hyperparameter in our model, we provide a sensitivity analysis in
Section 4.2.3 and Appendix B.3 to assess its impact and determine
the optimal combinations.

4.2 Experimental Results
4.2.1 Main Results. We include the overall comparison results
on PhysioNet and Human Activity in Table 1. Besides, we present

AUROC and AUPRC results onMIMIC-III -based datasets in Table 2.
In general, we observe that different baselines present apparent
performance variations across different datasets and evaluation
metrics. Interestingly, certain advanced methods, such as mTAND,
demonstrate excellent performance on the PhysioNet and Human
Activity datasets. However, despite extensive hyper-parameter tun-
ing, these methods do not exhibit comparable performance on the
MIMIC-III -based datasets. On the other hand, basic extensions of
recurrent neural networks, such as RNN-Mean and RNN-Decay,
perform poorly on PhysioNet but surprisingly achieve competitive
and robust results on MOR, DEC, and LOS tasks. We conjecture
the underlying reason is related to the matching degree between
the effective patterns of a specific dataset and the unique assump-
tions held by a specific model. Nevertheless, with the capability
of encoding various crucial information in irregular time series
and unifying both fine-grained and coarse-grained information,
Warpformer achieves remarkable performance improvements over
the most competitive baselines in all setups.

Additionally, we observed that the improvements achieved by
Warpformer vary across tasks, with specific tasks, e.g., WBM, bene-
fiting more than others, e.g., MOR. One possible explanation for this
variation is the inherent difficulty of tasks. The WBM task involves
predicting a substantial number of biomarkers to bemeasured in the
upcoming hour, necessitating the model to capture inter-variable
discrepancies. In contrast, the MOR task only involves binary clas-
sification, which is relatively straightforward and demands less
attention to inter-variable discrepancies. The increased complexity
and inter-variable challenges in the WBM task likely contribute to
the significant gains achieved by the Warpformer model compared
to the MOR task. Another factor that can impact performance is the
length of observation windows for each task. Shorter observation
windows may limit the model’s ability to capture complex tem-
poral patterns and obscure intra- and inter-variable discrepancies.
For example, the WBM task requires a 48-hour look-back window,
necessitating the model to capture intricate temporal patterns. In
contrast, the CIP task only requires a 6-hour look-back window,
which could explain its minor improvement compared to the tasks
with longer observation windows.

4.2.2 AblationTests. We conducted ablation tests onWarpformer
to illustrate the significance of critical designs. Table 3 includes
the results of three warping-related variants, 1) disabling the up-
sampling functionality (No Up-sampling); 2) using the identical
mapping to substitute the warping-based mapping (Identical Map-
ping); 3) using hourly aggregation to substitute the warping module
(Hourly Aggregation). The results demonstrate that the warping
module plays an important role compared to identical mapping. No-
tably, the ability to upsample significantly impacts the performance,
as the absence of upsampling functionality can even lead to inferior
results compared to identical mapping. These findings underscore
the necessity of capturing finer-grained details of sparsely sampled
signals during multi-scale modeling. Furthermore, the experimental
results on the PhysioNet dataset reveal that inappropriate schemes
for obtaining coarse-grained representations, such as aggregating
all data within a time slot, can yield worse results than a model
without a multi-scale setting. These observations validate the effec-
tiveness of the adaptive unification strategy employed.
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Table 2: AUROC and AUPRC (mean ± std %) of different methods on five datasets built fromMIMIC-III.

Model MOR DEC LOS WBM CIP
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

RNN-Mean 89.5 ± 0.3 62.9 ± 0.7 98.4 ± 0.2 83.6 ± 0.8 76.7 ± 0.1 31.2 ± 0.1 79.4 ± 0.3 25.8 ± 0.6 86.9 ± 0.3 45.6 ± 0.2
RNN-Forward 88.5 ± 0.3 60.4 ± 1.2 97.1 ± 0.6 75.6 ± 2.2 76.4 ± 0.2 30.8 ± 0.1 74.6 ± 4.9 22.4 ± 3.0 86.4 ± 0.4 45.2 ± 0.3
RNN-Δ𝑡 87.4 ± 1.0 55.8 ± 2.4 97.3 ± 0.5 74.5 ± 0.8 76.2 ± 0.2 30.6 ± 0.2 72.5 ± 4.2 20.4 ± 2.1 50.6 ± 0.6 25.2 ± 0.2
RNN-Decay 89.1 ± 0.4 62.6 ± 1.0 98.4 ± 0.3 84.2 ± 2.4 77.0 ± 0.1 31.6 ± 0.1 77.8 ± 2.2 24.5 ± 1.9 76.2 ± 9.6 39.8 ± 4.6
GRU-D 87.6 ± 0.5 59.9 ± 0.6 97.6 ± 1.0 77.9 ± 5.6 76.5 ± 0.1 30.9 ± 0.3 74.4 ± 6.9 22.7 ± 4.9 84.6 ± 1.8 43.3 ± 1.7
Phased-LSTM 86.7 ± 0.3 53.7 ± 0.6 97.5 ± 0.1 78.2 ± 0.4 75.6 ± 0.2 30.2 ± 0.1 77.4 ± 0.3 24.3 ± 0.4 84.8 ± 0.2 44.0 ± 0.1

SeFT 88.0 ± 0.4 59.3 ± 1.4 98.5 ± 0.2 86.7 ± 0.7 76.1 ± 0.1 31.0 ± 0.1 83.8 ± 0.4 33.1 ± 0.3 86.6 ± 0.2 45.0 ± 0.1
RainDrop 87.6 ± 0.1 59.1 ± 0.4 98.0 ± 0.2 82.7 ± 0.5 76.0 ± 0.2 30.6 ± 0.4 80.4 ± 0.4 27.7 ± 0.6 86.9 ± 0.4 44.8 ± 0.2

IP-Nets 88.9 ± 0.3 61.9 ± 0.9 98.3 ± 0.1 85.2 ± 0.6 74.3 ± 3.6 28.8 ± 3.7 81.6 ± 0.1 28.1 ± 0.6 85.2 ± 0.6 44.0 ± 0.6
mTAND 89.0 ± 0.2 61.8 ± 0.7 97.2 ± 0.3 74.5 ± 3.2 73.8 ± 0.4 28.3 ± 0.4 66.1 ± 0.2 16.7 ± 0.1 84.2 ± 0.3 42.1 ± 0.2

AdaCare 76.0 ± 0.5 47.7 ± 0.7 94.9 ± 2.0 68.5 ± 9.0 64.9 ± 0.6 22.1 ± 1.2 51.2 ± 0.2 12.9 ± 0.0 64.4 ± 2.4 36.2 ± 1.9
STraTS 89.3 ± 0.1 61.3 ± 0.3 98.6 ± 0.1 84.0 ± 1.6 76.6 ± 0.2 31.4 ± 0.3 79.1 ± 2.1 26.2 ± 2.4 87.8 ± 0.2 45.6 ± 0.2

Warpformer 90.3 ± 0.1 64.6 ± 0.4 99.0 ± 0.1 90.0 ± 0.4 77.7 ± 0.2 32.5 ± 0.2 85.5 ± 0.1 35.5 ± 0.3 88.0 ± 0.2 46.4 ± 0.2

Table 3: Ablation tests of Warpformer on PhysioNet and Hu-
man Activity.

Warpformer PhysioNet Human Activity
AUROC AUPRC Accuracy AUPRC

Full 86.6 ± 0.6 56.7 ± 0.7 84.9 ± 0.7 81.1 ± 0.9

No Up-sampling 85.4 ± 1.2 54.5 ± 1.8 84.4 ± 0.8 79.0 ± 0.7
Identical Map. 84.8 ± 0.4 52.0 ± 2.1 84.8 ± 1.2 80.0 ± 1.4
Hourly Agg. 84.2 ± 0.5 51.6 ± 2.4 N/A N/A

−𝑓 abs ( ·) 83.2 ± 1.3 50.9 ± 1.6 80.6 ± 1.9 74.0 ± 2.3
−𝑓 rel ( ·) 86.3 ± 1.1 54.5 ± 2.7 84.8 ± 0.7 80.5 ± 1.0
−𝑓 type ( ·) 86.3 ± 0.9 55.7 ± 2.3 84.3 ± 0.4 79.3 ± 0.9

Input Pooling 47.3 ± 0.1 14.8 ± 0.0 32.4 ± 0.0 15.7 ± 0.1

To further explore the importance of different components in
the input encoding process, we conducted additional ablation tests,
and the results are also presented in Table 3. The notation −𝑓 abs (·),
−𝑓 rel (·), and −𝑓 type (·) represent the removal of absolute-time em-
beddings, relative-time embeddings, and type embeddings, respec-
tively. The term "Input pooling" refers to the application of a simple
average pooling operation that collapses the temporal and variate
dimensions. The results demonstrate that the model experiences
a significant performance drop when any encoding components
are missing. Particularly, the absence of absolute-time encoding
has the most pronounced impact on the model’s performance. This
finding is intuitive as 𝑓 abs (·) captures the absolute position of each
sample within a continuous time period, which is crucial for ef-
fectively modeling irregularly sampled time series. These ablation
tests provide strong evidence supporting the importance of each
encoding component in the input representation of Warpformer.
By considering these components together, Warpformer is able to
capture the intricate temporal relationships and characteristics of
irregularly sampled time series data.

4.2.3 Multi-scale Effects. We study the multi-scale effects of
Warpformer with different setups of the number of Warpformer
layers 𝑁 , i.e., the number of scales, and the hyper-parameters

{�̃� (𝑛) }𝑁
𝑛=1, i.e., the unification granularity. Figure 3 includes the

results on PhysioNet and Human Activity, where we show the per-
formance as a function of �̃� (𝑛) . Note that in the case of the Human
Activity dataset, hidden states must be generated for each time step
since it involves per-step prediction. Consequently, the 2 scales
mentioned in Figure 3b actually correspond to 3 Warpformer lay-
ers (𝑁 = 2), where �̃� (2) = 1. Similarly, the 3 scales mentioned in
Figure 3d correspond to 4 Warpformer layers (𝑁 = 3).

These findings suggest that the optimal number of layers applied
varies across different datasets. The optimal number is often not
very large, indicating that using 2 or 3 scales in Warpformer for
encoding is sufficient to generate highly effective representations
for downstream tasks. We observed that increasing the number
of layers, which involves repeating up- or down-sampling opera-
tions, did not yield substantial additional benefits. In fact, it was
noticed that excessive stacking of scales could potentially weaken
the patterns learned in the previous layers. This observation em-
phasizes the importance of striking the right balance in the number
of scales used, avoiding unnecessary complexity that could impede
the model’s ability to capture and leverage meaningful information.

Moreover, the results highlight the significance of selecting an
appropriate unification granularity in Warpformer. Interestingly,
different datasets showed distinct preferences for down-sampling
and up-sampling configurations. To be specific, extreme down-
sampling had the most substantial performance improvement on
the PhysioNet dataset, whereas the Human Activity dataset pre-
ferred up-sampling configurations. We speculate that the disparity
in performance can be attributed to the nature of the prediction
tasks in each dataset. The PhysioNet dataset involves a single predic-
tion target for the entire series, prioritizing the capture of long-term
trends and overall patterns. Thus, a more coarse-grained represen-
tation proves beneficial in this context. On the other hand, the
Human Activity dataset requires accurate predictions at each time
point, necessitating fine-grained information to discern subtle vari-
ations and dependencies within the temporal sequences. Therefore,
the up-sampling configurations are particularly advantageous for
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(a) PhysioNet (AUROC, 2 scales) (b) Human Activity (ACC, 2 scales) (c) PhysioNet (AUROC, 3 scales) (d) Human Activity (ACC, 3 scales)

Figure 3: The multi-scale effects of Warpformer on PhysioNet and Human Activity.

&

Figure 4: Visualization of the input time series (left) and its adaptive unification (right), as well as the learned corresponding
alignment matrix 𝐴 (middle). The length of the y-axis of 𝐴 is �̃� (𝑛) , i.e., the size of the produced unification, and the x-axis is
�̃� (𝑛−1) , i.e., the length of the input time series.

this dataset. These findings shed light on the importance of adapt-
ing the unification granularity to the specific characteristics of the
dataset and prediction task. By tailoring the level of down-sampling
or up-sampling, Warpformer can effectively capture the relevant
temporal patterns and optimize its performance accordingly.

4.3 Case Study
To gain deeper insights into how the warping mechanism enhances
predictions in downstream tasks, we conducted a comprehensive
case study focusing on instances that exhibited substantial improve-
ments after the warping process. The visual analysis, as presented
in Figure 4, includes three representative physiological signals from
the MIMIC-III-based datasets, showcasing the original input sig-
nals, the corresponding learned alignment matrix𝐴, and the output
series after adaptive unification.

The visualizations demonstrate that the warped signals faithfully
capture the trends present in the original signals, and the warping
module exhibits the ability to compute variate-specific alignment
schemas. For densely sampled signals, such as systolic blood pres-
sure, the warping module downsamples the original series while
preserving irregular patterns and important local fluctuations. This
is achieved by retaining the intra-variate irregularity during the
unification process, which cannot be achieved through traditional
hourly aggregation. Such capability is advantageous in multi-scale
modeling as it prevents the loss of irregular time patterns at coarse-
grained levels and retains valuable details. On the other hand, for
sparsely sampled signals, e.g., body temperature and glucose, the
warpingmodule generates additional interpolated sample points, re-
sulting in a more fine-grained representation of the coarse-grained

signal. These interpolated sample points provide more detailed fea-
tures, facilitating the model’s ability to capture subtle variations in
the temporal sequences.

The case study clearly demonstrates that thewarpingmechanism
successfully preserves intra-variate irregularities and alleviates
inter-variate discrepancies. This underscores the crucial role of the
adaptive unification process in Warpformer, which significantly
contributes to the model’s performance and ability to capture the
underlying dynamics of the irregular clinical time series.

5 CONCLUSION AND FUTUREWORK
In conclusion, our paper has highlighted the importance of address-
ing both intra-series irregularity and inter-series discrepancy when
dealing with irregularly sampled multivariate time series, particu-
larly in clinical scenarios. We have presented the first multi-scale ap-
proach, Warpformer, which has achieved remarkable performance
across various datasets. However, it is important to acknowledge
that our work has several limitations at this stage. Firstly, the re-
liance on pre-specified hyper-parameters, such as the number of
layers and per-layer unification granularity, poses a challenge in
terms of efficiency in hyper-parameter tuning. Secondly, the main-
tenance of both temporal and variate dimensions in internal feature
representations introduces additional space complexity. Finally,
Warpformer’s dependence on gradients from downstream tasks
limits its use to supervised settings, which may affect its general-
ization performance in real-world scenarios with limited labeled
data. Future work will explore ways to address these limitations
and improve the efficiency and generalization of our approach.
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A MIMIC-III-BASED DATASETS

(a) LOS. (b) CIP.

(c) WBM.

Figure 5: Label distribution of LOS, CIP, and WBM datasets.

MIMIC-III database [15] contains hospital admission records of
53, 423 de-identified patients. We selected 61 common biomarker
variables and 42 widely used interventions in intensive care units
(ICU) [43]. We also follow the previous studies [38, 47] to ensure the
sufficient duration of hospital stay by removing the records with
the length of stay less than 48 hours. Figure 7 illustrates the distri-
bution of sampling intervals in the in-hospital mortality task for all
clinical signals, visually representing the wide range of variate and
significant inter-variate discrepancies in the clinical time series. To
imitate the practical situation, we sort the clinical records according
to the time of admission, where the training set includes the earliest
80% of admission records. We equally divide the rest into validation
and testing sets. There is no admission overlap in different sets to
avoid data leakage issues. Similar to [25, 38, 47], we select a diverse
set of tasks to cover different clinical scenarios. Table 4 summarizes
the statistics of these tasks, which will be briefly introduced one by
one in the following.

In-hospital Mortality (MOR) The goal of the MOR task is to
predict whether a patient will decease at the end of this hospital stay.
In this task, models can observe only the first 48 hours, which is
advantageous from a practical view since the sooner clinicians iden-
tify the risks, the more prompt they can implement interventions.
As performed in existing studies [37, 38, 47], we define this task as
a binary classification problem, where 1 indicates that the patient
deceased in this hospital stay, otherwise 0. The overall in-hospital
mortality rate of this benchmark is 11.66%.

Decompensation (DEC) The objective of DEC is to determine
whether a patient will decease in the next 24 hours based on the
data within a 12-hour time window. This task, also referred to
as imminent mortality prediction, has been studied widely as a
signal for more general physiological decompensation [11, 25]. We
formulate this task as a binary classification as well, but sampling
data throughout the entire hospital stay in the rolling form. In this
way, we obtained 311, 161 samples with a mortality rate of 1.81%.

Length Of Stay (LOS) Compared with other tasks, the LOS pre-
diction provides a more fine-grained view of patients’ physiological

states, helping clinicians better monitor the progress of the disease.
As did in [51], we formulate this task as a classification problem
with 9 classes, where class 1-7 corresponds to 1-7 days of stay, re-
spectively, class 8 for more than eight days but less than two weeks
of stay, and class 9 for living over two weeks. As a rolling task, its
observation is sampled every 12 hours throughout the entire stay,
where the sliding window size is 24 hours. The distribution of labels
for this dataset can be found in Figure 5a.

Next Timepoint Will Be Measured (WBM) The WBM task
is a multi-label classification problem with the goal of predicting
which biomarker signals will be measured in the next hour [25].
This task is beneficial to assist clinicians in developing the subse-
quent treatment plan. To fulfill this task, the model needs to make
predictions for 54 biomarkers, each of which is a binary classifica-
tion problem. If a signal was measured within the following hour,
it is assigned a label of 1, otherwise 0. The WBM task is conducted
over the entire stay of a patient, where the sampling stride is 12
hours and the observation window size is 48 hours. We provide the
distributions of each prediction target in Figure 5c.

Clinical Intervention Prediction (CIP) As a critical clinical
application, accurately predicting the clinical interventions can
largely release the burden of clinicians in practice [10, 50]. Similar
to [41, 47], we also formulate the CIP task as a multi-class classi-
fication problem. This task consists of two subtasks in terms of
different intervention types: mechanical ventilation and vasopressor.
The prediction target for each type should be one of the four pos-
sible options: 1) onset, 2) wean, 3) continuing on the intervention,
and 4) continuing to stay off the intervention. For more details on
the distribution of prediction targets, please refer to Figure 5b. The
input of this task is the historical data within the 6-hour lookback
window, and the prediction target is the state of the intervention
within the next 4-hour lookahead window. The CIP task is also
conducted over the entire stay of a patient, where the sampling
stride is 6 hours.

B EXPERIMENTS
B.1 Performance Metrics
Clinical downstream tasks, e.g., mortality prediction, frequently
encounter significant data imbalance issues. Consequently, we em-
ployed AUROC and AUPRC as the primary evaluation metrics.
Due to the balanced nature of the Human Activity dataset and the

(a) MIMIC-III (AUROC, 2 scales) (b) MIMIC-III (AUPRC, 2 scales)

Figure 6: Performance of Warpformer with varying �̃� (1) on
MIMIC-III-based datasets.
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Table 4: Specifications for five clinical datasets derived from the MIMIC-III database (BC: binary classification, ML: multi-label
classification, MC: multi-class classification).

Task (Abbr.) Type # Train # Val. # Test Median Seq. Len. Clinical Scenario

In-hospital Mortality (MOR) BC 39, 449 4, 939 4, 970 63 Early warning
Decompensation (DEC) BC 249, 045 31, 896 30, 220 34 Outcome prediction
Length Of Stay (LOS) MC 249, 572 31, 970 30, 283 34 Outcome prediction
Next Timepoint Will Be Measured (WBM) ML 223, 867 28, 754 27, 038 78 Treatment recommendation
Clinical Intervention Prediction (CIP) MC 223, 913 28, 069 27, 285 10 Treatment recommendation

Figure 7: The distribution of sampling intervals for all the clinical signals in the MOR task.

Table 5: Specifications for hyper-parameters.

Dataset 𝐷 Batch size # Head # Layers 𝐽

PhysioNet 32 32 1 2
Human Activity 64 64 8 3
MIMIC-III 32 32 1 2

prevailing usage of Accuracy in previous studies [37, 38], we also
adopted Accuracy for this particular dataset. For each dataset, we
select the model parameters that yield the highest AUROC value
on the validation set and apply them for evaluation on the test set.

B.2 Further Details on Hyper-parameters
For each dataset, we tailor the dimensionality of hidden states, batch
size, and the number of heads and layers in the doubly attention
module. Please refer to Table 5 for specific configuration details. In
our implementation, each attention head is set to have a dimension
of 8. The score function 𝑓 𝒔 (·) is implemented as a two-layer fully
connected network with a ReLU activation function. Through thor-
ough testing, we find that using the Sigmoid function to compute
the non-negative score ensures better stability in our model.

B.3 Further analyses on multi-scale
hyper-parameters

To further demonstrate the impact of scale numbers (𝑁 ) and unifi-
cation granularity (�̃� (𝑛) ), we provide the performance of two-layer
Warpformer onMIMIC-III-based datasets (Figure 6) and the AUROC

of a four-layer Warpformer on the PhysioNet dataset (Figure 8).
It shows that MIMIC-III-based datasets consistently yield the best
results when �̃� (1) = 1. Additionally, the results of the four-scale ex-
periment on the PhysioNet dataset do not surpass the performance
of the 3-scale settings. Notably, extreme downsampling applied to
�̃� (1) and �̃� (2) achieves relatively strong performance, aligning with
our observations in Section 4.2.3. AUROC

Figure 8: AUROC of the four-layer Warpformer on the Phy-
sioNet dataset with different �̃� (𝑛) settings.
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